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Abstract

Financial markets continue to see an increase in the share of trades executed by algorithmic trading
systems. A key component of an efficient algorithmic trading system is its ability to accurately estimate
the probability an order will be executed: the fill probability. This thesis aims to determine whether
the dynamics of the order book can be captured accurately by a stochastic model, which subsequently
leads to the following research question:

Can we accurately compute fill probabilities of limit orders, conditional on the state of the order book?

Our research builds upon the stochastic model proposed by Cont, Stoikov and Talreja, which
assumes orders and cancellations have unit size and arrive according to independent Poisson processes
[12]. There are two main advantages of the model proposed by Cont et al., which include:

• Straightforward parameter estimation based on observable order book data,

• The possibility to compute various probabilities of interest semi-analytically.

These probabilities include the fill probability of limit orders and the direction of the next mid-price
move.

In this model, the number of orders at each price level in the order book is modelled as a birth-death
process, in which births represent an increase in the number of orders and conversely, deaths represent
a decrease. The first-passage time is the time it takes for such a process to reach a certain state for the
first time. Since the order arrivals follow Poisson processes, we can find an expression for the Laplace
transforms of the density functions of the first-passage times. By numerically inverting these Laplace
transforms we can calculate the probabilities of interest. The parameters of the Poisson processes that
determine the arrivals of orders are calibrated using observable order book data of the Euro-US Dollar
currency pair of the foreign exchange (FX) spot market.

We extend the model of Cont et al. by integrating spread-dependent arrival rates of orders and
cancellations, meaning that the arrival rates change for different sizes of the spread. This extension
is based on the order book data, which clearly shows a difference in arrival rates for various spread
sizes. Additionally, we provide an expression to compute fill probabilities of orders posted not only
at the best bid price, but also for one price level below. This expression can be generalised to obtain
an expression for the fill probabilities of orders posted even deeper in the order book. Finally, by
employing this stochastic model, we also show that this model has the potential to be applied to asset
classes other than equities, which in our case is the FX market.

To evaluate this model, we compare the computed probabilities with the empirical probabilities
based on the FX data. Our findings indicate that the model has the ability to effectively capture the
dynamics at each price level and the short-term movements of the mid-price. We are able to show
that the fill probability for orders posted at the best quote can be estimated with reasonable accuracy
when the order has the highest priority of execution. For orders with lower priority, the model is not
able to capture all the dynamics, resulting in most cases in an overestimation of the fill probability.
Additionally, we evaluate the method for computing the fill probability at one price level lower than
the best quote. We also compare the results of this method to empirical probabilities. However, it is
challenging to evaluate the performance of the model due to limited data availability and the small
magnitude of the computed probabilities, which are typically less than 1.0%, resulting in large relative
errors.
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Overall, this research contributes to better understanding order book dynamics and provides in-
sights on the precision of the computation of fill probabilities via an extension of [12]. Further im-
provements and refinement of the model, such as a more realistic order flow or allowing multiple order
sizes, could lead to more accurate estimations and a better comprehension of the market dynamics and
fill probabilities.

Keywords: Limit Order Books, Fill Probabilities, Stochastic Modelling, Foreign Exchange Mar-
ket, Laplace Transforms, Continued Fractions, Queueing Systems, Birth-Death Process, Algorithmic
Trading
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1 | Introduction

Driven by recent technological developments, algorithmic trading now accounts for an extensive portion
of all trading activity across global financial markets, particularly highly liquid1 markets. Applications
of algorithmic systems range from detecting opportunities that could generate profit to optimising
execution and reducing transaction costs. This thesis focuses on the latter and aims to provide an
insight on the fill probabilities of orders in the order book, which plays a crucial role in the execution
optimisation in this complex environment. The fill probability, or execution probability, refers to the
likelihood that a limit order is executed. This probability is affected by both intrinsic characteristics
of an order, such as the price and quantity, and by external factors, mainly determined by the market
conditions at the time the order is submitted. Estimating these probabilities is a complicated task, due
to the nature of the order book which changes at a very high frequency. However, accurately predicting
the filling probability is a key component of effective algorithmic trading, as it can significantly reduce
the cost of execution. In the following sections we first describe the structure of the order book and
its dynamics in more detail and provide some more background on algorithmic and high-frequency
trading. We then discuss the existing literature regarding order book modelling and estimating fill
probabilities and provide the motivations behind our choice to use a stochastic model to describe the
order book dynamics and compute the fill probabilities on that basis.

1.1 Limit Order Books

In an order driven market, market participants can place orders to indicate that they want to trade
a certain amount of a security. A participant can submit a limit order, indicating he or she wants
to trade a certain quantity at a specified price. Limit orders are passive, liquidity providing orders.
All incoming limit orders are collected in the limit order book (LOB). A visual representation of the
limit order book is given in Figure 1.1. Buy orders are collected on the bid side, while sell orders are
collected on the ask side. The highest (resp. lowest) price for which a buy (resp. sell) limit order is
submitted is known as the best bid price PBid (resp. best ask price PAsk). The difference between the
best bid price and best ask price is known as the bid-ask spread or spread S, with

S ≡ PAsk − PBid. (1.1)

The mid-price is the average of the best ask and best bid price, given by

PMid ≡ PAsk + PBid

2
. (1.2)

In some cases it can be useful to calculate the micro-price or weighted mid-price, which also incorporates
information about the quantities at the best bid and best ask. The micro-price PMicro is given by

PMicro ≡ qBidPAsk + qAskPBid

qAsk + qBid
, (1.3)

where qAsk and qBid denote the quantities at the best ask and best bid, respectively. Orders submitted
for prices lower than the best bid price on the bid side and higher than the best ask price on the ask

1The term liquidity refers to the extent at which an asset can be traded quickly without significantly affecting its
price. Typically, a large number of buyers and sellers is active in liquid markets.
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side determine the depth of the order book. The smallest increment between two prices is determined
by the tick size. For example, if the tick size is 0.01 then orders can be submitted at 1.05 and 1.06,
but not at 1.055.

Figure 1.1: Visual representation of the first three levels of a limit order book. PBid
1 and PAsk

1 denote
the best bid and best ask price, respectively. Prices deeper in the order book (i.e. at price levels Pi,
i > 1) are decreasing for the bid side and increasing for the ask side. The quantities at each level i of
the order book are given by QBid

i for the bid side and by QAsk
i for the ask side. Retrieved from: [18,

p. 369].

Limit orders collected in the LOB stay there until they are cancelled, which is allowed at any time,
or executed. An execution or transaction occurs when a limit order is matched with an incoming
market order. Market orders are aggressive, liquidity taking orders. A trader submits a market order
in the case he demands immediate execution and the order is then filled at the best available price. In
most markets, limit orders are executed against market orders following the time priority rule for orders
submitted at the same price level. The time priority rule states that for orders submitted at the same
price, the order that was submitted earlier will be filled first. This is also known as the First In, First
Out (FIFO) rule. Upon arrival, limit orders are thus placed at the back of a queue at the price level for
which the order is submitted, and only move forward if orders with a higher priority are either filled
or cancelled. Other priority rules also exist, such as size-based priority or pro-rata matching. With
size-based priority, larger orders are prioritised over smaller orders. A pro-rata matching matches the
incoming market order with limit orders proportional to their size [10]. In this thesis we will assume
that orders are executed according to the time priority rule, since this is a necessary assumption for
our order book model, and furthermore, this is the priority rule on the trading venue from which we
have retrieved the data.

Sizes of incoming market orders and outstanding limit orders are generally not equal. Suppose
an incoming market order is of size Qm and a limit order with the highest priority is of size Ql. If
Qm > Ql, then the limit order is filled completely, and the remainder of the market order Qm −Ql is
matched with the next available limit order, according to the FIFO rule. In case Ql > Qm, the limit
order is only partially filled, and the remainder Ql −Qm remains in the order book until it is filled or
cancelled. Table 1.1 shows an example of the change in the order book after a sell market order of 5
million is submitted.

When submitting limit orders, a market participant needs to consider the trade-off between fast
execution and a better price for the order. An order submitted for a price near or at the best quote
will have a higher chance of getting filled, since market orders are always matched with orders with
the best possible price. On the other hand, orders placed deeper in the order book are less likely to be
filled, but when filled it will be at a price more favourable to the trader placing the limit order. Traders
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seek to strike the balance between using market orders, which ensures execution but potentially at a
less favourable price, and limit orders, which may lead to a better price but also carry the risk of
non-execution. A key factor in this choice is the fill probability of a limit order, and for that reason
we aim to obtain a better understanding of this probability in this thesis.

Table 1.1: Example of the change in the order book after the arrival of a sell market order of 5
million. Since the size of limit order with the highest priority (8 million) is larger than the size of the
incoming market order (5 million), the difference of 3 million remains in the order book.

Amount Price
(in millions)

3 1.104
0 1.103

Ask 8 1.102
2 1.101
5 1.100

Spread

8 1.099
1 1.098

Bid 1 1.097
4 1.096
6 1.095

(a) Order book before the arrival of a sell market
order.

Amount Price
(in millions)

3 1.104
0 1.103

Ask 8 1.102
2 1.101
5 1.100

Spread

3 1.099
1 1.098

Bid 1 1.097
4 1.096
6 1.095

(b) Order book after the arrival of a sell market
order.

1.2 Foreign Exchange Market

On the foreign exchange market, also referred to as FX or Forex market, traders can buy, sell and
exchange currencies. The price of each currency is determined by the exchange rate, which denotes its
value with respect to another currency. For example, if the EURUSD rate is 1.1, then 1 Euro is worth
1.1 US Dollars. The same applies to all other possible currency pairs.

Currencies are traded both via exchanges and over-the-counter (OTC). The latter is significantly
larger than the former and operates 24 hours a day and five days a week. In an OTC market, partici-
pants can trade securities without the involvement of a central exchange. The FX market is the most
liquid and - in terms of trading volume - largest market in the world. In April 2022, the average daily
turnover in OTC FX markets was USD 7.5 trillion, of which 28% were FX spot trades [6]. Unlike for
example the stock market, the OTC FX market is decentralised. This means that there is not a central
location where currencies are traded, but trades can be done directly between two participants. In
general, decentralised markets have lower transaction costs, but they can also be more complex and
less regulated than centralised markets due to a lack of transparency.

Foreign Exchange Spot Market

On the FX spot market currencies are traded ‘immediately’ for the current price, also known as the
spot price or spot rate. Most transactions on the FX spot market have a settlement date of t + 2,
meaning that the day of the actual exchange is two (business) days after the trade date t. An exception
to this is the US Dollar and Canadian Dollar (USDCAD) currency pair, which has a settlement date
of one business day. The EURUSD, GBPUSD and USDJPY are the most actively traded currency
pairs [6].
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1.3 Algorithmic and High-Frequency Trading

Using computing algorithms and mathematical models to execute orders is referred to as algorithmic
trading. The algorithms make decisions based on input parameters submitted by traders and market
conditions such as volatility, time of day etc. These decisions are often made on very short timescales.
Algorithmic trading systems have a variety of applications, such as the detection of arbitrage oppor-
tunities2, the optimal execution of orders, detecting and exploiting the strategies of competitors and
disguising own intentions. All sorts of market participants, and both retail and institutional investors3

make use of algorithmic trading. The Dutch Authority for Financial Markets (AFM) distinguishes be-
tween two terms: algorithmic trading and algorithmic execution [4]. Both definitions will be discussed
shortly.
Algorithmic execution is employed to execute orders based on predetermined investment strategies or
decisions. The most common use of algorithmic execution systems is to place the orders in a way that
minimises costs and the market impact. The algorithmic execution systems of MN belong to this type
of algorithmic trading. First, a decision is made to buy or sell a certain amount of a certain currency.
The algorithmic execution system is then used to optimise the trading process.
Algorithmic trading, on the other hand, seeks to automate a specific investment strategy, which in-
cludes the execution as a part of the algorithm. In contrast to algorithmic execution, the system makes
the investment decision itself based on the input from the market and the constraints in the model.
High-frequency trading (HFT) is an area of algorithmic trading in which the decisions of an algorithm
are made on extremely short time scales, often in the order of milliseconds. Using extremely fast signal
processing, traders try to outpace other market participants when opportunities arise.

The part of the trading activity by algorithmic systems is growing increasingly. In November 2020,
74% of all transactions for all asset classes4 on Dutch trading venues was executed by algorithmic
trading systems [4, p. 5].

The AFM also identifies some advantages and potential risks associated with algorithmic trading.
On the one hand, algorithmic trading has resulted in increased speed and faster transfer of risks by
HFT market makers5. Together with the growing competition between market participants, this has
significantly reduced spreads for a number of financial instruments. As a result, financial instruments
can be bought and sold easier and cheaper, which has increased the overall market liquidity. Another
advantage is that algorithmic trading systems act as programmed and do not make decisions that are
based on emotion. For this reason, errors that result from human emotion can be avoided.

On the other hand, the AFM points out that there are certain risks associated with algorithmic
trading. First of all, algorithmic systems can lead to market disruption, which can impact the stability
and efficiency of the market significantly. During flash crashes, for example, the price of an asset drops
sharply during a short period of time, which can be a result of acts of algorithmic trading systems.
Another point of attention is that trading algorithms have the ability to learn to manipulate the
market. This concern is fueled by the development in machine learning technologies, especially the
subtype Reinforcement Learning, where algorithmic systems could learn to manipulate the market and
get rewarded for it, even if it is not the intention of its developers. A last concern is that algorithmic
trading systems could affect the quality of the market. This quality is assessed by metrics such as the
bid-ask spread, order book depth and market efficiency. Algorithms could impact this quality either
intentionally or unintentionally.

2An arbitrage opportunity refers to a situation in which market participants are able to profit from - mostly short
term - anomalies in the market.

3Retail investors or individual investors invest on their own behalf and with their own money. Institutional investors,
such as hedge funds or pension funds, invest money on behalf of their clients.

4An asset class is a group of financial instruments with similar financial behaviour and characteristics. Examples are
equities, bonds, commodities and also currencies.

5A market maker is a financial entity that provides liquidity to the market by buying and selling securities and profits
from the differences between bid and ask prices.
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1.4 Related Literature

Various approaches for estimating filling probabilities can be found in academic literature. We present
an overview of the most relevant methodologies in this section. These methodologies include a simpli-
fied expression for the filling probabilities, often used in optimisation problems, econometric models
based on a statistical method known as survival analysis, machine learning methods, and stochastic
models that are used to describe the dynamics of the order book, which can be used to predict the fill
probabilities.

First of all, most optimisation problems in which optimal trading strategies are derived, such as the
optimal liquidation of a portfolio, assume the filling probability to be exponential and dependent on the
distance a limit order is posted from the best price. According to this assumption, the fill probability
decreases for orders posted at a larger distance from the best quote. A decay parameter determines
the rate of decrease in probability for each tick away from the best quote. The main advantage of this
approach is its simplicity, making it a particularly useful method for solving optimisation problems. A
simplified fill probability ensures that the problem remains mathematically tractable. However, this
approach does not take into account important factors that can potentially influence the fill probability,
such as time and the state of the order book. This simplified approach has been used in various studies,
including those referenced as [7], [8] and [15].

Another approach used in earlier studies involves econometric models. These models analyse his-
torical data to predict future behaviour of the order book. Relationships between metrics that could
potentially influence fill probabilities can be defined using regression models. These models are gener-
ally easy to interpret and relationships between variables are clearly defined. On the other hand, they
may fail to capture all the complexities of the order book, as well as the interactions between variables.
Econometric models often rely on a statistical method known as survival analysis. Survival analysis can
be used to estimate the expected duration of time for an event to occur. In this particular application,
the ‘survival time’ of a limit order can be seen as the total time an order is in the order book before it
is executed. Cho and Nelling assume that market orders arrive following a non-homogeneous Poisson
process, implying that the survival function for time to execution follows a Weibull distribution [9].
The authors treat cancellations as censored and limit orders that were partially filled as if the size of
the execution was the initial order size. Furthermore, the weighted average of the filling times was
computed for orders that were matched with multiple market orders, where the weight is determined by
the size of each execution. Using data from the New York Stock Exchange, Cho and Nelling find that
the likelihood of execution decreases as a limit order remains in the book for longer. Moreover, buy
orders are less likely to be executed than sell orders and the fill probability is lower for orders posted
at large distance from the best price and for larger orders. Conversely, periods of high price volatility
and wider spreads tend to increase the execution probability. Lo, MacKinlay and Zhang propose a
model based on survival analysis and they are able to compute the distribution of execution times,
conditional on various (economic) factors [19]. These factors include the limit price, size of the order,
spread and market volatility. The authors treat expired or cancelled orders as censored observations.
Using stock data from the S&P 500, Lo et al. compute the distribution for time-to-first-fill and time-
to-completion for buy and sell limit orders. They assume the filling time follows a generalised gamma
distribution with an accelerated failure time. The accelerated failure time determines the influence
of certain explanatory variables on the fill time. The authors find that the probability is influenced
considerably by certain variables, such as the limit order price, but less so by others, such as the order
size.

Recent developments in the field of artificial intelligence and machine learning have lead to more re-
search regarding its applications to estimating filling probabilities. Unlike for example the econometric
models, machine learning models are capable of capturing complex and possibly non-linear relation-
ships between explanatory variables. These models have the ability to make accurate predictions, even
under rapidly changing circumstances. Drawbacks of this approach are the need for extensive training
data and considerable computational resources. Furthermore, the reasoning behind estimated proba-
bilities can be difficult to interpret due to the black-box nature of these type of models. Maglaras et
al. integrate machine learning methods with the concept of survival analysis to estimate filling prob-
abilities and filling times [21]. The authors use a Recurrent Neural Network to estimate the hazard
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rate parameters of the survival function, which determines the distribution of time duration for a limit
order fill. This distribution is conditioned on the current market conditions, such as the imbalance in
the order book. The model is trained with historical NASDAQ data and using synthetic limit orders,
which are assumed to be of infinitesimal size and to have no market impact. The limit orders are
tracked over time and when fill conditions are met, an order is treated as executed. Maglaras et al.
find that their model outperforms benchmark models in terms of accuracy of the predictions. A sec-
ond research that uses machine learning techniques, conducted by Arroyo et al., also builds on survival
analysis [5]. The authors base their method on a convolutional-Transformer encoder and a monotonic
neural network decoder. The model is trained using proper scoring rules for survival analysis, and they
find that their model outperforms benchmark models significantly.

The last type of models used for predicting filling probabilities are stochastic models. The nature of
the order book and its dynamics make it a suitable candidate for stochastic modelling. The randomness
of arrivals of limit orders, market orders and cancellations can be captured and used for simulating the
dynamics of an order book. Since these types of events are modelled directly, it can produce accurate
predictions of execution probabilities. Furthermore, analytical formulas for these probabilities can be
derived. The disadvantage of stochastic models is that they often rely on complex mathematical theory
and on strong, simplifying assumptions on the dynamics of the order book, which are needed to preserve
the mathematical tractability. A statistical model for order book dynamics is developed by Smith et.
al, under the assumption that the order flow is random and independent and identically distributed
[23]. The authors predict observable metrics such as price volatility, spread etc. based on the properties
of the order book and order flow, as well as the filling probability. They find that orders placed closer
to the best price are more likely to be filled. They also find that the probability of execution for orders
placed close to the opposite best quote, i.e. sell orders placed close to the best bid and vice versa,
is smaller than 1, meaning that there is a substantial probability that the order is cancelled before it
is executed. Smith et al. conclude that although most assumptions are not fully realistic, stochastic
models are still able to capture market dynamics reasonably well. Cont, Stoikov and Talreja argue
that due to the nature of its dynamics, the limit order book can be modelled as a queueing system [12].
Limit orders arrive at the order book with a certain rate and then remain in the queue until they are
either cancelled or executed. They assume the orders are of unit size and arrive according to a Poisson
process. The queues at each price level can be modelled as a birth-death process, where incoming limit
orders are seen as ‘births’, while cancellations and market orders result in ‘deaths’. Using Laplace
transforms, the authors are able to compute several conditional probabilities, including the direction
of the next mid-price movement and probability of execution before the next mid-price movement.
The main advantages of the approach presented in this paper are the analytical tractability and the
simple estimation of parameters using order book data. Cont et al. estimate the parameters on data
from the Tokyo stock exchange and conclude that their model is able to make short-term predictions
that are reasonably accurate. Huang and Kercheval seek to improve this model by incorporating limit
orders with multiple sizes [16]. The authors compute the same conditional probabilities as Cont et al.,
but do not assess how well their calculations compare to empirical probabilities.

1.5 Model Selection and Main Contributions

For this thesis we have chosen to model the dynamics of the order book using a stochastic model which
is an extension of the model proposed by Cont, Stoikov and Talreja [12]. Our choice follows from two
main advantages of this model, namely

• the possibility to compute the probabilities of interest semi-analytically,

• the straightforward parameter estimation using observable order book data.

We expect that computing the probabilities on the deepest level, i.e. not only taking into account the
price level but also the underlying quantities of orders outstanding at these price levels, will provide
accurate results. By employing this stochastic approach, we are able to directly model the randomness
and uncertainty of the order book. The proposed model also integrates market conditions such as order
flow, imbalance and order book depth, which all influence filling probabilities.
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We extend the research of Cont et al. by incorporating state dependent arrival rates of orders and
cancellations. This extension follows from our findings that the arrival rates of orders vary substan-
tially for different spread sizes. Furthermore, we provide a general expression to compute the filling
probabilities not only at the best bid, as found by Cont et al., but also at one price level below the
best bid. This method can be extended to price levels even deeper in the order book, but it is worth
noting that the complexity of the analytical formula will increase quite rapidly. This thesis fills a gap
in research, since to the best of our knowledge there are no analytical expressions to compute the fill
probability at deeper levels of the order book, conditional on the state of the order book. Finally, by
using data from the foreign exchange spot market, we also show that the model has the potential to
be applied to asset classes other than equities.

With the previous in mind, the main research topic of this thesis is:

Can we accurately compute fill probabilities of limit orders, conditional on the state of the order book?

We will focus on the fill probabilities for orders placed at the best bid price or one price level below
the best bid price. By symmetry of the model, the results are the same for orders placed on the ask
side of the order book. To tackle this problem, we will first evaluate to what extend the dynamics of
the order book can be captured by a simplified stochastic model.

1.6 Outline

This thesis is organised as follows. The stochastic order book model which will be used to capture the
dynamics of the order book is described in Chapter 2. Some preliminary mathematical concepts that
are used for the computation of the probabilities are provided in Chapter 3. These concepts include
Laplace transforms, continued fractions and first-passage times of birth-death processes. Chapter 4
provides the methodology for the computation of the order book probabilities, including the probability
of a mid-price increase and the fill probability of limit orders, which are conditional on the state of the
order book. A description of the data, together with the analysis on the model assumptions and the
model calibration is given in Chapter 5. In Chapter 6, we use the results of Chapter 4 and Chapter
5 to obtain the numerical results for the various probabilities of interest, including the probability of
executing an order at the best bid price and one price level below the best bid price. The computed
probabilities are compared to the empirical probabilities which are estimated from the data. We present
concluding remarks, as well as a discussion on our findings in Chapter 7.



2 | Limit Order Book Model

In this chapter we will describe a stochastic model for the order book dynamics as proposed by Cont,
Stoikov and Talreja in [12]. The authors argue that the order book can be modelled as a queuing
system due to the nature of its dynamics. Limit orders arrive and stay in the queue until they are
either executed or cancelled. The rates at which limit and market orders arrive and the rate at which
outstanding limit orders are cancelled can be determined using observable order book data. These
rates can then be used to model the arrivals of different events as point processes. Cont et al. use
the class of Poisson point processes to model the order book as a continuous-time Markov process
which tracks the number of outstanding limit orders at each price level. Section 2.1 describes how
the order book can be described as a continuous time Markov-Process. In Section 2.2 we explain how
the dynamics of the order book are captured, i.e. how the order book changes as a result of incoming
orders and cancellations.

2.1 Limit Order Book as a Stochastic Model

We consider a limit order book as described in Section 1.1, where market participants can place limit
orders at price levels, which are multiples of the tick size. These price levels are given by a price grid
{1, ..., n}, where the upper boundary n is chosen to be sufficiently large such that the probability that
a limit order will be placed at a level i > n is close to 0 within the analysed time-frame. Following the
notation in [12], the state of the order book is monitored through a continuous-time process

X(t) ≡ (X1(t), ..., Xn(t))t≥0, (2.1)

where |Xp(t)| is the number of outstanding limit orders at time t at price level p, with 1 ≤ p ≤ n. To
make a distinction between the price levels where bid orders are outstanding and price levels where
sell orders are outstanding, the bid levels are denoted by negative quantities. That is, if Xp(t) < 0,
there are −Xp(t) bid orders at price level p and similarly if Xp(t) > 0, there are Xp(t) ask orders at
price level p. The best ask price pA(t) at time t is given by

pA(t) ≡ inf{p = 1, ..., n : Xp(t) > 0} ∧ (n+ 1), (2.2)

i.e. it is the lowest price level for which there is a positive number of orders outstanding. Since we
condition the price levels on having a positive quantity, the orders outstanding on this price level are
sell orders by definition. Similarly, the best bid price pB(t) is given by

pB(t) ≡ sup{p = 1, ..., n : Xp(t) < 0} ∨ 0, (2.3)

i.e. the highest price level for which there is a negative number of orders outstanding, implying the
outstanding orders on this level are buy limit orders. Furthermore, the mid-price pM (t) and spread
pS(t) at time t are defined by

pM (t) ≡ pB(t) + pA(t)

2
and pS(t) ≡ pA(t)− pB(t). (2.4)
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2.2 Dynamics of Stochastic Limit Order Book Model

The dynamics of the model can be fully described by the following events: incoming limit orders,
market orders and cancellations. The model is updated for incoming events as follows: let X(tj)
denote the state of the order book at time tj , and let X(tj+1) denote the state of the order book after
the next event, which is either the arrival or cancellation of an order. Assuming that orders have unit
size, which is taken to be equal to the average size of the limit orders, orders arrive one by one and
the order book changes as a result of the possible events in the following way:

1. Since limit buy orders are denoted by negative quantities, the state of the order book at a certain
level pi, denoted by Xpi , is negative for all price levels on the buy side of the order book. For
this reason, the arrival of a limit buy order at price pi, with pi < pA results in a decrease of one
order (unit) of the quantity of the queue at level pi:

Xpi(tj+1) = Xpi(tj)− 1.

The condition pi < pA implies that bid orders can be placed on any price level below the best
ask.

2. Following the same logic, the arrival of a limit sell order at price pi, with pi > pB increases the
quantity of the queue at price level pi with one order:

Xpi(tj+1) = Xpi(tj) + 1.

This follows from the fact that the state of the order book at price level pi is positive for price
levels on the ask side of the order book. Again, sell orders can be placed at any price level above
the best bid price, hence the condition pi > pB.

3. Since market orders take outstanding limit orders out of the order book and only arrive at the
best quotes, buy market orders lead to a decrease of one order of the quantity at the best ask:

XpA(tj+1) = XpA(tj)− 1.

4. Conversely, sell market orders lead to an increase of the quantity of the queue at the best bid:

XpB (tj+1) = XpB (tj) + 1.

5. Like market orders, cancellations take outstanding limit orders out of the book. Since the queues
at the bid side of the order book are denoted by negative values, a cancellation of a limit buy
order at price pi, with pi ≤ pB increases the quantity of the queue at level pi by one order:

Xpi(tj+1) = Xpi(tj) + 1.

Note that in this case we have the condition pi ≤ pB for buy order cancellations, since a cancel-
lation can only arrive at a price level with outstanding orders.

6. Similarly, a cancellation of a limit sell order at price pi, with pi ≥ pA, decreases the quantity of
the queue at level pi by one order:

Xpi(tj+1) = Xpi(tj)− 1.

All of the events mentioned above are modelled by independent Poisson processes. The advantage
of this is that quantities of interest can be computed analytically using first-passage times of birth-
death processes. This will be explained in more detail in Chapter 3. (Homogeneous) Poisson processes
can be used to model random points in time, such as the arrival times of orders. We have the following
definitions.
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Definition 2.1. A counting process is a stochastic process {N(t), t ≥ 0} with the following properties:

1. N(t) ∈ N

2. N(s) ≤ N(t) for s ≤ t,

with N the set of natural numbers.

Definition 2.2. A homogeneous Poisson process with rate λ > 0 is a counting process N(t) with
the following properties:

1. N(0) = 0,

2. N(t) has independent increments,

3. the number of events in each interval of length t follows a Poisson distribution with parameter
λt.

The probability that there are n arrivals in [0, t] is then given by:

P(N(t) = n) =
(λt)n

n!
e−λt. (2.5)

All order book events are modelled as Poisson processes. As empirical data suggests, the rates of
incoming limit orders or cancellations differ for each price level. We will further examine this feature in
Chapter 5. The different events arrive at (mutually) independent and exponentially distributed times
with the following rates:

• Limit orders arrive with rate λ(δ), with δ the distance in ticks from the opposite best price. For
example, if the spread equals 2 ticks, then limit orders arrive at the best bid and best ask with
rate λ(2), and orders are placed inside the spread with rate 2 · λ(1). Note that we multiply this
term by 2, since both buy orders and sell orders can arrive inside the spread.

• Market orders arrive at the best bid and best ask with rate µ.

• Cancellations of limit orders at a distance δ from the opposite best quote arrive at a rate that is
proportional to the number of orders outstanding at this level k with rate kθ(δ). The reasoning
behind this is that if there are more orders outstanding at a certain price level, there is also a
higher probability of a cancellation. Each order can be cancelled with rate θ(δ), so if there are
k orders outstanding at a certain price level, the total cancellation rate is kθ(δ). Also, there will
be no cancellations when there are no outstanding limit orders, since k = 0.

The rates are assumed to be the same for the buy and sell side. This assumption will be further
elaborated upon in Chapter 5.

We can now describe the dynamics of the order book as a continuous-time Markov process, with
state space Zn and the following transition rates from time tj to the time of the next event given by
tj+1. For the price levels at which buy limit orders can be submitted, i.e. the price levels pi below the
best ask pA, we have the transition

Xpi(tj+1) = Xpi(tj)− 1, with rate λ(pA(tj)− pi), for pi < pA(tj). (2.6)

As mentioned above, the arrival rate of limit orders at a certain price level depends on the distance δ
between this price level and the opposite best quote, which for buy orders is given by δ = pA(tj)− pi.
For this reason, the arrival rate is given by λ(δ) = λ(pA(tj) − pi). Similarly, ask limit orders can be
submitted at price levels larger than the best bid price, pi > pB(tj), and the transitions at each price
level pi are given by

Xpi(tj+1) = Xpi(tj) + 1, with rate λ(pi − pB(tj)), for pi > pB(tj), (2.7)



CHAPTER 2. LIMIT ORDER BOOK MODEL 11

since in this case we have δ = pi− pB(tj). Market orders arrive only at the best bid and best ask price
and therefore we have the following dynamics at the best bid price and best ask price

XpB (tj+1) = XpB (tj) + 1, with rate µ, (2.8)
XpA(tj+1) = XpA(tj)− 1, with rate µ. (2.9)

Finally, the cancellation rate θ(δ) at each price level pi depends on both the distance of this price level
from the opposite best quote and on the number of orders outstanding at that level. Therefore, the
dynamics at each price level are given by

Xpi(tj+1) = Xpi(tj) + 1, with rate θ(pA(tj)− pi)|Xpi(tj)|, for pi ≤ pB(tj), (2.10)
Xpi(tj+1) = Xpi(tj)− 1, with rate θ(pi − pB(tj))|Xpi(tj)|, for pi ≥ pA(tj). (2.11)

Note that the absolute value of the quantities is used since quantities on the bid side are denoted by
negative values. A schematic representation of the order book dynamics at the best bid and best ask
are given in Figure 2.1 and Figure 2.2, respectively.

· · · X − 1 X X + 1 · · · 0

θ(S)|X − 2|+ µ θ(S)|X − 1|+ µ θ(S)|X|+ µ θ(S)|X + 1|+ µ θ(S) + µ

λ(S) λ(S) λ(S) λ(S) λ(S)

Figure 2.1: Schematic representation of the order book dynamics at the best bid X = XpB .

0 · · · X − 1 X X + 1 · · ·

θ(S) + µ θ(S)|X − 1|+ µ θ(S)|X|+ µ θ(S)|X + 1|+ µ θ(S)|X + 2|+ µ

λ(S) λ(S) λ(S) λ(S) λ(S)

Figure 2.2: Schematic representation of the order book dynamics at the best ask X = XpA .



3 | Preliminary Mathematical Concepts
for Computing Probabilities

In this chapter we will introduce some preliminary mathematical concepts that are used to compute
the probabilities of interest in the order book. These concepts include Laplace transforms, continued
fractions and first-passage times of birth-death processes. Section 3.1 provides a description of Laplace
transforms, together with two numerical methods to invert these transforms. We introduce the con-
cept of continued fractions in Section 3.2. Finally, a description of first-passage times of birth-death
processes is given in Section 3.3.

3.1 Laplace Transforms

Laplace transforms are a powerful mathematical tool that can be used to transform complex systems.
Their main application is to simplify differential equations into a simpler algebraic equation. The
(two-sided) Laplace transform L[f ](s) or f̂(s) of a function f : R → R is given by

L[f ](s) = f̂(s) =

∫ ∞

−∞
e−stf(t)dt, (3.1)

with s = σ + iω and i the imaginary unit: i2 = −1. If a random variable X has probability density
function (pdf) f , then f̂ is the Laplace transform of X. For two independent random variables X and
Y whose Laplace transforms are well-defined, we have

f̂X+Y (s) = E[e−s(X+Y )] = E[e−sX ]E[e−sY ] = f̂X(s)f̂Y (s). (3.2)

The inverse of a Laplace transform f̂(s) is given by the Bromwich contour integral

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
estf̂(s)ds, (3.3)

if f(t) is continuous at t and if we have
∫∞
−∞ |f̂(γ + iω)|dω < ∞ for some γ ∈ R. Abate and Whitt

propose a method for inverting the Laplace transform called the Euler method [2], which is an imple-
mentation of the Fourier-series method. The name refers to the Euler summation used in this method.
However, due to the nature of the Laplace transform, we propose to use a different method for inverting
the Laplace transform. Let σ = 0, then s = iω and

f̂(s) = f̂(iω) =

∫ ∞

−∞
e−iωtf(t)dt. (3.4)

This integral can be approximated using a Fourier-cosine series expansion known as the COS-method,
which is described below [14]. Like the Euler method, this method is an implementation of the
Fourier-series method. The advantage of the COS-method is that in most cases the convergence rate
is exponential and the complexity of the computation is linear. This is a result of the close relation
between the coefficients of the Fourier-cosine expansion of the density function and the characteristic
function, as described in [14]. We extend this by using the relationship between the Laplace transform
and the characteristic function to use the COS-method for the computation of the Bromwich contour
integral. In the following sections we discuss the Euler method and COS-method in more detail.
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Euler Method

In [2], Abate and Whitt show that the Bromwich contour integral can be written as

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
estf̂(s)ds

=
2eγt

π

∫ ∞

0
R(f̂(γ + iu)) cos(ut)du,

(3.5)

where R(z) denotes the real part of a variable z. Using the trapezoidal rule with step size h, the
integral can be evaluated by

f(t) ≈ fh(t) =
heγt

π
R
{
f̂(γ)

}
+

2heγt

π

∞∑
k=1

R
{
f̂(γ + ikh)

}
cos(kht). (3.6)

Taking h = π
2t and γ = A

2t gives us

fh(t) =
eA/2

2t
R

{
f̂

(
A

2t

)}
+

eA/2

t

∞∑
k=1

(−1)kR

{
f̂

(
A+ 2kπi

2t

)}
. (3.7)

If |f(t)| ≤ 1 for all t, which is the case for probability functions, the error is bounded and approximately
equal to e−A when e−A is small. To compute Equation 3.7 numerically, Abate and Whitt suggest using
Euler summation. The Euler summation is the weighted average of the last m partial sums, where
the weights are determined by a Binomial distribution with parameters m and p = 1

2 . The Euler sum
approximation of Equation 3.7 is then given by

E(m,n, t) =
m∑
k=0

(
m

k

)
2−msn+k(t), (3.8)

with

sn(t) =
eA/2

2t
R

{
f̂

(
A

2t

)}
+

eA/2

t

n∑
k=1

(−1)kR

{
f̂

(
A+ 2kπi

2t

)}
. (3.9)

To achieve a discretisation error of 10−8, Abate and Whitt take A = 18.4 and furthermore, for the
Euler summation they take m = 11 and n = 15. For a more concise derivation of this method we refer
to [2].

COS-Method

As mentioned previously, the key idea of the COS-method is using the Fourier-cosine expansion to
approximate the density function. The Fourier-cosine series expansion of a function f(t) supported on
any finite interval [a, b] ∈ R is given by

f(t) =

∞∑′

k=0

Āk · cos
(
kπ

t− a

b− a

)
, (3.10)

with

Āk =
2

b− a

∫ b

a
f(t) cos

(
kπ

t− a

b− a

)
dt. (3.11)

Since a real function supported on a finite interval has a cosine expansion, the derivation for the density
function begins with truncating the infinite integral in the Bromwich contour integral in Equation 3.3.
The integral in this equation has to decay to zero at ±∞ by the conditions for the existence of a
Fourier transform. The integral can therefore be truncated without too much loss of accuracy. If we
choose [a, b] ∈ R such that the truncated integral approximates the infinite counterpart well, then we
have for the approximation of the Laplace transform f̂∗(s)

f̂∗(s) =

∫ b

a
e−stf(t)dt ≈

∫ ∞

−∞
e−stf(t)dt = f̂(s) (3.12)
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Furthermore, for a constant a ∈ R we have

f̂(iω)eia = E[e−iωt+ia] =

∫ ∞

−∞
ei(−ωt+a)f(t)dt. (3.13)

Substituting the Fourier argument ω = − kπ
b−a and multiplying the Fourier transform in Equation 3.12

by exp (−i akπb−a), we obtain

f̂∗
(
− i

kπ

b− a

)
· exp

(
− i

akπ

b− a

)
=

∫ b

a
exp

(
i
tkπ

b− a
− i

akπ

b− a

)
f(t)dt. (3.14)

Taking the real part of both sides and using the Euler formula eiu = cos(u) + i sin(u) gives us

R

{
f̂∗

(
− i

kπ

b− a

)
· exp

(
− i

akπ

b− a

)}
=

∫ b

a
cos

(
kπ

t− a

b− a

)
f(t)dt, (3.15)

with R(z) the real part of z. We see that Āk as in Equation 3.11 can be obtained by multiplying both
sides of the equation by 2

b−a

Āk =
2

b− a
R

{
f̂∗

(
− i

kπ

b− a

)
· exp

(
− i

akπ

b− a

)}
. (3.16)

From Equation 3.12 follows that Āk ≈ F̄k, with

F̄k :=
2

b− a
R

{
f̂

(
− i

kπ

b− a

)
· exp

(
− i

akπ

b− a

)}
. (3.17)

For the truncated series summation we obtain

f∗(t) ≈
N−1∑′

k=0

F̄k · cos
(
kπ

t− a

b− a

)
. (3.18)

Here, the operator
∑′

denotes that the first term in the summation should be multiplied by 1
2 .

An important aspect of the COS-method is to determine the range of integration for [a, b]. Fang
and Oosterlee propose the following range

[a, b] =

[
c1 − L ·

√
c2 +

√
c4, c1 + L ·

√
c2 +

√
c4

]
, with L ∈ [6, 12], (3.19)

where cn denotes the n-th cumulant of the underlying stochastic process. These cumulants can be
computed using the cumulant-generating function CX(t), which is given by

CX(t) = logE[etX ] = log f̂(−t), (3.20)

with f̂(s) the Laplace transform of a pdf f(t). The n-th cumulant can then be computed by taking
the n-th order derivative of CX(t) and evaluating it at 0, i.e.

c1 =
dCX(t)

dt
|t=0, c2 =

d2CX(t)

dt2
|t=0, c4 =

d4CX(t)

dt4
|t=0. (3.21)

For a more detailed description of the COS-method we refer to [14]. A numerical experiment to
compare the performances of the Euler method and COS-method is provided in Section 6.2.
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3.2 Continued Fractions

We follow the notation of [20] and let {fn} denote the sequence

fn =
a1

1 +
a2

1 +
a3

. . . + an

. (3.22)

In case we assume {an} ≠ 0 for all n and allow fn = ∞, {fn} is well-defined in Ĉ := C∪ {∞}, with C
the set of complex numbers. The infinite sequence

K∞

n=1

an
1

=
a1

1 +
a2

1 +
a3

1 + · · ·

, (3.23)

is called a continued fraction and can be written as f = K∞
n=1(an/1) = K(an/1). Similarly, we can

construct the following continued fraction

K∞

n=1

an
bn

=
a1

b1 +
a2

b2 +
a3

b3 + · · ·

, (3.24)

from two sequences {an} and {bn}, with {an},{bn} ∈ C and all {an} ≠ 0, and we write K(an/bn). For
simplicity and more efficient notation, we also write

K∞

n=1

an
bn

=
a1
b1+

a2
b2+

a3
b3+

· · · . (3.25)

For the convergence of a continued fraction we have the following results.

Definition 3.1. Lorentzen and Waadeland [20, p. 6] A continued fraction converges to a value f ∈ Ĉ
if lim f (k) = f , with f (k) the k-th approximant of the continued fraction f .

Suppose we have a continued fraction f of the form

f =
a1
b1+

a2
b2+

a3
b3+

· · · , (3.26)

then the k-th approximant f (k) of f is given by

f (k) =
a1
b1+

a2
b2+

· · · ak
bk

=
Ak

Bk
. (3.27)

Here, Ak and Bk satisfy the same recurrence given by

Ak = bkAk−1 + akAk−2, and
Bk = bkBk−1 + akBk−2,

(3.28)

with initial values A0 = 0, A1 = a1, B0 = 1, B1 = b1 [13].
The simplest method to approximate f is to evaluate f (k) by truncating it at a pre-specified number

of terms k. However, Crawford and Suchard demonstrate that pre-specifying the number of terms has
serious limitations [13]. For this reason, we follow their approach and use the modified Lentz method
to evaluate continued fractions of the form of Equation 3.26 [22][25]. The modified Lentz method
method stabilises the computation by using the following ratios

Ck =
Ak

Ak−1
and Bk =

Bk−1

Bk
. (3.29)
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Rewriting these fractions leads to the following expressions

Ck = bk +
ak

Ck−1
(3.30)

Dk =
1

bk + akDk−1
. (3.31)

By iterating, we can evaluate f (k) by

f (k) = f (k−1)CkDk. (3.32)

The algorithm terminates when the difference |f (k) − f (k−1)| is small, i.e. when

|CkDk − 1| < ϵ, (3.33)

with ϵ a small number.

3.3 First-Passage Times of Birth-Death Processes

In the context of Markov-processes, a birth-death process refers to a process in which the state increases
by one unit with the arrival of a ‘birth’ and decreases by one unit with the arrival of a ‘death’. Here,
state is referred to as the number of units present in the system at a certain time. We consider such
a process where the arrivals of births and deaths are modelled by Poisson processes, and we have a
constant birth rate λ and state-dependent death rate µi in state i ≥ 1. The first-passage time of a
birth-death process is the total time it takes for the process to move from one state to another for the
first time. The first-passage time of this process to zero given that it begins in state b, denoted by σb,
is given by the sum

σb = σb,b−1 + σb−1,b−2 + · · ·+ σ1,0. (3.34)

Here, σi,i−1 denotes the first-passage time of the birth-death process from state i to state i− 1. First-
passage times can be very useful as they provide information on how quickly the system moves between
states, which can help to understand the dynamics of for example a queueing system.

Let f̂b denote the Laplace transform of σb and let f̂i,i−1 denote the Laplace transform of σi,i−1 for
i = 1, ..., b, then by Equation 3.2 we have for the Laplace transform of Equation 3.34

f̂b(s) =

b∏
i=1

f̂i,i−1(s). (3.35)

This holds since all the terms on the right-hand side of Equation 3.34, i.e. all separate first passage
times σi,i−1 for i = 1, ..., b, are independent. We now prove that a birth-death process with constant
birth rate λ and death rate µi in state i ≥ 1 has the following Laplace transform [1].

Proposition 3.1. The Laplace transform f̂i,i−1 of the density function of the first-passage time σi,i−1

of a birth-death process with constant birth rate λ and death rate µi in state i is given by

f̂i,i−1(s) = − 1

λ
K∞

k=i

−λµk

λ+ µk + s
, (3.36)

Proof. Consider the first-passage time of state i to state i−1, denoted by σi,i−1. Let λ be the birth rate
and µi the death rate in state i ≥ 1. Since the arrivals follow a Poisson process, the time spent in state i
is exponentially distributed with parameter λ+µi and therefore has density function (λ+µi)e

−(λ+µi)t.
Furthermore, with probability λ

λ+µi
the next state is i+ 1 and with probability µi

λ+µi
the next state is

i− 1. Let fi,i−1(t) be the density function of σi,i−1, then we have

fi,i−1(t) =
µi

λ+ µi
(λ+ µi)e

−(λ+µi)t +
λ

λ+ µi
(λ+ µi)e

−(λ+µi)t ∗ fi+1,i(t) ∗ fi,i−1(t)

= µie
−(λ+µi)t + λe−(λ+µi)t ∗ fi+1,i(t) ∗ fi,i−1(t),

(3.37)
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where the operator ∗ denotes convolution, i.e. f ∗ g is the convolution of two functions f and g. We
can now use a useful property of the Laplace transform of a convolution of (probability) functions,
since this Laplace transform is given by the product of the separate Laplace transforms. Let L[f ∗g](s)
denote the Laplace transform of the convolution f ∗ g, then

L[f ∗ g](s) = L[g](s)L[g](s) = f̂(s)ĝ(s). (3.38)

Now by taking the (one-sided) Laplace transform on both sides of Equation 3.37 and using∫ ∞

0
e−ste−(λ+µi)tdt =

∫ ∞

0
e−(λ+µi+s)tdt

=

[
− 1

λ+ µi + s
e−(λ+µi+s)t

]∞
0

=
1

λ+ µi + s
,

(3.39)

we obtain
f̂i,i−1(s) =

µi

λ+ µi + s
+

λ

λ+ µi + s
f̂i+1,i(s)f̂i,i−1(s). (3.40)

Rewriting this expression leads to

f̂i,i−1(s) =
µi

λ+ µi + s− λf̂i+1,i(s)

=
µi

λ+ µi + s−
λµi+1

λ+ µi+1 + s−
λµi+2

λ+ µi+2 + s− · · ·

= − 1

λ
K∞

k=i

−λµk

λ+ µk + s

(3.41)

We combine the result of Proposition 3.1 and Equation 3.35 to find the expression for the Laplace
transform of the density function of the first-passage time σb

f̂b(s) =
b∏

i=1

f̂i,i−1(s)

=
b∏

i=1

(
− 1

λ
K∞

k=i

−λµk

λ+ µk + s

)
.

(3.42)



4 | Order Book Probabilities

Cont et al. use the Laplace transforms of the density functions of the first-passage times of birth-
death processes to compute several conditional probabilities of interest. In this chapter we will employ
the same techniques and methodology to compute the probability of an increase in mid-price and
the probability of executing an order that is placed at the best bid. Additionally, building on this
methodology, we provide an expression for the fill probability of orders placed at one level below the
best bid price. All these probabilities are conditional on the state of the order book at time t = 0,
which is described by the number of outstanding limit orders at each price level and the spread S.

Before computing the probabilities, we first introduce some notation. Let XA = XpA(·)(·) and
XB = |XpB(·)(·)| denote the quantities at the best ask and best bid, respectively. Furthermore, let
WB = {WB(t), t ≥ 0} denote the number of orders remaining at the bid at time t of the initial XB(0)
orders and ϵB the first-passage time of WB to 0. We define WA and ϵA similarly. We will use these
quantities to compute the probabilities of interest in the following sections.

4.1 Probability of an Increase in Mid-Price

Let T be the time of the first change in mid-price, i.e.

T ≡ inf{t ≥ 0 : pM (t) ̸= pM (0)},

where pM (t) denotes the mid-price at time t. In this section we consider the probability that the
first mid-price change is an increase, but since the model is symmetric, the same result holds for the
probability that the mid-price decreases at the next change. The probability that the next price move
is an increase, conditional on the state of the order book, is given by

P[pM (T ) > pM (0) | XA(0) = qA, XB(0) = qB, pS(0) = S], (4.1)

with S > 0. To compute this probability, Cont et al. use the following lemma.

Lemma 4.1. Cont et. al [12, p. 555]: Let pS(0) = S, in this case:

1. there exist independent birth-death processes X̃A and X̃B with constant birth rates λ(S) and death
rates µ+ iθ(S), i ≥ 1, such that for all 0 ≤ t ≤ T , X̃A = XA(t) and X̃B = XB(t),

2. there exist independent pure death processes W̃A and W̃B with death rate µ + iθ(S) in state
i ≥ 1, such that for all 0 ≤ t ≤ T , W̃A = WA(t) and W̃B = WB(t). Furthermore, W̃A (W̃B) is
independent of X̃A (X̃B) and W̃A ≤ X̃A, W̃B ≤ X̃B.

Proof. The proof is provided in [12].

We can now compute the probability given by Equation 4.1 using the following proposition.

Proposition 4.1. Cont et. al [12, p. 555]: Let σA and σB denote the first-passage times of X̃A and
X̃B to 0, respectively. For f̂S

σj
(s), the Laplace transform of the pdf of σj, we have

f̂S
σj
(s) =

qj∏
i=1

(
− 1

λ(S)
K∞

k=i

−λ(S)
(
µ+ kθ(S)

)
λ(S) + µ+ kθ(S) + s

)
, (4.2)
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with j ≥ 1. Let ΛS =
∑S−1

δ=1 λ(δ), then Probability 4.1 is given by the inverse Laplace transform of

F̂S
σA,σB

(s) =
1

s

(
f̂S
σA

(ΛS+s)+
ΛS

ΛS + s
(1−f̂S

σA
(ΛS+s))

)
·
(
f̂S
σB

(ΛS−s)+
ΛS

ΛS − s
(1−f̂S

σB
(ΛS−s))

)
, (4.3)

evaluated at 0. From 4.3 follows that for S = 1 we have

F̂ 1
σA,σB

=
1

s
f̂1
σA

(s)f̂1
σB

(−s). (4.4)

Proof. Let σj be the first-passage time to 0 of a birth-death process with birth rate λ and death rate
µi in state i, given that it started in state j. In Section 3.3 we showed that the Laplace transform
f̂σj (s) of the pdf of σj is given by

f̂σj (s) =

j∏
i=1

(
− 1

λ
K∞

k=i

−λµk

λ+ µk + s

)
. (4.5)

By filling in λ = λ(S) and µk = µ+ kθ(S) we obtain the expression for f̂σj (s) as in Equation 4.2.
Now recall the definition of the mid-price pM

pM (t) ≡ pB(t) + pA(t)

2
. (4.6)

From this definition follows that a price move occurs after a change in the best bid pB or the best ask
pA, and the price increases if and only if pB(T ) > pB(0) or pA(T ) > pA(0). We have pB(T ) > pB(0) if
a buy limit order is posted inside the spread, and pA(T ) > pA(0) if the number of orders at the best
ask reaches 0. For the proof, two situations are considered:

1. For the case S = 1, a change in mid-price can only occur when either the queue at the best bid
is depleted or the queue at the best ask is depleted, since no orders can be posted inside the
spread. If we take X̃A and X̃B as described in Lemma 4.1, then the probability of an increase
in price before a decrease is equal to the probability that X̂A reaches 0 before X̂B. In this case,
there are no orders left at the best ask, so by definition there is a new best ask at a price level
that is higher than the previous one, i.e. pA(T ) > pA(0). Probability 4.1 is then given by

P[σA < σB] = P[σA − σB < 0]. (4.7)

Using Equation 3.2, by independence of the first-passage times σA and σB, the conditional
Laplace transform of σA − σB is equal to

f̂σA−σB (s) = E[e−s(σA−σB)] = E[e−sσA ]E[esσB ] = f̂σA(s)f̂σB (−s). (4.8)

Combining this with the result of Lemma 4.2, we can show that the conditional Laplace transform
of the cumulative distribution function F̂ 1

σA,σB
is given by Equation 4.4. If we let L−1[·] denote

the inverse Laplace transform, then from

P[σA − σB < 0] = F 1
σA,σB

(0) = L−1
[
F̂ 1
σA,σB

(s)
]
(0) = L−1

[1
s
f̂σA(s)f̂σB (−s)

]
(0), (4.9)

follows that we can compute Probability 4.1 for S = 1 by inverting the Laplace transform of
F̂ 1
σA,σB

evaluated at 0.

2. For the case S > 1, the mid-price changes not only due to passage of the queues at the best quotes
to 0, but also due to limit orders posted inside the spread. Let τ δA (τ δB) denote the first time an
ask (bid) order arrives δ ticks away from the bid (ask), for δ = 1, ..., S − 1. In this case, τ δA and
τ δB are mutually independent and have exponential distribution with rate λ(δ). Furthermore, τ δA
and τ δB are independent of X̃A and X̃B. For the time of the first change in mid-price we have

T = σA ∧ σB ∧min{τ δA, τ δB, δ = 1, ..., S − 1}.
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The first price change is an increase if either a buy limit order is posted inside the spread, since
then we have a new best bid at a higher price level, or if X̃A reaches 0 before a sell limit order is
posted inside the spread or X̃B reaches 0. Let τA and τB denote two exponentially distributed
random variables with rate ΛS =

∑S−1
δ=1 λ(δ). Then Probability 4.1 is given by

P[σA ∧ τB < σB ∧ τA] = P[σA ∧ τB − σB ∧ τA < 0]. (4.10)

The conditional Laplace transform of σA∧τB (and similarly σB∧τA) is given by Lemma 4.3. From
this follows that the Laplace transform of Equation 4.10 is given by Equation 4.3. Probability
4.1 can be computed by inverting this Laplace transform and evaluating it at 0.

Lemma 4.2. Let f and F be the pdf and cdf of a random variable X, respectively. The Laplace
transform F̂ of the cdf F is given by

F̂ (s) =
1

s
f̂(s), (4.11)

where f̂(s) is the Laplace transform of the pdf f .

Proof. See Appendix A

Lemma 4.3. Cont et. al [12, p. 556]: Let Z be an exponentially distributed random variable with pa-
rameter Λ, then the Laplace transform of σB ∧ Z is given by

f̂1
σB

(Λ + s) +
Λ

Λ + s
(1− f̂1

σB
(Λ + s)),

where f̂1
b is given by Equation 4.2.

Proof. See Appendix A

4.2 Probability of Execution at the Best Bid Price

We now move to the probability of executing an order placed at the best bid before the mid-price
moves, given that it is never cancelled. Let NCb be the event that an order that never gets cancelled
is placed at the best bid at time t = 0. The conditional probability that an order placed at the best
bid is executed before the mid-price moves is given by

P[ϵB < T | XA(0) = qA, XB(0) = qB, pS(0) = S,NCb], (4.12)

with ϵB the first-passage time of a pure-death process to 0, given that it started in state qB. We now
analyse a pure death process in stead of a birth-death process, since the position in the queue of the
order that is placed at the best bid follows a pure death process by the time priority rule in the order
book. That is, orders arriving at the same or a lower price level will have lower priority of execution,
and therefore have no influence on the filling probability. We use the following proposition to compute
the probability of execution.

Proposition 4.2. Cont et. al [12, p. 556]: Define f̂S
σA

(s) as in Equation 4.2 and let ĝSϵB be the Laplace
transform of the pdf of ϵB given by

ĝSϵB (s) =

qB∏
i=1

µ+ (i− 1)θ(S)

µ+ (i− 1)θ(S) + s
, (4.13)

for qB ≥ 0 and let ΛS =
∑S−1

δ=1 λ(δ). Then Probability 4.12 is given by the inverse Laplace transform
of

F̂S
ϵB ,σA

(s) =
1

s
ĝSϵB (s)

(
f̂S
σA

(2ΛS − s) +
2ΛS

2ΛS − s
(1− f̂S

σA
(2ΛS − s))

)
, (4.14)

evaluated at 0. When S = 1, we obtain:

F̂ 1
ϵB ,σA

(s) =
1

s
ĝ1ϵB (s)f̂

1
σA

(−s). (4.15)
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Proof. The proof is similar to the proof of Proposition 4.1. First, to obtain the value for the Laplace
transform of the pure-death process gϵB (s), we consider the first-passage time from state i to state i−1
for 1 ≤ i ≤ qB. If gi,i−1(t) is the density function of the first-passage time of the pure-death process
which follows an exponential distribution with parameter µi, we have

gi,i−1(t) = µie
−µit. (4.16)

The Laplace transform ĝi,i−1(s) is then given by

ĝi,i−1(s) =

∫ ∞

0
µie

−µite−stdt

=

∫ ∞

0
µie

−(µi+s)tdt

=
µi

µi + s
.

(4.17)

Since the order that is placed at the best bid never gets cancelled, the cancellation rate in state i is
given by (i − 1)θ(S) and therefore µi = µ + (i − 1)θ(S). Now, by independence of the arrival times,
we obtain

ĝSϵB (s) =

qB∏
i=1

µ+ (i− 1)θ(S)

µ+ (i− 1)θ(S) + s
. (4.18)

For the case S = 1, the probability of executing a bid order before the mid-price moves comes down to

P[ϵB < σA] = P[ϵB − σA < 0], (4.19)

i.e. the probability that the first-passage time of the pure-death process ϵB to 0 is smaller than the
first-passage time of the birth-death process σA to 0. Again, from the fact that

P[ϵB − σA < 0] = F 1
ϵB ,σA

(0), (4.20)

we can compute Probability 4.12 by evaluating the inverse of the Laplace transform F̂ 1
ϵB ,σA

(s) at 0.
For the case S > 1, the desired quantity is given by

P[ϵB < σA ∧ τB ∧ τA], (4.21)

where the conditional distribution τB ∧ τA is exponential with parameter 2ΛS . This is a result of the
possibility that the mid-price can also change due to limit orders being posted inside the spread. Here,
τA and τB denote the first time an ask or bid limit order is posted inside the spread, respectively. The
Laplace transform of σA∧ τB ∧ τA is given by Lemma 4.3 for Z = τB ∧ τA, an exponentially distributed
random variable with parameter 2ΛS . Probability 4.12 can in this case be computed by inverting the
Laplace transform F̂S

ϵB ,σA
(s) given by Equation 4.14 and evaluating it at 0.

4.3 Probability of Execution at One Price Level below the Best Bid
Price

The next step is to compute the fill probabilities of orders posted deeper in the order book, i.e. at
one price level below the best bid for bid orders and above the best ask for sell orders. In this
section we consider the case of a limit buy order posted at the price level below the best bid: pB − 1.
By symmetry of the model, the reasoning is the same for limit sell orders. In reality there are two
possibilities for orders posted at deeper levels to be executed. The first possibility is that a large market
order arrives which executes multiple limit orders, possibly outstanding at multiple price levels. The
second possibility is that the limit order lies at the best bid after a certain time because the bid price
has moved down. In this case, we can compute the conditional fill probability as described in Section
4.2. Since all orders are assumed to have unit size, the first scenario of a large market order coming in
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and executing multiple limit orders is not possible. As we will show in Section 5.1.3, the empirical data
will also support this assumption, since more than 90% of the executed orders lie at the best quote
at the time of execution. For this reason, for an order to be executed when it is not submitted at the
best bid price, the bid price needs to move down. After the price has moved down, we can calculate
the probability that the order is executed the same way as before, since now the order lies at the best
bid. Before we look at the probability of executing an order at price level pB −1, we first (re)introduce
some notation. Let XB(t) and XA(t) again denote the quantities at the best bid and the best ask at
time t, respectively. Let XB−(t) denote the quantity at the price level one below the best bid at time
t and WB−(t) denotes the number of orders remaining at price level pB − 1 at time t of the initial
XB−(0) orders. Furthermore, we define Tbid as the first change in mid-price as a result of the best bid
moving down,

Tbid ≡ inf{t ≥ 0 : pB(t) < pB(0)}, (4.22)

and let Tother be the first change in mid-price as a result of a different event, i.e. the bid price moving
up or the ask price moving in either direction,

Tother ≡ inf{t ≥ 0 : pB(t) > pB(0) ∧ pA(t) ̸= pA(0)}. (4.23)

The probability that bid price moves down before the mid-price moves due to a different event, is then
given by

P[Tbid < Tother | XB(0) = qB, XA(0) = qA, pS(0) = S]. (4.24)

For ease of notation, we will omit the condition in Probability 4.24, which denotes the state of the
order book at time t = 0. We have

P[Tbid < Tother | XB(0) = qB, XA(0) = qA, pS(0) = S] = P[Tbid < Tother]. (4.25)

Now from Section 4.2 we know how to compute the probability of executing an order placed at the
best bid before the mid-price moves, which is given by Equation 4.12. For an order placed at price
level pB − 1, this order lies at the new best bid after the previous best bid moved down. For that
reason, we can compute the filling probability after the best bid moved down using

P[ϵB− < T | WB−(Tbid) = qB−, XA(Tbid) = qA, pS(Tbid) = S + 1], (4.26)

with ϵB− the first-passage time of a pure death process (in this case the pure death process at price level
pB − 1, T the first time the mid-price moves, WB−(Tbid) the remaining number of orders outstanding
at the new best bid at t = Tbid of the original number of orders XB−(0), XA(Tbid) the number of orders
outstanding at the best ask at t = Tbid and pS(Tbid) the spread size at t = Tbid. Since we assume
that only the best bid price moves down one price level, we know that the spread size increases by one
tick. Due to the dynamics of the order book, both WB− and XA are unknown at time Tbid. By the
law of total expectation, we can compute the filling probability by summing over all possible values
and combinations for the quantities WB− and XA at time Tbid. The probability of a combination of
i orders outstanding at the best bid and j orders outstanding at the best ask after the price moved
down is given by

P[WB−(Tbid) = i,XA(Tbid) = j | XB(0) = qB, XB−(0) = qB−, XA(0) = qA, pS(0) = S], (4.27)

which, by independence of the processes WB− and XA and independence of XB and XA can be written
as

P[WB−(Tbid) = i, XA(Tbid) = j | XB(0) = qB, XB−(0) = qB−, XA(0) = qA, pS(0) = S] =

P[WB−(Tbid) = i | XB(0) = qB, XB−(0) = qB−, pS(0) = S]

·P[XA(Tbid) = j | XA(0) = qA, pS(0) = S].

(4.28)

Again, to ease the notation, we omit the conditions in Probabilities 4.26 and 4.28 that are known at
t = 0, which are XB(0), XB−(0), XA(0), pS(0) and pS(Tbid). Note that pS(Tbid) is known at t = 0,
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since the spread increases by one tick if the best bid moves down, so we have pS(Tbid) = pS(0) + 1.
We write Probability 4.26 as

P[ϵB− < T | WB−(Tbid) = qB−, XA(Tbid) = qA], (4.29)

and Probability 4.28 as
P[WB−(Tbid) = i] · P[XA(Tbid) = j]. (4.30)

Now summing over all possible combinations for the quantities WB− and XA at time Tbid gives us

A∑
j=1

B∑
i=1

(
P[ϵB− < T | WB−(Tbid) = i, XA(Tbid) = j] · P[WB−(Tbid) = i] · P[XA(Tbid) = j]

)
, (4.31)

with A the possible number of orders outstanding at the ask at time Tbid and B the number of possible
orders in front of and including the submitted bid order at Tbid.

Since a bid order was submitted at price level pB − 1 at t = 0, we know that WB− follows a
pure-death process and therefore has a finite number of possible states i at time Tbid. That is, the
queue in front of the submitted bid order has only moved down due to cancellations, since limit orders
submitted at a later time will have lower priority and therefore will arrive at a place in the queue
behind our initial order. For that reason, they do not influence the fill probability. If the number of
orders at price level pB − 1 at t = 0 was, including our own order, equal to qB−, then the number of
orders in front of and including our order at time Tbid will be between 1 and qB−. We can calculate
these probabilities using Laplace transforms of the first-passage times. Let σB be the first-passage
time of the best bid to 0. Suppose the quantity at price level pB − 1 is equal to q at t = 0, then the
probability that the remaining quantity is equal to i at time Tbid is given by

P[WB−(Tbid) = i] =


P[σB < ϵq,q−1], for i = q,

P[ϵq,1 < σB], for i = 1,

P[ϵq,i < σB]− P[ϵq,i−1 < σB], for 1 < i < q,

(4.32)

where ϵq,i is the first-passage time of a pure-death process from state q to state i. For simplicity we
omit the condition on XB−(0), XB(0) and pS(0) in the notation. In other words, it is the probability
that the queue at the best bid is depleted before the queue at price level pB − 1 has hit state i − 1.
This is justified since it is a pure-death process and thus can only move down, and the first-passage
time will also be the last-passage time.

The process XA, on the other hand, follows a birth-death process and therefore could have - in
theory - infinitely many values. However, as one might suspect, in reality there will also be only a
finite number of possibilities for the quantity at the best ask after the best bid price has moved down.
As will become clear in Section 6.5, we can restrict ourselves to a finite number of possibilities. We
will fit a (empirical) distribution to the number of orders outstanding at the best ask after a downward
move of the bid price to compute P[XA(Tbid) = j], following the approach of Cont and De Larrard in
[11]. Combining Equations 4.24 and 4.31, we obtain for the probability that an order placed at price
level pB−1 is filled

P[Tbid < Tother]·
A∑

j=1

B∑
i=1

(
P[ϵB− < T | WB−(Tbid) = i, XA(Tbid) = j] · P[WB−(Tbid) = i] · P[XA(Tbid) = j]

)
.

(4.33)

We now prove the following propositions to compute the probability given in Equation 4.33.

Proposition 4.3. Let f̂S
σj
(s) denote the Laplace transform of the density function of first-passage time

to 0 of a birth-death process σj, given by

f̂S
σj
(s) =

qj∏
i=1

(
− 1

λ(S)
K∞

k=i

−λ(S)
(
µ+ kθ(S)

)
λ(S) + µ+ kθ(S) + s

)
, (4.34)
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with j ≥ 0. Let ΛS =
∑S−1

i=1 λ(i), then Probability 4.24 is given by the inverse Laplace transform of

F̂S
σB ,σA

(s) =
1

s
f̂S
σB

(s)

(
f̂S
σA

(2ΛS − s) +
2ΛS

2ΛS − s
(1− f̂S

σA
(2ΛS − s))

)
, (4.35)

evaluated at 0. When S = 1, we obtain:

F̂ 1
σB ,σA

(s) =
1

s
f̂1
σB

(s)f̂1
σA

(−s). (4.36)

Proof. For the case S = 1, the probability that the mid-price moves down due to the best bid moving
down before it moves as a result of a different event is given by the probability that the queue at the
best bid reaches 0 earlier than the queue at the best ask. Let σA denote the first-passage time to 0 of
the birth-death process at the ask price, and let σB denote the first-passage time to 0 of the birth-death
process at the bid price. The probability that the best bid queue reaches 0 before the ask queue is
then given by

P[σB < σA] = P[σB − σA < 0], (4.37)

which by independence of σA and σB and Equation 3.2 can be computed using the inverse Laplace
transform of

F̂ 1
σB ,σA

(s) =
1

s
f̂1
σB

(s)f̂1
σA

(−s), (4.38)

evaluated at 0.
For the case S > 1, the mid-price can also move when limit orders are posted within the spread.
Probability 4.24 is then given by

P[σB < σA ∧ τB ∧ τA], (4.39)

where τB and τA are exponentially distributed random variables with rate ΛS . These random variables
denote the first time either a buy or sell limit order is posted inside the spread. Using Lemma 4.3, the
probability can be computed by inverting the Laplace transform

F̂S
σB ,σA

(s) =
1

s
f̂S
σB

(s)

(
f̂S
σA

(2ΛS − s) +
2ΛS

2ΛS − s
(1− f̂S

σA
(2ΛS − s))

)
, (4.40)

and evaluating it at 0.

Proposition 4.4. Define f̂S
σA

(s) as in 4.34 and let ĝSϵB− be the Laplace transform of the density function
of the first-passage time to 0 of a pure-death process ϵB−, given by

ĝSϵB−(s) =

qB−∏
i=1

µ+ (i− 1)θ(S)

µ+ (i− 1)θ(S) + s
, (4.41)

for j ≥ 0 and let ΛS =
∑S−1

δ=1 λ(δ). Then Probability 4.26 is given by the inverse Laplace transform of

F̂S
ϵB−,σA

(s) =
1

s
ĝSϵB−(s)

(
f̂S
σA

(2ΛS − s) +
2ΛS

2ΛS − s
(1− f̂S

σA
(2ΛS − s))

)
, (4.42)

evaluated at 0.

Proof. The proof is similar to the proof of Proposition 4.1.

Proposition 4.5. Define f̂S
σj
(s) as in Equation 4.34 and let ĥSq,i(s) be the Laplace transform of the

density function of the first-passage time of a pure-death process to state i, given that it started in state
q, given by

ĥSq,i(s) =

q∏
j=i

(j − 1)θ(S + 1)

(j − 1)θ(S + 1) + s
, (4.43)

for q ≥ 1. Then the probabilities in Equation 4.26 are given by the inverse Laplace transforms of

F̂S
σB ,q,i(s) =


1
s f̂

S
σB

(s)ĥSq,q−1(−s), for i = q,
1
s f̂

S
σB

(−s)ĥSq,1(s), for i = 1,
1
s f̂

S
σB

(−s)ĥSq,i(s)− f̂S
b (−s)ĥSq,i−1(s), for 1 < i < q,

(4.44)

evaluated at 0.
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Proof. We know that the Laplace transform of the density function of the first-passage time from state
i to state i− 1 of a pure-death process with death-rate µi in state i is given by

ĥi,i−1(s) =
µi

µi + s
, (4.45)

see also the computation in Equation 4.17. At the price level below the best bid, the death-rate is
determined by the cancellations only, since market orders only arrive at the best quotes. The death-rate
µi in state i is therefore given by

µi = (i− 1)θ(S + 1), (4.46)

which gives us the following Laplace transform

ĥi,i−1(s) =
(i− 1)θ(S + 1)

(i− 1)θ(S + 1) + s
. (4.47)

By independence of the arrival times, the first-passage time to a state i of a pure-death process, given
that it started in state q is given by

ĥSq,i(s) =

q∏
j=i

(j − 1)θ(S + 1)

(j − 1)θ(S + 1) + s
. (4.48)

For the proof we consider three cases for the probabilities that the quantity at price level pB − 1 after
the bid price moved down, given that the quantity at t = 0 was equal to q.

1. If the first-passage time to 0 of the birth-death process σB at the best-bid is smaller than the
first-passage time to state q− 1 of the pure-death process ϵq,q−1, then the bid price moved down
before the queue at level pB − 1 moved to state q − 1. This would mean that the pure-death
process would still be in state q, meaning that there would still be q orders remaining. The
probability

P[WB−(Tbid) = q] = P[σB < ϵq,q−1] = P[σB − ϵq,q−1 < 0], (4.49)

can therefore be computed by the inverse Laplace transform

F̂S
σB ,q,q(s) =

1

s
f̂S
σB

(s)ĥSq,q−1(−s), (4.50)

evaluated at 0. This follows from Equation 3.2, by independence of σB and ϵq,q−1.

2. Similarly, if the first-passage time of the pure-death process to 1, ϵq,1, is smaller than the first-
passage time of the birth-death process at the best bid to zero, σB, then there would be no orders
in front of the posted order when the price moves down. The probability

P[WB−(Tbid) = 1] = P[ϵq,0 < σB] = P[ϵq,0 − σB < 0], (4.51)

can be computed by the inverse Laplace transform

F̂S
σB ,q,1(s) =

1

s
f̂S
σB

(−s)ĥSq,1(s), (4.52)

evaluated at 0, again by independence of σB and ϵq,0 and using Equation 3.2.

3. For the cases 1 < i < q− 1, we combine the reasoning from the previous two instances. Suppose
the first-passage time of the pure-death process to state i, denoted by ϵq,i is smaller than the
first-passage time of the birth-death process σB to 0, then the pure-death process has moved to
at least state i. This probability is given by

P[WB−(Tbid) ≤ i] = P[ϵq,i < σB] = P[ϵq,i − σB < 0]. (4.53)

To compute the probability that the pure-death process is in state i exactly, we need to subtract
the probability that the process is in state i− 1 or lower, which is given by

P[WB−(Tbid) ≤ i− 1] = P[ϵq,i−1 < σB] = P[ϵq,i−1 − σB < 0]. (4.54)
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Combining these probabilities gives

P[WB−(Tbid) = i] = P[ϵq,i − σB < 0]− P[ϵq,i−1 − σB < 0], (4.55)

which is the probability that the process is in state i exactly. This can be computed by the
inverse Laplace transform

F̂S
σB ,q,i(s) =

1

s
f̂S
σB

(−s)ĥSq,i(s)−
1

s
f̂S
σB

(−s)ĥSq,i−1(s), (4.56)

evaluated at 0.

Using Propositions 4.3, 4.4 and 4.5, we ware able to compute all components of Probability 4.33
to obtain the probability that an order posted at price level pB − 1 is filled.

The intuition that we presented in this section to compute the probability of executing an order
placed at one price level below the best bid can be extended to price levels even deeper in the order book.
It should be noted that the complexity of the expression to compute the fill probability analytically
would increase quite rapidly. For example, an expression for the fill probability at two price levels
below the best bid price, pB − 2, would need to incorporate all uncertainty of the number of orders
outstanding at each of the price levels in between. That is, the bid price needs to move down two
levels, and after each price move, the possible number of orders outstanding at the best ask pA, the
price level below the best bid pB − 1 and the price level pB − 2 needs to be incorporated. For this
reason, it remains to be seen if computing the fill probability analytically for price levels deeper in the
order book is feasible. In Section 5.1.3 we show that the majority of executed limit orders (±85%) was
posted at a distance of at most one tick from the best quote. Therefore, we decide to focus only on
those price levels.



5 | Verification of Model Assumptions and
Model Calibration

This chapter provides a description of the available limit order book data, an analysis of this data
and an estimation of the model parameters. The available data is collected from a trading venue
called LMAX from November 2nd 2020 until October 29th 2021. This data contains all information of
trading activity for several currency pairs, including EURUSD, EURGBP and GBPUSD. We focus on
the EURUSD currency pair, since its daily turnover amounts to 22.7% of the total daily turnover on
the FX market, the largest share of all currency pairs [6]. Furthermore, most trades executed by MN
involve this currency pair.

The LMAX data is formatted according to the LMAX Exchange multicast market data service or
Itch service. This is a format in which the data is collected in a binary format and it is commonly
used by high-frequency traders, since the data can be stored and distributed efficiently. The data files
belonging to LMAX contain both event and trade data, for all currency pairs. Every time an event
takes place, i.e. a trade, cancellation or the arrival of a new order, a message is sent out in this binary
format. A parser is needed to decode the messages to use it in the data analysis. We can use the parser
to transform the data into a format that we can use to create an order book, i.e. for event messages
a timestamp, order ID, event type, direction, price and quantity and for trade messages a timestamp,
aggressive side1, price and quantity. We create and simulate the order book using the incoming event
messages, adding orders to it when a limit order arrives and deleting orders when trades or cancellations
arrive. We are then also able to compute metrics of interest for each new event, including the spread,
best bid price, best ask price, quantities at each price level etc. Since the simulation of the order book
using the event data is quite an expensive task, we use data from four weeks in the data set from
7–6–2021 to 2–7–2021 to perform the analyses and to calibrate the parameters. For this period, the
data was complete for all the days and furthermore, there were no special events or disturbances on
the FX market during this period.

In Section 5.1 we conduct an analysis of the order book data of the FX spot market. This includes
the time distribution of the spread size, the symmetry of the order flow and the characteristics of orders
and cancellations. The model parameters λ(δ), µ and θ(δ) are calibrated in Section 5.2.

5.1 Data Analysis on the Foreign Exchange Spot Market

5.1.1 Spread Distribution

First we examine the distribution of the size of the bid-ask spread. For stocks, the tick size typically
equals one cent. In contrast, the tick size for currency pairs can be as small as 0.1 cents or in our
case 0.001 cents. As a result, there are more possible price levels at which an order can be placed
and typically for the EURUSD currency pair, the bid-ask spread is larger than one tick. Table 5.1
shows the distribution of the duration for which the spread is equal to a certain value, for four weeks
in the data set from 7–6–2021 to 2–7–2021. We observe that for all weeks, the spread predominantly
lies between one and five ticks and for approximately 80% of the time, the spread equals three or four
ticks. As will become clear in the sections that follow, the spread size also influences the arrival rate

1Aggressive side refers to the side of the trader that submitted the market order.
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of orders and cancellations, and thus also the order book probabilities. For that reason we will take
this into account when computing the desired conditional probabilities.

Table 5.1: Distribution of the duration the spread is equal to S in ticks.

S Percentage of duration

1 0.45%
2 5.38%
3 39.31%
4 47.84%
5 6.32%

>5 0.70%
(a) Distribution between 7–6–2021 and
11–6–2021.

S Percentage of duration

1 0.13%
2 1.66%
3 17.07%
4 62.04%
5 18.54%

>5 0.56%
(b) Distribution between 14–6–2021 and
18–6–2021.

S Percentage of duration

1 0.75%
2 2.72%
3 19.43%
4 53.96%
5 22.07%

>5 1.07%
(c) Distribution between 21–6–2021 and
25–6–2021.

S Percentage of duration

1 0.48%
2 18.81%
3 36.17%
4 31.93%
5 7.60%

>5 0.70%
(d) Distribution between 28–6–2021 and
2–7–2021.

5.1.2 Order Flow Symmetry

In our model we assume that the order flow is symmetric, i.e. the rate of incoming sell orders is equal
to the rate of incoming buy orders. To see that this is a reasonable assumption, we can take a look at
the empirical rates of incoming orders and cancellations. Figure 5.1 shows the arrival rate per second
of buy and sell market orders, as well as the total arrival rate of market orders per second. The rates
are calculated using

Nm

T∗
, (5.1)

with Nm the number of arrivals of market orders during the time sample and T∗ the total time in
seconds within the time sample. As we can see, the arrival rates are similar for both the buy and sell
side for each week.

Week 1 Week 2 Week 3 Week 4
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Figure 5.1: Arrival rate per second for sell and buy market orders for each week in the data set.

Unlike market orders, which only arrive at the best quotes, limit orders can be posted at any price
level higher than the best bid for sell orders and lower than the best ask for buy orders. For this
reason, we determine the arrival rates of both buy and sell orders at each distance δ in ticks from the
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opposite best quote. For example, for δ = 1 we look at bid orders posted at one price level below the
best ask and ask orders posted one price level above the best bid. The rates are calculated by

Nl(δ)

T∗
, (5.2)

with Nl(δ) the number of arrivals of limit orders at a distance δ from the opposite best quote during
the time sample and T∗ the total time in seconds within the time sample. Figure 5.2 shows that for
limit orders, the arrival rates for buy and sell orders are similar for each distance from the opposite
best quote and for each week in the data set. We only look at the first 15 ticks, since most trading
action takes place near the best quotes.
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(a) Rates between 7–6–2021 and 11–6–2021.
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(b) Rates between 14–6–2021 and 18–6–2021.
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(c) Rates between 21–6–2021 and 24–6–2021.
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(d) Rates between 28–6–2021 and 2–7–2021.

Figure 5.2: Arrival rates per second for sell and buy limit orders for each distance δ in ticks from the
opposite best quote for δ = 1, ..., 15.

Finally, the arrival rates of cancellations on both buy and sell side of the order book are shown in
Figure 5.3. Similar to the limit order arrival rate, the rates are determined by

Nc(δ)

T∗
, (5.3)

with Nc(δ) the number of cancellations at a distance δ from the opposite best quote during the time
sample and T∗ the total time in seconds within the time sample. We notice that the cancellation rates
for each distance from the opposite best quote are very similar to the arrival rates of limit orders as
depicted in Figure 5.2. This can be explained by the fact that around 99.9% of all limit orders are
cancelled, see also Table 5.2.
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Table 5.2: Percentage of limit orders cancelled or (partially) filled.

Week 1 Week 2 Week 3 Week 4

Cancelled 99.91% 99.93% 99.91% 99.87%
(Partially) filled 0.09% 0.07% 0.09% 0.13%
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(a) Rates between 7–6–2021 and 11–6–2021.
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(b) Rates between 14–6–2021 and 18–6–2021.
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(c) Rates between 21–6–2021 and 24–6–2021.
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(d) Rates between 28–6–2021 and 2–7–2021.

Figure 5.3: Arrival rates per second for cancellations on sell and buy side for each distance δ in ticks
from the opposite best quote for δ = 1, ..., 15.

In addition to the visual evidence for order flow symmetry, we can also perform statistical tests to
see if the symmetry assumption is reasonable. Since the arrival rates are not normally distributed, we
will perform a Wilcoxon signed rank test to test this assumption [26]. This test is used to determine
whether the rate of one type of order is likely to be larger than the rate of the other type. Specifically,
the method tests if this probability is higher than 50%, indicating that the rates are not symmetrical.
The p-values of the Wilcoxon test can be found in Table 5.3. For the limit orders and cancellations
we have taken the arrival rates of sell and limit orders at each distance from the opposite best quote
for each week. For the market orders we used the difference in rates between buy and sell orders for
each day in the week. For p-values larger than 0.05 we can assume that the data is symmetrical. As
becomes clear from Table 5.3, this is the case for all orders for each week, except for the market orders
in the first week.

Although the arrival rates for the buy and sell side are - naturally - not exactly equal, it is reasonable
to assume symmetry from a modelling perspective as well. An asymmetric order flow could lead to a
directional price trend, since the price would tend to move into the direction with higher cancellation
and market order rates or lower limit order rates.
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Table 5.3: Wilcoxon signed-rank test to test the assumption of order flow symmetry. The assumption
of symmetry is satisfied for p-values larger than 0.05.

Week 1 Week 2 Week 3 Week 4

Market orders 0.04 0.50 0.89 0.28
Limit orders 0.16 0.95 0.43 0.65

Cancellations 0.36 0.91 0.31 0.65

5.1.3 Empirical Limit Order Execution

In Section 4.3 we mentioned that due to the unit size assumption of the model, it is not possible to
model the situation that multiple limit orders are executed against one large market order. A result
of this is also that in the model, limit orders can only be executed when they have the highest priority
and therefore by definition lie at the best bid or best ask price. Figure 5.4 shows the distribution of
the distance from the best quote for limit orders at the time of execution. For buy orders this is the
distance from the best bid price and, conversely, for sell orders it is the distance from the best ask
price. A distance of 0 indicates that the order was executed at the best quote, while a distance of more
than 0 indicates that a large market order executed limit orders over multiple price levels. We observe
that for all weeks in the data set, more than 90% of all executions occurred at the best quotes. This
observation also shows that it is reasonable from a modelling perspective to assume that most orders
are executed at the best quotes only.
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Figure 5.4: Distribution of executed limit orders based on their distance in ticks from the best quote
at the time of execution. A distance of 0 indicates the order was executed at the best quote.

Now we examine the distribution of the distance from the best quote at the time of submission.
Figure 5.5 shows the percentage of executed limit orders that was submitted at a certain distance from
the best quote. A negative distance indicates that the order was posted inside the spread, which in
practice would result in a new best quote. We see that around 85% of the executed limit orders was
submitted at a distance of at most one tick from the opposite best quote.

<0 0 1 2 3 >3

0.1
0.2
0.3
0.4
0.5
0.6

0

Distance in ticks from the best quote

P
er

ce
nt

ag
e Week 1

Week 2
Week 3
Week 4

Figure 5.5: Distribution of executed limit orders based on their distance in ticks from the best quote
at the time of submission. A distance of 0 indicates the order was submitted at the best quote, while
a distance of <0 indicates that the order was posted inside the spread, resulting in a new best quote.
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5.1.4 Limit Orders

For the estimation of the parameters used in the model, we begin by examining the limit orders. The
model assumes that all orders have unit size, equal to the average limit order size. In Figure 5.6, the
distribution of limit order sizes is shown for each week. The x-axis denotes the order size in millions
and the y-axis shows the percentage of limit orders of a particular size during each week in the data
set. We observe that the distribution of is very similar for each week in the data set. Around 85%
of the limit orders are of size 1 million or 500 thousand. Other regularly occurring order sizes are 2
million, 4 million and 525 thousand. Other sizes occur less than 1% of the time. The average limit
order size used in the model to determine the unit size is approximately 850 thousand for each week.
Although Figure 5.6 shows us that the assumption that orders have unit size is not a very realistic
one, it is a necessary assumption in order to have an analytical expression for the fill probability.
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Figure 5.6: Distribution of limit order sizes, for sizes occurring more than 1% of the time.

As mentioned in Section 5.1.1, the size of the spread varies quite substantially. In Figure 5.7, the
arrival rates of limit orders are shown for each of the most common spread sizes ranging from one to
five ticks. The arrival rates are computed using

NS
l (δ)

TS
∗

, (5.4)

with NS
l (δ) the number of arrivals of limit orders at a distance δ in ticks from the opposite best quote

during the time sample when the spread was equal to S and TS
∗ denotes the total time in seconds the

spread was equal to S. We observe a significant difference in the arrival rates w.r.t. the different spread
sizes. The arrival rate of limit orders is considerably higher for smaller spread sizes, especially in the
first two weeks. Another thing that stands out is that if limit orders are posted within the spread, the
price level at which they are posted is in most cases at most one tick better than the current best bid
or ask. For example, when the spread equals two ticks, limit orders are posted at a distance of one
tick or more from the opposite best quote. Similarly, when the spread equals three ticks, the orders
are posted at a distance of two ticks or more from the opposite best quote. The exact arrival rates of
limit orders for each week in the data set can be found in Table B.1 in Appendix B.
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(a) Rates between 7–6–2021 and 11–6–2021
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(b) Rates between 14–6–2021 and 18–6–2021
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(c) Rates between 21–6–2021 and 25–6–2021
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(d) Rates between 28–6–2021 and 2–7–2021

Figure 5.7: Arrival rates of limit orders as a function of the distance δ in ticks from the opposite best
quote for each spread size S in ticks.
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5.1.5 Market Orders

Figure 5.8 displays the distribution of the five most common market order sizes for each week in the
data set. The x-axis denotes the order sizes in thousands and the y-axis shows the percentage of market
orders with a certain size during each week in the data set. The most common market order sizes are
1 million, 500 thousand and 1 thousand. We see that relatively small orders of a few thousand arrive
quite regularly. From the data it is hard to find a reason for the arrival of such small orders, but an
explanation could be that algorithmic trading systems post small orders to test the market dynamics
and find an optimal price before submitting a larger order. Similar to the limit order sizes, we see that
the assumption of unit order size is not a very realistic one, as a wide range of order sizes is observed
in the data. However, the set of order sizes that occur most frequently is relatively small. Other order
sizes occur around or below 1% of the time.
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(a) Size distribution between 7–6–2021 and 11–6–2021.
The average market order size is 339901.64.
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(b) Size distribution between 14–6–2021 and 18–6–
2021. The average market order size is 400128.26.
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(c) Size distribution between 21–6–2021 and 24–6–
2021. The average market order size is 320173.47.
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(d) Size distribution between 28–6–2021 and 2–7–2021.
The average market order size is 361490.31.

Figure 5.8: Distribution of market order sizes, for the five most commons market order sizes in each
week in the data set.

The subfigures in Figure 5.9 show the rates of both buy and sell orders market, for the most
common values of the spread size, which range from one to five ticks. The rates are computed using

NS
m

TS
∗
, (5.5)

with NS
m the number of arrivals of market orders during the time sample when the spread was equal to

S and TS
∗ the total time in seconds the spread was equal to S. We observe the arrival rate is the higher

for smaller spread sizes and seems to decay exponentially. This makes sense since a small spread size
indicates a higher trading activity. The exact rates can be found Table B.4 in Appendix B.
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Figure 5.9: Arrival rates per second for market orders for each spread size between one and five ticks.

5.1.6 Cancellations

The last type of event for which the arrival rate needs to be determined is the cancellation of limit
orders. As shown in Table 5.2, around 99.9% of all outstanding limit orders is cancelled. For this
reason, the distribution of the cancellation sizes as shown in Figure 5.10 is almost exactly the same as
the size distribution for limit orders (Figure 5.6). This leads to the conclusion that for cancellations,
the assumption of unit size is also not a realistic one. However, since the cancellation sizes are very
similar to the limit order sizes, assuming that limit orders have unit size can justify that cancellations
have unit size too.
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Figure 5.10: Distribution of cancellation sizes, for sizes occurring more than 1% of the time.

Unlike the size distribution, the arrival rate of cancellations does differ from the arrival rate of limit
orders. This makes sense since cancellations, unlike limit orders, can only arrive at price levels with
outstanding orders. The arrival rates are again computed by

NS
c (δ)

TS
∗

, (5.6)

with NS
c (δ) the number of arrivals of cancellations at distance δ in ticks from the opposite best quote

during the time sample when the spread was equal to S and TS
∗ the total time in seconds the spread

equalled S. Figure 5.3 confirms that the cancellations arrive at the best quote or deeper in the book,
for each value of the spread. Again we observe that the rates differ significantly for different spread
sizes. The exact cancellation rates can be found in Table B.5 in Appendix B.
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(a) Rates between 7–6–2021 and 11–6–2021.
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(b) Rates between 14–6–2021 and 18–6–2021.
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(c) Rates between 21–6–2021 and 25–6–2021.
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(d) Rates between 28–6–2021 and 2–7–2021.

Figure 5.11: Cancellation rates as a function of the distance δ in ticks from the opposite best quote
for each spread size S in ticks.
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5.2 Parameter Estimation

5.2.1 Arrival Rates

The arrival rates λ(δ), µ and θ(δ) for incoming orders and cancellations, as described in Section 2.2,
can be estimated relatively easy using order book data. Cont et al. provide the following functions
to estimate the arrival rates of different events [12]. The function for the arrival of limit orders is
estimated by

λ̂(δ) =
Nl(δ)

T∗
, (5.7)

where Nl(δ) denotes the total number of limit orders that arrived at a distance δ in ticks from the
opposite best quote within a certain sample time T∗. Similarly, the arrival rate of market orders is
estimated by

µ̂ =
Nm

T∗

Sm

Sl
, (5.8)

with Nm the number of market orders, T∗ the total sample time, Sm the average size of market orders
and Sl average size of limit orders. Lastly, the estimator for the cancellation rate function is given by

θ̂(δ) =
Nc(δ)

T∗Qδ

Sc

Sl
, (5.9)

with Sc the average size of cancelled orders and Sl the average size of limit orders. Nc(δ) denotes the
number of cancellations at price level a distance δ in ticks from the opposite best quote within the
time frame T∗. Here, Qδ is the average of QAsk

δ and QBid
δ , with

QBid
δ =

1

Sl

1

M

M∑
j=1

SBid
δ (j), QAsk

δ =
1

Sl

1

M

M∑
j=1

SAsk
δ (j) (5.10)

where M denotes the number of event rows in the data and SBid
δ (j) (SAsk

δ (j)) the number of outstanding
bid (ask) orders at a distance of δ ticks from the ask (bid) on the jth row of the data. That means
that Qδ can be seen as the average quantity outstanding at each price level.

For the rates µ̂ and θ̂(δ) we multiply them by their average size relative to the average size of limit
orders. This is because of the assumption that orders have unit size, equal to the average limit order
size.

While these rates provide a comprehensive picture of the dynamics of the order book, they might
be further refined to capture the dynamics even better. In the previous sections we have demonstrated
that the arrival and cancellations rates are different for different sizes of the spread S. For this reason,
we propose to add a dependency to the rates based on the spread size to improve the model. To
integrate the spread size into the model, the arrival and cancellation rates are re-estimated using the
data specific to each spread size. This involves slightly modified versions of the formulas described
above.

For limit orders, the arrival rate of orders arriving at a distance δ from the opposite best quote
given that the spread is equal to S is now estimated by

λ̂S(δ) =
NS

l (δ)

TS
∗

, (5.11)

where NS
l (δ) denotes the total number of limit orders that arrived at a distance δ from the opposite

best quote when the spread was equal to S within a certain sample time TS
∗ . The arrival rate per

second for each week and each spread size is given in Table B.1. However, this is the rate for both
sell and buy orders combined. To obtain the arrival rate for both sell and buy limit orders separately
we need to multiply the rates in Table B.1 by 1

2 . The arrival rate is then symmetric and equal to the
average rate of buy and sell orders.

Similarly, the arrival rate of market orders is estimated by

µ̂S =
NS

m

TS
∗

Sm

Sl
, (5.12)
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with NS
m the number of market orders that arrived when the spread was equal to S, TS

∗ the sample
time, Sm the average size of market orders and Sl average size of limit orders. The ratios Sm

Sl
for the

four separate weeks in the data set are given in Table 5.4. Similar to the limit order arrival rate, we
need to multiply the rates by both 1

2 to average the rate of buy and sell orders, as well as by the ratio
between the average order sizes.

Table 5.4: Ratio between average market order size and average limit order size.

Week 1 Week 2 Week 3 Week 4

Sm/Sl 0.40 0.47 0.38 0.43

Finally, the estimator for the cancellation rate function is given by

θ̂S(δ) =
NS

c (δ)

TS
∗ Q

S
δ

Sc

Sl
, (5.13)

with Sc the average size of cancelled orders and Sl the average size of limit orders. NS
c (δ) denotes the

number of cancellations at price level a distance δ in ticks from the opposite best quote during spread
size S within the time frame TS

∗ . QS
δ is the average of QS,Ask

δ and QS,Bid
δ , which denote the average

quantities outstanding at each price level at the ask and bid side, with

QS,Bid
δ =

1

Sl

1

M

M∑
j=1

SS,Bid
δ (j), QS,Ask

δ =
1

Sl

1

M

M∑
j=1

SS,Ask
δ (j) (5.14)

Here, M denotes the number of event rows in the data and SS,Bid
j (δ) (SS,Ask

j (δ)) the number of
outstanding bid (ask) orders at a distance of δ ticks from the ask (bid) on the jth row in the event
data when the spread was equal to S. The ratio between the average cancellation size and average
order size for each week in the data set is given in Table 5.5.

Table 5.5: Ratio between average cancellation size and average limit order size.

Week 1 Week 2 Week 3 Week 4

Sc/Sl 1.00 1.00 1.00 1.00

5.2.2 Average Number of Outstanding Orders

As described in Section 5.2.1, the arrival rate of cancellations depends on the average number of
outstanding orders at a certain distance from the opposite best quote. To estimate the arrival parameter
θS(δ), the average number of outstanding orders at each price level and for each spread size between
one and five ticks needs to be determined. Figure 5.12 displays the average outstanding quantities
for each price level at a distance of one to ten ticks from the opposite best quote. In this context,
outstanding quantity means the sum of quantities of all limit orders at a price level with a particular
distance from the opposite best quote for each timestamp.

We observe that average number of outstanding quantities is similar for each week in the data. We
also see that on average, the best quote has the lowest average outstanding quantity for each spread
size and the quantity increases for levels deeper in the order book until approximately four to five ticks
from the best quote. The average quantity decreases again and stays more or less constant for levels
deeper in the order book. The exact values of the average outstanding quantities can be found in Table
B.7 in Appendix B.
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(a) Average quantities between 7–6–2021 and
11–6–2021.
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(b) Average quantities between 14–6–2021 and
18–6–2021.
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(c) Average quantities between 21–6–2021 and
25–6–2021.
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(d) Average quantities between 28–6–2021 and
2–7–2021.

Figure 5.12: Average quantity outstanding at each distance δ in ticks from the opposite best quote
for each spread size S in ticks for δ = 1, ..., 10.

5.2.3 Average Order Sizes

The functions in Equations 5.11, 5.12 and 5.13 determine the arrival rates of incoming orders and
cancellations for each size of the spread. As previously mentioned, due to the unit size assumption
the arrival rates for market orders and cancellations are multiplied by the ratios between their average
sizes and that of limit orders. These average sizes, unlike the arrival rates, do not depend on the
spread size. Table 5.6 shows the average size of limit orders Sl, market orders Sm and cancellations
Sc for each spread size, together with the ratios. We notice that the spread size does not significantly
influence the ratios and there is no obvious or significant relationship between the spread size and the
ratios. For that reason we assume the ratios to be equal for each spread size.
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Table 5.6: Average sizes of limit orders Sl, market orders Sm and cancellations Sc and the ratios
between the average sizes for various spread sizes S in ticks.

S Sl Sm Sc Sm/Sl Sc/Sl

1 838449.26 331034.87 820172.66 0.40 0.98
2 844179.94 380353.36 832940.77 0.45 0.99
3 854789.86 347039.02 850841.29 0.41 1.00
4 856000.71 354098.51 863128.17 0.41 1.01
5 850569.99 400764.76 861386.95 0.47 1.01

(a) Average sizes between 7–6–2021 and 11–6–2021.

S Sl Sm Sc Sm/Sl Sc/Sl

1 839281.24 399852.32 821391.64 0.48 0.98
2 842035.52 394185.99 829351.65 0.47 0.98
3 850608.77 417543.58 841085.84 0.49 0.99
4 857147.21 412903.30 859889.27 0.48 1.00
5 847244.42 458038.04 859902.23 0.54 1.01

(b) Average sizes between 14–6–2021 and 18–6–2021.

S Sl Sm Sc Sm/Sl Sc/Sl

1 837536.92 371935.19 823018.62 0.44 0.98
2 838805.46 378048.34 824690.14 0.45 0.98
3 844005.13 338163.91 835460.29 0.40 0.99
4 843282.36 300020.34 845812.33 0.36 1.00
5 832494.86 346079.78 846318.47 0.42 1.01

(c) Average sizes between 21–6–2021 and 25–6–2021.

S Sl Sm Sc Sm/Sl Sc/Sl

1 842967.89 393082.81 833429.96 0.47 0.99
2 840465.41 389173.14 832937.51 0.46 0.99
3 841592.27 368210.23 840983.28 0.44 1.00
4 836619.40 341209.80 843416.34 0.41 1.01
5 823680.00 411997.99 839521.97 0.50 1.02

(d) Average sizes between 28–6–2021 and 2–7–2021.
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In this chapter we conduct some numerical experiments to assess the performance of the model. In
Section 6.1 we conduct an experiment to test the models ability to capture the short-term behaviour
of the order book. We do this by comparing the theoretical probability that the quantity at a certain
price level will increase with the empirical frequency. In Section 6.2 we compare the performance of the
two methods for inverting the Laplace transform that were introduced in Section 3.1, the Euler method
and the COS-method. Furthermore, we compute the conditional probabilities of interest, including the
probability of an increase in mid-price (Section 6.3), the probability of executing an order placed at the
best bid (Section 6.4) and the probability of executing an order at one price level below the best bid
(Section 6.5). The expressions used to compute these probabilities are given in Sections 4.1, 4.2 and
4.3. We compare the probability forecasts to the empirical probabilities, and assess the performance
of the model using a relative error measure: the mean absolute percentage error.

We implement the model in Python. The code used to compute the Laplace transforms, continued
fractions and density functions can be found in Appendix C.

6.1 Verification of One-Step Transition Probabilities

To assess if the estimated parameters are a good fit for the real data and for predictions about short-
term behaviour of the order book, Cont et al. compare the one-step probabilities of the model with
the observed empirical frequencies [12]. The one-step probability refers to the likelihood of an increase
in quantity at a certain price level at the next event, given the current number of outstanding orders.
Incoming limit orders are events that increase the quantity, while cancellations result in a quantity
decrease for price levels smaller than the best bid or larger than the best ask. At the best quotes, a
decrease can also be the result of an incoming market order.

Let Tm be the time of the m-th event in the order book, and similarly, define Tm+1 as the first
event after the m-th event. We have

T0 = 0, Tm+1 ≡ inf{t > Tm | X(t) ̸= X(Tm)}. (6.1)

Events in the order book at a distance δ from the opposite best quote occur at the best quotes, i.e. for
δ = S, with rate

λ(δ) + µ+ qθ(δ), (6.2)

with S the spread size in ticks and q the number of outstanding orders. At other price levels, i.e. for
δ > S, events occur with rate

λ(δ) + qθ(δ), (6.3)

since market orders arrive only at the best quote. The probability that the next change in quantity
from q to q + 1 at a price level a distance δ from the opposite best quote is an increase, denoted by
Pδ(q), is therefore given by

Pδ(q) ≡ P[Qδ(Tm+1) = q + 1 | Qδ(Tm) = q,Qδ(Tm+1) ̸= q] =


λ(S)

λ(S)+µ+qθ(S) , δ = S,

λ(δ)
λ(δ)+qθ(δ) , δ > S,

(6.4)
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where Qδ(t) denotes the quantity outstanding at a distance δ from the opposite best quote at time
t. Now let QA

δ denote the ask quantities outstanding at a distance δ from the best bid and similarly,
let QB denote the bid quantities outstanding at a distance δ from the best ask. We can compare the
theoretical probability Pδ(q) to the empirical frequencies of an increase P̂δ(q), estimated by

P̂δ(q) ≡
B̂up + Âup

B̂up + Âup + B̂down + Âdown
, (6.5)

with
B̂up ≡ #{Q̂B

δ (T̂m) = q, Q̂B
δ (T̂m+1) = q + 1},

Âup ≡ #{Q̂A
δ (T̂m) = q, Q̂A

δ (T̂m+1) = q + 1},
B̂down ≡ #{Q̂B

δ (T̂m) = q, Q̂B
δ (T̂m+1) = q − 1},

B̂down ≡ #{Q̂A
δ (T̂m) = q, Q̂A

δ (T̂m+1) = q − 1},

(6.6)

where Q̂B
δ and Q̂A

δ are the empirical quantities outstanding at each level on the bid and ask side of the
order book, respectively. Since we assume the orders to be of unit size, Q̂B

δ and Q̂A
δ are computed by

dividing the quantities outstanding at each new event by the average limit order size Sl, rounded off
to the nearest positive integer.

Figure 6.1 illustrates the results for Pδ(q) and P̂δ(q) for the prediction of one-step probabilities on
July 2nd 2021 for various spread sizes S and distances δ from the opposite best quote. Particularly
the results for price levels different to the best quotes, i.e. for S ̸= δ, show significant similarity. For
the probabilities at the best quotes, the model tends to slightly underestimate the probabilities for
S = 1, 2, 3 (See Figures 6.1a, 6.1f, 6.1j). On the contrary, for S = 5 the model seems to overestimate
the probabilities of a price increase, as can be seen in Figure 6.1o. What also stands out from Figure
6.1a and Figure 6.1f is that the probability of an increase in quantity increases for q = 1 to q = 3
at the best quote when the spread is equal to one or two ticks. This is not in accordance with the
model, since the probability of an increase should decrease when the outstanding quantity is larger.
This follows from the fact that more orders would result in a higher probability that at least one of
them is cancelled, which would result in a quantity decrease. Overall, although it is obvious that not
all dynamics are captured by the model, in most cases it shows a reasonable ability to capture the
one-step probabilities.
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Figure 6.1: Probabilities of an increase in queue size for different values of the spread S and different price
levels at a distance δ from the opposite best quote. The y-axis denotes the probability that the quantity at a
certain level increases at the next quantity change. The x-axis denotes the quantity outstanding q before the
next change.
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6.2 Comparison of Numerical Methods for Inverting Laplace Trans-
forms

In Section 3.1 we provided two methods to invert Laplace transforms: the Euler method and the COS-
method. To compare both methods, we compute the density functions of the first-passage times using
the arrival rate parameters given in the paper by Cont et al. for the case the spread size is equal to
one tick, which can be found in Table 6.1. We compute and plot the pdf’s for several values of the
queue size q and measure the computation time.

Table 6.1: Arrival rate parameters from [12] for a spread size S equal to one tick.

λ̂(δ) 1.85
θ̂(δ) 0.71
µ̂ 0.94

The pdf’s are computed by inverting the Laplace transforms of the density functions of the first-
passage times to 0, conditional on the number of orders outstanding being equal to q. We recall that
this Laplace transform is given by

f̂S
q (s) =

q∏
i=1

(
− 1

λ(S)
K∞

k=i

−λ(S)
(
µ+ kθ(S)

)
λ(S) + µ+ kθ(S) + s

)
. (6.7)

The continued fractions in Equation 6.7 are the expressions of the Laplace transforms of the density
functions for the separate first-passage times from state i to state i− 1, given by

f̂S
i,i−1(s) = − 1

λ(S)
K∞

k=i

−λ(S)
(
µ+ kθ(S)

)
λ(S) + µ+ kθ(S) + s

. (6.8)

To evaluate these expressions, first we notice that f̂i,i−1(s) is a continued fraction of the form

f̂S
i,i−1(s) = K∞

k=i

ak
bk

=
ak
bk+

ak+1

bk+1+

ak+2

bk+2+
· · · , (6.9)

with

ak = µ+ kθ(S),

ak+l = −λ(S)
(
µ+ (k + l)θ(S)

)
, for l ≥ 1, (6.10)

bk+l = λ(S) + µ+ (k + l)θ(S) + s, for l ≥ 0.

We can compute the value of this infinite continued fraction using the modified Lentz method as
described in Section 3.2 with the terms in the continued fraction an and bn as defined in Equation
6.10.

To compare both methods, we take for the Euler method A = 18.4, m = 11 and n = 15, as
proposed by Abate and Whitt in [2]. For the COS-method we take 50 for the number of terms in the
summation N . We compute the pdf’s for the case S = 1 for t between 0 and 30 seconds. The number
of time steps is varied between 100 and 200. The computation times for both methods are given in
Table 6.2 and the plots of the pdf’s of the first-passage times can be found in Figure 6.2. Figure 6.2
shows that the COS-method provides similar results to the Euler method. However, from Table 6.2
follows that the computation time of the COS-method is significantly smaller than the Euler method.
For this reason we choose to compute the inverse Laplace transforms using the COS-method.
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(e) q = 6, M = 100
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Figure 6.2: Probability density functions f(t) of first-passage times for several values of the queue
size q and number of time steps M , computed using the Euler method and the COS-method.

Table 6.2: Comparison of computation times of the density functions f(t) of the first-passage times
using the Euler method and COS-method for several values of the number of orders q and the number
of time steps M .

q

4 5 6

M Euler COS Euler COS Euler COS

100 7.0s 2.2s 9.5s 2.5s 8.9s 3.0s
200 14.0s 4.4s 15.6s 5.1s 17.6s 5.2s
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6.3 Computation of Probability of Mid-Price Increase

In this section we compute the conditional probability of an increase in mid-price using Laplace trans-
forms and compare them to the empirical distribution based on the frequencies of mid-price changes.
We will compute the probabilities based on different parameter sets and evaluate which set provides
the best results. The probability of a mid-price increase can be computed by inverting the Laplace
transforms given in Proposition 4.1 using the COS-method, which is described in Section 3.1. The
probabilities are computed for a five day period from 29–6–2021 to 5–7–2021.

First, we compute the parameters using the data from the previous four instances of the same
weekday, i.e. we use the data from the four previous Mondays to predict the rates for the next Monday,
and the same holds for the other days in the week. We then compute the price move probabilities
using rates that are independent of the spread, i.e. the parameters are the same for all spread sizes
S, and rates that do depend on the spread size. The probabilities are computed for several quantities
qA and qB outstanding at t = 0 at the best ask and best bid, respectively, ranging from 1 to 5. Since
the model assumes orders to have unit size, we have computed the empirical probabilities by dividing
the quantities at the best ask and best bid price by the average limit order size, and rounding them
off to the nearest positive integer. The empirical probability of an increase in mid-price can then be
computed by

PS
increase =

#{pM (tM ) > pM (t), XA(t) = qA, XB(t) = qB, pS(t) = S}
#{pM (tM ) ̸= pM (t), XA(t) = qA, XB(t) = qB, pS(t) = S}

, (6.11)

with pM (t) the mid-price at time t, pM (tM ) the mid-price after the first change in mid-price, XA(t)
and XB(t) the number of orders outstanding at the best ask and bid price, respectively and pS(t)
the spread size at time t. We also compute the probability of a mid-price increase based on rates
calculated on the preceding five days, i.e., data from Monday to Friday is used to predict the rates for
the following Monday.

We compute the probabilities using the COS-method with the parameters given in Table B.8. To
compare the results for the four different parameter sets, we compute the mean absolute percentage
error (MAPE) for all the estimated probabilities, which are shown in Table 6.3. The MAPE is given
by

MAPE =
1

n

n∑
i=1

∣∣∣∣Pi − P̂i

Pi

∣∣∣∣, (6.12)

with Pi the empirical probability, P̂i the estimated probability and n the number of predictions. For
this error measure holds that the closer its value is to zero, the better the prediction. If the MAPE is
less than 5%, the forecast is assumed to be acceptably accurate, while the accuracy of a prediction is
considered to be low but acceptable when the MAPE lies between 5% and 25% [24].

Table 6.3: Mean absolute percentage error between empirical probabilities of a mid-price increase and com-
puted probabilities using spread dependent and independent rates and estimated on different parameter sets.

MAPE

Preceding days Previous instances of the same day

S Spread independent rates Spread dependent rates Spread independent rates Spread dependent rates

1 11.3% 10.4% 11.4% 10.6%
2 12.0% 11.4% 13.0% 10.8%
3 12.7% 13.3% 14.7% 14.6%
4 6.4% 4.7% 6.6% 5.4%
5 10.8% 8.8% 10.8% 8.1%

Average 10.6% 9.7% 11.3% 9.9%

As can be observed from Table 6.3, the accuracy of the computed probabilities can therefore be
considered acceptably accurate for all parameter sets and all spread sizes. As we would suspect, the
probabilities based on spread dependent rates are in general slightly better than using rates that are
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independent of the spread size. However, no specific set of parameters clearly outperforms the others.
More research could be done to examine which time period could be used to estimate the parameters
that have the most predictive power. To compute other conditional probabilities in the coming sections,
we choose to use the parameter set that is estimated on five preceding days with spread dependent
rates, since it has the lowest MAPE over all days and all spread sizes.

Table 6.4 shows the empirical frequencies of a mid-price increase and the model probabilities on 5–
7-2021, computed using spread dependent rates based on the five preceding days. For each spread size
and each combination of quantities qB and qA at the best bid price and best ask price, respectively, the
empirical probability of a mid-price increase is computed using Equation 6.11. Not all combinations of
qA and qB have a value for the empirical probability. This is because these combinations of quantities
at a certain spread occurred less than 100 times. We have chosen to disregard these instances to ensure
we can assume the empirical probability is reliable. We observe that in most cases, the predictions
are reasonably accurate. In the model, the probability of a mid-price increase is decreasing for larger
values of qA, and conversely is increasing for larger values of qB. This behaviour can be found in the
majority of the empirical probabilities as well. This, in combination with the values of the MAPE
indicating an acceptable accuracy, suggest that the model is able to capture the short-term mid-price
dynamics quite effectively.

Table 6.4: Empirical frequency and computed probability of an increase in mid-price for several sizes of the
spread S and initial values of the quantities at the best bid qB and the best ask qA on July 5th 2021. The model
probability is computed using rates computed on the five preceding days. Only instances where a combination of
qA and qB occurred more than 100 times are taken into account to compute a reasonable empirical probability.

Empirical Probability Model Probability

qA qA

qB 1 2 3 4 5 1 2 3 4 5

1 50.3% 33.0% 22.9% 27.1% 22.4% 50.0% 34.7% 27.1% 22.6% 19.6%
2 70.5% 56.6% - - - 65.3% 50.0% 41.1% 35.3% 31.1%

S = 1 3 78.7% - - - - 72.9% 58.9% 50.0% 43.8% 39.2%
4 78.2% - - - - 77.4% 64.7% 56.2% 50.0% 45.3%
5 81.4% - - - - 80.5% 68.9% 60.8% 54.8% 50.0%

1 49.6% 38.5% 32.2% 25.2% 22.0% 50.0% 36.8% 30.9% 27.6% 25.6%
2 58.1% 48.5% 52.3% 45.5% 27.5% 63.3% 50.0% 43.2% 39.1% 36.4%

S = 2 3 70.1% 49.9% - - - 69.2% 56.8% 50.0% 45.7% 42.7%
4 75.1% 43.9% - - - 72.4% 60.9% 54.4% 50.0% 47.0%
5 81.6% - - - - 74.5% 63.7% 57.3% 53.1% 50.0%

1 49.9% 42.8% 39.7% 36.8% 31.8% 50.0% 38.9% 34.4% 32.2% 30.8%
2 54.7% 48.1% 52.0% 47.5% 52.6% 61.1% 50.0% 45.0% 42.2% 40.5%

S = 3 3 56.3% 46.0% 45.3% 49.9% 72.2% 65.6% 55.0% 50.0% 47.12% 45.3%
4 62.5% 49.4% 59.7% 47.0% - 67.8% 57.8% 52.9% 50.0% 48.1%
5 65.7% 51.9% - - - 69.2% 59.5% 54.7% 51.9% 50.0%

1 51.7% 44.0% 41.5% 38.6% 35.3% 50.0% 41.5% 38.8% 37.6% 37.0%
2 56.5% 47.0% 45.1% 43.5% 44.1% 58.5% 50.0% 47.0% 45.6% 44.9%

S = 4 3 58.3% 52.8% 50.5% 52.8% 40.1% 61.2% 53.0% 50.0% 48.6% 47.8%
4 61.5% 54.8% 55.6% 51.7% 48.3% 62.4% 54.4% 51.4% 50.0% 49.2%
5 67.7% 58.7% 60.2% 54.0% 44.1% 63.0% 55.1% 52.2% 50.8% 50.0%

1 39.1% 43.3% 49.3% 42.3% 51.0% 50.0% 44.4% 43.1% 42.7% 42.6%
2 56.8% 45.5% 66.8% 52.1% 40.0% 55.6% 50.0% 48.6% 48.2% 48.0%

S = 5 3 63.2% 48.1% 53.9% 59.7% 53.7% 56.9% 51.4% 50.0% 49.5% 49.4%
4 65.0% 54.1% 39.4% 53.6% 50.7% 57.3% 51.8% 50.5% 50.0% 49.8%
5 65.7% 64.2% 42.5% 53.3% 45.2% 57.4% 52.0% 50.6% 50.2% 50.0%
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6.4 Computation of Probability of Execution at the Best Bid Price

In this section we compute the conditional probability of executing an order placed at the best bid
before the mid-price moves. For the computation we use the parameter set computed on the preceding
five days with spread dependent rates. The probability of execution is calculated using the result of
Proposition 4.2. We compare the computed probabilities with the empirical frequencies to assess the
performance of the model. In reality most orders are cancelled, and the probability we wish to compute
is conditional on an order not being cancelled. Therefore, we estimate the empirical probability in the
following way:

PS
fill =

#{Fill, pM (tF ) = pM (t0)}
#{Fill, pM (tF ) = pM (t0)}+#{Cancel, pM (tC) ̸= pM (t0)}

. (6.13)

Here, pSfill denotes the empirical fill probability, pM (t0) the mid-price at the time of order submission t0,
pM (tF ) the mid-price at the time of execution tF and pM (tC) the mid-price at the time of cancellation
tC . Since our focus is on computing the execution probability before a mid-price move for orders that
are ‘never’ cancelled, we calculate the ratio of the filled orders with respect to orders that are cancelled
after a mid-price move. The reason for this is that these orders were ‘never’ cancelled before the mid-
price moved, but they were also not executed. For ease of notation, we have omitted the dependency
on XA, XB and pS for the sets in Equation 6.13, for which we have

{Fill, pM (tF ) = pM (t0)} = {Fill, pM (tF ) = pM (t0), XA(t0) = qA, XB(t0) = qB, pS(t0) = S},

and

{Cancel, pM (tC) ̸= pM (t0)} = {Cancel, pM (tC) ̸= pM (t0), XA(t0) = qA, XB(t0) = qB, pS(t0) = S}.

We calculate all fill probabilities again using the COS-method, with the parameters as provided in
Table B.9. Table 6.5 displays the empirical probabilities together with the calculated probabilities for
July 5th 2021 for spread sizes S ranging from one to five ticks. Again, we decided only to include
cases where a combination of qA and qB occurred more than 100 times to ensure a reliable empirical
probability. For certain combinations, the model seems to perform quite well, particularly for the cases
that qB = 1. However, the decay in probability when qB is larger than 1 seems to be greater for the
empirical probability than for the model probability. Conversely, the empirical probability seems to
increase more rapidly for larger values of qA when qB = 1. These observations suggest that the model
may not be able to effectively capture all the dynamics in the order book. Additionally, we observe
that for S > 2, the predicted fill probability does not change significantly for different values of qA. An
explanation for this could be that the probability of an order posted within spread, and thus leading
to a change in mid-price, is larger for bigger spread sizes. The case where the mid-price changes due
to the quantity at the best ask reaching 0 might be less significant for larger spread sizes, resulting in
a relatively constant fill probability for different values of qA. We see that the empirical values exhibit
different behaviour, indicating that there are some dynamics that are not captured well by the model.

To asses the accuracy of the computed fill probabilities, we propose not to use the mean absolute
percentage error. The reason for this is that the probabilities are typically quite small, and a significant
amount even less than 1.0%, which will result in a large relative error. This error will even tend to
infinity for empirical probabilities close to 0. Instead, we propose to use an error measure described in
[17], which is called mean arctangent absolute percentage error (MAAPE). The MAAPE is given by

MAAPE =
1

n

n∑
i=1

arctan

(∣∣∣∣Pi − P̂i

Pi

∣∣∣∣), (6.14)

with Pi the empirical probability, P̂i the estimated probability and n the number of predictions. The
main advantage of this method is that the errors are now bounded, so that they do not tend to infinity
for small values of Pi. When the empirical value Pi is close or equal to 0, the MAAPE is bounded
above by 1.57.
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Table 6.5: Empirical frequency and calculated probability of execution of a bid order for several sizes
of the spread S and initial values of the quantities at the best bid qB and the best ask qA on July
5th 2021. The model probability is computed using rates calculated on the five preceding days. Only
instances where a combination of qA and qB occurred more than 100 times are taken into account to
compute a reasonable empirical probability.

Empirical Probability Model Probability

qA qA

qB 1 2 3 4 5 1 2 3 4 5

1 2.0% 5.3% 7.1% 13.4% - 3.0% 3.9% 4.6% 5.1% 5.5%
2 0.6% 0.0% - - - 1.9% 2.7% 3.2% 3.7% 4.0%

S = 1 3 0.3% - - - - 1.5% 2.2% 2.6% 3.0% 3.3%
4 0.0% - - - - 1.2% 1.8% 2.2% 2.6% 2.9%
5 0.0% - - - - 0.9% 1.5% 1.9% 2.2% 2.5%

1 1.3% 2.5% 4.1% 5.9% 5.9% 1.5% 1.8% 2.0% 2.1% 2.2%
2 0.3% 0.1% 0.0% - - 1.0% 1.2% 1.3% 1.4% 1.5%

S = 2 3 0.3% 1.6% - - - 0.7% 0.9% 1.0% 1.1% 1.2%
4 0.2% - - - - 0.6% 0.8% 0.9% 1.0% 1.0%
5 0.0% 0.0% 0.0% - - 0.5% 0.7% 0.8% 0.8% 0.9%

1 0.5% 0.9% 1.4% 1.1% 0.8% 1.2% 1.3% 1.4% 1.4% 1.4%
2 0.1% 0.0% 0.3% 0.0% 0.0% 0.8% 0.9% 1.0% 1.0% 1.0%

S = 3 3 0.1% 0.1% 0.0% 0.0% - 0.7% 0.7% 0.8% 0.8% 0.8%
4 0.1% 0.0% 0.0% - - 0.5% 0.5% 0.5% 0.6% 0.7%
5 0.1% 0.0% - - - 0.5% 0.5% 0.6% 0.6% 0.6%

1 1.5% 0.5% 0.3% 0.5% 0.3% 1.1% 1.2% 1.2% 1.2% 1.2%
2 0.0% 0.0% 0.2% 0.1% 0.0% 0.8% 0.8% 0.8% 0.8% 0.8%

S = 4 3 0.0% 0.1% 0.0% 0.0% 0.0% 0.6% 0.7% 0.7% 0.7% 0.7%
4 0.1% 0.0% 0.0% 0.0% 0.0% 0.5% 0.6% 0.6% 0.6% 0.6%
5 0.0% 0.0% 0.0% 0.0% - 0.5% 0.5% 0.5% 0.5% 0.5%

1 0.0% - - - - 1.1% 1.1% 1.1% 1.1% 1.1%
2 0.0% - - - - 0.6% 0.7% 0.7% 0.7% 0.7%

S = 5 3 - - - - - 0.5% 0.5% 0.5% 0.7% 0.5%
4 - - - - - 0.3% 0.3% 0.4% 0.4% 0.4%
5 - - - - - 0.3% 0.3% 0.3% 0.3% 0.3%

The MAAPE for each spread size S and combination of quantities at the best ask qA and best bid
qB, along with the average empirical probability is given in Table 6.6 for the days between 29–6–2021
and 5–7–2021. We see that for each spread size, the forecast for the first row, i.e. for qB = 1, appears
to be reasonably accurate. For qB > 1, the model consistently overestimates the fill probabilities for
all days and spread sizes. We observe that for qB > 1, the empirical probability of executing an order
before the mid-price moves is very low, typically less than 0.5%. This also shows the challenge of
accurately predicting fill probabilities for such cases. Regarding the cases when qB = 1, the model
seems to perform better for smaller spread sizes. Since the empirical probabilities are quite small, a
relative error measure will always tend to increase quite rapidly. Considering the strong assumptions
on the orders and order flow, we can conclude that for the case qB = 1, the model seems to be able to
capture the dynamics of the order book quite accurately. For the case qB > 1, the average empirical fill
probability is in most cases negligibly larger than 0%, and the model seems to consistently overestimate
these values.
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Table 6.6: Average empirical probability and mean arctangent absolute percentage error for computed
fill probabilities for each spread size S from 29–6–2021 to 5–7–2021.

Average Empirical Probability MAAPE

qA qA

qB 1 2 3 4 5 1 2 3 4 5

1 2.1% 5.7% 7.5% 10.3% 9.2% 67% 15% 23% 36% 27%
2 0.6% 0.5% - - - 126% 139% - - -

S = 1 3 0.3% - - - - 137% - - - -
4 0.5% - - - - 103% - - - -
5 0.3% - - - - 117% - - - -

1 1.4% 2.5% 4.8% 5.8% 8.1% 32% 21% 26% 52% 60%
2 0.4% 0.4% 0.4% 0.3% - 115% 121% 123% 135% -

S = 2 3 1.0% 0.6% - - - 101% 109% - - -
4 0.1% 0.0% - - - 135% 157% - - -
5 0.1% - - - - 139% - - - -

1 1.0% 1.2% 1.7% 1.9% 2.1% 31% 28% 24% 24% 42%
2 0.3% 0.2% 0.4% 0.7% 0.3% 112% 123% 99% 105% 105%

S = 3 3 0.2% 0.2% 0.2% 0.0% - 128% 132% 119% 157% -
4 0.1% 0.1% 0.1% 0.0% - 129% 132% 119% 157% -
5 0.1% 0.1% - - - 139% 124% - - -

1 0.9% 0.9% 0.8% 0.8% 0.7% 30% 55% 47% 69% 73%
2 0.1% 0.2% 0.1% 0.2% 0.1% 135% 121% 132% 113% 128%

S = 4 3 0.1% 0.1% 0.1% 0.1% 0.1% 122% 134% 139% 145% 139%
4 0.0% 0.0% 0.1% 0.0% 0.0% 150% 152% 150% 156% 157%
5 0.0% 0.0% 0.0% 0.0% 0.0% 151% 152% 157% 157% 157%

1 1.0% 0.7% 0.6% 1.3% 0.1% 34% 47% 41% 46% 145%
2 0.2% 0.1% 0.1% 0.0% 0.0% 114% 137% 139% 157% 157%

S = 5 3 0.0% 0.0% 0.1% 0.0% 0.0% 145% 138% 122% 153% 157%
4 0.0% 0.0% 0.0% 0.0% 0.0% 157% 155% 157% 157% 157%
5 0.1% 0.0% 0.0% 0.0% 0.0% 132% 154% 157% 157% 157%

6.5 Computation of Probability of Execution at One Price Level be-
low the Best Bid Price

We recall the probability of executing an order at price level pB − 1 from Section 4.3, given by

P[Tbid < Tother]·
A∑

j=1

B∑
i=1

(
P[ϵB− < T | WB−(Tbid) = i, XA(Tbid) = j] · P[WB−(Tbid) = i] · P[XA(Tbid) = j]

)
.

(6.15)

Here, A denotes the possible number of orders outstanding at the best ask price after the best bid
moved down, and B denotes the possible number of orders at price level pB − 1. As mentioned in
Section 4.3, B can only take values between 1 and XB−(0), where XB−(0) denotes the number of
orders outstanding at price level pB − 1 after submitting the order. We have B = 1 if all the orders
in front of the submitted bid order were cancelled before the bid price moved down, and B = XB−
if no order was cancelled before the bid price moved down. Recall that WB− denotes the number of
orders remaining at price level pB − 1 of the original number of orders XB−(0). In Section 6.4 we saw
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that the empirical fill probability is negligible for WB− > 2 for all days and spread sizes. Therefore,
we restrict ourselves to the cases where WB− is either 1 or 2 after the bid moved down, so we assume

P[ϵB < T | WB−(Tbid) = i,XA(Tbid) = j] = 0 for i > 2. (6.16)

We are also interested in finding an upper bound for A to ensure the tractability of the summation
in Equation 6.15. The quantity at the best ask not only moves down, but can also move up due to
the arrival of new limit orders. As a consequence, the quantity outstanding after a price move, given
by A, could theoretically have infinitely many values. However, as mentioned in Section 4.3, A will
have a finite number of possible values in reality. In this section we will focus on the cases where the
spread equals one or two ticks when the order is submitted, since the model had the best performance
for these spread sizes for estimating the fill probability in the previous section. Table 6.7 shows the
empirical distribution for the orders outstanding at the ask after a downward move of the best bid
price for these spread sizes. It becomes clear that in both cases, the probability that there are only
one or two orders outstanding at the best ask is around 98%. For this reason, we will neglect the other
possible values and restrict ourselves to A = 2, i.e. we assume P[XA(Tbid) = j] = 0 for j > 2. We
will use the distribution as provided in Table 6.7 for the probability P[XA(Tbid) = j] for j = 1, 2. This
follows the approach of Cont and De Larrard, in which they draw the quantities at both the best bid
price and the best ask price after a price move from a joint (empirical) distribution [11].

Table 6.7: Empirical distributions of the number of orders at the ask qA after a downward move of
the best bid price for spread size S = 1, 2 from 29–6–2021 to 5–7–2021.

qA

S 1 2 3 4 5 >5

1 76.2% 22.0% 1.6% 0.0% 0.0% 0.2%
2 82.2% 15.2% 1.4% 0.0% 0.0% 0.6%

By the aforementioned assumptions, probability 6.15 now becomes

P[Tbid < Tother]·
2∑

j=1

2∑
i=1

(
P[ϵB− < T | WB−(Tbid) = i,XA(Tbid) = j] · P[WB−(Tbid) = i] · P[XA(Tbid) = j]

)
.

(6.17)

Since the fill probability now also depends on XB−(0), the number of orders outstanding at price level
pB−1 at t = 0, the dimension of the problem becomes quite large. We need to calculate the probability
for each combination of qB, qA and qB−. For simplicity, we therefore restrict ourselves to the case where
S = 1 when the order is submitted, and we let qB range from one to four orders, and qA and qB− from
one to five orders. We will compare the computed probabilities to the empirical frequencies. Since
each combination of quantities is quite specific, we will compute the empirical frequencies based on
a longer time frame to obtain a sufficient amount of empirical values. We estimate the probabilities
based on order book data from June 21 2021 to July 2 2021. Table 6.8 indicates that even for a data
set based on two weeks of order book data, not all combinations of quantities occur more than 100
times. Therefore, we cannot compare all forecasts to an empirical probability, which makes it more
difficult to assess the performance of the model.

We observe that in most instances the model seems to overestimate the fill probabilities. This
could be a result of the magnitude of the probabilities that we are trying to compute, together with
an accumulated error from the results of the fill probability at the best bid. In addition, there might
be some order book dynamics that are not effectively described by the model. We can conclude that
although the model shows some promising results, it needs to be further refined to be able to capture
more dynamics, which could lead to a better estimation of the fill probability.
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Table 6.8: Empirical probability and computed theoretical probability for orders placed at price level
pB − 1 for S = 1. The empirical frequencies are based on order book data from June 21 2021 to July 2
2021. Only combinations of qB, qA and qB− that occurred more than 100 times are taken into account.
The computed probabilities are calculated using the parameter set based on data from June 28 to July
2.

Empirical Probability Model Probability

qA qA

qB 1 2 3 4 5 1 2 3 4 5

qB− = 1

1 0.19% 0.27% 0.68% 2.16% - 0.75% 0.97% 1.09% 1.16% 1.21%
2 0.23% 0.25% 0.39% 0.67% - 0.53% 0.75% 0.88% 0.97% 1.03%
3 0.11% 0.69% - - - 0.42% 0.62% 0.75% 0.84% 0.91%
4 0.12% - - - - 0.35% 0.54% 0.66% 0.75% 0.82%

qB− = 2

1 0.06% 0.44% - - - 0.63% 0.81% 0.91% 0.96% 1.00%
2 0.12% 0.37% 0.00% - - 0.47% 0.67% 0.78% 0.86% 0.91%
3 0.12% 0.00% - - - 0.38% 0.57% 0.69% 0.77% 0.83%
4 0.00% - - - - 0.32% 0.50% 0.61% 0.70% 0.76%

qB− = 3

1 0.28% 1.12% - - - 0.42% 0.54% 0.60% 0.64% 0.67%
2 0.09% 0.22% - - - 0.38% 0.53% 0.62% 0.68% 0.72%
3 0.04% - - - - 0.33% 0.49% 0.59% 0.66% 0.71%
4 0.00% - - - - 0.29% 0.44% 0.55% 0.62% 0.68%

qB− = 4

1 0.06% 0.71% - - - 0.33% 0.42% 0.47% 0.50% 0.53%
2 0.08% 0.62% - - - 0.32% 0.45% 0.52% 0.58% 0.61%
3 0.00% - - - - 0.29% 0.43% 0.52% 0.58% 0.63%
4 0.03% - - - - 0.26% 0.40% 0.49% 0.56% 0.61%

qB− = 5

1 0.07% 0.00% - - - 0.27% 0.35% 0.39% 0.42% 0.43%
2 0.08% 0.89% - - - 0.28% 0.39% 0.46% 0.50% 0.53%
3 0.00% - - - - 0.26% 0.38% 0.46% 0.52% 0.56%
4 0.03% - - - - 0.24% 0.36% 0.45% 0.51% 0.56%
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The aim of this research was to evaluate the feasibility of estimating fill probabilities of limit orders
on the foreign exchange spot market using a simplified stochastic model to model the order book
dynamics. Accurately predicting fill probabilities is a key factor in the field of algorithmic trading,
since it can lead to more effective trading strategies and significantly reduce transactions cost. The
model we used in this thesis describes the order book dynamics by modelling the queues at different
price levels as birth-death processes. Here, the arrivals of limit orders lead to an increase in quantity
at a certain price level, which can be seen as ‘births’. Conversely, the ‘deaths’ are a result of incoming
cancellations and market orders, as they cause a decrease in quantity. The density functions of the
first-passage times of these queues to 0 can then be computed using Laplace transforms. By using the
density functions, we derive a semi-analytical expression for several probabilities of interest, namely the
probability of a mid-price increase, the probability of an order posted at the best bid being executed,
and the probability of an order posted at one price level below the best bid being executed. These
probabilities are all conditional on the state of the order book, i.e. conditional on the number of orders
outstanding and the spread size. The model used in this thesis was based on a stochastic model as
proposed by Cont et al., and we extended this model by incorporating order arrival rates that depend
on the spread size [12]. This means that the rates at each price level change for different spread sizes,
which leads to a more realistic depiction of the order book dynamics. Furthermore, we provided a
general expression to analytically compute not only the fill probabilities at the best quotes, but also
for one price level below the best bid price and best ask price.

In Chapter 5, we conducted several tests to assess the validity of the model assumptions with respect
to our data. We showed that symmetry of the order flow is a reasonable assumption, as the rates did
not differ significantly for orders placed on the bid and ask side of the order book. We confirmed these
results by employing the Wilcoxon-signed rank test to the arrival rates. On the other hand, we found
that the assumption of unit-size orders is not supported by the data. Nevertheless, this assumption
does allow for a semi-analytical computation of the probabilities of interest. In addition, we discovered
that the arrival rates of incoming orders and cancellations differ substantially for different spread sizes.
For this reason, we decided to increase the dimensionality of the arrival rate parameters to incorporate
the spread size.

To see how well the model captures the one-step transition probabilities (i.e. the probability
that the quantity of the queue increases at the next event at a certain price level) we compared the
theoretical probabilities with the empirical frequencies in Chapter 6. We observed that in most cases,
the model is able to capture the dynamics reasonably well. For the one-step transition probabilities at
the best quotes there exists some discrepancy between the empirical and theoretical values, indicating
the presence of dynamics that the model does not effectively replicate.

Additionally, we presented the numerical results of the probabilities of interest, namely the proba-
bility that the mid-price increases at the next change and the probability of executing an order. First,
we computed the probability of a mid-price increase using four different parameter sets. These param-
eter sets were calculated on data of five preceding days and data of the previous four instances of the
same day to predict the rates for the day of interest. We used both spread-dependent rates and spread-
independent rates and compared their performance. Our analysis showed some success, particularly
for predictions that incorporated spread-dependent rates, which tended to slightly outperform predic-
tions using rates independent of the spread size. It is important to note, however, that none of the
parameter sets was found to clearly outperform the others. More research could be done to determine
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which time frame would yield the best prediction, for example by incorporating a decay parameter,
which would give higher weight to the rates of more recent days. We computed the probabilities of an
increase for five days for spread sizes ranging from 1 to 5, and for different combinations of quantities
outstanding at the best bid price and best ask price. We compared the probability forecasts to the
empirical frequencies of a mid-price increase, and we found that the model exhibits reasonable accuracy
for most cases. This suggests its ability to capture short-term mid-price dynamics adequately.

To asses the performance of the prediction of execution probability at the best bid price, again
we computed the probability for multiple days, considering various spread sizes and combinations of
quantities at the best bid price and best ask price. We compared the predicted values to the empirical
ones and we observed certain limitations in the model’s capacity to fully capture all dynamics in the
order book. For instance, while the model performed relatively well for cases when the submitted order
has the highest priority, discrepancies arose for orders with lower priority, which highlights a potential
area for further study. This was mainly the result of the magnitude of the empirical probabilities,
which were often around 0.5% or lower. The model consistently overestimated the fill probabilities
for orders that do not have the highest priority of execution. Additionally, for larger spread sizes, the
predicted fill probability did not vary significantly for different values of the quantity at the best ask
price, indicating possible shortcomings of the model in replicating more complex market dynamics.
This observation offers another promising topic for future research to improve the predictive capacity
of the model.

Finally, we computed the probabilities of orders placed at one price level below the best bid price.
Since we found that the empirical probabilities of order execution at the best bid were close to 0 for
orders that do not have a high priority, we decided to disregard these in the computation of orders
posted at the price level below the best bid. We computed the probabilities for the case that the
spread size is equal to one tick, for different combinations of quantities at the best bid price, best ask
price and one level below the best bid price. Since these combinations are very specific, we were not
able to compute an empirical probability for each instance, even when using two weeks of order book
data. For the empirical values we were able to compute, the model again seemed to overestimate the
probabilities. This could be a result of the model’s inability to capture all market dynamics, but it
could also be an effect of the accumulation of errors for the fill probability at the best bid price. Similar
to the execution probability at the best price level, it is difficult to asses the performance of the model
due to the small magnitude of the probabilities of interest.

An obvious limitation of this model is that it makes strong assumptions on the characteristics of the
orders and the order flow, such as unit order size and independence of event arrivals. The model could
be further refined to capture the subtleties of market dynamics more effectively. Future work could also
focus on investigating more sophisticated parameter sets for the arrival rates or integrating additional
market factors that could possible improve the predictive accuracy, such as seasonality effects. The
assumptions of unit order sizes could be relaxed by incorporating multiple order sizes. We showed in
Chapter 5 that the assumption that orders have only one size is not supported by the data, but the
set of regularly occurring order sizes is relatively small. For this reason, incorporating a small set of
possible order sizes could result in significantly more realistic model. Additionally, a more realistic
order flow could potentially lead to better results regarding the order book probabilities. This could,
for example, be done by modelling the order flow using a Hawkes-process, in which the arrival of an
event leads to a temporary increase of the same (self exciting) or different (mutually exciting) events.
Another limitation of this model is that the fill probability is conditional on the mid-price not moving.
This condition is needed to ensure that the fill probability can be expressed analytically. In reality,
however, a large part of orders will be filled after the mid-price has moved, and is therefore disregarded
by the model. In order to incorporate these orders, the whole dynamics of the order book would
have to be modelled. It remains to be seen whether this is possible without affecting the analytical
tractability of the model. Finally, it would be interesting to see how the model would perform for
different currency pairs or asset classes.

In summary, the model shows some promising results that could be used as a foundation in the
ongoing process of improving and developing comprehensive models to forecast financial markets, and
in particular the fill probability of limit orders.
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A | Proofs

Lemma 4.2

Let f and F be the pdf and cdf of a random variable X, respectively. The Laplace transform F̂ of the
cdf F is given by:

F̂ (s) =
1

s
f̂(s), (A.1)

where f̂(s) is the Laplace transform of the pdf f .

Proof. We have F ′ = f (a.s.),

F̂ (s) =

∫ ∞

−∞
e−stF (t)dt and F̂ ′(s) = f̂(s) =

∫ ∞

−∞
e−stf(t)dt.

By integration by parts, we have:

f̂(s) = F̂ ′(s) =

∫ ∞

−∞
e−stF ′(t)dt (A.2)

=
[
e−stF (t)

]∞
−∞ + s

∫ ∞

−∞
e−stF (t)dt (A.3)

= s

∫ ∞

−∞
e−stF (t)dt = sF̂ (s). (A.4)

Lemma 4.3

Let Z be an exponentially distributed random variable with parameter Λ, then the Laplace transform
of σB ∧ Z is given by:

f̂1
b (Λ + s) +

Λ

Λ + s
(1− f̂1

b (Λ + s)),

where f̂1
b is given in 4.2.

Proof. Z is exponentially distributed with rate Λ, so for all t ≥ 0, we have:

P[σB ∧ Z < t] = 1− P[σB > t]P[Z > t]

= 1− (1− FσB (t))e
−Λt.

From this follows that fσB∧Z(t) is given by:

fσB∧Z(t) =
d

dt

(
1− (1− F 1

σB
(t))e−Λt

)
=

d

dt

(
1− e−Λt + e−ΛtF 1

σB
(t)

)
= Λe−Λt + e−Λtf1

σB
(t)− ΛF 1

σB
(t)e−Λt

= e−Λt

(
f1
σB

(t) + Λ(1− F 1
σB

(t))

)
,

(A.5)



58

for t ≥ 0. Here, f1
σB

and F 1
σB

are the pdf and cdf of σB, respectively. The Laplace transform is
then given by:

f̂1
σB∧Z(s) =

∫ ∞

−∞
e−stfσB∧Z(t)dt

=

∫ ∞

0
e−ste−Λt

(
f1
b (t) + Λ(1− F 1

b (t))

)
dt

=

∫ ∞

0
e−(s+Λ)tf1

b (t)dt+ Λ

∫ ∞

0
e−(s+Λ)t(1− F 1

b (t))dt

= f̂1
b (s+ Λ) + Λ

∫ ∞

0
e−(s+Λ)t(1− F 1

b (t))dt.

By integration by parts we have for the second part of the last equality:

Λ

∫ ∞

0
e−(s+Λ)t(1− F 1

b (t))dt = Λ

([
(1− F 1

b (t)) · −
1

s+ Λ
e−(s+Λ)t

]∞
0

− 1

s+ Λ

∫ ∞

0
e−(s+Λ)tf1

b (t)dt

)
= Λ

(
1

s+ Λ
− 1

s+ Λ
f̂1
b (s+ Λ)

)
=

Λ

s+ Λ

(
1− f̂1

b (s+ Λ)
)
.

Combining these, we obtain:

f̂1
σB∧Z(s) = f̂1

b (s+ Λ) +
Λ

s+ Λ

(
1− f̂1

b (s+ Λ)
)
. (A.6)



B | Parameters

B.1 Limit Orders

Table B.1: Arrival rate per secondof limit orders for each spread size S in ticks for each distance δ
in ticks from the opposite best quote.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 13.27 34.72 59.54 66.5 69.78 50.61 34.53 23.19 17.61 16.93 13.04 9.25 7.36 5.91 5.02
2 1.27 7.75 20.22 26.18 24.48 22.09 15.53 10.90 7.14 6.6 5.19 3.92 3.19 2.72 2.23
3 0.08 1.09 5.73 11.60 13.77 11.44 8.15 4.94 2.94 2.35 2.4 1.72 1.66 1.40 1.18
4 0.02 0.11 2.27 7.17 10.54 10.43 7.52 5.30 3.61 2.04 2.03 1.40 1.43 1.22 1.09
5 0.02 0.05 0.30 5.48 11.84 13.96 12.57 9.62 7.47 5.89 3.42 3.24 2.34 2.26 1.87

(a) 7-6-2021 - 11-6-2021.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 32.88 73.20 144.32 169.15 196.80 139.58 107.18 61.20 52.17 44.57 33.57 22.95 17.92 14.34 12.54
2 2.45 14.79 38.31 57.27 55.74 57.31 39.16 29.01 16.88 16.51 12.14 8.73 6.71 5.82 5.13
3 0.12 1.43 8.51 19.31 23.6 22.97 16.94 11.53 5.67 5.52 4.95 3.29 2.83 2.38 2.24
4 0.02 0.10 1.88 7.97 13.06 13.47 11.28 7.82 5.75 3.08 3.06 2.02 1.66 1.33 1.24
5 0.01 0.04 0.21 5.56 11.93 15.14 14.41 10.96 8.99 6.97 3.49 2.85 1.74 1.50 1.13

(b) 14-6-2021 - 18-6-2021.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 6.60 16.07 29.68 34.59 34.96 26.07 19.36 11.87 11.52 8.30 5.95 3.98 2.77 2.22 1.98
2 1.74 9.32 24.18 38.28 36.22 32.48 22.00 15.04 11.95 10.15 6.80 4.61 3.47 2.68 2.18
3 0.10 1.44 7.64 18.51 22.60 20.79 14.60 8.95 5.46 5.27 3.78 2.35 1.99 1.57 1.41
4 0.02 0.10 2.37 8.17 15.00 15.14 12.36 7.57 5.23 3.79 2.89 1.65 1.36 1.11 1.04
5 0.01 0.03 0.16 4.88 9.88 12.59 12.26 8.36 5.82 5.23 3.15 1.96 1.13 1.04 0.87

(c) 21-6-2021 - 25-6-2021.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 5.64 12.94 21.38 23.3 24.85 18.64 15.3 8.59 8.78 6.04 4.3 3.00 1.98 1.47 1.21
2 1.31 5.36 11.26 17.21 16.07 13.55 10.03 7.34 4.89 3.86 2.84 2.00 1.49 1.01 0.81
3 0.20 2.21 6.95 13.62 17.02 16.99 10.19 8.05 4.54 3.30 2.91 1.86 1.62 1.16 0.95
4 0.08 0.14 3.79 9.02 15.12 16.39 12.82 8.66 6.94 3.27 2.91 1.93 1.79 1.34 1.05
5 0.04 0.05 0.25 6.50 11.7 14.46 14.05 9.62 8.02 6.23 2.89 2.32 1.85 1.80 1.17

(d) 28-6-2021 - 2-7-2021.



60 B.2. MARKET ORDERS

Table B.2: Arrival rate per second of limit orders for each distance δ in ticks from the opposite best
quote.

Distance in ticks to the opposite best quote

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Week 1 0.23 1.14 4.81 10.15 12.99 12.01 8.84 6.02 4.04 2.92 2.67 1.94 1.80 1.54 1.32
Week 2 0.17 0.72 3.57 10.54 15.70 16.42 13.54 9.59 6.68 4.61 3.74 2.58 2.01 1.66 1.49
Week 3 0.19 0.78 3.76 10.47 16.05 16.24 13.13 8.34 5.71 4.69 3.33 2.01 1.54 1.27 1.13
Week 4 0.73 2.65 7.11 12.89 16.31 16.18 11.74 8.47 6.00 3.89 3.08 2.08 1.75 1.31 1.03

B.2 Market Orders

Table B.3: Arrival rate per second of market orders.

Week 1 0.10
Week 2 0.10
Week 3 0.12
Week 4 0.16

Table B.4: Arrival rate per second of market orders for each spread size S in ticks.

Side

S (in ticks) Sell Buy Total

1 0.21 0.27 0.48
2 0.09 0.08 0.17
3 0.05 0.04 0.09
4 0.04 0.03 0.07
5 0.04 0.03 0.07
(a) 7-6-2021 - 11-6-2021.

Side

S (in ticks) Sell Buy Total

1 0.24 0.30 0.54
2 0.11 0.11 0.22
3 0.05 0.05 0.09
4 0.04 0.04 0.07
5 0.04 0.03 0.07

(b) 14-6-2021 - 18-6-2021.

Side

S (in ticks) Sell Buy Total

1 0.27 0.27 0.54
2 0.11 0.10 0.22
3 0.05 0.05 0.11
4 0.05 0.05 0.09
5 0.04 0.05 0.09

(c) 21-6-2021 - 25-6-2021.

Side

S (in ticks) Sell Buy Total

1 0.16 0.17 0.34
2 0.10 0.09 0.19
3 0.07 0.06 0.13
4 0.06 0.05 0.11
5 0.08 0.06 0.13
(d) 28-6-2021 - 2-7-2021.
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B.3 Cancellations

Table B.5: Arrival rate per second of cancellations for each spread size S in ticks for each distance δ
in ticks from the opposite best quote.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 43.95 41.11 53.86 60.57 55.10 52.11 41.01 31.82 21.99 14.99 13.33 10.39 7.98 6.72 5.97
2 - 18.77 19.63 25.98 25.68 20.98 16.12 9.99 7.40 5.65 5.08 4.05 3.47 2.87 2.35
3 - - 9.25 11.27 12.65 10.22 7.21 5.79 4.35 3.06 2.14 1.87 1.61 1.49 1.17
4 - - - 7.91 10.76 10.46 7.50 4.88 3.20 2.40 1.69 1.62 1.30 1.29 1.08
5 - - - - 12.72 14.92 13.44 9.69 6.51 4.71 3.74 2.63 2.46 2.16 1.91

(a) 7-6-2021 - 11-6-2021.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 107.95 99.02 125.40 153.33 141.69 140.91 123.33 92.04 59.04 40.40 34.88 26.99 20.54 17.72 14.99
2 - 40.24 39.18 53.06 60.38 46.46 43.74 27.51 20.30 13.41 11.69 9.56 7.29 6.50 5.70
3 - - 17.72 18.78 21.79 18.72 14.91 13.40 10.06 5.87 4.58 3.75 2.76 2.59 2.31
4 - - - 9.96 13.01 13.57 10.20 7.78 5.26 4.10 2.67 2.32 1.55 1.39 1.25
5 - - - - 12.23 15.50 16.15 10.96 9.06 4.41 3.73 2.58 1.92 1.33 1.23

(b) 14-6-2021 - 18-6-2021.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 19.41 20.44 26.32 30.5 29.63 26.57 21.48 16.25 10.89 8.04 5.96 4.58 3.17 2.67 2.35
2 - 24.63 27.37 33.8 37.12 29.62 24.74 16.36 11.41 8.27 6.53 5.08 3.64 3.08 2.57
3 - - 15.70 18.26 20.50 18.26 13.29 10.48 8.42 5.15 3.60 2.66 1.91 1.77 1.47
4 - - - 11.47 14.19 14.81 11.28 7.88 5.19 3.98 2.81 1.96 1.26 1.17 1.07
5 - - - - 10.06 12.89 12.47 9.22 5.93 3.71 2.90 1.91 1.26 0.92 0.94

(c) 21-6-2021 - 25-6-2021.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 7.70 9.26 12.64 14.10 13.14 10.84 9.65 7.90 4.61 3.81 2.74 1.99 1.41 1.03 0.82
2 - 8.97 13.03 16.08 18.42 12.63 10.89 6.31 4.19 3.76 2.62 1.98 1.43 1.12 0.86
3 - - 10.12 14.11 16.21 14.11 10.44 8.63 6.23 3.67 2.66 2.14 1.57 1.39 0.99
4 - - - 11.45 14.72 16.47 12.26 9.11 5.34 4.36 2.59 2.16 1.58 1.40 1.14
5 - - - - 11.57 14.84 15.32 10.40 7.37 4.14 3.47 2.16 1.96 1.32 1.24

(d) 28-6-2021 - 2-7-2021.

Table B.6: Arrival rate per second of cancellations for each distance δ in ticks from the opposite best
quote.

Distance in ticks to the opposite best quote

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Week 1 0.28 1.27 5.02 9.97 12.64 11.57 8.59 6.18 4.37 3.22 2.38 2.08 1.74 1.61 1.32
Week 2 0.21 0.86 3.91 10.54 15.33 15.63 12.96 9.93 7.22 4.77 3.44 2.81 1.98 1.72 1.54
Week 3 0.22 0.89 4.06 10.96 15.17 15.56 12.45 9.07 6.28 4.37 3.17 2.24 1.51 1.33 1.20
Week 4 0.74 2.61 7.32 13.13 16.18 14.98 11.91 8.85 5.85 4.19 2.88 2.26 1.68 1.40 1.10
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B.4 Average Outstanding Quantity

Table B.7: Average quantity outstanding for each spread size S in ticks at each distance δ in ticks
from the opposite best quote.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10

1 881009 1276706 2211293 2896346 3217561 2929171 2517662 2308628 2249335 2167686
2 - 987704 1915617 2954285 3395169 3358261 2852408 2303484 2295585 2248940
3 - - 1320495 2720061 3596108 3786409 3222420 2466837 2122430 2223011
4 - - - 2105311 3215664 3759231 3567034 2909708 2393342 2111617
5 - - - - 2668738 3221010 3483012 3076086 2669657 2305588

(a) 7-6-2021 - 11-6-2021.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10

1 937201 1178273 1980725 2666660 3180881 2948543 2664931 2441223 2320286 2252619
2 - 1009250 1704020 2768598 3173786 3461039 2937258 2393703 2391245 2334668
3 - - 1197928 2554048 3338846 3776215 3391919 2535485 2204979 2345263
4 - - - 1896755 3125428 3548816 3753704 3079049 2450451 2188514
5 - - - - 2753656 3140941 3523565 3450564 2877668 2358425

(b) 14-6-2021 - 18-6-2021.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10

1 946203 1216197 2019834 2611302 3050296 2880843 2631826 2374942 2322966 2255550
2 - 997756 1719178 2794963 3157827 3280082 2792516 2341025 2363071 2339150
3 - - 1171872 2613741 3363508 3637893 3205178 2435920 2196744 2334744
4 - - - 1854415 3172715 3551835 3582193 2887714 2356096 2218379
5 - - - - 2702744 3184181 3524908 3297543 2756338 2309784

(c) 21-6-2021 - 25-6-2021.

Distance in ticks to the opposite best quote

S 1 2 3 4 5 6 7 8 9 10

1 934078 1314196 2159477 2748123 3227522 3055098 2559423 2289031 2384276 2310791
2 - 1026808 1875125 2831906 3238382 3495244 2892744 2329283 2320882 2374705
3 - - 1333256 2503048 3230359 3827122 3280678 2481327 2180672 2251154
4 - - - 1884665 2911031 3398257 3621024 2989333 2423047 2050902
5 - - - - 2410589 2832350 3143166 3185080 2769294 2174400

(d) 28-6-2021 - 2-7-2021.
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B.5 COS-Method

Table B.8: Integration range [a, b] and value of N used in the COS-method to compute the probability
of a mid-price increase for both the arrival rate parameter set computed on the five preceding days
and four previous instances of the same day.

Preceding days Previous instances of the same day

S N [a, b] N [a, b]

1 20 [-1.5,1.5] 20 [-1.0,1.0]
2 20 [-1.5,1.5] 20 [-1.0,1.0]
3 20 [-2.5,2.5] 20 [-2.5,2.5]
4 20 [-3.0,3.0] 20 [-3.5,3.5]
5 20 [-2.0,2.0] 20 [-2.0,2.0]

Table B.9: Integration range [a, b] and and value of N used in the COS-method to compute the fill
probability.

S N [a, b]

1 75 [-35,35]
2 100 [-100,100]
3 150 [-160,160]
4 150 [-280,280]
5 150 [-320,320]
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import time
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy.special import comb

def COSDensity(f_hat , t, N, a, b):
##COS method to compute the pdf of first -passage times
i = complex(0.0, 1.0)

# F_k coefficients
k_values = np.arange(N)
u_values = k_values * np.pi / (b - a)

f_hat_values = np.array([f_hat(-i * u) for u in u_values])
F_k = (2.0 / (b - a)) * np.real(f_hat_values * np.exp(-i * u_values * a)

* np.cos(u_values * (t - a)))
F_k[0] *= 0.5 # adjustment for the first term

return F_k.sum()

def pdf_cosmethod(LT , N, a, b,step_size , plot: bool):
##Compute values of the pdf using COS -method
start = time.time()
t_vals = np.arange(a, b, step_size)
pdf_vals = np.vectorize(COSDensity)(LT, t_vals , N, a, b)
end = time.time()
elapsed = end - start
print("Elapsed time:", elapsed , "seconds")
if plot:

plt.plot(t_vals , pdf_vals)
plt.show()

return pdf_vals

def cdf(values , a, b,step_size , plot: bool):
##Compute cdf values
t_vals = np.arange(a, b, step_size)
cdf_vals = np.cumsum(values) * step_size
if plot:

plt.plot(t_vals , cdf_vals)
plt.show()

return cdf_vals
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def pdf_euler(LT , t, m, n, A, num_steps , plot=False):
##Compute values of the pdf using Euler method
step_size = t / (num_steps - 1)
t_vals = np.linspace(0, t+step_size , num_steps)
values = []
start = time.time()
for i in range(1,num_steps+1):

values.append(Euler(LT, step_size*i, A, m, n))
end = time.time()
elapsed= end - start
print("Elapsed time:", elapsed , "seconds")
if plot:

plt.plot(t_vals , values)
plt.show()

return values

def sn(f_hat ,t,N,A):
##S_n terms in Euler method
i = complex(0.0,1.0)
F_k = []

# F_k coefficients
for k in range(0,N):

u = (A+2*k*np.pi*i) / (2*t)
F_k.append(np.exp(A/2) / t * (-1)** k * np.real(f_hat(u)))

F_k[0] *= 0.5 # adjustment for the first term

return sum(F_k)

def Euler(f_hat ,t,A,m,n):
##Computation of the pdf using Euler method
som = 0
for k in range(0,m+1):

s = sn(f_hat ,t,n+k,A)
som += comb(m,k)/2** m*s

return som

def a_term(n,x,S,params):
## a-terms are the numerators in the continued fraction
lamda , mu, theta = params
if n - x == 0:

a = mu+x*theta[S-1]
else:

a = -lamda[S-1]*(mu+n*theta[S-1])
return a

def b_term(x,s,S,params):
## b-terms are the denominators in the continued fraction
lamda , mu, theta = params
b = lamda[S-1]+mu+x*theta[S-1]+s
return b
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def Lentz_approximant(x,s,S,params ,eps):
#modified lentz algorithm to determine the value of the continued fraction
f = 1e-30
C = f
D = 0
i = 0
error = 1
while error>eps:

D = b_term(x+i,s,S,params)+a_term(x+i,x,S,params)*D
if D == 0:

D = 1e-30
C = b_term(x+i,s,S,params)+a_term(x+i,x,S,params)/C
if C ==0:

C = 1e-30
D = 1/D
f *= C*D
error = abs(D*C-1)
i=i+1

return f

def laplace_transform_PM(s,S,a,b,params ,eps):
##Compute Laplace transform for the price moves
lamda , mu, theta = params
if S==1:

CF_a = [Lentz_approximant(j, s, S, params , eps) for j in range(1, int(a +
1))]

f_hat_a = np.prod(CF_a)
CF_b = [Lentz_approximant(j, -s, S, params , eps) for j in range(1, int(b

+ 1))]
f_hat_b = np.prod(CF_b)
f_hat = f_hat_a*f_hat_b

else:
L = np.sum(lamda[0:S-1])
CF_a = [Lentz_approximant(j, L+s, S, params , eps) for j in range(1, int(a

+ 1))]
f_hat_a = np.prod(CF_a)
CF_b = [Lentz_approximant(j, L-s, S, params , eps) for j in range(1, int(b

+ 1))]
f_hat_b = np.prod(CF_b)
f_hat = (f_hat_a+(L/(L+s))*(1-f_hat_a))*(f_hat_b+(L/(L-s))*(1-f_hat_b))

return f_hat

def laplace_transform_execution(s,S,a,b,params ,eps):
##Compute Laplace transforms for the execution probabilities
lamda , mu, theta = params
if S==1:

CF_a = [Lentz_approximant(j, -s, S, params , eps) for j in range(1, int(a
+ 1))]

f_hat_a = np.prod(CF_a)
g = [(mu + (j-1)*theta[S-1])/(mu + (j-1)*theta[S-1] + s) for j in range(1

, int(b + 1))]
g_hat = np.prod(g)
f_hat = f_hat_a*g_hat

else:
L = np.sum(lamda[0:S-1])
CF_a = [Lentz_approximant(j,2*L-s,S,params ,eps) for j in range(1,int(a +

1))]
f_hat_a = np.prod(CF_a)
g = [(mu + (j-1)*theta[S-1])/(mu + (j-1)*theta[S-1] + s) for j in range(1

, int(b + 1))]
g_hat = np.prod(g)
f_hat = (f_hat_a+(2*L/(2*L-s))*(1-f_hat_a))*g_hat

return f_hat
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def laplace_transform_order_outstanding(s,S,b,q,i,params ,eps):
##Compute Laplace transforms for the probability of number of orders

outstanding at the new best bid/
ask after a price move down

lamda , mu, theta = params
if i!=q:

g = [((j-1)*theta[S])/((j-1)*theta[S] + s) for j in range(i+1, int(q+1))]
g_hat = np.prod(g)
CF = [Lentz_approximant(j, -s, S, params , eps) for j in range(1, int(b +

1))]
f_hat = np.prod(CF)

else:
g_hat = ((i-1)*theta[S])/((i-1)*theta[S] - s)
CF = [Lentz_approximant(j, s, S, params , eps) for j in range(1, int(b + 1

))]
f_hat = np.prod(CF)

return g_hat*f_hat

def LT_bid_down(s,S,a,b,params ,eps):
##Compute Laplace transform for the midprice moves as a result of the bid

moving down
lamda , mu, theta = params
if S==1:

CF_a = [Lentz_approximant(j, -s, S, params , eps) for j in range(1, int(a
+ 1))]

f_hat_a = np.prod(CF_a)
CF_b = [Lentz_approximant(j, s, S, params , eps) for j in range(1, int(b +

1))]
f_hat_b = np.prod(CF_b)
f_hat = f_hat_a*f_hat_b

else:
L = np.sum(lamda[0:S-1])
CF_a = [Lentz_approximant(j, 2*L-s, S, params , eps) for j in range(1, int

(a + 1))]
f_hat_a = np.prod(CF_a)
CF_b = [Lentz_approximant(j, s, S, params , eps) for j in range(1, int(b +

1))]
f_hat_b = np.prod(CF_b)
f_hat = (f_hat_a+(2*L/(2*L-s))*(1-f_hat_a))*f_hat_b

return f_hat

##Compute cumulants
def mgf(LT, t,S,a,b,params ,eps):

return LT(-t, S, a, b, params , eps)

def cgf(LT, t, S, a, b, params , eps):
return np.log(mgf(LT, t, S, a, b, params , eps))

def nth_derivative(n, LT, func , t_val , S, a, b, params , eps , h=1e-5):
if n == 0:

return func(LT , t_val , S, a, b, params , eps)
else:

return (nth_derivative(n-1, LT , func , t_val + h, S, a, b, params , eps) -
nth_derivative(n-1, LT, func ,
t_val - h, S, a, b, params ,
eps)) / (2 * h)

def compute_cumulant(order , LT, S, a, b, params , eps):
derivative = nth_derivative(order , LT , cgf , 0, S, a, b, params , eps)
return derivative / np.math.factorial(order)
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