
Cognitive Robotics

Delft Center for Systems and Control

Point Cloud Compression for Au-
tomotive LiDAR using Tensor De-
composition Methods

C.V.M.M. Vorage

M
as

te
ro

fS
cie

nc
e

Th
es

is

Point Cloud Compression for
Automotive LiDAR using Tensor

Decomposition Methods

Master of Science Thesis

For the degree of Master of Science in Systems and Control and
Master of Science in Robotics at Delft University of Technology

C.V.M.M. Vorage

August 16, 2024

Faculty of Mechanical Engineering (ME) · Delft University of Technology

Copyright © Delft Center for Systems and Control (DCSC) and Cognitive Robotics (CoR)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC) and Cognitive Robotics
(CoR)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical Engineering (ME) for acceptance a thesis entitled

Point Cloud Compression for Automotive LiDAR using Tensor
Decomposition Methods

by
C.V.M.M. Vorage

in partial fulfillment of the requirements for the degree of
Master of Science in Systems and Control and

Master of Science in Robotics

Dated: August 16, 2024

Supervisor(s):
Dr.ir. K. Batselier

Dr. J.F.P. Kooij

Reader(s):
Dr.ir. K. Batselier

Dr. J.F.P. Kooij

Dr. N.J. Myers

Dr. H. Caesar

Abstract

The training process of machine learning models for self-driving applications suffers from bot-
tlenecks during loading and processing of LiDAR point clouds with large storage complexity.
Many studies aim to remedy this problem from an implementation perspective by developing
efficient data loading and processing pipelines. This study, on the other hand, explores an
alternative approach by augmenting data representations to achieve lower storage complexity
known as point cloud compression.

A broad analysis is presented on novel point cloud compression codecs using tensor decom-
position methods. Several point cloud representations and tensor decomposition methods are
considered over a range of hyperparameter choices and compression values. In order to assess
the performance of the presented codecs: the compression rate, quality of the reconstruction,
and time complexity is compared to the octree-based baseline model: TMC13.

Compared to the baseline model, the performance of the presented tensor decomposition-
based codecs falls short. One of the presented codecs does notably outperform the others.
This codec uses synthetic tensorization followed by sorting using z-location and decomposi-
tion using the TT-SVD algorithm. Sorting by z-value isolates the ground plane, which is
a dominant low-rank feature, which can effectively be decomposed using the TT-SVD al-
gorithm yielding adequate results. Visualizations of all codecs presented in this thesis can
be viewed by scanning their respective QR codes, or centrally by clicking this link: https:
//data.4tu.nl/private_datasets/kIWHX8E3DwOvm0ToRFAYBacKdFIljtDMwk1p0H5lopo

Several limitations of the presented tensor decomposition-based codecs are: the omission of
bitwise compression on the factor matrices, and the trade-off between bitwise precision and
truncation due to tensor decomposition. Future work could improve in these areas along with
considering the use of different heuristics and optimizing the tensor network topology.

Master of Science Thesis C.V.M.M. Vorage

https://data.4tu.nl/private_datasets/kIWHX8E3DwOvm0ToRFAYBacKdFIljtDMwk1p0H5lopo
https://data.4tu.nl/private_datasets/kIWHX8E3DwOvm0ToRFAYBacKdFIljtDMwk1p0H5lopo
https://data.4tu.nl/private_datasets/kIWHX8E3DwOvm0ToRFAYBacKdFIljtDMwk1p0H5lopo
https://data.4tu.nl/private_datasets/kIWHX8E3DwOvm0ToRFAYBacKdFIljtDMwk1p0H5lopo

ii

C.V.M.M. Vorage Master of Science Thesis

Contents

Acknowledgements v

1 Introduction 1
1-1 Point Cloud Compression . 3
1-2 Research Objective . 4
1-3 Relevance of Research . 6

2 Related Work and Theoretical Background 7
2-1 Point Cloud Representations . 7
2-2 Point Cloud Compression Methods . 13
2-3 Multilinear Algebra & Tensor Decomposition Methods 14

2-3-1 Preliminaries . 14
2-3-2 Basic Operations . 15
2-3-3 Multilinear Operations . 16
2-3-4 Notions of Rank . 20
2-3-5 Overview of Mathematical Notation . 22
2-3-6 Canonical Polyadic Decomposition . 22
2-3-7 Multilinear Singular Value Decomposition (MLSVD) 26
2-3-8 Tensor Train (TT) . 30

3 Methodology 33
3-1 Baseline Approach . 33
3-2 Voxel-Based Tensor Decompositions for Point Cloud Compression 35

3-2-1 Tensorized Voxelizations . 39
3-3 Synthetic Tensor Decompositions for Point Cloud Compression 39
3-4 Geometry Aware Tensor Decompositions for Point Cloud Compression 41

3-4-1 Hierarchical Approach . 42
3-4-2 Assignment Problem . 43
3-4-3 Experiment Overview . 44

Master of Science Thesis C.V.M.M. Vorage

iv Contents

4 Experiments 47
4-1 Experimental Setup . 47
4-2 Baseline Method: TMC3 . 50
4-3 Voxel-Based Tensor Decomposition for Point Cloud Compression 52

4-3-1 Voxel-Based CPD . 52
4-3-2 Voxel-Based Tucker Decomposition . 53
4-3-3 Voxel-Based Tensor Train Decomposition 56
4-3-4 Tensorized Voxelizations . 58
4-3-5 Discussion . 59

4-4 Synthetic Tensor Decompositions for Point Cloud Compression 62
4-5 Geometry Aware Tensor Decompositions for Point Cloud Compression 73

4-5-1 Hierarchical Approach . 73
4-5-2 Assignment Problem Approach . 75

5 Conclusions 77
5-1 Future Work . 79

A Code 81
A-1 Canonical Polyadic Decomposition (CPD) . 81

A-1-1 Canonical Polyadic - Alternating Least Squares (CP-ALS) 81
A-1-2 Reconstruct CPD . 83

A-2 Multilinear Singular Value Decomposition (MLSVD) 83
A-2-1 Mode-n Matricization . 83
A-2-2 Mode-n Product . 83
A-2-3 MLSVD . 84
A-2-4 Truncate MLSVD . 84
A-2-5 Reconstruct MLSVD . 85
A-2-6 Plotting Singular Values of Mode-n Unfoldings 85

A-3 Tensor Train Singular Value Decomposition (TT-SVD) 86
A-3-1 TT-SVD . 86
A-3-2 Reconstruct TT-SVD . 87

Bibliography 89

Glossary 97
List of Acronyms . 97
List of Symbols . 97

C.V.M.M. Vorage Master of Science Thesis

Acknowledgements

I would like to thank my supervisors Dr.ir. K. Batselier and Dr. J.F.P. Kooij for their assistance
during the writing of this thesis.

Delft, University of Technology C.V.M.M. Vorage
August 16, 2024

Master of Science Thesis C.V.M.M. Vorage

vi Acknowledgements

C.V.M.M. Vorage Master of Science Thesis

Chapter 1

Introduction

In recent years, the automotive industry has made numerous advancements towards au-
tonomous driving. Companies like Waymo [31], Cruise [30] and Motional [63] offer taxi
rides using their full self-driving vehicles in multiple US states. These advancements in au-
tonomous driving can partially be attributed to developments in sensor technologies such as
Light Detection and Ranging (LiDAR). The LiDAR sensor maps the surroundings of the
vehicle, enabling it to perceive the road and its users in order to safely navigate traffic. Fig-
ure 1-1 shows an example of a LiDAR scan (referred to as point cloud) from the View of
Delft (VoD) dataset [65]. The image shows: the vehicle located in the lower-centre of the
image, the reference frame of the LiDAR, and various road elements and users.

Figure 1-1: LiDAR point cloud of VoD dataset [65]. Scan QR code or click on link
for 3D render.

As can be seen from Figure 1-1, LiDAR point clouds contain a vast number of points, which
can easily amount up to ∼100000 per scan. Unfortunately, the large volume of these point

Master of Science Thesis C.V.M.M. Vorage

https://drive.google.com/file/d/1y9GXxMkfhsLhz4PilFwwp_YGoC4q_pQo/view?usp=drive_link

2 Introduction

clouds pose significant challenges for efficiently training Machine Learning models for tasks
such as object detection and semantic segmentation.

Machine learning models such as deep neural networks undergo a training process, which can
roughly be divided into three consecutive steps, performed iteratively [45]. The first is to load
a training sample in memory (fetch from SSD/HDD); The second is to process the sample in
memory (decode, crop, rotate, normalize, etc.); And the third is to update model parameters
(e.g. by gradient updates w.r.t the loss function). These operations are performed in parallel
meaning that the overall training speed (sec/epoch) is determined by the throughput of the
weakest link. This training process (often called data pipeline) is illustrated in Figure 1-2.

SSD/HDD
Loading

CPU

Processing

I/O
GPU

Learning

RAM

I/O

Figure 1-2: Data pipeline of general machine learning model training.

The illustration of the data pipeline shows that in order to improve training efficiency, it is
essential to tackle the slowest step. Table 1-1 shows an overview of various studies identifying
the bottleneck in machine learning data pipelines.

Publication Loading Processing Learning

Kakaraparthy et al. (2019) [39] p p

Zhang et al. (2020) [88] p

Zolnouri et al. (2020) [92] p p

Mohan et al. (2020) [58] p p

Murray et al. (2021) [60] p

Kuchnik et al. (2022) [42] p

Isenko et al. (2022) [36] p p

Leclerc et al. (2023) [45] p

Table 1-1: Scientific publications identifying the bottleneck(s) in the machine learning data
pipeline. Bottleneck(s) are marked with a cross (p).

Of course, different tasks might prefer different hardware, and the specific hardware employed
influences the performance on the three distinct steps. For example, using a setup which has
enough working memory to load the entire dataset will result in avoiding fetch stalls, while
having a surplus of CPU or GPU cores, will result in avoiding prep stalls or GPU stalls

C.V.M.M. Vorage Master of Science Thesis

1-1 Point Cloud Compression 3

respectively [58]. With these considerations in mind, Table 1-1 should be viewed as a general
indication of where the bottleneck lies, instead of a direct comparison between studies.

Nevertheless, Table 1-1 clearly shows that the two most important steps to improve are loading
and processing, as opposed to learning. The studies mention that limitations are primarily
caused by: I/O bottlenecks or available network bandwidth (loading), and large prepro-
cessing overhead resulting from required data augmentation (processing), which results in
unsaturated GPU’s.

Many studies have been performed to find remedies to reduce these data pipeline bottle-
necks. Mohan et al. (2021) and Kuchnick et al (2022) both developed software to diag-
nose a data pipeline and identify its bottleneck [42],[58]. Multiple studies developed data
loader frameworks which enable faster training due to: exploiting parallelism, caching, asyn-
chronous data transfer, data pre-loading, just-in-time compilation, and many more clever
tricks [45],[58],[60],[86],[92]. Others focus on developing tools for finding the sweet spot be-
tween I/O-bound and processing-bound by allocating offline and online preprocessing steps
between CPU and GPU [36]. An example of this is NVIDIA’s data loading library (DALI)
[17].

All of the methods mentioned above approach this problem from an implementation perspec-
tive, meaning that bottlenecks should be removed by designing better algorithms and more
efficient parallel processing [39]. Another option is to approach this problem from a data
perspective. Altering data representations in order to obtain lower storage complexity could
potentially reduce the time spent on loading, processing, and I/O of data samples. Recon-
struction of these compressed data samples would however need to occur before being able to
train the model based on the samples. If this reconstruction would be possible on the GPU,
workload could be shifted and the overall throughput of the data pipeline in Figure 1-2 could
be optimized.

A first step however is to investigate how such a compressed representation can be found.
Regarding automotive LiDAR applications this field of research is known as: Point Cloud
Compression (PCC).

1-1 Point Cloud Compression

The goal of Point Cloud Compression (PCC) is to find a representation of the data which yields
lower storage complexity without significantly compromising the quality of the reconstruction.

This representation can be obtained in various ways such as finding patterns or exploiting
redundancies in the data. A LiDAR point cloud consists of a set of P points each with F
features. This unordered set of points (V = {vi}Pi=1) can be visualized in tabular format
(V ∈ RP ×F) like shown in Figure 1-3.

The goal is thus to find a data representation (Ṽ), with a storage complexity (O) lower than
the original LiDAR data (V), which can be formulated as:

O(Ṽ) < O(V) = P × F. (1-1)

Master of Science Thesis C.V.M.M. Vorage

4 Introduction

This found data representation (Ṽ) will have some approximation error with respect to the
original LiDAR data. The approximation error can be used as a proxy for the quality of the
reconstruction.

x y z . . .

N

F

Figure 1-3: LiDAR data in tab-
ular format.

Current developments in PCC can roughly be divided
into two main categories [69]. On the one hand, there
are the conventional methods [5]. These methods are
primarily based on efficient space-partitioning tech-
niques such as KD-Trees [73],[48] and Octrees [22],[22].
On the other hand, there are deep learning-based
methods [32]. These methods employ various ma-
chine learning architectures such as: Auto Encoders
[27],[28],[70], and Recurrent Neural Networks [80].

A virtually unexplored approach is to employ tensor
decomposition methods for PCC. Tensor decompo-
sition methods are powerful tools able to decompose
multi-dimensional objects (tensors) into multi-linear
products of factor matrices/tensors. These factor ma-
trices capture the latent space of the high-dimensional
object, while greatly reducing the amount of storage
needed. Reductions in storage complexity differ across
methods, but frequently result in the reduction of exponential complexity in the dimensions
to linear in the dimensions and quadratic in the rank of the decomposition. Exploiting this
reduction might be a vital step to reach unprecedented compression gains with minimal recon-
struction loss. On top of that, tensor decomposition methods rely on multi-linear products
which could potentially be used to perform fast reconstruction on the GPU relieving the
bottleneck in the machine learning data pipeline.

1-2 Research Objective

The main research question of this thesis can thus be phrased as:

Research Question

• Are tensor decomposition methods a competitive alternative for Point Cloud
Compression of automotive LiDAR data?

Employing tensor decompositions on automotive LiDAR data is unprecedented, hence many
different aspects of the compression pipeline present research opportunities. These aspects
include: the data representation of the LiDAR point cloud, the type of tensor decomposition
method employed, and the hyperparameters of the specific tensor decomposition method.
This thesis may be considered as an exploratory study with the aim of investigating a broad
amount of these aspects.

Regarding the type of tensor decomposition this thesis will explore three prevalent methods:
the Canonical Polyadic Decomposition [40, 56], the Tucker Decomposition [14, 16, 81],

C.V.M.M. Vorage Master of Science Thesis

1-2 Research Objective 5

and the Tensor Train Decomposition [64]. Section 2-3 will cover all relevant details on
these specific decompositions and the algorithms employed to obtain them.

In general, a couple of research subquestions can be formulated that apply to all of the novel
compression pipelines discussed in this thesis. These subquestions are:

General Research Subquestions

• What LiDAR data representations have an inherent low-rank structure, mak-
ing it applicable for tensor decomposition methods?

• What is the performance of the tensor decomposition method in terms of: re-
construction quality, amount of compression, and computational com-
plexity?

• How does the tensor decomposition method compare to the octree-based base-
line model over a range of hyperparameter choices?

As mentioned one important aspect of applying tensor decomposition methods on automotive
LiDAR data is the data representation of the point cloud. This thesis will explore three differ-
ent data representations. These data representations are: voxel-based [1, 4], synthetically
tensorized [61], and geometry aware tensorized (novel). Why these representations are
chosen and what they entail will be discussed in Chapter 3. All of these representations
have their own advantages and disadvantages. Finding out what these are lies central to the
representation-specific research subquestions, which are formulated below:

Representation-Specific Research Subquestions

Voxel-Based

• How does the voxelization process of a point cloud affect the discretization loss
and computational complexity of tensor decomposition methods?

Synthetic Tensorization

• How does the ordering of LiDAR points and the set of synthetic tensorization
parameters affect the performance of tensor decomposition algorithms?

• What heuristics can be used to improve this ordering?

Geometry Aware Tensorization

• Does a geometry aware placement of LiDAR points in the tensor yield a rep-
resentation which favours tensor decomposition methods?

In order to answer all of the research questions listed above several experiments are conducted.
The methodology behind these experiments will be explained in Chapter 3 along with the
baseline model. Chapter 4 will cover the experimental setup and present all the results of the
experiments. Finally, Chapter 5 will conclude the thesis by answering the research questions
posed in this section.

Master of Science Thesis C.V.M.M. Vorage

6 Introduction

1-3 Relevance of Research

The merits of this research are threefold. Economically, there are big advantages for self-
driving car manufacturers. Shorter training times, result in faster deployment of their prod-
ucts and services, yielding a competitive advantage over competitors. Additionally, improved
efficiency leads to reduced computing resource and energy consumption, resulting in lower
costs and better profit margins for businesses. Environmentally, the implications of this re-
search are substantial. State-of-the-art machine learning models require a massive amount
of resources in the form of energy consumption, often causing environmental pollution. Ope-
nAI’s GPT-3 has been estimated to have required 552.1 metric tonnes of CO2 equivalent
in training [19],[66]. This is equivalent to the energy consumption of 167 households in the
Netherlands for a whole year [10]. Recognizing that these emissions belong solely to the train-
ing stage of one model emphasizes the potential impact this research can have on reducing
CO2 emissions within the industry. Lastly, there is the technological advantage. Accelerated
training enables faster integration of new technologies in self-driving vehicles. This pushes
advancements in the industry leading to safer and more reliable autonomous driving systems.

C.V.M.M. Vorage Master of Science Thesis

Chapter 2

Related Work and Theoretical
Background

This chapter will introduce the related work on the subject of Point Cloud Compression (PCC)
and present the theoretical background necessary to understand the tensor decompositions
methods employed in Chapter 3 and Chapter 4. Section 2-1 will discuss the various point
cloud representations used in automotive applications such as PCC, which will be discussed
in Section 2-2. Section 2-3 will introduce the mathematical notation and theory regarding
tensor decomposition methods.

2-1 Point Cloud Representations

Light Detection and Ranging (LiDAR) sensors such as the Velodyne displayed in Figure 2-1b
are often often mounted on top of a vehicle like shown in Figure 2-1a.

(a) Toyota Prius 2013 with rotating 3D LiDAR
sensor. Inteligent Vehicles, TU Delft [65]. (b) Velodyne HDL-64 S3 LiDAR [51].

Figure 2-1: Experimental setup of View of Delft (VoD) dataset [65].

Master of Science Thesis C.V.M.M. Vorage

8 Related Work and Theoretical Background

The LiDAR sensor spins around its axis and emits light pulses at various elevation and azimuth
angles. Through measuring the time-of-flight of these emitted light pulses the LiDAR is able to
map its surroundings, and create a high-resolution 3D point cloud. The Cartesian coordinates
of the points in the cloud are obtained using spherical coordinate transformation using the
distance ρ, azimuth ϕ and elevation θ as displayed in Figure 2-2 and shown in Equation 2-1.

X

Y

Z

(ρ, θ, ϕ)
ρ

ϕ

θ

z

x

y

Figure 2-2: Spherical to Cartesian coordinate transformation.

x = ρ sin(θ) cos(ϕ)
y = ρ sin(θ) sin(ϕ)
z = ρ cos(θ)

(2-1)

x y z . . .

N

Figure 2-3: LiDAR data in
tabular format.

Tabular By default, LiDAR point clouds are often stored
in tabular format, as is the case for the VoD and Karlsruhe
Institute of Technology and Toyota Technological Insti-
tute (KITTI) datasets [65], [24]. Successively obtained
points are stored contiguously in memory, resulting in a
long table with as many rows as points in the cloud, and
as many columns as attributes per point. Figure 2-3 shows
an example of this type of data storage.

Matricized Another way of representing automotive
LiDAR point clouds is the range-view-based representa-
tion [1],[4]. This representation is obtained after "matri-
cizing" a LiDAR point cloud. Matricizing a LiDAR point
cloud is done using Cartesian to spherical coordinate pro-
jection [21]. Equation 2-2 shows this projection, which is
the opposite of the projection in Equation 2-1.

θ

ϕ

Figure 2-4: Matricization.

ρ =
√
x2 + y2 + z2

θ = arccos(z

x2 + y2 + z2)

ϕ = sign(y) arccos(x

x2 + y2)

(2-2)

C.V.M.M. Vorage Master of Science Thesis

2-1 Point Cloud Representations 9

The obtained projection can be viewed as a matrix (hence the name: matricization), where
the rows correspond to a discretized range of the elevation angle (θ), and the columns to a
discretized range of the azimuth angle (ϕ). The value within the matrix at a specific location
(θi, ϕj) corresponds to the Euclidean distance (ρ) towards the LiDAR point. Figure 2-4 shows
an example of the matricized view. Typical ranges of automotive LiDAR for the azimuth and
elevation are [−180◦, 180◦] and [−25◦, 4◦] respectively [71]. During matricization multiple
LiDAR points can be projected into the same cell. Handling this ambiguity is a design
choice. One approach is to take the average of the point attributes.

Figure 2-5 shows an example of a matricized LiDAR point cloud from the VoD dataset [65].
The image depicts a cyclist moving towards the right in front of the vehicle. The image also
shows many horizontal dark-blue lines. These lines are missing values in the matrix, caused
by matricizing the point cloud at a too small angular resolution. Increasing the angular
resolution can be done to remove the missing values, but this also reduces the quality of the
picture, which will cause a weaker performance of any trained model.

Figure 2-5: Matricized LiDAR point cloud of the VoD dataset [65]. The colorbar on the right
denotes the distance of the matricized points with respect to the LiDAR reference frame.

z

x

y

Figure 2-6: Pillarization.

Pillarized A popular representation is the Birds-
Eye-View (BEV), obtained after performing pillar-
ization of the LiDAR data [1]. Acclaimed papers
such as PointPillars [44] use this technique to drasti-
cally improve inference time due to avoiding compu-
tationally expensive 3D convolutional layers present
in VoxelNet [90].

Figure 2-6 shows an example of pillarization. LiDAR
points are projected onto the (x, y)-plane, causing
the information in the z-direction to be lost. In this
example, equidistant spacing is chosen for the indi-
vidual pillars in both directions, which is a design
choice.

Voxelized Another popular method for represent-
ing 3D-spaces is to use voxels [1],[4]. Voxels are three-dimensional boxes which are stacked

Master of Science Thesis C.V.M.M. Vorage

10 Related Work and Theoretical Background

on top of each other and build up the 3D-scene. Voxelization is the process of taking a point
cloud in tabular form, and mapping each point to a specific voxel coordinate.

z

x

y

Figure 2-7: Voxelization.

Many acclaimed papers such as VoxelNet [90] use
voxelization to preprocess a LiDAR point cloud at
the start of their detection pipeline. Figure 2-7
shows an example of voxelizing a three-dimensional
space into 64 seperate voxels. The example shows
equidistant spacing for all three directions (x,y,z).
An advantage of voxel-based methods compared to
projection-based methods (Matricization or Pillar-
ization), is that they retain more information dur-
ing the discretization process. Pillarization causes
all information in the vertical direction to be lost,
while matricization results in information loss due
to the angular resolution. Because of this, voxel-
based implementations are more versatile since they

can be employed for BEV-detection tasks, but also for semantic segmentation tasks. They do
however often face increased computational cost, due to the expensive 3D convolutions [74].

Octrees Another way of spatially partioning point clouds is to use octrees [5]. In an octree,
each node represents a 3D cube. The root node represents the entire 3D region, and is divided
into 8 smaller cubes called octants. Each of these octants can be subdivided again resulting
into 8 more octants. This process is repeated recursively until the required level of detail is
met, or a specific condition is met such as: all LiDAR points are placed in a separate octant.

z

x

y

Figure 2-8: Octrees.

Figure 2-8 shows an example of partioning 3D-space
using octrees. The image shows that a depth of 3
is reached in terms of level of detail. The efficiency
in representing 3D-spaces using this method lies in
exploiting sparsity of the data. Often entire regions
of LiDAR point clouds are empty (for example the
sky), which means that using octrees a very large
octant can be denoted using a 0, since it does not
contain any points.
Octrees are primarily used for two types of tasks
when employed using LiDAR data. The first task
is semantic segmentation. Multiple methods use an
octree structure to first recursively divide the scene
into octants, which is then processed using various
methods such as graph-based networks or plane-semengtation [83], [79], [77]. The second
task for which octree representations are used is point cloud compression. These methods
use octree structures to encode the point cloud in order to reduce spatial redundancy. Var-
ious methods exist such as: OctSqueeze [34] and OctAtention [22]. OctSqueeze uses a deep
tree-structured entropy model, which uses context information to decrease the entropy of
intermediate nodes. OctAtention is a multiple-contexts deep learning framework for lossless
encoding which exploits similarities between sibling and ancestor nodes.

C.V.M.M. Vorage Master of Science Thesis

2-1 Point Cloud Representations 11

KD-Trees Another method to spatially partition 3D point clouds is to use KD-trees [5].
KD-trees are k-dimensional trees, used to partition a k-dimensional space. The construction
of the KD-Tree consists of recursively partitioning 3D space, by placing hyperplanes along
each axis. Often the hyperplanes are placed in such a way that the amount of points after each
division is balanced across the partitions. Figure 2-9 shows an example of a three-dimensional
KD-tree. The KD-tree is constructed by first partitioning the y-axis, followed by the z-axis,
and finally the x-axis.

#1

#2

#3

z

x

y

Figure 2-9: KD-trees.

Two different applications of kd-trees on LiDAR
data are most common. These are: outlier detec-
tion and algorithmic efficiency. Shen et al. (2011)
use kd-trees to detect outliers in airborne LiDAR
data [73]. They used a combination of elevation his-
togram analysis to get rid of the obvious outliers,
and kd-tree partioning to filter points based on their
distance to k-neighbouring points. A similar work
by Li et al. (2011) uses a histogram of elevation
scales and a multilevel segmentation algorithm to
filter outliers in airborne LiDAR data [48].
Two different works by Choi et al. (2012) and Li et
al. (2016) employed KD-tree structures to accelerate
the Iterative Closest Point (ICP) algorithm, which
can be used for reconstructing of 3D surfaces, path

planning or localization [13],[50]. Other works employed KD-trees for efficiently processing
LiDAR data [7] or data management for visualisation of LiDAR scans [54].

Wavelet An alternative method is to apply a wavelet transform on the LiDAR data [6].
Each point attribute (x, y, z, reflectance, etc.) is considered as a 1D vector and independently
wavelet transformed. The wavelet transform decomposes the signal into different frequency
components and calculates the wavelet coefficients, denoting the individual contribution of
those components. Often there is a strong correlation between successively obtained points,
which generate small and similar wavelet coefficients [6]. Those can either be efficiently
compressed or discarded, due to having little impact on the reconstruction performance [84].

0 0.5 1

1

−1

Figure 2-10: The Haar Wavelet.

Im et al (2010) propose using a Haar wavelet trans-
form on the LiDAR point attributes [38], which is
shown in Figure 2-10. Their approach consists of
three steps. First the signals are decomposed using
Haar Wavelet transform. Second, the wavelet coeffi-
cients which are below a prespecified threshold value
are zeroed. Third, the signals are reconstructed us-
ing the wavelet coefficients. A large compression ra-
tio was achieved, with minimal reconstruction error,
due to the strong correlation between successively
obtained points.
Table 2-1 shows an overview of the previously mentioned point cloud representations and
some noteworthy publications employing this representation.

Master of Science Thesis C.V.M.M. Vorage

12 Related Work and Theoretical Background

Format Publication

Tabular

x y z . . .

N
PointNet [68]

Matricization θ

ϕ

TensorMap [71]

Voxelization
z

x

y

VoxelNet [90]
CenterPoint [87]
VoxelNeXt [11]

FSTR [20]
LINK [55]

Pillarization
z

x

y

PointPillars [44]
CenterPoint [87]

Octrees
z

x

y

OctSqueeze [34]
OctAttention [22]

Ainala et al. (2016) [2]
Schwarz et al. (2019) [72]

KD-Trees

#1

#2

#3

z

x

y

Gandoin et al. (2002) [23]
Lien et al. (2010) [52]
Shen et al. (2011) [73]

Li et al. (2011) [48]

Wavelet 0 0.5 1

1

−1

WALZ [84]
Joon Im et al. (2010) [38]

Table 2-1: Overview of automotive LiDAR point cloud representations.

C.V.M.M. Vorage Master of Science Thesis

2-2 Point Cloud Compression Methods 13

2-2 Point Cloud Compression Methods

In an effort to advance development of PCC the MPEG 3D Graphics Coding group put in
a call for proposals in January 2017 [26]. This call for proposals eventually resulted in the
definition of two research fields in 2020:

• Video-based Point Cloud Compression (V-PCC)

• Geometry-based Point Cloud Compression (G-PCC)

V-PCC is employed for clouds with a relative uniform distribution of points [26], and is
generally linked to applications such as: augmented reality, virtual reality, and 3D video
streaming. G-PCC is the technique employed for more spare distributions, and thus linked
to Surface-PCC and LiDAR-PCC [25].

Over the years the MPEG Group has developed many different coder-decoder (codec) archi-
tectures for Surface-PCC and LiDAR-PCC. Codecs which outperformed all previous models
were released to the public as the new baseline model under the names TMC1 and TMC3
for Surface-PCC and LiDAR-PCC respectively. Due to the similarity between Surface-PCC
and LiDAR-PCC the MPEG Group decided to merge the two baseline models TMC1 and
TMC3 into a single platform called TMC13, which is publicly available [59]. TMC13 will be
employed as baseline model for this thesis.

The current works on point cloud compression can roughly be divided into two categories
[69]. On the one hand, there are the conventional methods [5]. These methods generally
employ space partitioning techniques such as Octrees [22],[22] and KD-Trees [73],[48]. The
baseline model (TMC13) can be classified as a conventional model, since it employs octrees
as space partitioning method. On the other hand, there are deep-learning based alternatives.
These methods employ machine learning architectures such as: Auto-Encoders [27],[28],[70]
and Recurrent Neural Networks [80].

A virtually unexplored research area is to employ tensor decomposition methods for point
cloud compression. Across literature, only one noteworthy paper by Novikov & Oseledets
has been identified to attempt this. Their paper describes a novel method employing low-
rank Tensor Train (TT) decompositions to efficiently represent point clouds, which enables
fast approximate nearest neighbour search [61]. Their method directly tensorizes the point
cloud data in tabular form, by partitioning the amount of samples (N) into k dimensions as
N = N1 · N2 · . . . · Nk. Equation 2-3 shows how matrix Y is reshaped (Definition 2.3) into
tensor Y, where the last dimension D denotes the amount of attributes per point.

Y = reshape (Y, [N1, · · · , Nk, D]) (2-3)

Although very interesting regarding this research, their work did get rejected for publication
in the journal International Conference on Learning Representations (ICLR) 2024.

A possible drawback of employing tensor decompositions on automotive LiDAR data, which
could be the reason it is relatively unexplored, is that they are generally not suited well for
decomposing sparse tensors. This could limit performance on sparse representations, such

Master of Science Thesis C.V.M.M. Vorage

14 Related Work and Theoretical Background

as: voxel-based. There are however remedies for this possible limitation, namely there are
various works on sparse tensor decomposition methods [41],[49],[67],[78]. The work on PCC
using tensor decompositions by Novikov & Oseledets circumvents this drawback by direct
tensorization of the raw point cloud data [61].

2-3 Multilinear Algebra & Tensor Decomposition Methods

Before we can start introducing the various tensor decompositions that will be explored, the
underlying multilinear algebra needs to be explained. This section will start by introducing
the notation and mathematical operations used from multilinear algebra and follow up with
discussing several tensor decomposition methods.

2-3-1 Preliminaries

Throughout this thesis, data structures of different dimensions are discussed. The convention
used is as follows; scalars are lowercase, vectors are bold lowercase, matrices are uppercase,
and tensors are bold uppercase. Many of the mathematical definitions are obtained from
Kolda & Bader’s (2008) paper on Tensor Decompositions and Applications [40]. Apart from
mathematical notation, tensor network diagrams will be used to illustrate various tensor
operations. Table 2-2 shows a tensor network diagram for each type of data structure. In
these diagrams nodes correspond to a mathematical object, whereas the outgoing edges (also
referred to as modes or ways) correspond to the dimensions of the object. For example, the
matrix X has two modes I1 and I2, which correspond to the length and width of the matrix
respectively.

Name Scalar Vector Matrix Tensor

Mathematical Notation x ∈ R x ∈ RI X ∈ RI1×I2 X ∈ RI1×I2×...×IN

Tensor Network Diagram x x

I

X
I1 I2

X

I1 I2

. . .
IN

Table 2-2: Mathematical and Tensor Network Diagram Notation.

Definition 2.1 denotes the convention used for multi-index notation, which applies to various
other definitions that will follow.

C.V.M.M. Vorage Master of Science Thesis

2-3 Multilinear Algebra & Tensor Decomposition Methods 15

Definition 2.1: Multi-Index

A multi-index i1i2 . . . in can be used to refer to a single element in a tensor X. When
vectorizing a tensor X (i1, i2, . . . , iN) vec−→ xii1,i2,...,iN

the little-endian convention (re-
verse lexicographic ordering) [14] is used to determine the order of mapping the ele-
ments:

i1i2 . . . in = i1 + (i2 − 1) I1 + (i3 − 1) I1I2 + · · ·+ (in − 1) I1 . . . In−1
)

(2-4)

2-3-2 Basic Operations

There are several basic operations that can be performed on tensors. These operations are
related to augmenting the data structure, and are widely used in many tensor decomposition
algorithms [40],[64],[75]. These operations are: permutation, reshaping, and vectorization,
which will be explained in Definition 2.2, Definition 2.3, and Definition 2.4 respectively.

Definition 2.2: Permute

Permuting a matrix/tensor changes the order of the modes. For a matrix this is equiva-
lent to taking the transpose, while for tensors the order of the modes needs to explicitly
stated.

Example
Permuting tensor A ∈ R2×3×4×5 with permutation operator Π and indices
{2, 1, 4, 3} results in:

Π{2,1,4,3}(A) = Ã ∈ R3×2×5×4 (2-5)

For notational clarity Matlab syntax will be used when performing permuta-
tion operations. For the above mentioned permutation this will be denoted as:
permute(A, [2, 1, 4, 3]).

Definition 2.3: Reshape

Reshaping a tensor rearranges the elements of the tensor according to newly specified
modes. The product of the size of these newly specified modes needs to be equal to
the number of elements in the original tensor.

Example
Tensor A ∈ R2×3×4×5 can be reshaped into Ã ∈ R6×2×10, since the product of
the size of their modes is equal to 120 for both tensors.

For notational clarity Matlab syntax will be used to denote a reshape operation. For
the example above this will be formulated as: reshape(A, [6, 2, 10])
Note: Reshaping a tensor is dependent on the multi-index convention (Definition 2.1).

Master of Science Thesis C.V.M.M. Vorage

16 Related Work and Theoretical Background

Definition 2.4: Vectorize

Vectorizing a tensor is done by iteratively grabbing the elements contiguously stored
according to Definition 2.1 and putting them in a single vector.

Example

Tensor A ∈ RI1×I2×...×IN can be vec-
torized resulting in:

vec(A) = a ∈ RI1I2...IN (2-6)

A

I1 I2

. . .
IN

a

I1I2 . . . In

2-3-3 Multilinear Operations

Tensor decomposition methods are based on multilinear operations. One of them is the mode-
n product, which is explained in Definition 2.6. This operation is used to multiply a tensor
with a matrix across a specific mode. In order to successfully perform this multiplication, the
tensor should be matricized along the corresponding mode. This matricization is defined in
Definition 2.5.

Definition 2.5: Matricize

Mode-n Matrication
A mode-n matricization matricizes a tensor, by taking In as its first dimension (length)
and I1I2 . . . In−1In+1 . . . IN as its second dimension (width). This can be done by first
permuting and then reshaping the tensor.

Example

Tensor A ∈ RI1×I2×...IN

can be mode-n matricized,
which results in: A(n) ∈
RIn×I2...In−1In+1...IN

A

I1 I2

. . .
In

. . .
IN

A(n)
In I1I2 . . . In−1In+1 . . . IN

Mode-(1,...,n) Matricization
A mode-(1,...n) matricization matricizes a tensor by taking the product of mode 1 until
n as its first dimension (length) and the product of the remaining modes as its second
dimension (width).

Example

Tensor A ∈ RI1×I2×...IN

can be mode-(1,..,n) matri-
cized resulting in: A<n> ∈
RI1I2...In×In+1...IN

A

I1 I2

. . .
In In+1

. . .
IN

A<n>
I1I2 . . . In In+1 . . . IN

C.V.M.M. Vorage Master of Science Thesis

2-3 Multilinear Algebra & Tensor Decomposition Methods 17

Definition 2.6: Mode-n Product

A mode-n product is the multiplication of a tensor A ∈ RI1×I2×...×In×...×IN with a
matrix B ∈ RJ×In over mode n, resulting in tensor C ∈ RI1×I2×...×In−1×J×In+1×...×IN

such that ci1,...,in−1,j,in+1,...,iN =
∑In

in=1 ai1,i2,...,iN · bj,in ∀ {i1, . . . , in−1, j, in+1, . . . , iN} ∈
{I1 × . . .× In−1 × J × In+1 × . . .× IN}.
It can be obtained by first performing a mode-n matricization (Definition 2.5), and
subsequently performing a matrix multiplication. In tensor network diagram notation
it can be visualized as a contraction over the corresponding modes.

Example
A mode-n product of tensor A ∈
RI1×I2×...×In×...×IN and matrix B ∈ RJ×In

results in:

A×n B ∈ RI1×I2×...×In−1×J×In+1×...×IN

(2-7)

A

I1 I2

. . .
In−1 In+1

. . .
IN

B
In J

A series of mode-n products can be represented using the square bracket notation,
where each factor matrix {B(1), . . . , B(N)} is multiplied across the corresponding mode
of tensor A. [

A;B(1), . . . , B(N)
]
≜ A× 1B

(1) ×2 . . .×N B(N) (2-8)

Definition 2.7 shows the inner product. This is a scalar value which can be used to show the
similarity between two tensors. Another operation is the outer product, which is denoted in
Definition 2.8. The outer product is used in various tensor decomposition methods, and can be
used to construct rank-1 tensors, which is a concept that will be explained in Definition 2.13.

Definition 2.7: Inner Product

The inner product of tensor A ∈ RI1×I2×...×IN with tensor B ∈ RI1×I2×...×IN

is the contraction across all modes, resulting in the scalar c such that c =∑I1
i1=1 · · ·

∑IN
iN =1 ai1,...,iN · bi1,...,iN . The sizes of each mode need to be identical for

both tensors. Equivalently, both tensors can be vectorized and multiplied accordingly.

Example
The inner product of tensor A ∈ RI1×I2×...×IN and
tensor B ∈ RI1×I2×...×IN can be denoted as:

< A,B > =
I1∑

i1=1
· · ·

IN∑
iN =1

ai1,...,iN · bi1,...,iN

< A,B > = vec(A)T vec(B) ∈ R

(2-9)

A B

IN

...

I2

I1

Master of Science Thesis C.V.M.M. Vorage

18 Related Work and Theoretical Background

Definition 2.8: Outer Product

Vector Outer Product
The outer product of vector a ∈ RI and vector b ∈ RJ is defined to be matrix C ∈ RI×J

such that ci,j = ai · bj ∀ {i, j} ∈ {I × J }. The outer product of n vectors is an n-
dimensional object.

Example
The outer product of vector a ∈ RI and
vector b ∈ RJ can be calculated as:

C = a ◦ b = abT ∈ RI×J (2-10)

a

I

b

J

1 C
I J

Tensor Outer Product
The outer product of tensor A ∈ RI1×I2×...×IN and tensor B ∈ RJ1×J2×...×JM is defined
to be tensor C ∈ RI1×I2×...×IN ×J1×J2×...×JM such that ci1,i2,...,iN ,j1,j2,...,jM = ai1,i2,...,iN ·
bj1,j2,...,jM ∀ {i1, i2, . . . , iN , j1, j2, . . . , jM} ∈ {I1×I2× . . .×IN ×J1×J2× . . .×JM}.
In a tensor network diagram this can be illustrated using a rank-1 connection.

Example
The outer product of tensor
A ∈ RI1×I2×...×IN and tensor
B ∈ RJ1×J2×...×JM can be calculated as:

C = A ◦B =
1∑

r=1
ai1,...,iN ,r · br,j1,...,jM

C = A ◦B ∈ RI1×I2×...×IN ×J1×J2×...×JM

(2-11)

A

I1 I2

. . .
IN

B

J1J2

. . .
JM

1 C

I1 I2

. . .
IN

J1J2
. . .
JM

The Khatri-Rao, Kronecker, and Hadamard product are all important mathematical oper-
ations used in renowned tensor decomposition algorithms such as the: Canonical Polyadic
- Alternating Least Squares (CP-ALS) [40] and Tensor Train Singular Value Decomposi-
tion (TT-SVD) [64]. These operations are explained in Definition 2.9, Definition 2.10, and
Definition 2.11 respectively.

C.V.M.M. Vorage Master of Science Thesis

2-3 Multilinear Algebra & Tensor Decomposition Methods 19

Definition 2.9: Khatri-Rao Product

The Khatri-Rao product of matrix A ∈ RI×R and matrix B ∈ RJ×R is defined as
the column-wise Kronecker product resulting in matrix C ∈ RJI×R such that cj,i,r =
ai,r · bj,r ∀ {j, i, r} ∈ {I × J ×R}.

Example
The Khatri-Rao product of matrix A ∈ RI×R and matrix B ∈ RJ×R can be
calculated as:

C = A⊙B = (a:,1 ⊗ b:,1, . . . ,a:,R ⊗ b:,R) ∈ RJI×R (2-12)

Definition 2.10: Kronecker Product

Matrix Kronecker Product
The Kronecker product of matrix A ∈ RI×J and matrix B ∈ RK×L is defined as the
element-wise block multiplication resulting in matrix C ∈ RKI×LJ such that ck,i,l,j =
ai,j · bk,l ∀ {k, i, l, j} ∈ {I × J ×K × L}.

Example
The Kronecker product of matrix A ∈ RI×J and matrix B ∈ RK×L can be
calculated as:

C = A⊗B =

 a1,1B . . . a1,JB
...

aI,1B . . . aI,JB

 ∈ RKI×LJ (2-13)

Tensor Kronecker Product
The Kronecker product of tensor A ∈ RI1×I2×...IN and tensor B ∈ RJ1×J2×...JN

is defined as tensor C ∈ RJII1×J2I2×...×JN IN such that cj1,i1,...,jM ,iN
= ai1,...,iN ·

bj1,...,jM ∀ {j1, i1, . . . , jM , iN} ∈ {I1 × . . .× IN × J1 × . . .× JN}.

Example
The Kronecker product of tensor A ∈ RI1×I2×...IN and tensor B ∈ RJ1×J2×...JN

is denoted as:

C = A⊗B ∈ RJII1×J2I2×...×JN IN (2-14)

Master of Science Thesis C.V.M.M. Vorage

20 Related Work and Theoretical Background

Definition 2.11: Hadamard Product

The Hadamard product of tensor A ∈ RI1×I2×...×IN and tensor B ∈ RI1×I2×...×IN is
defined as the elementwise product resulting in tensor C ∈ RI1×I2×...×IN such that
ci1,i2,...,iN = ai1,i2,...,iN · bi1,i2,...,iN ∀ {i1, i2, . . . , iN} ∈ {I1 × I2 × . . .× IN}.

Example
The Hadamard product of tensor A ∈ RI1×I2×...×IN and tensor B ∈ RI1×I2×...×IN

can be calculated as:

C = A ⊛ B ∈ RI1×I2×...×IN (2-15)

The Frobenius norm is a metric often employed to define the (relative) error of an obtained
tensor decomposition [64]. Definition 2.12 shows how the Frobenius norm can be calculated
for any tensor.

Definition 2.12: Frobenius Norm

The Frobenius norm of a tensor A ∈ RI1×I2×...×IN is defined as the square root of the
inner product with itself, which is denoted as: ∥A∥F =

√
< A,A >.

Example
For any tensor A ∈ RI1×I2×...×IN , the Frobenius norm can be calculated as:

∥A∥F =
√
< A,A > =

√√√√√ I1∑
i1=1
· · ·

IN∑
iN =1

ai1,...,iN · bi1,...,iN

∥A∥F =
√

vec(A)T vec(A) ∈ R

(2-16)

2-3-4 Notions of Rank

There are multiple notions of rank used in tensor decomposition methods. The Canonical
Polyadic Decomposition (CPD) considers the extension of matrix rank to higher dimensions
called tensor rank. The Multilinear Singular Value Decomposition (MLSVD) on the other
hand employs the multilinear rank, which is the (matrix) rank of its mode-n matricizations.

C.V.M.M. Vorage Master of Science Thesis

2-3 Multilinear Algebra & Tensor Decomposition Methods 21

Definition 2.13: Matrix/Tensor Rank

Matrix Rank
The rank of a matrix is defined as the maximum amount of linearly independent
columns. Alternatively this can be viewed as the minimum amount of vector outer
products needed to represent the matrix.

Example
Matrix C ∈ R2×2 can be reduced to row-echelon form, which shows only 1
linearly independent column, meaning rank(C) = 1. Alternatively, the matrix
C can be represented as a single outer product between vectors a and b, implying
its rank is 1.

C =
(

2 1
−4 −2

)
∼
(

2 1
0 0

)
⇒ rank(C) = 1

C =
(

2 1
−4 −2

)
=
(

1
−2

)
︸ ︷︷ ︸

a

◦
(

2
1

)
︸ ︷︷ ︸

b

⇒ rank(C) = 1
(2-17)

Tensor Rank
The concept of rank generalizes to the tensor case, where it corresponds to the minimum
amount of vector outer products that are needed to represent the tensor.

Example
Tensor D ∈ R2×2×2 is of rank 1, since it can be written as a single outer product
between vectors a, b and c.

(
2 3
2 3

)
(

4 6
4 6

)

D = =
(

1
1

)
︸ ︷︷ ︸

a

◦
(

2
3

)
︸ ︷︷ ︸

b

◦
(

1
2

)
︸ ︷︷ ︸

c

⇒ rank(D) = 1 (2-18)

Definition 2.14: Multilinear Rank

The multilinear rank of tensor X ∈ RI1×I2×...×IN is an N -tuple consisting of the di-
mensions of the vector space spanned by its mode-n fibers. In other words, it is an
tuple consisting of the ranks of its mode-n matricizations.

rankML(X) =
{

rank
(
X(1)

)
, rank

(
X(2)

)
, . . . , rank

(
X(N)

)}
(2-19)

Master of Science Thesis C.V.M.M. Vorage

22 Related Work and Theoretical Background

2-3-5 Overview of Mathematical Notation

Table 2-3 shows an overview of the mathematical notation introduced in this chapter, which
will be used to define three tensor decomposition methods. These are: the CPD, the MLSVD,
and the TT-SVD.

Notation Definition
a Scalar
a Vector
A Matrix
A Tensor
A (i1, i2, . . . , iD) = ai1,i2,...,iD Element of tensor A
A(n) Mode-n matricization of tensor A
A<n> Mode-(1,...,n) matricization of tensor A
A×n B Mode-n product of tensor A with matrix B[
A;B(1), . . . , B(N)

]
Sequence of mode-n products on tensor A
using factor matrices {B(1), . . . , B(N)}

< A,B > Inner product of tensors A and B
A ◦B Outer product of tensors A and B
A⊗B Kronecker product of tensors A and B
A⊙B Khatri-Rao product of tensors A and B
A ⊛ B Hadamard product of tensors A and B
∥A∥F Frobenius norm of tensor A
in Index of dimension n
In Size of dimension n
In Set containing all indices in in In

vec(A) Vectorization of tensor A
permute(A, [i1, . . . , in]) Permuting tensor A using indices [i1, . . . , in]
reshape(A, [I1, . . . , In]) Reshaping tensor A using dimensions [I1, . . . , In]
rank(A) Rank of tensor A
rankML(A) Multilinear rank of tensor A
diag(c) Matrix with elements of vector c on its diagonal
diag(c, N) N-dimensional tensor with elements of vector c on its superdiagonal
svd(A) Singular Value Decomposition of matrix A
svdδ(A) δ-Truncated Singular Value Decomposition of matrix A
O(A) Storage complexity of tensor A

Table 2-3: Mathematical notation used in tensor decomposition methods.

2-3-6 Canonical Polyadic Decomposition

The first tensor decomposition that will be introduced is the CPD, which is denoted in
Definition 2.15.

C.V.M.M. Vorage Master of Science Thesis

2-3 Multilinear Algebra & Tensor Decomposition Methods 23

Definition 2.15: Canonical Polyadic Decomposition (CPD)

Any tensor X ∈ RI1×I2×···×IN can be represented by a finite sum of vector outer
products, where the length of the vectors correspond to the dimensions of the tensor.
In mathematical terms this can be denoted as:

X =
R∑

r=1
b(1)

r ◦ b(2)
r ◦ . . . ◦ b(N)

r (2-20)

For a three-dimensional case, this can be illustrated using the figures below. Figure 2-11a
shows a 3D visualization of the summation of rank-1 terms, while Figure 2-11b shows the
corresponding tensor network diagram.

XI1

I2

I3

b(1)
1

b(2)
1

b(3)
1

+ . . . +

b(1)
R

b(2)
R

b(3)
R

(a) 3D visualization of CPD.

X

I1 I2 I3

R∑
r=1

b(1)
r

I1

b(2)
r

I2

b(3)
r

I3

11

(b) Tensor network diagram of CPD.

Figure 2-11: Graphical representations of Canonical Polyadic Decomposition.

The smallest amount of vector outer products that are needed to represent a tensor exactly
is called the rank R (Definition 2.13). Finding this rank is however not an easy task, it may
be considered an NP-hard problem [35].

The CPD is a representation consisting of the summation of the minimal amount of rank-1
terms. This summation may be considered unique (up to scaling and permutation of indices)
if the individual R components are unique [40].

An alternative representation to Equation 2-20 is shown in Equation 2-21, where the vectors
[b1

r , . . . ,bN
r] are normalized to unit length, and the norms are stored in scalar λr.

X =
R∑

r=1
λrb(1)

r ◦ b(2)
r ◦ . . . ◦ b(N)

r (2-21)

In virtually any real life application noise will be present in the system, meaning an exact
computation is not possible or might not exist. Because of this, the problem of finding the
CPD of a given tensor should be written as an optimization problem. Equation 2-22 shows
the objective function of the optimization problem for an N -dimensional tensor. The goal is
to minimize this objective function, which denotes the squared frobenius norm of the error
between the original (X) and approximated (X̃) tensor.

Master of Science Thesis C.V.M.M. Vorage

24 Related Work and Theoretical Background

J
(
λr, b

(1)
r , b(2)

r , . . . , b(N)
r

)
=
∥∥∥∥∥X−

R∑
r=1

λrb(1)
r ◦ b(2)

r ◦ . . . ◦ b(N)
r

∥∥∥∥∥
2

F

J
(
Λ, B(1), B(2), . . . , B(N)

)
=

∥∥∥∥∥∥∥X− [Λ;B(1), B(2), . . . , B(N)]︸ ︷︷ ︸
X̃

∥∥∥∥∥∥∥
2

F

(2-22)

The equation shows the factor matrices [B(1), B(2), . . . , B(N)] and superdiagonal core tensor Λ,
which are the decision variables of the optimization problem. The superdiagonal core tensor
Λ stores the norms if the factor matrices have been normalized to unit length, otherwise it
will be a superdiagonal identity tensor.
The CPD reduces the storage compexity of tensor X ∈ RI1×I2×···×IN from being exponential
in the amount of modes N , to being linear in the rank R, as can be seen in Equation 2-23.

O(X) =
N∏

n=1
In

O(CPD(X)) = R
N∑

n=1
In

(2-23)

Canonical Polyadic - Alternating Least Squares (CP-ALS)

There are many ways to solve Equation 2-22, however a popular method is to use the Canon-
ical Polyadic - Alternating Least Squares algorithm shown in Algorithm 1 [40],[56]. This
algorithm takes as input a tensor X ∈ RI1×I2×···×IN , initialization method for factor matrices
B = [B(1), . . . , B(N)], rank of the decomposition R, allowed relative error ϵ, and maximum
amount of iterations imax. It returns the vector λ and factor matrices B that make up the
approximation of tensor X. The approximation X̃ abides to the defined allowed relative error
(ϵ) if the algorithm converged within the maximum amount of steps (imax).
The algorithm makes use of the identity in Equation 2-24, which states that the mode-n
matricization of a CPD can be expressed in terms of its factor matrices [B(1), B(2), . . . , B(N)]
and core Λ in matrix form.

X(n) = B(n)Λ
(
B(N) ⊙ . . .⊙B(n+1) ⊙B(n−1) ⊙ . . .⊙B(1)

)T
(2-24)

Substituting this identity into the optimization problem, results in N equivalent optimization
problems with a different structure. Using the mode-1 matricization, the first optimization
problem can be obtained, which is shown in Equation 2-25.

min
B(1),...,B(N)

∥X(1) −B(1)(B(N) ⊙B(N−1) ⊙ · · · ⊙B(2))T ∥ (2-25)

This optimization does not yield an easy overall solution for all factor matrices [B(1), B(2), . . . , B(N)],
but it does if additional constraints are imposed. Fixing all factor matrices except for B(1)

turns the problem into least squares form [40].

C.V.M.M. Vorage Master of Science Thesis

2-3 Multilinear Algebra & Tensor Decomposition Methods 25

min
B(1)
∥X(1) −B(1)(B(N) ⊙B(N−1) ⊙ · · · ⊙B(2))T ∥ (2-26)

The least squares solution can then be obtained like shown in Equation 2-27 [82], where †
denotes the Moore–Penrose pseudo-inverse.

∗
B(1) = X(1)

(
(B(N) ⊙B(N−1) ⊙ · · · ⊙B(2))T

)†
(2-27)

The new estimate for factor matrix B(1) can then be used when solving the next least squares
problem, where the optimization variable will be the second factor matrix B(2), like shown in
Equation 2-28

min
B(2)
∥X(2) −B(2)(B(N) ⊙B(N−1) ⊙ · · · ⊙B(3) ⊙B(1))T ∥ (2-28)

This process is repeated for all N problem formulations, yielding a solution for all factor
matrices [B(1), . . . , B(N)]. The factor matrices are then used to create the approximation
of the mode-N matricization X̃(N), which is used to compute the relative error of the de-
composition in Frobenius norm sense. If the error is below the defined acceptable threshold
the algorithm stops. Otherwise, the iterative procedure continues for a specified amount of
maximum iterations.

Algorithm 1 Canonical Polyadic - Alternating Least Squares (CP-ALS) [40],[56]
Require: Tensor X ∈ RI1×I2×···×IN , rank of the decomposition R, allowed relative error ϵ,

maximum iterations imax

1: B← Initialize factor matrices B(n) ∈ RIn×R

2: while e > ϵ and i < imax do
3: for n = 1 to N do
4: V ← B(1)TB(1) ⊛ · · ·⊛B(n−1)TB(n−1) ⊙B(n+1)TB(n+1) ⊛ · · ·⊛B(N)T

B(N)

5: B(n) ← X(n)(B(N) ⊙ · · · ⊙B(n+1) ⊙B(n−1) ⊙ · · · ⊙B(1))V †

6: for r = 1 to R do
7: λr ← ∥B(n)

:,r ∥F
8: B

(n)
:,r ← B

(n)
:,r
cr

9: end for
10: end for
11: X̃(N) ← diag(λr)B(N)(B(N−1) ⊙ · · · ⊙B(1))T

12: e← ∥x(N)−X̃(N)∥F

∥X(N)∥F

13: end while
14: return λ, B

After using the algorithm, the approximation of tensor X can be obtained by mode-n prod-
ucts of the factor matrices B = [B(1), . . . , B(N)] with the constructed core C like shown in
Equation 2-29.

Master of Science Thesis C.V.M.M. Vorage

26 Related Work and Theoretical Background

X̃ = diag(c, N)×1 B
(1) ×2 . . .×N B(N) =

[
C;B(1), . . . , B(N)

]
(2-29)

The factor matrices B = [B(1), . . . , B(N)] can be initialized in various ways. Common practice
is to initialize them by drawing values from a normal distribution with unit variance [3]. In
mathematical terms this can be denoted like shown in Equation 2-30.

bi,j ∼ N (0, 1) ∀ {i, j} ∈ I × J, B ∈ RI×J (2-30)

In order to reduce the chance of getting stuck in a local minima, the CP-ALS is often per-
formed multiple times from different (random) initialization points [29]. Harshman & Lundy
(1994) suggest performing 6 separate random initializations drawn from the same distribu-
tion. If all 6 solutions agree, the probability of finding a different solution with an equivalent
or lower relative error is smaller than 0.05, when drawing a new sample from the same dis-
tribution.

2-3-7 Multilinear Singular Value Decomposition (MLSVD)

The second tensor decomposition method that will be discussed is the Multilinear Singular
Value Decomposition (MLSVD). This decomposition is an extension of the Singular Value
Decomposition (SVD) for matrices to higher dimensions. The following definitions, theorems,
and properties lay the groundwork upon which the MLSVD is built.

C.V.M.M. Vorage Master of Science Thesis

2-3 Multilinear Algebra & Tensor Decomposition Methods 27

Definition 2.16: Singular Value Decomposition (SVD) [76]

The SVD of any real matrix X ∈ RK×L of rank n, is defined as the product of three
matrices: U , Σ, and V .

X = UΣV T (2-31)

Matrix Σ contains the (non-negative) singular values of X in descending order of mag-
nitude on its diagonal, with the possibility of trailing zeros if rank(X) < min(K,L).

Σ = diag(σ1, σ2, . . . , σn) (2-32)

Matrices U and V are orthogonal and contain the left and right singular vectors re-
spectively.

U =
(

u1 u2 . . . un

)
, V =

(
v1 v2 . . . vn

)
UUT = UTU = I, V V T = V TV = I

(2-33)

The dimensions of the matrices depend on the size of matrix X and on the requested
form (full-size or economy-size). For a full rank (n = K) square matrix (K = L), the
decomposition is equivalent to the form shown below.

svd(X) =

... · · ·

...
u1 . . . uK
... · · ·

...

︸ ︷︷ ︸

U ∈ RK×K

 σ1 0 0

0 . . . 0
0 0 σK

︸ ︷︷ ︸

Σ ∈ RK×K

 · · · v1 · · ·
...

...
...

· · · vK · · ·

︸ ︷︷ ︸

V T ∈ RK×K

(2-34)

Property 2.1: Uniqueness of Singular Value Decomposition (SVD)

The SVD of any matrix X ∈ RI×J is unique for distinct singular values:

σa ̸= σb ∀ {a, b} ∈ min (I, J)×min (I, J) (2-35)

Property 2.2: Rank of Singular Value Decomposition (SVD)

A few consequences of Definition 2.16 and Theorem 2.1 are:

• The number of nonzero singular values equals the rank R of the matrix.

• The first R columns of U are an orthonormal basis for the column space of X.

• The first R rows of V are an orthonormal basis for the row space of X.

Master of Science Thesis C.V.M.M. Vorage

28 Related Work and Theoretical Background

Theorem 2.1: Eckart-Young-Mirsky Theorem [18] [57]

The Eckart-Young-Mirsky theorem states that the best low-rank approximation in
Frobenius norm sense of any given matrix X ∈ RI×J can be made by discarding the
smallest singular values.
For a square matrix in SVD format, this means discarding σI by truncating the matrices
U , Σ, and V like shown in the equation below.

SVD(X) =

... · · ·

...
...

u1 . . . uI−1 uI
... · · ·

...
...

σ1 0 0 0

0 . . . 0 0
0 0 σI−1 0
0 0 0 σI

· · · v1 · · ·
...

...
...

· · · vI−1 · · ·
· · · vI · · ·

(2-36)

Definition 2.17: Multilinear Singular Value Decomposition (MLSVD)

The MLSVD decomposes a tensor X ∈ RI1×I2×···×IN into an all-orthogonal, ordered
core tensor Λ ∈ RR1×R2×...×RN and orthonormal factor matrices [U (1), . . . , U (N)] ∈
RIi×Ri ∀ i ∈ N . In mathematical terms this can be denoted like shown below.

X = Λ×1 U
(1) ×2 . . .×N U (N)

X =
R1∑

r1=1
· · ·

RN∑
rn=1

λr1,...,rN u(1)
r1 ◦ · · · ◦ u(N)

rN
=
[
Λ;U (1), . . . , U (N)

] (2-37)

The MLSVD can be viewed as an unconstrained version of the CPD. The difference between
them can be seen in the separate summation for each rank {R1, . . . , RN} and the accompa-
nying norm λr1,...,rN .

Figure 2-12 shows two graphical representations of the MLSVD for a 3rd-order tensor. Fig-
ure 2-12a shows a 3D visualization while Figure 2-12b shows the tensor network diagram.
The MLSVD consists of a 3D core tensor Λ and factor matrices [U (1), U (2), U (3)].

XI1

I2

I3

U (1)

R1

I1 ΛR1

R2

R3

U (2)

I2

R2

U (3)

R3
I3

(a) 3D visualization of MLSVD.

X

I1 I2 I3

U (1)

I1

Λ

U (3)

I3

U (2)

I2

R2R1

R3

(b) Tensor network diagram of MLSVD.

Figure 2-12: Graphical representations of the Multilinear Singular Value Decomposition.

C.V.M.M. Vorage Master of Science Thesis

2-3 Multilinear Algebra & Tensor Decomposition Methods 29

Algorithm 2 shows the steps that need to be performed to obtain the MLSVD for any tensor
X ∈ RI1×I2×···×IN . The first step is to compute the factor matrices [U1, . . . , UN] which can be
done by performing an SVD on each mode-n matricization like shown in the equation below.

svd(X(n)) = U (n)Σ(n)V (n)T (2-38)

The core tensor Λ can then easily be constructed using the multiplications shown in Equa-
tion 2-39. The factor matrices [U (1), . . . , U (N)] are defined to be orthonormal, meaning
U (n)U (n)T = I ∀ n =⇒ U (n)T = (U (n))−1 ∀ n.

X = Λ×1 U
(1) ×2 . . .×N U (N)

X×N (U (N))−1 = Λ×1 U
(1) ×2 . . .×N−1 U

(N−1)

X×N U (N)T = Λ×1 U
(1) ×2 . . .×N−1 U

(N−1)

...
Λ = X×1 U

(1)T ×2 . . .×N U (N)T

(2-39)

Algorithm 2 Multilinear Singular Value Decomposition (MLSVD) [14],[81]
Require: Tensor X ∈ RI1×I2×···×IN ,

1: Λ← X
2: for n = 1 to N do
3: [U (n),Σ(n), V (n)]← SVD(X(n))
4: Λ← Λ×n U

(n)T

5: end for
6: return Λ, [U (1), . . . , U (N)]

After obtaining the MLSVD using Algorithm 2, the user is able to truncate the decomposition
by specifying the ranks {R1, R2, . . . , RN} for each mode. Determining the ranks can be done
by inspecting the dominant modes in each mode-n matricization.
The data complexity of the truncated MLSVD (also known as Tucker decomposition) is
dependent on the chosen ranks {R1, R2, . . . , RN}. Equation 2-40 shows this denoted mathe-
matically, where the complexity is reduced from being exponential in N , to being exponential
in R.

O(X) =
N∏

n=1
In

O(Tucker(X)) =
N∑

n=1
InRn +

N∏
n=1

Rn

(2-40)

The truncated MLSVD using user-defined ranks {R1, R2, . . . , RN} is however not optimal in
least-squares sense [40]. Hence, in order to compute an optimal rank-{R1, R2, . . . , R3} de-
composition, an ALS-type algorithm such as the Higher-Order Orthogonal Iteration (HOOI)
can be used [16].

Master of Science Thesis C.V.M.M. Vorage

30 Related Work and Theoretical Background

2-3-8 Tensor Train (TT)

The third tensor decomposition that will be discussed is the Tensor Train (TT) [64]. Similar
to the CPD and MLSVD, the tensor train also denotes a tensor as a summation of rank-1
terms.

Definition 2.18: Tensor Train (TT)

The equation below shows the TT denoted in mathematical terms.

X =
R1∑

r1=1
. . .

RN−1∑
rN−1=1

x(1)
:,r1 ◦ x(2)

r1,:,r2 ◦ . . . ◦ x(N)
rN−1,: (2-41)

The summations over an indivual TT-rank {R1, R2, . . . , RN−1} occur only between
consecutive vector outer products, hence the name: Tensor Train.

Figure 2-13 shows the tensor network diagram for the TT. The diagram shows the TT-cores
[U (1), U (2), . . . , U (N)] and the TT-ranks {R1, R2, . . . , RN−1}.

X

I1 I2

. . .
IN

U (1)

I1

U (2)

I2

. . . U (N−1)

IN−1

U (N)

IN

R1 R2 RN−2 RN−1

Figure 2-13: Tensor network diagram of Tensor Train Singular Value Decomposition (TT-SVD)

The complexity of the tensor X ∈ RI1×I2×···×IN is reduced from being exponential in N , to
quadratic in the rank R and linear in I and N , as can be seen in Equation 2-42.

O(X) =
N∏

n=1
In

O(TT-SVD(X)) = (N − 2)IR2 + 2IR ≤ NIR2
(2-42)

Tensor Train Singular Value Decomposition (TT-SVD)

A useful algorithm to obtain TT decomposition is the Tensor Train Singular Value Decom-
position (TT-SVD) [64]. An important element of this TT-SVD is the δ-truncated SVD
explained in Definition 2.19.

C.V.M.M. Vorage Master of Science Thesis

2-3 Multilinear Algebra & Tensor Decomposition Methods 31

Definition 2.19: δ-truncated SVD

The δ-truncated SVD is a low-rank approximation of any matrix X ∈ RI×J based on
Theorem 2.1. It uses the Singular Value Decomposition to divide the singular values
into two sets: {Σ1,Σ2}.

X =
(
U1 U2

)(Σ1
Σ2

)(
V T

1
V T

2

)
(2-43)

The second set Σ2 is truncated from the SVD, resulting in the low-rank approxima-
tion X̃ = U1Σ1V

T
1 . The resulting approximation error is equal to the squares of the

discarded singular values.

∥X − X̃∥2F = ∥Σ2∥2F =
max(I,J)∑
r=R+1

σ2
r (2-44)

By design, this approximation error lies below the specified error bound δ.

∥X − X̃∥2F ≤ δ (2-45)

Note: For notational convenience, the δ-truncated SVD is denoted by: svdδ(. . .).

The Tensor Train Singular Value Decomposition (TT-SVD) is shown in Algorithm 3. It takes
as input any tensor X ∈ RI1×I2×···×IN , and an allowed relative error of the decomposition ϵ.

The algorithm starts by calculating the allowed truncation error per mode δ (line 1), creates
a placeholder for tensor X (line 2), and sets rank r0 to 1 (line 2).

The next steps (line 4-7) are performed for the first N − 1 modes of tensor X, and can best
be explained using tensor network diagrams.

Figure 2-14 shows the operations for the first mode, where n = 1. The tensor is reshaped
using a mode-1 matricization (line 4) and a δ-truncated SVD is performed on the result (line
5). The truncated orthonormal matrix U

(1)
1 containing the left singular vectors of the SVD

is reshaped using the rank information {r0, r1} and stored as the first core G1 (line 6). The
product of the remaining matrices Σ(1)

1 V
(1)T

1 is stored as C and used for obtaining the next
core.

X

I1 I2

. . .
IN

reshape
X<1>

I1 I2 . . . IN

svdδ
U

(1)
1I1

Σ(1)
1R1

V
(1)

1R1 I2 . . . IN

Figure 2-14: Operations for obtaining the first core (U (1)
1) of TT-SVD.

Figure 2-15 shows the operations for the second mode, where n = 2. The remaining matrix
product Σ(1)

1 V
(1)T

1 is reshaped, and a δ-truncated SVD is performed on the result. The
truncated left singular vector matrix U (2)

1 is reshaped and stored as the second core G2, while
the remaining matrix product Σ(2)

1 V
(2)T

1 is used to obtain the next core.

Master of Science Thesis C.V.M.M. Vorage

32 Related Work and Theoretical Background

Σ(1)
1 V

(1)T
1I1 I2 . . . IN

reshape

R1I2 I3 . . . IN

svdδ
U

(2)
1I1R1

Σ(2)
1R2

V
(2)

1R2 I3 . . . IN

Figure 2-15: Operations for obtaining the second core (U (2)
1) of TT-SVD.

Algorithm 3 Tensor Train Singular Value Decomposition (TT-SVD) [64]
Require: Tensor X ∈ RI1×I2×···×IN , Allowed relative error ϵ

1: δ ← ϵ√
N−1∥X∥F

2: C ← X, r0 ← 1
3: for n=1 to N-1 do
4: C ← reshape(C, [rn−1Ik, :])
5: [U,Σ, V, rn]← svdδ(C)
6: Gn ← reshape(U, [rn−1, In, rn])
7: C ← ΣV T

8: end for
9: GN ← C

10: return Tensor B = [G1, . . . GN] in TT-form

This process of reshaping and performing δ-truncated SVD’s is done for the first N−1 modes.
The end result is displayed in Figure 2-16. The decomposition consists of N − 1 orthonormal
cores [U (1)

1 , . . . , U
(N−1)
1], and a norm-core Σ(N)

1 V
(N)T

1 located in the N -th position.

X

I1 I2

. . .
IN

U(1)
1

I1

U(2)
1

I2

. . . U(N−1)
1

IN−1

Σ(N)
1 V(N)T

1

IN

R1 R2 RN−1 RN−1

Figure 2-16: Tensor network diagram of Tensor Train Singular Value Decomposition (TT-SVD).

A python implementation of the TT-SVD algorithm is shown in Appendix A-3.

C.V.M.M. Vorage Master of Science Thesis

Chapter 3

Methodology

This chapter will introduce the methodology regarding the baseline approach and the 3 novel
approaches of applying tensor decomposition methods for PCC. The baseline approach is
MPEG’s TMC3 [59], which will be covered in Section 3-1. The three novel approaches are
voxel-based, synthetic and geometry aware tensor decomposition methods, which will be
explained in Section 3-2, Section 3-3 and Section 3-4 respectively.

3-1 Baseline Approach

The baseline approach employed for PCC in this thesis is called TMC3 [59]. Liu et al.
(2019) created a schematic overview of the encoder architecture for TMC3, which is shown
in Figure 3-1. The overview shows that the geometry and attributes are encoded separately,
where the attribute-encoding depends on the geometry.

Figure 3-1: TMC3 Encoder Diagram [53].

For this thesis, the most relevant part of TMC3 is the geometry coding model, since LiDAR
data mainly consists of geometry features. The to be proposed novel approaches are based

Master of Science Thesis C.V.M.M. Vorage

34 Methodology

on exploiting the geometry of the data, and are thus primarily competitors for the geometry
coding model. The geometry coding model consists of two parts. The first part is the geometry
pretreatment and the second part is the geometry encoder.

Geometry Pretreatment During the geometry pretreatment, the first step is to convert the
3D world coordinates of the point cloud to frame coordinates. This is done through translation
([tx, ty, tz]T) and scaling (α) of all N points using Equation 3-1.

 xi

yi

zi

 = 1
α
·

 xworld

i

yworld
i

zworld
i

−
 tx
ty
tz

 ∀i ∈ N (3-1)

After coordinate conversion the coordinates of all points can be quantized in order to achieve
more compression at the expense of some reconstruction loss. This quantization is performed
using Equation 3-2. The equation shows that the minimum value over all points pmin =
[xmin, ymin, zmin]T is substracted from each point, multiplied by the position quantization
scale factor q and rounded off to the nearest integer.

p̆i = Round ((pi − pmin) · q) ∀i ∈ N (3-2)

Geometry Encoder The geometry encoder employed in TMC3 uses octree-based decompo-
sition. The first step in octree decomposition is to determine the maximum depth of the
octree. This is done by solving the inequality shown in Equation 3-3 for the smallest value
of n. The maximum value of the (quantized) frame coordinates is taken over all dimensions
(x, y, z) and all points (N), which results in the length (2n) of the 3D cube that will be used
to apply octree decomposition up to depth n.

2n ≥ max (max (xi) ,max (yi) ,max (zi)) ∀i ∈ N (3-3)

Figure 3-2 shows a graphical example of an octree decomposition for a fictitious point cloud
with only 3 points situated in the top-left front side of the 3D box. The root node of the
octree represents the entire 3D region and is divided into 8 smaller cubes called octants. Each
of the octants occupied with points is subdivided again resulting into 8 more octants at the
next level of depth. This process is repeated recursively until the required level of detail is
met, or a specific condition is met such as: all LiDAR points are placed in a separate octant,
which occurs at the maximum depth n. The right-hand side of Figure 3-2 shows how the
octree decomposition can be efficiently represented as three bytes.

The final step of TMC3 is to encode the bitstream resulting from the geometry encoder
using an arithmetic encoder, which gives as output a binary file containing the compressed
representation.

The key strength of TMC3 for LiDAR PCC is the combination of octree decomposition with
arithmetic encoding. The octree decomposition is well-suited for compressing sparse point
clouds, since it effectively skips regions with no occupancy. The resulting bitstream from the
octree decomposition can then conveniently be encoded using an arithmetic encoder.

C.V.M.M. Vorage Master of Science Thesis

3-2 Voxel-Based Tensor Decompositions for Point Cloud Compression 35

z

x

y

{0, 0, 1, 0, 0, 0, 0, 0}

{0, 0, 1, 0, 0, 0, 0, 0}

{1, 0, 1, 0, 0, 0, 0, 1}

Figure 3-2: Octree Decomposition

Lossy vs. Lossless TMC3 has the built-in functionality to perform lossless compression
(w.r.t. the quantization) as well as lossy compression. Lossless compression is achieved by
picking a small enough value for the position quantization scale factor q, and generating an
octree decomposition with maximum depth. Lossy compression is achieved conversely, for
example by decomposing the octree up to depth n− 1 or picking a large value for q.

3-2 Voxel-Based Tensor Decompositions for Point Cloud Compres-
sion

The first approach that will be discussed is applying tensor decomposition methods on voxel-
based representations for point cloud compression. However, before diving into the mathe-
matical formulation let us first discuss what the voxel-based representation entails and why
it would be a viable candidate for applying tensor decomposition methods.
Voxelization is defined as the process of discretizing the 3D space into equal sized volumes
called voxels. The voxels are small 3D cubes that combined build up the entire 3D space.
Figure 3-3 shows an example of a voxelized representation, where the red cubes denote voxels
that are occupied with LiDAR points.

z

x

y

Figure 3-3: Voxel-Based Representation

Figure 3-4 shows LiDAR data from the VoD dataset for several distinct road elements and

Master of Science Thesis C.V.M.M. Vorage

36 Methodology

road users. The road elements are the ground plane and the wall, which can accurately be
described as planar surfaces. The road users, which are the pedestrian, cyclist, scooter, and
truck can be approximately described by a set of planar surfaces or volumes.

(a) Ground Plane. (link) (b) Wall. (link) (c) Pedestrian. (link)

(d) Cyclist. (link) (e) Scooter. (link) (f) Truck. (link)

Figure 3-4: Road Elements and Users. Scan QR Code for 3D Render.

The reason why recognizing that road elements and users can be described as planar objects is
interesting is because tensor decomposition methods can effectively describe planar surfaces.
This is because planar surfaces are naturally low-rank structures of the 3D space they reside
in. Tensor decompositions are powerful methods designed to seek these low-rank structures
in order to reduce data complexity.

Figure 3-5 shows an approximation of the road users and road elements shown in Figure 3-4
using a rank-6 CPD. The elements are thus constructed using 6 vector outer products like
shown in Equation 3-4, which together build up the entire scene.

Figure 3-5: Road Users and Elements described as CPD.

X =
6∑

r=1
λrb(1)

r ◦ b(2)
r ◦ . . . ◦ b(N)

r

(3-4)

C.V.M.M. Vorage Master of Science Thesis

https://drive.google.com/file/d/1uxr-GUIw7bFNnAefMMzNs-PO0ewd39zI/view?usp=drive_link
https://drive.google.com/file/d/1V1YgQUbCWQEwVSSs_SnVAkE4rCtUpkwx/view?usp=drive_link
https://drive.google.com/file/d/18_koooEjBOfc00lSzIF0KoMUuEiZxLxk/view?usp=drive_link
https://drive.google.com/file/d/1U-x3ONJfzSyqnSeMmhpp6PkcuKDQAhQl/view?usp=drive_link
https://drive.google.com/file/d/1Vhxqd7z_Pl3IHppx0TMEbzd_K17VGsaO/view?usp=drive_link
https://drive.google.com/file/d/1pGtR1XexsQ1OD6-BLOsCdQ1gCz1XWgCI/view?usp=drive_link

3-2 Voxel-Based Tensor Decompositions for Point Cloud Compression 37

Definition 3.1: Voxelization

A point cloud V ∈ RP ×3 consisting of P points and 3 features per point can be voxelized
resulting in a tensor X ∈ RI1×I2×I3 , where {I1, I2, I3} refer to the size of the {x, y, z}
dimensions respectively.

x y z

P

3

Voxelization X

I1 I2 I3

The 3D space with range {xr, yr, zr} is discretized using a voxel dimension {xv, yv, zv}.

zr

zv

xr

xv

yr

yv

Figure 3-6: Voxelization.

The dimensions of the resulting tensor will be determined by the amount of voxels that
fit in each direction.

X ∈ R
xr
xv
× yr

yv
× zr

zv = RI1×I2×I2 (3-5)

The mapping for each point p = [x, y, z]T of V towards tensor X is determined by
calculating its tensor indices (i1, i2, i3) using the equation below, where "⌈ ⌉" denotes
the ceil function, and {x, y, z}min is the lowest value of {x, y, z} for all points in V.

(i1, i2, i3) =
(⌈px − xmin

xv

⌉
,

⌈py − ymin

yv

⌉
,

⌈pz − zmin

zv

⌉)
∀ p ∈ V (3-6)

The resulting tensor X will either be binary in case only the presence of any point is
counted, or occupancy-based in case the amount of points that reside in a voxel is
counted.

Definition 3.1 shows the mathematical formulation, which is used throughout this thesis
to describe the process of voxelization. When reconstructing a voxelized representation the

Master of Science Thesis C.V.M.M. Vorage

38 Methodology

inverse mapping is applied, and the presence of points within a voxel is determined by rounding
of the tensor element to an integer value.
As mentioned in Definition 3.1, voxelizing a point cloud is performed using two voxeliza-
tion parameters: the range of the 3D space, and the voxel dimensions. Table 3-1 shows
the voxelization parameters for three renowned backbones, which achieved state-of-the-art
performance on the nuScenes object detection benchmark.

Publication CenterPoint [87] SECOND [85] VoxelNeXt [11]

Range:

xmin xmax

ymin ymax

zmin zmax

−51.2 51.2
−51.2 51.2
−5 3

−49.6 49.6
−49.6 49.6
−5 3

−54 54
−54 54
−5 3

Voxel Size:

xv

yv

zv

0.1
0.1
0.2

0.05
0.05
0.2

0.075
0.075
0.2

Table 3-1: Configurations of state-of-the-art voxel-based backbones for nuScenes object detection
benchmark [62].

As can be seen from the table above, the ranges and voxel dimensions are quite similar.
For this thesis the 3D range and voxel dimensions of VoxelNeXT are used for performing
voxelizations of point clouds. These voxelizations then result in a tensor of dimension:

X ∈ R
xr
xv
× yr

yv
× zr

zv = R
108

0.075 ×
108

0.075 ×
8

0.2 = R1440× 1440× 40 (3-7)

Voxelizing a point cloud discretizes the 3D space, and forces all points to lie onto a 3D integer
lattice. This process causes an inherent loss to occur, without any compression gains.

Figure 3-7: Original(red) and Voxelized(blue) LiDAR from VoD dataset using VoxelNeXt Voxel
Dimensions [65],[11]. PSNR-NN: 64.20. Scan QR Code or click on link for 3D Render.

Figure 3-7 shows a visualization of a sample from the VoD dataset with the original(red) and
voxelized(blue) LiDAR. The voxelization results into a drop from an infinite/perfect PSNR-
NN (no voxelization), to a value of: 64.20. This value is already lower (worse) than the

C.V.M.M. Vorage Master of Science Thesis

https://drive.google.com/file/d/1PM087-j-dhLnV3_X-Z5UWFArX_nMDC3j/view?usp=drive_link

3-3 Synthetic Tensor Decompositions for Point Cloud Compression 39

PSNR-NN obtained after applying lossless compression using the baseline method TMC13
onto the same sample. TMC13 obtained a PSNR-NN of: 106.69.

3-2-1 Tensorized Voxelizations

In order to exploit more of the similarities in local geometry voxel-based representations could
be tensorized along either of the coordinate axis. Figure 3-8 shows an illustration of what
such a tensorization along both the x and y coordinate axes would look like. The image shows
how a tensor of dimension 12× 12× 4 is reshaped into a tensor of dimension 4× 3× 4× 3× 4.

4

12

12

Tensorize

4

4× 3

4× 3

Figure 3-8: Tensorizing a voxel-based representation along the x and y coordinate axes.

The idea is that elements such as walls or road users appear multiple times in various (x,y)-
locations in the scene. Possibly, tensorizing the voxelized representations could aid in exploit-
ing this phenomenon. The voxel-based representation employed in this work is of dimension
X ∈ R1440×1440×40. Equation 3-8 shows how this voxelization is tensorized along the x- and
y- coordinate axis, resulting in a reshaped tensor with 5 modes instead of 3.

X ∈ R1440×1440×40 Tensorize−−−−−−→ X ∈ R40×36×40×36×40 (3-8)

3-3 Synthetic Tensor Decompositions for Point Cloud Compression

The second approach that will be discussed is synthetic tensorization. This approach circum-
vents the problem of obtaining a highly sparse and voluminous tensor, which occurs during
voxelization of a sparse point cloud. It does this by directly tensorizing the LiDAR data in
tabular form. Definition 3.2 introduces this tensorization technique as synthetic tensoriza-
tion, since the modes and their sizes need to be artificially chosen.

Master of Science Thesis C.V.M.M. Vorage

40 Methodology

Definition 3.2: Synthetic Tensorization

A point cloud V ∈ RP ×3 consisting of P points and 3 features per point can be syn-
thetically tensorized by dividing the P points into N modes such that:

P = I1 · I2 · . . . · IN (3-9)

The point cloud V denoted in tabular form below is reshaped using a synthetic set of
dimensions [I1, . . . , IN] resulting into the tensor: X ∈ RI1×I2×...×IN ×3.

x y z

P

3

Synthetic

Tensorization
X

I1 I2

. . .
IN 3

Using Matlab notation this operation can be denoted as:

X = reshape(V, [I1, . . . , IN , 3]) (3-10)

Note: Synthetic tensorization uses the little-endian convention (Definition 2.1).

An important consequence of the formulation in Definition 3.2, is that in order to successfully
tensorize the LiDAR data, the multiplicative property below needs to hold.

P = I1 · I2 · . . . · IN (3-11)

This means that the number of points in the cloud needs to be equal to the product of the
sizes in the first N dimensions [I1, . . . IN] of the to be created tensor. In order to satisfy this
constraint some LiDAR points will have to be discarded. Choosing which points are discarded
is based on their Euclidean distance to the LiDAR reference frame. The points furthest away
are discarded first, since points closer to the vehicle are deemed much more valuable in an
automotive setting. For example, detecting a pedestrian at close proximity to the vehicle is
a much more urgent task, than one located at a large distance.

The modes and the sizes of each mode need to be determined prior to synthetic tensorization.
Equation 3-12 shows the synthetic tensorization parameters that will be explored. These
parameters can adhere to the constraint in Equation 3-11, since they contain fewer elements
than the minimum amount of points across all clouds in the dataset which is: 64273.

C.V.M.M. Vorage Master of Science Thesis

3-4 Geometry Aware Tensor Decompositions for Point Cloud Compression 41

Set 1 := (3, 3, 3, 3, 3, 3, 3, 3, 3, 3) since 310 = 59049 ≤ 64273
Set 2 := (6, 6, 6, 6, 6, 6) since 66 = 46656 ≤ 64273
Set 3 := (9, 9, 9, 9, 9) since 95 = 59049 ≤ 64273
Set 4 := (15, 15, 15, 15) since 154 = 50625 ≤ 64273
Set 5 := (40, 40, 40) since 403 = 64000 ≤ 64273
Set 6 := (253, 253) since 2532 = 64009 ≤ 64273

(3-12)

In tensor network diagram notation these synthetic tensorizations can be visualized like shown
in Figure 3-9.

X

3 3 3 3 3 3 3 3 3 3 3

X

6 6 6 6 6 6 3

X

9 9 9 9 9 3

X

15 15 15 15 3

X

40 40 40 3

X

253 253 3

Figure 3-9: 6 Different Synthetic Tensorizations.

3-4 Geometry Aware Tensor Decompositions for Point Cloud Com-
pression

The third approach that is considered is geometry aware tensor decomposition for PCC.
This approach is in essence a combination of the voxel-based method and the synthetic
tensorization-based method. The goal of this tensorization method is to tensorize the LiDAR
data in such a way that the location of a point within the tensor (X(i1,i2,i3)) corresponds
with its real-world location (p = [x, y, z]T). Definition 3.3 denotes this tensorization method
formally.

Master of Science Thesis C.V.M.M. Vorage

42 Methodology

Definition 3.3: Geometry Aware Tensorization

A point cloud V ∈ RP ×3 with Cartesian range {xr, yr, zr} consisting of P points and
3 features per point can be tensorized geometry aware by dividing the P points into 3
modes such that:

P = I1 · I2 · I3, (I1 : I2 : I3) ≈ (xr : yr : zr) (3-13)

The size of each mode is thus in proportion to the range of values points can have in
that mode.
The next step is to order the points in the point cloud in such a way that after ten-
sorization, their location in the tensor will (roughly) correspond with their real-world
location. This can be done using two approaches:

• Hierarchical Approach Subsection 3-4-1

• Assignment Problem Subsection 3-4-2

The last step is to reshape the ordered point cloud V using the calculated set of di-
mensions [I1, I2, I3] resulting into the tensor: X ∈ RI1×I2×I3×3.

x y z

P

3

Geometry Aware

Tensorization
X

I1 I2 I3 3

Note: Synthetic tensorization uses the little-endian convention (Definition 2.1).

The reason why geometry aware tensorization could be a fruitful method is because it com-
bines the advantages of the voxel-based and synthetic tensorization methods. LiDAR points
are being given a location in the tensor (X(i1,i2,i3)) based on their [x, y, z]-values. Neighbour-
ing real-world points will thus be given neighbouring tensor indices. This could allow for
tensor decomposition methods to exploit the similarity in neighbouring points/tensor indices,
since they will likely be part of the same low-rank planar structure in the real world. Contrary
to the voxel-based method, this method does not result in a highly sparse and voluminous
tensor. Hence, compression gains can instantly be acquired by truncating any singular values
using tensor decomposition methods.

3-4-1 Hierarchical Approach

One approach to achieve a geometry aware tensorization of a LiDAR point cloud is to use
hierarchic division with sorting. The idea can best be illustrated by viewing Figure 3-10. The
first step is to sort the points in the cloud by one of their geometry features {x, y, z}. In
the example this is done using their z-location. The next step is to divide the sorted cloud

C.V.M.M. Vorage Master of Science Thesis

3-4 Geometry Aware Tensor Decompositions for Point Cloud Compression 43

into level sets. In the example there are 3 z-level sets. The points in these 3 level sets will
become the: bottom-, middle-, and top-layer of the tensor. The next step is to order the
z-level sets by another geometry feature. In the example this is the x-location. This then
allows for creating 7 x-level sets for each z-level set. These x-level sets are the mode-3 fibres
of the tensor. The last step is to sort the mode-3 fibres based on their y-location, with as
result an hierarchically divided point cloud based on their Cartesian values.

x

z y

Figure 3-10: Hierarchical approach for geometry aware tensorization.

3-4-2 Assignment Problem

The hierarchical approach is an efficient and relatively easy-to-implement method, that often
results in a decent mapping of LiDAR points to tensor indices. It does however not result in
an optimal assignment of points in any sense. An alternative method to tackle the problem
of assigning points to tensor indices is to formulate it as an assignment problem [9]. A
formulation as assignment problem will allow for penalizing the placement of points in the
tensor using a cost function. This cost function can for example be the Frobenius error of a
point’s "ideal" location with respect to its true location in the tensor.

The first step in the assignment problem approach is to create a location tensor L with the
calculated dimensions (I1, I2, I3) using Equation 3-13.

L = RI1×I2×I3×3 (3-14)

The second step is to fill each mode-4 fibre of this location tensor. The values of the mode-4
fibres are calculated by mapping the location tensor indices to real-word Cartesian values.
Equation 3-15 shows how the entries of the location tensor are calculated. The param-
eters {xbox, ybox, zbox} represent the size of a voxel when discretizing the range of the scene
{xr, yr, zr} using parameters {I1, I2, I3}. The parameters {xmin, ymin, zmin} are the minimum
values of the scene.

L(i1, i2, i3, :) =

xmin + xbox ·

(
i1 + 1

2

)
ymin + ybox ·

(
i2 + 1

2

)
zmin + zbox ·

(
i3 + 1

2

)
 ∀ {i1, i2, i3} ∈ {I1 × I2 × I3}

xbox = xr

I1
, ybox = yr

I2
, zbox = zr

I3

(3-15)

Master of Science Thesis C.V.M.M. Vorage

44 Methodology

The third step is to compute the mode-4 matricization (L(4)) of the tensor resulting in location
matrix L like shown in Equation 3-16.

L = L(4) ∈ RI1I2I3×3 (3-16)

The location matrix L can then be used to calculate the placement error ej,k. The placement
error is defined as the Frobenius loss of placing point j in location k in the tensor. This
placement error is calculated for all N points and all N locations.

ej,k = ||pj − Lk,:||22 ∀ {j, k} ∈ {N ×N} (3-17)

All these placement errors can be stored in a single matrix C ∈ RN×N , called the cost matrix.
In this matrix a row corresponds to a point, and a column to a location in the tensor.

C =

 e1,1 . . . e1,N
...

eN,1 . . . eN,N

 (3-18)

This cost matrix can then be used to formulate a linear sum assignment problem [15] like
shown in Equation 3-19.

min
∑

j

∑
k

Cj,kXj,k∑
j

Xj,k = 1 ∀j ∈ N

∑
k

Xj,k = 1 ∀k ∈ N

(3-19)

The Boolean matrix X denotes whether point j is assigned to location k. Summations across
all rows and all columns of X will always sum up to 1, since each point can only be assigned
once and each location can only occupy one point.

Solving this problem can be done using various methods such as the Hungarian Algorithm [43],
or Jonker-Volgenant Method [37]. This thesis uses a modification of the Jonker-Volgenant
Method [15] with a guarantee of computational complexity in the order O(N3) compared to
the Hungarian method which has O(N4), where N is the dimension of the cost matrix.

3-4-3 Experiment Overview

Figure 3-11 shows an overview of the proposed experiments as well as the baseline model
TMC3, which is displayed in the grey box.

C.V.M.M. Vorage Master of Science Thesis

3-4 Geometry Aware Tensor Decompositions for Point Cloud Compression 45

x y z

P

3

Voxelization
1. Binary
2. Occupancy

z

x
y

Synthetic
Tensorization

1. Random
2. Heuristic

X

I1

. . .

IN 3

Geometry Aware
Tensorization
1. Hierarchical
2. Assignment Problem

X

N1N2N3 3

TMC3

Geometry
Pretreatment Translation

& Scaling
Octree

z

x
y

Arithmetic
Encoding

Tensorization

4 4× 3

4× 3

TD

TD

TD

TD

Tensor Decompositions

Canonical Polyadic Decomposition

R∑
r=1

b(1)
r

I1

b(2)
r

I2

b(3)
r

I3

11

Tucker Decompositon

U (1)I1 Λ

U (3) I3

U (2) I2
R2R1

R3

Tensor Train Decomposition

U (1)

I1

U (2)

I2

. . . U (N−1)

IN−1

U (N)

IN

R1 R2 RN−2 RN−1

Figure 3-11: Overview of the proposed experiments. The grey box displays the baseline model:
TMC3

Master of Science Thesis C.V.M.M. Vorage

46 Methodology

C.V.M.M. Vorage Master of Science Thesis

Chapter 4

Experiments

This chapter will begin by introducing the experimental setup in Section 4-1. Afterwards, the
experimental results of the baseline method will be established in Section 4-2. Section 4-3,
Section 4-4, and Section 4-5 will discuss the results for the three novel approaches: Voxel-
Based, Synthetic Tensorization, and Geometry Aware Tensorization for PCC respectively.

4-1 Experimental Setup

View of Delft Dataset Evaluating the baseline method and all proposed novel methods in
Chapter 3 will be done using samples from the View of Delft (VoD) dataset [65]. In order to ob-
tain a fair comparison between all approaches, the same 10 samples will be used for all methods
unless stated otherwise. The sample ID’s are: [00000, 01000, 02000, 03000, 04000, 05000, 06400,
07000, 08000, 09000]. These samples are purposefully chosen to lie far away from each other
temporally, as to avoid similarities between samples. When performing qualitative analysis a
different sample with ID [01222] will be used for all methods.

The premise of this thesis is that the geometry of LiDAR point clouds might inherently
contain low-rank structures suitable for tensor decompositions. Hence, in order to get the
most unbiased comparison to the geometry coding model of the baseline method (TMC3),
only the geometry features [x, y, z] of the LiDAR data will be decomposed.

In order to assess the performance of a codec, two objective metrics are required. One metric
is needed to determine the quality of the reconstruction, and another to determine the amount
of compression achieved. These metrics are the PSNR-NN and BPP respectively.

PSNR-NN The metric chosen to assess the quality of the reconstruction is the two-sided
Peak Signal-to-Noise Ratio Nearest Neighbour Loss (PSNR-NN), which is displayed in Equa-
tion 4-1.

Master of Science Thesis C.V.M.M. Vorage

48 Experiments

PSNR-NN = 10 log10

(Ω2

NNmax
loss

)
Ω = max

(
xmax − xmin, ymax − ymin, zmax − zmin

)
NNmax

loss = max
(
NNloss(Vorig,Vrec), NNloss(Vrec,Vorig)

)
NNloss(VA,VB) =

√√√√ 1
P

∑
p∈VA

∥∥p− pBnn

∥∥2
2

(4-1)

The nearest neighbour loss (NNloss) of point cloud VA with respect to point cloud VB is
defined as the square root of the average Euclidean distance between each point in VA and
its nearest neighbour in VB. The PSNR-NN takes the maximum over the NNloss of the
original point cloud Vorig with the reconstruction Vrec and vice versa. The reason why taking
the maximum is important can be explained using Figure 4-1. Figure 4-1a shows a dummy
example of two 2D point clouds: VA (red) and VB (blue). The NNloss of VA with respect to
VB is quite small and is visualized using the arrows displayed in Figure 4-1b. On the contrary,
the NNloss of VB with respect to VA displayed in Figure 4-1c is quite large, since a number
of points in VB are located at a great distance from the points in VA.

x

y

(a) Two 2D point clouds.

x

y

(b) NNloss(VA, VB).

x

y

(c) NNloss(VB , VA).

Figure 4-1: The two-sided nearest neighbour loss for a 2D point cloud.

Interpreting VA as the original point cloud and VB as its reconstruction allows for concluding
that the reconstruction contains a great amount of false positives. These false positives are
reflected into a high NNloss, causing a low PSNR-NN. Interpreting VB as the original point
cloud and VA as its reconstruction allows for making a similar argument, but now regarding
a high amount of false negatives. Hence, the two-sided NNloss is a great measure for limiting
the amount of false predictions.
The parameter Ω is defined as the maximum distance between points across each of the
coordinate axes. This parameter allows for comparing performance between two point clouds
with a different scale, i.e. a larger NNmax

loss is permitted for a point cloud with a larger range
of (x, y, z)-values in order to obtain a similar PSNR-NN. The PSNR-NN is bounded between
0 and infinity, where a perfect reconstruction results in an infinite PSNR-NN score.
Another type of loss, which is often employed (in tensor decomposition methods) to calculate
the error between an original sample and a reconstruction is the Frobenius error shown in
Equation 4-2.

C.V.M.M. Vorage Master of Science Thesis

4-1 Experimental Setup 49

Frobenius Error = ∥VA − VB∥F
∥VA∥F

(4-2)

The Frobenius error is however not a suitable error metric for point cloud compression. This
is because the Frobenius error uses the element-wise difference between points in the cloud.
An element-wise difference assumes that the reconstructed points should be found at the
exact same index they were in the original point cloud. This is a hard constraint which is
unnecessary, since the ordering of points in the point cloud does not affect the reconstruction
quality.

BPP In order to asses how much compression each method achieves, a compression metric
applicable to both the baseline method and the competing tensor decomposition methods
needs to be chosen. This metric is called the Bits Per Point (BPP) and is widely used across
PCC literature [5, 53, 91]. The BPP can simply be calculated by dividing the size in bits
of an encoded representation by the amount of points in the cloud it encodes, like shown in
Equation 4-3. Consequently, the BPP is an effective metric for comparing compression across
point clouds of different sizes.

BPP = Amount of Bits
Amount of Points (4-3)

The baseline method outputs a binary file, which contains the compressed representation of
the LiDAR point cloud. Computing the BPP can thus be done by evaluating the size of this
file and the amount of points it encodes. For the competing tensor decomposition methods,
the amount of bits can be obtained by multiplying the amount of independent elements in
the tensor decomposition by the precision in bits used to represent each element. This then
raises the question: what precision is needed to effectively represent the tensor decomposition
elements?

This thesis investigates applying tensor decompositions on 3 different representations: Voxel-
based, Synthetic Tensorization and Geometry Aware Tensorization. Regarding the voxel-
based representations, 2 different options are considered: binary voxelization, and occupancy-
based voxelization. Although these representations contain binary and integer values respec-
tively that could be effectively represented using a small amount of bits, the tensor decom-
positions which define these representations do not. They consists of floating point elements,
similarly to the tensor decompositions obtained using Synthetic and Geometry-Aware Ten-
sorization.

For all of these representations a precision must thus be picked based on the desired resolution
of tensor elements, which in turn depends on the desired resolution in [x, y, z] coordinates.
This presents a trade-off in terms of compression by means of precision in bits, and com-
pression resulting from tensor decomposition methods. For this thesis, the half-precision
floating-point format (16 bit) is chosen [33]. The reason why is because 16-bit encoding re-
sults in an acceptable precision at the edges of the scene. Table 3-1 showed that the maximum
geometry values for points is 54, hence using Equation 4-4 the maximum interval of floating
point precision can be defined.

Master of Science Thesis C.V.M.M. Vorage

50 Experiments

Interval = 2⌊log2(max (x,y,z))⌋−mantissa

Interval = 2⌊log2(54)⌋−10

Interval = 25−10 = 2−5 = 0.03125
(4-4)

This resolution interval at the edges of scene is deemed acceptable for automotive applications.
The resolution of 0.03125 meters is at least twice as accurate compared to the voxel sizes of
automotive applications such as VoxelNeXt [11], which is: [vx, vy, vz] = [0.075, 0.075, 0.2].

Comparing the BPP’s for both methods has two limitations. One small limitation is that
the binary file obtained using TMC3 holds metadata about the point cloud. This metadata
requires storage but does not directly store any points. A rather large limitation on the
side of tensor decomposition methods, is that the tensor elements itself are not being bitwise
compressed, which does occur in the baseline method. TMC3 uses this bitwise compression
in the final stages of the compression pipeline: the arithmetic encoder. Taking these factors
into account, the reader is advised to consider the obtained results of the tensor decompo-
sition methods as a proof of concept, which could be improved further by applying bitwise
compression techniques onto the decompositions.

Compression Rate Apart from the BPP an additional metric is used, which also denotes
the amount of compression achieved. This metric is the compression rate and is defined as:

Compression Rate = Elements in Tensor Decomposition
Elements in Original Data = O(TD)

N × 3 . (4-5)

The compression rate is an intuitive metric useful for comparing compression between tensor
decomposition methods. It utilizes an element-based view similar to tensor decomposition
methods, where compression is achieved by discarding an integer amount of elements.

4-2 Baseline Method: TMC3

Evaluating the baseline model is done by calculating the PSNR-NN and BPP for the 10
different samples taken at distinct timestamps from the VoD dataset. TMC3 has the option
to perform lossy compression as well as lossless compression. Table 4-1 shows the performance
of TMC3 on the VoD samples. The information is displayed in the format µ± σ, where µ is
the mean, and σ the standard deviation over the samples. Lossy compression is evaluated for
six different sets of compression parameters.

The table shows very high PSNR-NN values, which increase as the BPP increases. In other
words, a better reconstruction quality means more bits are needed to represent the data. The
time complexity increases for higher PSNR-NN values, except when using lossless compression.
A caveat regarding lossless compression of TMC3 is that it is lossless with respect to a
quantized representation of the data. In other words, the PSNR-NN is infinite (lossless) with
respect to the quantized resolution.

C.V.M.M. Vorage Master of Science Thesis

4-2 Baseline Method: TMC3 51

Compression Type PSNR-NN ↑ BPP ↓ Time (sec)

Lossy

52.5± 0.2 3.1± 0.2 0.09± 0.01
58.4± 0.2 3.3± 0.2 0.13± 0.02
70.0± 0.2 5.0± 0.4 0.38± 0.05
75.6± 0.2 6.6± 0.5 0.59± 0.05
87.4± 0.2 12.2± 0.7 0.96± 0.05
93.4± 0.2 15.5± 0.7 1.07± 0.06

Lossless 106.6± 0.2 22.8± 0.7 0.52± 0.03

Table 4-1: Performance of TMC3 on samples from VoD dataset. The information is displayed
in the format µ± σ, where µ is the mean, and σ the standard deviation over the 10 samples.

Figure 4-2: Performance curve of baseline model TMC3 on LiDAR samples from the VoD dataset
using lossy and lossless compression.

The information in Table 4-1 can also be displayed visually in the form of a performance
curve. Figure 4-2 shows this performance curve, which plots the PSNR-NN against the BPP.
The further a codec is located in the top-left of this plot the better.

Figure 4-3 shows the result of applying TMC13 on a single LiDAR sample using lossless
compression. The image shows the original LiDAR data in red, and the reconstructed LiDAR
data in blue. The reconstruction is a strong match with the original data resulting in a high
PSNR-NN value. Clicking on the link in the description or scanning the QR code will visualize
a 3D render of the scene.

Master of Science Thesis C.V.M.M. Vorage

52 Experiments

Figure 4-3: Original(red) and reconstructed using TMC3(blue) LiDAR data. PSNR-NN: 106.69.
BPP: 23.47. Scan QR Code or click on link for 3D Render.

4-3 Voxel-Based Tensor Decomposition for Point Cloud Compres-
sion

4-3-1 Voxel-Based CPD

The first tensor decomposition that will be explored is the CPD obtained using the CP-ALS
algorithm (Algorithm 1), visible in Appendix A-1-1. This is an iterative algorithm that com-
putes the least squares solution for each mode-n matricization of the problem in alternating
fashion. Because it is an iterative algorithm, it is important to first investigate whether the
algorithm converges and (roughly) within how many iterations. Figure 4-4 shows the Frobe-
nius error plotted against the iteration index for 6 different random initialization of the factor
matrices [B(1), B(2), B(3)]. The figure shows that all initializations converge and most do that
within 5-10 iterations. They do however not converge to the same value, which indicates some
or all runs get stuck in local minima.

Figure 4-4: Convergence of CP-ALS: Relative frobenius error of the decomposition plotted
against the iteration index for 6 random initializations. Most runs converge within 5-10 iterations.

Table 4-2 shows the performance of the CP-ALS algorithm using occupancy-based voxelization

C.V.M.M. Vorage Master of Science Thesis

https://drive.google.com/file/d/17HfAZlZsmKzHhecIXKTfIZr5h-MaQ2mn/view?usp=drive_link

4-3 Voxel-Based Tensor Decomposition for Point Cloud Compression 53

on a single sample. The table shows that when we increase the rank of the decomposition,
the quality of the reconstruction increases. The CP-ALS algorithm ran for only 5 iterations,
which already resulted in large computational times, specifically for high values of the rank.
The high computational times can partially be attributed to the cost of devoxelizing the
point cloud. This happens during each iteration and is the reason why finding a rank-1
decomposition already takes a long time. On the other hand, the computational time is
affected by the requested rank of the decomposition. A larger rank results in larger factor
matrices, which results in a larger system of equations that needs to be solved.

Rank 1 5 10 20 50 75

PSNR-NN ↑ 18.34 20.94 21.17 21.63 22.37 22.40
Compression Rate ↓ 1.08 % 5.41 % 10.81 % 21.61 % 54.03 % 81.05 %
BPP ↓ 0.51 2.59 5.16 10.2 25.2 37.4
Time (seconds) 162 183 218 268 400 973

Table 4-2: Performance of CPD using occupancy-based voxelization on a single sample.

Figure 4-5 shows the qualitative result of applying the CP-ALS algorithm on an occupancy-
based voxelization of a single sample. The image shows the original LiDAR in red and the
reconstruction of the CPD in blue. The reconstruction is heavily centered around the origin,
and points far away from this location are for the most part not reconstructed. The reason
why reconstruction is favoured around the origin, is believed to be caused by the density of
points in that area. The density of points is much higher close to the LiDAR reference frame,
due to the nature of how the LiDAR points are collected.

Figure 4-5: Original(red) and CPD(blue) of LiDAR using occupancy-based voxelization. PSNR-
NN: 22.40. BPP: 37.42. Compression rate: 81.05%. Scan QR Code or click on link for 3D
Render.

4-3-2 Voxel-Based Tucker Decomposition

Verifying MLSVD Algorithm Since the MLSVD algorithm is not an iterative algorithm like
the CPD, verifying its implementation can easily be done by visualizing the reconstruction

Master of Science Thesis C.V.M.M. Vorage

https://drive.google.com/file/d/1MtadcXLWDMhEFhhdDGCU__fXbko55zjm/view?usp=drive_link

54 Experiments

without any truncation. In other words, no singular values are being discarded. The data
is merely being transformed into a different format, where the most dominant modes are in
leading positions allowing for truncating the insignificant singular values. Figure 4-6 shows
this visualization. Up to numerical precision this is an exact reconstruction. This is verified
by the PSNR-NN of 64.20, which is exactly the same as the PSNR-NN of the voxelized
representation in Figure 3-7.

Figure 4-6: Original (red) and Tucker Decomposition without truncation (blue) of LiDAR using
occupancy-based voxelization. PSNR-NN: 64.20. Scan QR Code or click on link for 3D Render.

Scree Analysis A useful tool that can be used to quantitatively determine what values to
pick for the Tucker ranks is scree analysis [8]. The first step in scree analysis is to generate
the scree plot. The scree plot displays the singular values for each mode-n unfolding of the
tensor from large to small on a logarithmic scale. According to scree analysis, the relevant
components/factors are located to the left of the elbow joint (point of maximum curvature)
on a scree plot.

Figure 4-7: Singular Values of the Mode-n unfoldings for 3 Samples (Scree Plot). Singular value
decline across samples is similar. The amount of singular values per mode varies per sample.

Figure 4-7 shows the scree plot of the occupancy-based voxelization for 3 different samples.
The figure shows that mode-1 and mode-2 corresponding to the x- and y-axes embody relevant

C.V.M.M. Vorage Master of Science Thesis

https://drive.google.com/file/d/1HobpfG5wSjTykoicGPavwn1DLd_aF5lh/view?usp=drive_link

4-3 Voxel-Based Tensor Decomposition for Point Cloud Compression 55

components, but also noise which does not contribute to describing the scene. This implies
that a Tucker decomposition with truncations specifically in the first two modes could be used
to reduce the complexity of the data without sacrificing too much in terms of reconstruction
performance.

Figure 4-8: Snapshot of (narrow) LiDAR
Point Cloud, Frame: 04000.

An interesting observation regarding Fig-
ure 4-7 is that the amount of singular val-
ues in mode-2 varies across the different
point clouds. This phenomenon is directly
related to the real world location of the ve-
hicle, and more specifically to the view of
the LiDAR sensor. Some streets have tall
buildings close to the curb causing the emit-
ted light pulses to directly reflect on the
surface. Any objects behind these build-
ing are not captured using the LiDAR sen-
sor, and are therefore unrepresented in the
point cloud. Figure 4-8 shows the LiDAR
point cloud belonging to Frame: 04000 (•)
in Figure 4-7. The image shows that the range of points in the y-direction is limited, causing
fewer singular values to be present in the mode-2 matricization.

Table 4-3 shows the performance of the Tucker decomposition using binary and occupancy-
based voxelization. The Tucker ranks, PSNR-NN, BPP, compression rate, and time needed
to acquire the decomposition is shown. The table shows a number of interesting findings.

Tucker Ranks
PSNR-NN ↑

BPP ↓ Compression
Rate

↓ Time
(sec)

Binary Occupancy

(1440,1440,40) 64.1 ± 0.3 64.1 ± 0.3 15006 ± 1034 31591 ± 2153 % 37.9 ± 1.0
(1000,1000,35) 60.6 ± 2.8 60.5 ± 2.9 6560 ± 447 13665 ± 932 % 37.4 ± 1.0

(600,600,30) 44.8 ± 6.4 45.5 ± 6.7 2159 ± 147 4497 ± 307 % 38.1 ± 0.6
(300,300,25) 32.5 ± 4.7 34.4 ± 5.8 536 ± 37 1118 ± 76 % 37.9 ± 0.6

(62,62,12) 26.2 ± 3.2 26.7 ± 4.2 39.7 ± 2.7 82.7 ± 5.6 % 38.3 ± 0.8

Table 4-3: Performance of Tucker Decomposition using binary and occupancy-based voxelization.
The information is displayed in the format µ±σ, where µ is the mean, and σ the standard deviation
over the 10 samples.

First of all, the occupancy-based voxelization performs a little better compared to the bi-
nary voxelization but not by a significant margin. Secondly, the time it took to find each
decomposition is roughly the same for all Tucker ranks, which is as expected since the time
complexity of the MLSVD algorithm is dependent on the size of the tensor to be decomposed
and not on the Tucker ranks (R1, R2, R3). Finally, the most important finding is shown in the
compression rate and BPP columns. The columns show that in order to acquire compression
(compression rate < 100% or BPP < 46), the MLSVD needs to be truncated considerably.
The Tucker ranks need to be reduced from (1440, 1440, 40) to roughly (66, 66, 14) for at least

Master of Science Thesis C.V.M.M. Vorage

56 Experiments

some compression to occur. The reason why this happens, is because the voxel-based rep-
resentation of size X ∈ R1440×1440×40 is highly voluminous and very sparse. Across the 10
samples the average amount of voxels that are non-empty is only 0.055 %, and the standard
deviation is 0.008 %. The calculation of the compression rate is performed with respect to the
size of the original LiDAR data which is of size V ∈ RP ×3. Hence, the voxel-based represen-
tation needs to truncate a lot of singular values before compression is achieved. Equation 4-6
shows the inequality that needs to be satisfied before compression is reached.

O(Tucker Decomposition) < O(V)
I1R1 + I2R2 + I3R3 +R1R2R3 < 3P

(4-6)

Figure 4-9 shows the result of applying the Tucker decomposition with ranks (R1, R2, R3) =
(62, 62, 12) onto the occupancy-based voxelization. A PSNR-NN of 22.27 and a compression
rate of 80.48% is achieved. Similar to the results of the CPD, the reconstruction is heavily
centered around the origin.

Figure 4-9: Original (red) and Tucker Decomposition with ranks (R1, R2, R3) = (62, 62, 12) of
LiDAR using occupancy-based voxelization. PSNR-NN: 22.27. BBP: 38.63. Compression rate:
80.48%. Scan QR Code or click on link for 3D Render.

4-3-3 Voxel-Based Tensor Train Decomposition

Verifying TT-SVD Algorithm Similar to the MLSVD algorithm, the implementation of
the TT-SVD algorithm can be verified by selecting a very small value for ϵ, which is the
hyperparameter for setting the allowed relative error of the decomposition. With a very small
ϵ, the TT-SVD algorithm will not be allowed to truncate any of the singular values in each
of the modes. The resulting reconstruction should up to numerical precision be an exact
reconstruction. Figure 4-10 verifies that the implementation is correct, since the PSNR-NN
value of 62.22 is equal to voxel-based representation shown in Figure 3-7.

Table 4-4 shows the results of applying the TT-SVD algorithm onto binary and occupancy-
based voxelizations for the 10 different samples. The table shows a few noteworthy observa-
tions. The occupancy-based voxelization performs slightly better than the binary voxelization,
except when a high ϵ value is present. Similar to the Tucker decomposition, the TT-SVD
algorithm has to truncate a very large amount of singular values before any compression is

C.V.M.M. Vorage Master of Science Thesis

https://drive.google.com/file/d/1wCv19IwUBfaLKGYj8iGzMypksBgFcM2W/view?usp=drive_link

4-3 Voxel-Based Tensor Decomposition for Point Cloud Compression 57

Figure 4-10: Original (red) and TT Decomposition without truncation (blue) of LiDAR using
occupancy-based voxelization. PSNR-NN: 64.20. Scan QR Code or click on link for 3D Render.

achieved. This is again related to the highly voluminous and very spare representation of the
tensor. Interesting to note is that the time complexity of the TT-SVD algorithm reduces as ϵ
increases. This happens because when ϵ is increased, the amount of singular values that get
truncated in each mode-n SVD get increased as well. This has a cascading effect, since the
algorithm uses the result from the truncated SVD in the current mode as input for the next
mode, which will then have fewer elements and therefore take less computational time.

ϵ
PSNR-NN ↑ Compression Rate (%) ↓ BPP ↓ Time

(sec)
Binary Occup. Binary Occup. Binary Occup.

0.01 64.1±0.3 64.1±0.3 24287±4277 24734±4200 11658±2053 11872±2016 39.9±2.2
0.1 63.7±0.3 64.0±0.3 21610±3925 23126±3985 10373±1884 11100±1913 39.6±2.4
1 58.2±2.1 61.7±2.1 14553±3425 18101±3336 6985±1644 8688±1601 38.1±2.2

10 42.3±3.1 49.0±2.7 5122±1594 8357±1674 2458±765 4011±804 35.4±1.8
100 28.6±2.9 30.4±1.7 748±380 559±269 359±182 268±129 32.7±1.2
290 25.4±2.0 19.4±1.6 76.9±3.2 33.1±3.0 36.9±1.6 15.9±1.4 32.8±1.3

Table 4-4: Performance of TT Decomposition using binary and occupancy-based voxelization.
The information is displayed in the format µ ± σ, where µ is the mean, and σ the standard
deviation over the 10 samples.

Figure 4-11 shows the qualitative result of applying the TT-SVD algorithm on an occupancy-
based voxelization. The decomposition achieves a PSNR-NN of: 28.90, and a compression
rate of 80.38%. Similar to the CPD and Tucker decomposition, the reconstruction is heavily
centered around the origin, which is believed to be caused by the high density of points in
that region.

Master of Science Thesis C.V.M.M. Vorage

https://drive.google.com/file/d/1jHj1BgwKhQLHkEzkXxb11y1wt3Ny65gj/view?usp=drive_link

58 Experiments

Figure 4-11: Original (red) and TT Decomposition of occupancy-based voxelization. PSNR-NN:
24.27. BPP: 34.21. Compression rate: 71.27%. Scan QR Code or click on link for 3D Render.

4-3-4 Tensorized Voxelizations

A possible solution to the reconstructions which are heavily centered around the origin of the
CP, TT, and Tucker decomposition is to tensorize the voxelized representation as described
in Subsection 3-2-1. This tensorization of the voxelization could aid in exploiting more of the
similarities in local geometry.

Voxel-Based Tensorization of Tucker Decomposition

Table 4-5 shows the performance of applying the MLSVD algorithm onto the tensorization
of the voxelized representation for the 10 different samples. The table shows that the perfor-
mance of the occupancy-based voxelization is slightly better than the binary voxelization.

Tucker Ranks
PSNR-NN ↑

BPP ↓ Compression
Rate

↓ Time
(sec)

Binary Occupancy

(12,12,12,12,11) 26.0 ± 2.7 26.3 ± 2.4 41.7 ± 2.8 86.9 ± 5.9 % 38.3 ± 0.8

Table 4-5: Performance of Tucker Decomposition using tensorization of binary and occupancy-
based voxelization. The information is displayed in the format µ ± σ, where µ is the mean, and
σ the standard deviation over the 10 samples.

Figure 4-12 shows the result of applying the MLSVD algorithm onto the tensorized occupancy-
based voxelization. Compared to the regular occupancy-based voxelization (Figure 4-9), an
increase in terms of PSNR-NN from 22.27 to 26.59 is obtained. Additionally, the reconstruc-
tion is less centered around the origin, but the result is not very signicant.

C.V.M.M. Vorage Master of Science Thesis

https://drive.google.com/file/d/1EjrAzVsFTIN7jiLlQwlo_0vVcWH2zrob/view?usp=drive_link

4-3 Voxel-Based Tensor Decomposition for Point Cloud Compression 59

Figure 4-12: Original (red) and Tucker Decomposition with Tucker-ranks (R1, R2, R3, R4, R5) =
(12, 12, 12, 12, 11) of LiDAR using tensorized occupancy-based voxelization. PSNR-NN: 26.59
Compression rate: 81.89 %. Scan QR Code or click on link.

Voxel-Based Tensorization of Tensor Train Decomposition

Table 4-6 shows the performance of the TT-SVD algorithm using a tensorized binary or
occupancy-based voxelization. The table shows a very high standard deviation for the com-
pression rate of both the binary and occupancy-based voxelizations. This is caused by the
parameter ϵ, which is quite sample specific. The same value for ϵ applied on two different
samples, can result in a large difference in compression ratio.

ϵ PSNR-NN ↑ BPP ↓ Compression Rate ↓ Time (sec)

Binary

205 23.1 ± 2.6 25.9 ± 30.6 53.9 ± 63.7 % 26.4 ± 1.9

Occupancy

185 23.3 ± 1.8 25.8 ± 18.6 53.8 ± 38.7 % 24.1 ± 3.0

Table 4-6: Performance of TT Decomposition using tensorization of binary and occupancy-based
voxelization. The information is displayed in the format µ ± σ, where µ is the mean, and σ the
standard deviation over the 10 samples.

Figure 4-13 shows the result of applying the TT-SVD algorithm onto a tensorized occupancy-
based voxelization. The algorithm achieves a compression ratio of 81.09%, and a PSNR-NN of
25.03. Compared to the TT-SVD of the regular occupancy-based voxelization (Figure 4-11)
a drop in PSNR-NN of 28.90 to 25.03 is observed.

4-3-5 Discussion

Table 4-7 shows the results of all the discussed tensor decompositions using a voxel-based
representation for a comparable compression rate. The table shows a few noteworthy find-
ings. None of the tensor decomposition methods significantly outperform each other based

Master of Science Thesis C.V.M.M. Vorage

https://drive.google.com/file/d/1UC7I_lZKHKDaDHRwTCDNm3wvvXRA9g9J/view?usp=drive_link

60 Experiments

Figure 4-13: Original (red) and TT Decomposition with TT-ranks (R1, R2, R3, R4) =
(7, 89, 56, 5) of LiDAR using tensorized occupancy-based voxelization. PSNR-NN: 25.03. Com-
pression rate: 81.09%. Scan QR Code or click on link for 3D Render.

on PSNR-NN. Binary or occupancy-based voxelization does not yield a significantly different
result. The CPD has by far the longest computational time, due to it being an iterative
algorithm.

Method
PSNR-NN ↑ Compression Rate ↓

Time (sec)
Binary Occupancy Binary Occupancy

CPD 21.9 22.4 81.1 % 81.1 % 973
Tucker 26.2 ± 3.2 26.7 ± 4.2 82.7 ± 5.6 % 82.7 ± 5.6 % 38.3 ± 0.8

TT 25.4 ± 2.0 19.4 ± 1.6 76.9 ± 3.2 % 33.1 ± 3.0 % 32.8 ± 1.3
Tucker Tens. 26.0 ± 2.7 26.3 ± 2.4 86.9 ± 5.9 % 86.9 ± 5.9 % 38.3 ± 0.8

TT Tens. 23.1 ± 2.6 23.3 ± 1.8 53.9 ± 63.7 % 53.8 ± 38.7 % 24.1 ± 3.0

Table 4-7: Performance of Tucker Decomposition using binary and occupancy-based voxelization.
The information is displayed in the format µ±σ, where µ is the mean, and σ the standard deviation
over the 10 samples.

There are multiple possible reasons as to why the performance of the investigated voxel-based
approach does not yield satisfactory results. These reasons will be explained below.

Rotational Variance The idea of applying tensor decomposition methods on a voxel-based
representation stems from the analysis presented in Figure 3-5. The analysis showed that a
simple rank-6 CPD could be used to describe an abstraction of the 3D scene. The problem
with this reasoning is that it assumes road users and road elements are aligned with the
coordinate axis. A low-rank CPD could be constructed because of this alignment. In real
life however, objects are most often not aligned with the coordinate axis. Hence, finding a
low-rank CPD (or any other tensor decomposition) that is an adequate representation of the
scene might be impossible.

To test this hypothesis let us revisit the abstraction of the scene depicted in Figure 4-14a.

C.V.M.M. Vorage Master of Science Thesis

https://drive.google.com/file/d/1SY2gHTRuExnZVJLl2rMQvwXqDeSbd6-E/view?usp=drive_link

4-3 Voxel-Based Tensor Decomposition for Point Cloud Compression 61

However, instead of aligning all elements with the coordinate axis, consider that the car/truck
is rotated like shown in Figure 4-14b. Figure 4-14c shows the frobenius error plotted against
the iteration index for 6 different runs of the CP-ALS algorithm applied on the original scene
and the scene with the tilted truck. The figure shows that the algorithm is able to find a
rank-6 decomposition with negligible small error for the original scene, while it does not for
the tilted scene. Alignment with the coordinate axis is thus of vital importance for finding a
low-rank CP decomposition which is a valid approximation of the scene.

(a) Original Scene. (b) Scene with tilted car/truck.

(c) Convergence of CP-ALS algorithm on the original scene and tilted scene when searching for a rank-6
decomposition. The algorithm is not able to find a suitable decomposition for the tilted scene, due to
rotation of the car/truck.

Figure 4-14: Rotational Variance of CPD on Voxelized Representation.

Sparse Representation The voxel-based representation is a highly voluminous and very
sparse representation. As already mentioned before, the amount of voxels that are occupied
across the 10 samples is only 0.055 % on average. Compared to the original size of the
point cloud V ∈ RP ×F the voxel-based representation X ∈ R1440×1440×40 contains much more
elements. In mathematical terms: 1440 · 1440 · 40 >> PF . This has as an affect that in

Master of Science Thesis C.V.M.M. Vorage

62 Experiments

order to acquire compression a very large amount of singular values needs to be truncated.
Effectively, the representation is being blown up by voxelizing the point cloud, causing the
amount of truncation needed to increase considerably in order to achieve compression.

There are multiple approaches to tackle the problem of the very sparse representation. One
method is to apply sparse tensor decomposition methods [41],[49],[67],[78]. These methods
are designed to account for the sparsity in the data. Another approach is to alter the data
representation into a different format. Instead of voxelizing the point cloud, direct tensoriza-
tion can be applied onto the LiDAR data [61]. The next section will discuss this approach.
A big advantage of this approach is that compression is directly achieved, even with little
truncation of the singular values.

4-4 Synthetic Tensor Decompositions for Point Cloud Compression

Table 4-8 shows the result of applying the CP-ALS, MLSVD, and TT-SVD on 10 different
samples tensorized using parameters: (I1, I2, I3, I4) = (40, 40, 40, 3). Based off Table 4-8, the
performance in terms of PSNR-NN increased with respect to the voxel-based methods, and the
computational time of the Tucker and TT have reduced considerably. The TT decomposition
achieves the highest average PSNR-NN.

Method Rank/ϵ PSNR-NN ↑ BPP ↓ Compression Rate ↓ Time (sec)

CPD 1240 40.8 ± 0.9 37.8 80.1 % 47.2 ± 1.2
Tucker (37,37,37,4) 36.6 ± 1.1 38.0 79.1 % 0.023 ± 0.004

TT 12 49.3 ± 0.8 38.4 ± 2.6 79.9 ± 5.4 % 0.119 ± 0.001

Table 4-8: Performance of tensor decomposition methods using synthetic tensorization parameter
(I1, I2, I3, I4) = (40, 40, 40, F) on 10 different samples.

Table 4-8 does however not show the full story. Figure 4-15 shows a visualization of applying
the CP-ALS, MLSVD, and TT-SVD algorithms onto synthetically tensorized LiDAR data
using parameters (I1, I2, I3, I4) = (40, 40, 40, 3).

C.V.M.M. Vorage Master of Science Thesis

4-4 Synthetic Tensor Decompositions for Point Cloud Compression 63

Figure 4-15: Original (red) and Tensor Decomposition (blue) of LiDAR using syntethic ten-
sorization parameters (I1, I2, I3, I4) = (40, 40, 40, F). Scan QR Code or click on the links for a
3D render: CPD, Tucker, TT.

The figure shows that the Tucker decomposition is completely unable to capture the structure
of the LiDAR data. The CPD is able to capture some of the local density in points. The TT
decomposition performs the best, however it is far from a perfect reconstruction.

The reason why the performance of the CP-ALS, MLSVD, and TT-SVD algorithms is rela-

Master of Science Thesis C.V.M.M. Vorage

https://drive.google.com/file/d/1-lVvEs-KdpQyLfobaLy0zIwmYCKvAvBU/view?usp=drive_link
https://drive.google.com/file/d/1wwfLgZcUhdKk2O_6m7_GzXP3YewAv3Rv/view?usp=drive_link
https://drive.google.com/file/d/1y2ZScoRlUSluURfxBQNvIfVIrQ0tf8uw/view?usp=drive_link

64 Experiments

tively weak, is related to the structure of the (synthethically) tensorized LiDAR data. During
tensorization of the LiDAR data, the ordering of the points in the cloud exactly determines
which location the point will inhabit in the tensor. In other words, a one-to-one mapping
by means of the little-endian convention is used to map elements from the raw LiDAR data
to the tensorized representation. The results (both table and figure) above were obtained
using this one-to-one mapping. However, the ordering of the points in the cloud was not set.
This means that the placement of points in the tensor was effectively done at random. This
random placement of points increases the difficulty for tensor decomposition methods to find
a low-rank decomposition that is a good approximation of the LiDAR data.

Figure 4-16 shows a scree plot of the synthetically tensorized representation using parameters
(I1, I2, I3, I4) = (40, 40, 40, 3) for 100 different random seeds (used when sorting the LiDAR
data at random). One of these seeds is used to obtain the results shown in Figure 4-15.

Figure 4-16: Singular values of mode-n unfoldings using synthetically tensorized LiDAR data
with parameters (I1, I2, I3, I4) = (40, 40, 40, 3) for 100 different enumerations of points in the
cloud. The difference in singular value decline is virtually zero.

Figure 4-16 corroborates the reasoning presented earlier, since apart from the first singular
value all others show negligible difference in magnitude for the first 3 modes, which implies
that finding a good low-rank Tucker decomposition will be difficult.

Figure 4-16 shows the scree plot for 100 different enumerations of vectors using the same
sample. Figure 4-17 on the other hand, shows the scree plot using a single enumeration for
the 10 different samples. The figure demonstrates that the almost flat singular value decrease
of the first 3 modes is present across all samples. This finding eliminates the possibility of
the behaviour being sample specific.

C.V.M.M. Vorage Master of Science Thesis

4-4 Synthetic Tensor Decompositions for Point Cloud Compression 65

Figure 4-17: Singular values of mode-n unfoldings using synthetically tensorized LiDAR data
with parameters (I1, I2, I3, I4) = (40, 40, 40, 3) for 10 different samples. Singular value decline
across samples is highly comparable.

A crucial question now becomes how to define the enumeration of points in the point cloud that
results in a tensorized representation which is susceptible to tensor decomposition methods.
For a point cloud V ∈ RP ×F with P points there are P ! possible permutations to order the
list of points.

Exploring all the possible permutations is an intractable problem, since point clouds can easily
contain ∼100000 points, meaning 100000! ≈ 2.8 · 10456573 unique permutations exist. Because
of this, alternative approaches must be considered for bringing structure into the LiDAR data
during synthetic tensorization.

Common practice when tackling problems where exploring all options is too exhaustive, is
to apply some sort of heuristic. This heuristic can be used to sort the LiDAR data prior to
synthetic tensorization. By default, a LiDAR point cloud V ∈ RP ×F consists of F features
per point. An easy-to-implement heuristic, is to sort the LiDAR point cloud by one of these F
features. The VoD dataset contains LiDAR points with 4 features. These are the X-location,
Y -location, Z-location, and the reflectance. All of these features are considered as heuristics
for sorting the point cloud. Figure 4-18 shows a visualization of these sort methods. The
LiDAR points are colored based on their position in the sorted point cloud. A (dark) blue
point is situated in the start of the list, while (dark) red points are at the end.

Master of Science Thesis C.V.M.M. Vorage

66 Experiments

Figure 4-18: Visualizations of the heuristics based on point features employed for sorting the
LiDAR point cloud. Scanning the QR code or clicking on the following links will visualize a 3D
render: X-Location, Y-Location, Z-Location, Reflectance.

Apart from the existing features, heuristics can also be defined as functions of these features.
Equation 4-7 and Equation 4-8 show the elevation (θ) and azimuth (ϕ) angle respectively.
Both of these angles are also considered as heuristics.

θ = arctan
(

z√
x2 + y2

)
(4-7)

C.V.M.M. Vorage Master of Science Thesis

https://drive.google.com/file/d/1N2mgMeN69uF5Cb3LQHALmNnmZaX_lXdH/view?usp=drive_link
https://drive.google.com/file/d/1k3YSNCyCWVdN1QvBhCqIiCiWqc7Un-wm/view?usp=drive_link
https://drive.google.com/file/d/1exHDqmLfvwEGPDOAdGGbvjkY0EQu7nim/view?usp=drive_link
https://drive.google.com/file/d/1Sd4KEyjAsWmm5JPN5VAhODTzdrhPI51I/view?usp=drive_link

4-4 Synthetic Tensor Decompositions for Point Cloud Compression 67

ϕ = arctan2(y, x) =

arctan
(y

x

)
if x > 0

arctan
(y

x

)
+ π if x < 0 and y ≥ 0

arctan
(y

x

)
− π if x < 0 and y < 0

+π
2 if x = 0 and y > 0
−π

2 if x = 0 and y < 0
undefined if x = 0 and y = 0

(4-8)

Lastly, Equation 4-9 shows the angle (ψ) between two vectors va and vb in 3D space. By
treating the points in the cloud as vectors, the angle between each point can be calculated.

ψ = arccos
(vT

a vb

| va | · | vb |

)
(4-9)

This then allows for defining two more heuristics. One of them orders all points by means of
the angular difference towards a single (initial) point. This method is labelled as: Angular
Difference - Single Vector. The other method orders all points by finding the next point which
has the smallest angular difference towards the previous point. This is done consecutively for
all points, resulting in the smallest step in angular difference (ϕ) between successive points.
This method is labelled as: Angular Difference - Consecutive Vectors.

Figure 4-19 shows a visualization for these 4 different heuristics that will be considered.
Identical to Figure 4-18, the ordering of points is denoted by the color scale which runs from
blue to red.

Master of Science Thesis C.V.M.M. Vorage

68 Experiments

Figure 4-19: Visualizations of the angular heuristics employed for sorting the LiDAR point cloud.
Scanning the QR code or clicking on the following links will visualize a 3D render: Elevation Angle,
Azimuth Angle, Angular Difference - Single Vector, Consecutive Difference - Single Vector.

Figure 4-20 shows the singular values of the mode-n unfoldings for 9 different sorting meth-
ods averaged over the 10 samples. The figure clearly shows that sorting using the angular
difference of consecutive vectors (mustard green) results in the highest curvature of the scree
plot. Hence, this heuristic would be most promising to apply before synthetically tensorizing
the LiDAR data and computing a Tucker decomposition.

C.V.M.M. Vorage Master of Science Thesis

https://drive.google.com/file/d/1lvCsL36q_UsneYLcuOWsJ3J59exXk27v/view?usp=drive_link
https://drive.google.com/file/d/160M5pyi1E8qANx-kkyuVop-Bew0WLh3M/view?usp=drive_link
https://drive.google.com/file/d/1e21O2vT7OEnPLwD-CujMqaoLMq8c5_Oo/view?usp=drive_link
https://drive.google.com/file/d/1ZsfDVFOOTRgd8bwzj_mmrSx35QkEZLRW/view?usp=drive_link

4-4 Synthetic Tensor Decompositions for Point Cloud Compression 69

Figure 4-20: Scree plot for 9 different sorting methods averaged over 10 samples. Consecutive
Vector method displays the most singular value decline.

Table 4-9 shows the performance of applying the TT-SVD and MLSVD algorithm onto syn-
thetically tensorized LiDAR for all of the mentioned heuristics. The table verifies the findings
of the scree analysis in Figure 4-20, since the best performing heuristic for the Tucker de-
composition is the Angular Difference - Consecutive Vectors method. The TT decomposition
outperforms the Tucker decomposition for all sort methods. The best performing heuristic
is sorting by z-value, which results in a PSNR-NN of 110.6 on average. Virtually all sort
methods show an improvement in terms of PSNR-NN compared to randomly ordered LiDAR
data.

The computational time of each method is quite low except when using the Angular Difference
- Consecutive Vectors heuristic. This sort method needs to consecutively find the closest point
in terms of angular difference. This means it has to solve a nearest neighbour problem P − 1
times, where P is the amount of points. The problem does decrease in size every step, since
every nearest neighbour that is found will not be considered in the next step.

Figure 4-21 shows a visualization of TT-SVD algorithm applied on synthetically tensorized
LiDAR with parameters (I1, I2, I3, I4) = (40, 40, 40, 3) and sorted using the z-values of the
LiDAR points. The image shows a great improvement in terms of reconstruction quality
compared to previous methods, which is also reflected in the much higher PSNR-NN: 109.50.

Master of Science Thesis C.V.M.M. Vorage

70 Experiments

Sort Method Rank/ϵ PSNR-NN ↑ BPP ↓ Compression Rate ↓ Time (sec)

x
Tucker (37,37,37,3) 40.0 ± 1.0 38.0 79.1 % 1.2 ± 0.1

TT 0.001 88.1 ± 1.2 36.8 ± 0.3 76.6 ± 0.6 % 1.3 ± 0.1

y
Tucker (37,37,37,3) 40.9 ± 2.4 38.0 79.1 % 1.2 ± 0.1

TT 0.0005 92.0 ± 2.6 36.6 ± 0.4 76.2 ± 0.9 % 1.3 ± 0.1

z
Tucker (37,37,37,3) 37.5 ± 1.3 38.0 79.1 % 1.2 ± 0.1

TT 0.000005 110.6 ± 1.1 36.5 ± 0.2 76.0 ± 0.4 % 1.3 ± 0.1

r
Tucker (37,37,37,3) 36.0 ± 1.1 38.0 79.1 % 1.2 ± 0.1

TT 12 50.1 ± 0.6 36.9 ± 2.0 76.8 ± 4.1 % 1.3 ± 0.1

θ
Tucker (37,37,37,3) 37.2 ± 1.2 38.0 79.1 % 1.2 ± 0.1

TT 1.3 58.0 ± 1.2 36.7 ± 1.8 76.4 ± 3.8 % 1.3 ± 0.1

ϕ
Tucker (37,37,37,3) 42.4 ± 1.9 38.0 79.1 % 1.2 ± 0.1

TT 0.7 61.3 ± 1.1 36.9 ± 1.6 76.9 ± 3.3 % 1.3 ± 0.1

ψSV
Tucker (37,37,37,3) 39.0 ± 1.3 38.0 79.1 % 1.2 ± 0.1

TT 6.5 52.5 ± 1.2 36.5 ± 2.6 76.1 ± 5.4 % 1.3 ± 0.1

ψCV
Tucker (37,37,37,3) 47.9 ± 2.1 38.0 79.1 % 140 ± 2

TT 0.28 64.3 ± 0.9 36.8 ± 1.9 76.6 ± 4.0 % 141 ± 1

Table 4-9: Performance of Tucker and TT decomposition when sorting using angular differ-
ence of consecutive vectors prior to synthetic tensorization with parameters (I1, I2, I3, I4) =
(40, 40, 40, F). The information is displayed in the format µ±σ, where µ is the mean, and σ the
standard deviation over 10 different samples.

Figure 4-21: Original(red) and TTSVD(blue) of synthetically tensorized LiDAR with parameters
(I1, I2, I3, I4) = (40, 40, 40, 3) and sorted using z-values. PSNR-NN: 109.50. BPP: 36.67. Com-
pression rate: 76.41%. Scan QR Code or click on link for 3D Render.

C.V.M.M. Vorage Master of Science Thesis

https://drive.google.com/file/d/1kw10sf_fikLxBFJEXdeU250-J4co1tKi/view?usp=drive_link

4-4 Synthetic Tensor Decompositions for Point Cloud Compression 71

Table 4-9 showed the performance of the TT and Tucker decomposition for all heuristics
using synthetic tensorization parameters (I1, I2, I3, I4) = (40, 40, 40, 3) evaluated around a
compression rate of 78%. This does however not show the full story, since performance
should be evaluated over a range of compression values and there are various options for
tensorization parameters.

Figure 4-22 shows the performance of the TT-SVD algorithm for all of the heuristics and sets
of tensorization parameters evaluated over a range of compression values. The figure also
shows the performance of the baseline model (TMC3) in brown. The figure shows a number
of interesting findings. Regarding large amount of compression (BPP ∈ [0, 30]), sorting
by angular difference of consecutive vectors results in the best performance using a tensor
decomposition method. For a relatively small amount of compression (BPP ∈ [30, 40]) sorting
by z-values is the best performing tensor decomposition method, which corroborates the
findings in Table 4-9. The baseline model outperforms all tensor decomposition methods over
its entire range of compression values. The choice for the synthetic tensorization parameters
does not show a very large impact with regards to compression performance.

Figure 4-22: Performance curve for the TT-SVD algorithm using various sets of synthetic ten-
sorization parameters and sort heuristics. The baseline model (TMC3) outperforms all tensor
decomposition methods over the range of compression values.

As already mentioned the two best performing methods are sorting by z-value for small
amounts of compression and by angular difference of consecutive vectors for large amounts of
compression. The reasoning why these methods stand out is as follows. Sorting point clouds
by z-value causes all points of similar height to be contiguously stored. This makes it easier
for tensor decomposition methods to identify and exploit low-rank structures perpendicular
to the z-axis. LiDAR point clouds contain one dominant low-rank structure perpendicular to
this axis, which is: the ground plane. The ground plane, which consists of a significant amount
of points, is thus an ideal target for compression of z-value sorted LiDAR point clouds. Apart
from the ground plane, not many low-rank structures exist on the xy-plane. This causes the
performance of sorting by z-value to be strong with relatively small amounts of compression
compared to large amounts of compression.

Master of Science Thesis C.V.M.M. Vorage

72 Experiments

In order to validate this train of thought, an experiment is performed. Figure 4-23 shows
this experiment. The figure shows the performance curve of the TT-SVD algorithm when
sorting by z-value (red) as well as three test scenarios (green, blue and grey). The test
scenarios also use the TT-SVD algorithm on z-value sorted data, however they contain one
extra modification. Prior to sorting the LiDAR data a homogeneous rotation is applied.
The LiDAR point cloud is rotated by a 45 degree angle around the x-axis (green), y-axis
(blue) and z-axis (grey). The figure shows that a rotation around the x- and y- axis causes
a drop in performance in the low compression region (BPP ∈ [32, 42]), and a small increase
in performance in the high compression region (BPP ∈ [0, 32]) This change in performance is
not observed when applying a rotation around the z-axis, since the red and grey line coincide.
The drop in performance in the low compression region (BPP ∈ [32, 42]) can be attributed
to the fact that the LiDAR points belonging to the ground plane are not anymore grouped
together. Hence, exploiting redundancies of this low-rank structure has become more difficult
for the TT-SVD algorithm.

Figure 4-23: Performance curve of best-performing compression methods and baseline model:
TMC3. The dashed lines denote the variance of each method in µ± σ.

A similar argument can be made regarding the performance of sorting by angular difference
of consecutive vectors. This sort method finds the nearest neighbour in terms of angular
difference between consecutive points. Points with small angular difference will likely originate
from the same low-rank structure such as the facade of a house. This means that points
belonging to the same low-rank structure will likely be stored contiguously. This grouping of
low-rank structures is believed to be the cause for success of this sort method.

Figure 4-22 showed that none of the tensor decomposition methods outperform the baseline
model TMC3. In order to see why this occurs, let us view another variant of the performance
curve. Figure 4-24 shows the performance of 3 samples decomposed using the TT-SVD
algorithm tensorized using parameters (I1, I2, I3, I4) = (40, 40, 40, 3) and sorted using angular
difference of consecutive vectors. The figure shows that for all 3 samples a very large drop
in terms of PSNR-NN occurs, which does not yield a significant contribution in terms of
compression gains. This drop in PSNR-NN is caused by the first truncation that occurs when

C.V.M.M. Vorage Master of Science Thesis

4-5 Geometry Aware Tensor Decompositions for Point Cloud Compression 73

epsilon exceeds a certain value.

Figure 4-24: PSNR-NN and compression rate for 3 samples decomposed using the TT-SVD
algorithm, tensorized using parameters (I1, I2, I3, I4) = (40, 40, 40, 3), and sorted using angular
difference of consecutive vectors. A large drop in PSNR-NN occurs at the first truncation.

4-5 Geometry Aware Tensor Decompositions for Point Cloud Com-
pression

The next approach that will be discussed is geometry aware tensor decompositions. It is
a combination of the previous two approaches. The idea is that a LiDAR point cloud is
tensorized in such a way that the placement of points within the tensor reflects the real-world
location of the points. Within geometry aware tensorization two approaches are considered:
Hierarchical and Assignment Problem.

4-5-1 Hierarchical Approach

Figure 4-25 shows the singular values of the mode-n unfoldings for the geometry aware ten-
sorized LiDAR data plotted against random sorted LiDAR and the best sorting method for
synthetic tensorization: Angular Difference - Consecutive Vector. The singular values are
averaged over the 10 different samples. The figure shows that the geometry aware and con-
secutive vector approach perform similarly, since the singular value decline is comparable for
both methods.

Master of Science Thesis C.V.M.M. Vorage

74 Experiments

Figure 4-25: Singular values of mode-n unfoldings for several tensorization methods averaged
over 10 samples. A small difference is displayed in singular value decline between the Consecutive
Vector and Geometry Aware - Hierarchical approach.

Table 4-10 shows the performance of applying the CP-ALS, MLSVD and TT-SVD algorithm
onto geometry aware tensorized LiDAR using the hierarchical approach. The best performing
method is the TT-SVD, achieving the highest PSNR-NN with minimal computational time.

Method Ranks / ϵ PSNR-NN ↑ BPP ↓ Compression Rate ↓ Time (sec)

CPD 764 57.8 ± 1.1 38.4 80.0 % 80 ± 2
Tucker (81,82,7,3) 53.9 ± 2.3 38.5 80.2 % 1.9 ± 0.1

TT 0.36 62.5 ± 0.8 38.4 ± 1.6 80.0 ± 3.3 % 1.8 ± 0.1

Table 4-10: Performance of CP-ALS, MLSVD and TT-SVD when using geometry aware ten-
sorization. The information is displayed in the format µ ± σ, where µ is the mean, and σ the
standard deviation over 10 different samples.

Figure 4-26 shows the qualitative result of applying the TT-SVD algorithm onto geometry
aware tensorized LiDAR. The figure shows a decent reconstruction with a PSNR-NN of:
59.54.

C.V.M.M. Vorage Master of Science Thesis

4-5 Geometry Aware Tensor Decompositions for Point Cloud Compression 75

Figure 4-26: Original(red) and TTSVD(blue) of geometry aware tensorized LiDAR using hierar-
chical approach. PSNR-NN: 59.54. BPP: 36.05. Compression rate: 75.10%. Scan QR Code or
click on link for 3D Render.

4-5-2 Assignment Problem Approach

The hierarchical approach for geometry aware tensorization is a relatively easy-to-implement
and fast approach for tensorizing the LiDAR data. It does however not give any guarentees
regarding the optimality of assigning points to tensor indices. This is where the assignment
problem approach steps in. The assignment problem formulation finds the optimal allocation
of points with respect to the Frobenius loss of the placement error.

Unfortunately, this optimality comes at a price. The computational complexity increases
drastically and the memory requirements exceed 16 GB, which makes the problem unsolvable
on many system architectures like the one employed during this thesis. In order to present
some analysis regarding this method, the size of the LiDAR point cloud would have to be
reduced considerably (∼ 80% reduction) in order to make the problem tractable. A reduc-
tion of this magnitude would make obtained results incomparable with the other proposed
methods. Hence, the assignment problem approach is not investigated further.

Master of Science Thesis C.V.M.M. Vorage

https://drive.google.com/file/d/1AL5zb0yL5mWMGSOrRoPMDDs0eBR9DCvH/view?usp=drive_link

76 Experiments

C.V.M.M. Vorage Master of Science Thesis

Chapter 5

Conclusions

This thesis has presented a proof-of-concept for an alternative approach to Point Cloud Com-
pression of automotive LiDAR data. Concluding this thesis can be done by revisiting the
research question posed in the introduction:

• Are tensor decomposition methods a competitive alternative for Point Cloud Com-
pression of automotive LiDAR data.

In order to answer this research question, the following three novel PCC codecs were designed,
tested, and evaluated:

1. Voxel-based Tensor Decomposition

2. Synthetic Tensor Decomposition

3. Geometry Aware Tensor Decomposition

All of these three codecs were tested for three tensor network topologies using their most preva-
lent algorithms: the CP-ALS, the MLSVD, and the TT-SVD. Evaluating the performance of
all codecs was done by comparing their obtained PSNR-NN, BPP and time-complexity with
the current most widely-used baseline for LiDAR PCC, which is TMC3.

Figure 5-1 shows the PSNR-NN plotted against the BPP for the best-performing imple-
mentations of the 3 novel PCC codec’s. The figure shows that the baseline model (TMC3)
outperforms all proposed methods across the entire range of BPP values. With regard to
time complexity, TMC3 also outperforms all of the proposed methods, due to the minimal
time needed to find the encoded representation. Answering the research question can thus
be done by stating that tensor decomposition methods are not a competitive alternative for
point cloud compression of automotive LiDAR data.

Master of Science Thesis C.V.M.M. Vorage

78 Conclusions

Figure 5-1: Performance curve of best-performing compression methods and baseline model:
TMC3. The dashed lines denote the variance of each method in µ± σ.

Tensor decomposition methods thrive upon data representations, which contain an inherent
low-rank structure. Thus, a key part of this thesis was to investigate what LiDAR data repre-
sentations contain this low-rank structure. Three representations were considered: Voxelized,
Synthetically Tensorized and Geometry Aware Tensorized.

The voxel-based representation showed difficulty with finding fitting low-rank decompositions.
This was on the one hand attributed to rotational variance of objects in the scene, but also due
to a highly voluminous tensor resulting from the voxelization process. This highly voluminous
tensor caused the computational complexity of tensor decomposition methods to increase
drastically. Additionally, the voxelization process caused a discretization loss to occur, prior
to acquiring any tensor decomposition.

Synthetically tensorized LiDAR initially showed little promise, since tensor decomposition
methods were applied onto unstructured LiDAR data. Since exploring all possible permuta-
tions of LiDAR points in the cloud was intractable, heuristics were designed. These heuristics
were used to sort the LiDAR data based on a specific value. Two heuristics outperformed the
others. Sorting by angular difference of consecutive vectors was effective for large amount of
compression, while sorting by z-value scored best for small amounts of compression. The set
of synthetic tensorization parameters, which define the amount and sizes of each mode did
not show much impact on compression performance compared to the employed heuristics. A
key takeaway is thus the importance of applying a heuristic to structure the LiDAR point
cloud, making it more suitable for tensor decomposition methods.

Regarding geometry aware tensorization two methods were proposed: Hierarchical and As-
signment Problem. The first method resulted in a good compression performance with a very
short computational time compared to other tensor decomposition-based methods. Compared
to the baseline model, its performance fell short. Unfortunately, the second method could
not be tested due to hardware limitations. The problem of placing points into the tensor was
recast as an assignment problem. Solving the assignment problem was however intractable
due to the large square cost matrix of size N , which resulted into memory demands by the

C.V.M.M. Vorage Master of Science Thesis

5-1 Future Work 79

modified Jonker-Volgenant algorithm which exceeded 16GB [15].
The performance of the presented tensor decomposition methods for PCC fell short compared
to the baseline model: TMC3. There are however a number of considerations that can put
this result into perspective.
First of all, a big limitation on the side of tensor decomposition methods is that it does not
employ bitwise compression, which occurs in the baseline method TMC3. TMC3 uses this bit-
wise compression in the final stages of the compression pipeline: the arithmetic encoder. The
compression performance of tensor decomposition methods could thus possibly be improved
by employing bitwise compression on the factor matrices and/or core tensors.
Second of all, a choice was made regarding the precision of the to be compressed elements.
For this thesis, the half-precision floating-point format (16 bit) was chosen. Setting this
precision presents a trade-off, since compression can either be achieved by means of reducing
the precision in bits, or by truncating elements using tensor decomposition methods. Possibly,
the performance of the proposed tensor decomposition-based codecs can thus be improved by
reducing the chosen precision in bits.
The motivation of this thesis was to reduce the loading and processing bottleneck during
training of machine learning models for automotive self-driving applications. This bottleneck
could potentially be reduced by shifting workload from the strained CPU to the unsaturated
GPU. Tensor decomposition methods which are based on multilinear products could poten-
tially remove this bottleneck by performing fast reconstruction of compressed point clouds on
the GPU. Unfortunately, the compression performance of tensor decomposition methods fell
short compared to the baseline model TMC3. This means that in order to remove the training
bottleneck there are two high-level possibilities. On the one hand, existing well-performing
codecs such as TMC3 could potentially be augmented or updated to allow for fast reconstruc-
tion of compressed point clouds on the GPU. On the other hand, future work could look into
improving the novel tensor decomposition-based PCC codecs presented in this thesis. The
next section will elaborate on several research opportunities worth exploring.

5-1 Future Work

This thesis has presented the first work on point cloud compression of automotive LiDAR
using tensor decomposition methods. Because of this, many avenues of research are still open
to discover. A few of these research oppertunities are listed below.

Tensor Network Topology This thesis has investigated decomposing automotive LiDAR
data into three prevalent tensor network topologies: the CPD, Tucker and TT. There are
however much more topologies such as the tensor ring [89], tree tensor network [12], but also
many more which are not named. Future work could thus take a much broader look into
the different types of topologies, and how they perform regarding LiDAR PCC. One method
to find the best tensor network topology is to employ genetic algorithms [46],[47]. These
algorithms create a population of different topologies, and breed new topologies by mating
of successful individuals. The idea is that the offspring of the successful topologies will likely
have the same traits of its succesfull parents. This process is repeated until an ideal topology
is found.

Master of Science Thesis C.V.M.M. Vorage

80 Conclusions

Synthetic Tensorization - Enumeration of Points This thesis has shown that an important
step prior to synthetic tensorization is to introduce structure into the LiDAR data. The enu-
meration of points in the cloud has a big impact on the performance of tensor decomposition
methods. This thesis employed various heuristics in order to sort the LiDAR. Future work
could look into various ways of finding the best ordering of LiDAR points in the cloud. This
could for example be done by developing new heuristics. Alternatively, an optimization-based
approach might be possible, where the ordering of points in the cloud is updated iteratively
with respect to some loss function.

Compression across Time This thesis only considered compressing individual LiDAR sam-
ples. For some applications however, it might be interesting to compress a group of consecutive
LiDAR samples. Consecutive LiDAR samples will most likely contain redundant information
since the interval between scans is often around 0.1 seconds. This redundancy of information
in consecutive samples could possibly be exploited using tensor decomposition methods.

C.V.M.M. Vorage Master of Science Thesis

Appendix A

Code

A-1 Canonical Polyadic Decomposition (CPD)

A-1-1 Canonical Polyadic - Alternating Least Squares (CP-ALS)

1 def CPD (T , R , init , maxIter , relativeErrorThreshold) :
2 """
3 Inputs:
4 T: Tensor
5 R: Rank
6 init: Initialization method
7 """
8
9 # Initialize Factor Matrices

10 if init == "Random" :
11 mu = 0
12 sigma = 1
13 FactorMatrices = []
14 for dim in range (T . ndim) :
15 FactorMatrices . append (np . random . normal (mu , sigma , (T . shape [

dim] , R)))
16
17 # Normalize the columns of the Factor Matrices
18 for idx , FactorMatrix in enumerate (FactorMatrices) :
19 FactorMatrices [idx] = FactorMatrix / np . linalg . norm (FactorMatrix ,

axis=0)
20
21 # Obtain the tensor unfoldings:
22 Tn = []
23 for idxDim in range (T . ndim) :
24 Tn . append (mode_n_matricization (T , idxDim+1))
25
26 # Create empty list for storing relative Frobenius and PSNR-NN error

Master of Science Thesis C.V.M.M. Vorage

82 Code

27 relativeErrorList = []
28 PSNRNNErrorList = []
29
30 # Reconstruct original LiDAR in tabular form
31 T_og_tabular = detensorize_no_frame_data (T , dim_list = T . shape)
32
33 # Loop through amount of ALS iterations:
34 for idxIter in range (maxIter) :
35 # Loop over the dimensions of the tensor:
36 for idxDim in range (T . ndim) :
37
38 # Create a second loop for iterating over the dimensions:
39 secondLoop = list (range (T . ndim))
40 secondLoop . remove (idxDim)
41
42 # Initiialize intermediary values: V and KR
43 V = np . ones ((FactorMatrices [0] . T @ FactorMatrices [0]) . shape)
44 KR = np . ones ((1 , FactorMatrices [secondLoop [0]] . shape [1]))
45 for secondIdx in secondLoop :
46 V = V ∗(FactorMatrices [secondIdx] . T @ FactorMatrices [

secondIdx])
47 KR = khatri_rao (FactorMatrices [secondIdx] , KR)
48
49 # Update Factor Matrix , obtain norm, and normalize
50 FactorMatrices [idxDim] = Tn [idxDim] @ KR @ np . linalg . pinv (V)
51 c = np . linalg . norm (FactorMatrices [idxDim] , axis=0)
52 FactorMatrices [idxDim] = FactorMatrices [idxDim] / c
53
54 # Compute the current estimate of the mode-N unfolding of the

tensor
55 KR_end = np . ones ((1 , FactorMatrices [0] . shape [1]))
56 for k in range (T . ndim−1) :
57 KR_end = khatri_rao (FactorMatrices [k] , KR_end)
58 TN_est = c∗FactorMatrices [T . ndim −1] @ KR_end . T
59
60 # Calculate Relative Error (Frobenius) between the estimate and

the true mode-N unfolding of the tensor
61 TN_error = Tn [T . ndim −1] − TN_est
62 norm_error = frob_norm (TN_error) / frob_norm (Tn [T . ndim −1])
63 relativeErrorList . append (norm_error)
64
65 ### For calculating PSRN During each iteration , Detensorize
66 # Calculate PSNR of NN error
67 T_rec = reconstruct_CPD (FactorMatrices = FactorMatrices ,
68 norm_vector = c)
69 T_rec_tabular = detensorize_no_frame_data (T_rec , dim_list = T .

shape)
70 PSNR = get_PSNR_NN_VoD (points_og = T_og_tabular ,
71 points_rec = T_rec_tabular ,
72 output = False)
73 PSNRNNErrorList . append (PSNR)
74
75 # Check if the stopping criterion has been reached

C.V.M.M. Vorage Master of Science Thesis

A-2 Multilinear Singular Value Decomposition (MLSVD) 83

76 if relativeErrorList [−1] < relativeErrorThreshold :
77 break
78
79 # Calculate PSNR of NN error
80 T_rec = reconstruct_CPD (FactorMatrices = FactorMatrices ,
81 norm_vector = c)
82 T_rec_tabular = detensorize_no_frame_data (T_rec , dim_list = T . shape)
83 PSNR = get_PSNR_NN_VoD (points_og = T_og_tabular ,
84 points_rec = T_rec_tabular ,
85 output = False)
86 PSNRNNErrorList . append (PSNR)
87 return FactorMatrices , c , relativeErrorList , PSNRNNErrorList

A-1-2 Reconstruct CPD

1 def reconstruct_CPD (FactorMatrices , norm_vector) :
2 N = len (FactorMatrices) # Amount of dimensions
3 v = len (norm_vector) # Size of each dimension
4
5 RankvTensor = 0
6 for r , Lambda in enumerate (norm_vector) :
7 Rank1Tensor = Lambda
8 for Matrix in FactorMatrices :
9 Rank1Tensor = np . tensordot (Rank1Tensor , Matrix [: , r] , axes=0)

10 RankvTensor = RankvTensor + Rank1Tensor
11 T_rec = RankvTensor

A-2 Multilinear Singular Value Decomposition (MLSVD)

A-2-1 Mode-n Matricization

1 def mode_n_matricization (X , n) :
2 firstdims = np . arange (0 , n−1, 1)
3 lastdims = np . arange (n , X . ndim , 1)
4 dim_change = np . concatenate (([n −1] , firstdims , lastdims))
5 X = X . transpose (dim_change)
6 X = X . reshape ((X . shape [0] , −1) , order=’F’)
7 return X

A-2-2 Mode-n Product

1 def mode_n_product (X , Y , n) :
2 # MODE_N_PRODUCT takes tensor X and compatible matrix Y and performs

mode-n product between X and Y.
3 # INPUT tensor X, matrix Y.
4 # OUTPUT tensor Z.
5 # X:= I_1 ... I_n-1 I_n I_n+1 ... I_N

Master of Science Thesis C.V.M.M. Vorage

84 Code

6 # Y:= J x I_n
7
8 # Perform mode-n matricization
9 X_matricized = mode_n_matricization (X , n)

10 # resulting shape: I_n x I_1 ... I_n-1 x I_n+1 ... I_N
11
12 # Multiply
13 Z = Y@X_matricized
14 # resulting shape: J x I_1 ... I_n-1 I_n+1 ... I_N
15
16 # Collect dimensions
17 dim_J = Y . shape [0]
18 dim_I = X . shape
19 N = X . ndim
20
21 # Reshape
22 dim_change = np . concatenate (([dim_J] , dim_I [0 : n −1] , dim_I [n : N])) .

astype (int)
23 Z = np . reshape (Z , dim_change , order=’F’)
24 # resulting shape: J x I_1 x ... x I_n-1 x I_n+1 x ... x I_N
25
26 # Permute
27 firstdims = np . arange (1 , n , 1)
28 lastdims = np . arange (n , N , 1)
29 dim_change = np . concatenate ((firstdims , [0] , lastdims))
30 Z = np . transpose (Z , dim_change)
31 # resulting shape: I_1 x ... x I_n-1 x J x I_n+1 x ... x I_N
32
33 return Z

A-2-3 MLSVD

1 def MLSVD_ND (T , output) :
2 from scipy import linalg
3 factor_matrices = []
4 core = T # Set Core tensor to T
5 for i in range (T . ndim) :
6 Ti = mode_n_matricization (T , i+1)
7 Ui , ∗_ = linalg . svd (Ti , full_matrices=False)
8 factor_matrices . append (Ui)
9 core = mode_n_product (core , Ui . transpose () , i+1)

10 if output :
11 print (f"Computed Mode: {i+1}")
12 return core , factor_matrices

A-2-4 Truncate MLSVD

C.V.M.M. Vorage Master of Science Thesis

A-2 Multilinear Singular Value Decomposition (MLSVD) 85

1 def truncate_MLSVD_ND (core , factor_matrices , ranks) :
2 # Create slice list for truncating core
3 slice_list = []
4 # Create counter
5 i = 0
6 for matrix in factor_matrices :
7 factor_matrices [i] = matrix [: , : ranks [i]]
8 # Append trucation for mode "i" to slice list
9 slice_list . append (slice (0 , ranks [i]))

10 # Increment count
11 i += 1
12 # Truncate core tensor
13 core = core [tuple (slice_list)]
14 return core , factor_matrices

A-2-5 Reconstruct MLSVD

1 def rec_MLSVD_ND (core , factor_matrices) :
2 # Create list which holds tuples for reconstructing
3 rec_list = []
4 for idx , matrix in enumerate (factor_matrices) :
5 # Pad factor matrices
6 factor_matrices [idx] = np . pad (matrix , ((0 , 0) , (0 , matrix . shape [0] −

matrix . shape [1])) , ’constant’ , constant_values=0)
7 # Append to rec list
8 rec_list . append ((0 , matrix . shape [0] − matrix . shape [1]))
9 # Pad core

10 core = np . pad (core , tuple (rec_list) , ’constant’ , constant_values=0)
11 # loop through factor matrices
12 for idx , matrix in enumerate (factor_matrices) :
13 # Compute mode-n product
14 core = mode_n_product (core , matrix , idx+1)
15 # Rename variable core for clarity
16 T_rec = core
17 return T_rec

A-2-6 Plotting Singular Values of Mode-n Unfoldings

1 def plot_singular_values (T) :
2 import matplotlib . pyplot as plt
3 import numpy as np
4 fig , axs = plt . subplots (1 , T . ndim , figsize=(T . ndim ∗3 ,5))
5 fig . suptitle (’Singular Values of Mode-n Unfoldings’)
6 axs [0] . set_ylabel (’Magnitude’)
7 for i in range (0 , T . ndim) :
8 Si = np . linalg . svd (mode_n_matricization (T , i+1) , full_matrices=

False , compute_uv=False)
9 print (f"Computed mode -{i+1} matricization")

10 print (f"Computed SVD: {i+1}")
11 axs [i] . set_yscale (’log’)

Master of Science Thesis C.V.M.M. Vorage

86 Code

12 axs [i] . scatter (np . arange (1 , len (Si) +1 ,1) , Si)
13 axs [i] . set_xlabel (’Index’)
14 axs [i] . set_title (f’Mode -{1+i}’)
15 axs [i] . set_ylim (0 . 1 , 10∗∗5)
16 plt . show ()

A-3 Tensor Train Singular Value Decomposition (TT-SVD)

A-3-1 TT-SVD

1 def TT_SVD (tensor , epsilon) :
2 # Create empty list which will contain the TT-cores of the

decomposition
3 tt_cores = []
4 error = []
5 # Calculate truncation parameter
6 d = tensor . ndim
7 n = tensor . shape
8 delta = (epsilon / np . sqrt (d−1)) ∗ frob_norm (tensor)
9 # Set temporary tensor

10 C = tensor
11 r = np . ones (d) . astype (int)
12 for k in range (d−1) :
13 # Reshape tensor
14 C = np . reshape (C , (r [k] ∗ n [k] , −1) , order=’F’)
15 # Compute SVD
16 U , S , V = np . linalg . svd (C , full_matrices=False)
17 # Find Truncation index , and trucation error
18 trunc_errors = np . cumsum (np . flip (S) ∗∗2)
19 bound_satisfied = np . where (trunc_errors < delta) [0]
20 if bound_satisfied . size == 0 : # Check if we can not truncate
21 bound_satisfied = [0]
22 error . append (0) # Error is 0 if we do not truncate
23 else :
24 # Append largest error where trunc error bound is still

satisfied
25 error . append (trunc_errors [bound_satisfied [−1]])
26 r [k+1] = len (S) − bound_satisfied [−1]
27 # Compute delta -truncated SVD
28 Ut = U [: , : r [k +1]]
29 St = np . diag (S [: r [k +1]])
30 Vt = V [: r [k + 1] , :]
31 # Store newly obtained core (U)
32 tt_cores . append (np . reshape (Ut , (r [k] , n [k] , r [k+1]) , order=’F’))
33 # Keep right side of SVD
34 C = St @ Vt
35 # Append last (norm) core to TT cores list
36 tt_cores . append (C)
37 rel_error = np . sqrt (np . sum (error)) / frob_norm (tensor)
38
39 return tt_cores , rel_error

C.V.M.M. Vorage Master of Science Thesis

A-3 Tensor Train Singular Value Decomposition (TT-SVD) 87

A-3-2 Reconstruct TT-SVD

1 def TT_reconstruct (tt) :
2 tensor = np . ones ((1 , 1))
3 og_dims = np . empty (len (tt)) . astype (int)
4 ranks = np . empty (len (tt)) . astype (int)
5 for idx , core in enumerate (tt) :
6 ranks [idx] = core . shape [−1]
7 tensor = tensor @ mode_n_matricization (core , 1)
8 tensor = np . reshape (tensor , (−1 , ranks [idx]) , order=’F’)
9 og_dims [idx] = core . shape [1]

10 # Reshape tensor back to original size
11 tensor = np . reshape (tensor , tuple (og_dims) , order=’F’)
12 return tensor

Master of Science Thesis C.V.M.M. Vorage

88 Code

C.V.M.M. Vorage Master of Science Thesis

Bibliography

[1] Rashid Abbasi, Ali Bashir, Hasan Alyamani, Farhan Amin, Jaehyeok Doh, and Jianwen
Chen. Lidar point cloud compression, processing and learning for autonomous driving.
IEEE Transactions on Intelligent Transportation Systems, PP:1–18, 01 2022.

[2] Khartik Ainala, Rufael N Mekuria, Birendra Khathariya, Zhu Li, Ye-Kui Wang, and
Rajan Joshi. An improved enhancement layer for octree based point cloud compres-
sion with plane projection approximation. In Applications of Digital Image Processing
XXXIX, volume 9971, pages 223–231. SPIE, 2016.

[3] Rasmus Bro. Multiway analysis in the food industry. models, algorithms and applications.
Ph.D. dissertation, University of Amsterdam, Amsterdam, 08 2001.

[4] Elena Camuffo, Daniele Mari, and Simone Milani. Recent advancements in learning
algorithms for point clouds: An updated overview. Sensors, 22(4), 2022.

[5] Chao Cao, Marius Preda, and Titus Zaharia. 3d point cloud compression: A survey.
In Proceedings of the 24th International Conference on 3D Web Technology, Web3D ’19,
page 1–9, New York, NY, USA, 2019. Association for Computing Machinery.

[6] Chao Cao, Marius Preda, Vladyslav Zakharchenko, Euee S. Jang, and Titus Zaharia.
Compression of sparse and dense dynamic point clouds—methods and standards. Pro-
ceedings of the IEEE, 109(9):1537–1558, 2021.

[7] Van-Hung Cao, KX Chu, Nhien-An Le-Khac, M Tahar Kechadi, Debra Laefer, and Linh
Truong-Hong. Toward a new approach for massive lidar data processing. In 2015 2nd
IEEE International Conference on Spatial Data Mining and Geographical Knowledge
Services (ICSDM), pages 135–140. IEEE, 2015.

[8] Raymond B. Cattell. The scree test for the number of factors. Multivariate Behavioral
Research, 1(2):245–276, 1966. PMID: 26828106.

[9] Dirk G Cattrysse and Luk N Van Wassenhove. A survey of algorithms for the generalized
assignment problem. European journal of operational research, 60(3):260–272, 1992.

Master of Science Thesis C.V.M.M. Vorage

90 Bibliography

[10] Milieu Centraal. Praktisch over duurzaam. https://www.milieucentraal.nl/
klimaat-en-aarde/klimaatverandering/wat-is-je-co2-voetafdruk/. Accessed:
09-01-2024.

[11] Yukang Chen, Jianhui Liu, Xiangyu Zhang, Xiaojuan Qi, and Jiaya Jia. Voxelnext: Fully
sparse voxelnet for 3d object detection and tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 21674–21683,
June 2023.

[12] Song Cheng, Lei Wang, Tao Xiang, and Pan Zhang. Tree tensor networks for generative
modeling. Physical Review B, 99(15):155131, 2019.

[13] Won-Seok Choi, Yang-Shin Kim, Se-Young Oh, and Jeihun Lee. Fast iterative closest
point framework for 3d lidar data in intelligent vehicle. In 2012 IEEE Intelligent Vehicles
Symposium, pages 1029–1034. IEEE, 2012.

[14] Andrzej Cichocki, Namgil Lee, Ivan V. Oseledets, Anh Huy Phan, Qibin Zhao, and
Danilo P. Mandic. Low-rank tensor networks for dimensionality reduction and large-scale
optimization problems: Perspectives and challenges PART 1. CoRR, abs/1609.00893,
2016.

[15] David F. Crouse. On implementing 2d rectangular assignment algorithms. IEEE Trans-
actions on Aerospace and Electronic Systems, 52(4):1679–1696, 2016.

[16] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1 and rank-
(r1,r2,...,rn) approximation of higher-order tensors. SIAM Journal on Matrix Analysis
and Applications, 21(4):1324–1342, 2000.

[17] NVIDIA Developer. Nvidia data loading library (dali). https://developer.nvidia.
com/dali. Accessed: 03-01-2024.

[18] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

[19] Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Osi, Parteek Sharma, Fan Chen, and Lei
Jiang. Llmcarbon: Modeling the end-to-end carbon footprint of large language models,
2023.

[20] Lue Fan, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang. Fully sparse 3d object
detection, 2022.

[21] Lue Fan, Xuan Xiong, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang. Rangedet: In
defense of range view for lidar-based 3d object detection. CoRR, abs/2103.10039, 2021.

[22] Chunyang Fu, Ge Li, Rui Song, Wei Gao, and Shan Liu. Octattention: Octree-based
large-scale contexts model for point cloud compression. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 36(1):625–633, Jun. 2022.

[23] Pierre-Marie Gandoin and Olivier Devillers. Progressive lossless compression of arbitrary
simplicial complexes. ACM Trans. Graph., 21(3):372–379, jul 2002.

C.V.M.M. Vorage Master of Science Thesis

https://www.milieucentraal.nl/klimaat-en-aarde/klimaatverandering/wat-is-je-co2-voetafdruk/
https://www.milieucentraal.nl/klimaat-en-aarde/klimaatverandering/wat-is-je-co2-voetafdruk/
https://developer.nvidia.com/dali
https://developer.nvidia.com/dali

91

[24] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3354–3361, 2012.

[25] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai. An
overview of ongoing point cloud compression standardization activities: video-based (v-
pcc) and geometry-based (g-pcc). APSIPA Transactions on Signal and Information
Processing, 9:e13, 2020.

[26] MPEG 3D Graphics Coding group (3DG). Mpeg point cloud compression. https:
//mpeg-pcc.org/. Accessed: 15-01-2024.

[27] André FR Guarda, Nuno MM Rodrigues, and Fernando Pereira. Point cloud coding:
Adopting a deep learning-based approach. In 2019 Picture Coding Symposium (PCS),
pages 1–5. IEEE, 2019.

[28] André FR Guarda, Nuno MM Rodrigues, and Fernando Pereira. Deep learning-based
point cloud geometry coding: Rd control through implicit and explicit quantization. In
2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pages
1–6. IEEE, 2020.

[29] Richard A. Harshman and Margaret E. Lundy. Parafac: Parallel factor analysis. Com-
putational Statistics & Data Analysis, 18(1):39–72, 1994.

[30] Andrew J. Hawkins. Cruise is now charging for rides in its driverless
vehicles in san francisco. https://www.theverge.com/2022/6/23/23180156/
cruise-driverless-vehicle-charge-riders-san-francisco, Jun 2022. Accessed:
03-01-2024.

[31] Andrew J. Hawkins. https://www.theverge.com/2023/12/20/24006712/
waymo-driverless-million-mile-safety-compare-human, Dec 2023. Accessed:
03-01-2024.

[32] Reetu Hooda, W. David Pan, and Tamseel M. Syed. A survey on 3d point cloud com-
pression using machine learning approaches. In SoutheastCon 2022, pages 522–529, 2022.

[33] David G. Hough. Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revi-
sion of IEEE 754-2008), pages 1–84, 2019.

[34] Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu, and Raquel Urtasun. Octsqueeze:
Octree-structured entropy model for lidar compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[35] Johan HÃ¥stad. Tensor rank is np-complete. Journal of Algorithms, 11(4):644–654,
1990.

[36] Alexander Isenko, Ruben Mayer, Jeffrey Jedele, and Hans-Arno Jacobsen. Where is my
training bottleneck? hidden trade-offs in deep learning preprocessing pipelines. In Pro-
ceedings of the 2022 International Conference on Management of Data, SIGMOD/PODS
’22. ACM, June 2022.

Master of Science Thesis C.V.M.M. Vorage

https://mpeg-pcc.org/
https://mpeg-pcc.org/
https://www.theverge.com/2022/6/23/23180156/cruise-driverless-vehicle-charge-riders-san-francisco
https://www.theverge.com/2022/6/23/23180156/cruise-driverless-vehicle-charge-riders-san-francisco
https://www.theverge.com/2023/12/20/24006712/waymo-driverless-million-mile-safety-compare-human
https://www.theverge.com/2023/12/20/24006712/waymo-driverless-million-mile-safety-compare-human

92 Bibliography

[37] Roy Jonker and Ton Volgenant. A shortest augmenting path algorithm for dense and
sparse linear assignment problems. In DGOR/NSOR: Papers of the 16th Annual Meeting
of DGOR in Cooperation with NSOR/Vorträge der 16. Jahrestagung der DGOR zusam-
men mit der NSOR, pages 622–622. Springer, 1988.

[38] Im Jeong Joon, Alexander Leonessa, Andrew Kurdila, and Young-Jae Ryoo. A real-time
data compression for ground-based 3d lidar data using wavelets and compressive sensing.
SCIS & ISIS, 2010(0):772–777, 2010.

[39] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shivaram Venkatara-
man. The case for unifying data loading in machine learning clusters. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19), Renton, WA, July 2019.
USENIX Association.

[40] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[41] Tamara G Kolda and Jimeng Sun. Scalable tensor decompositions for multi-aspect data
mining. In 2008 Eighth IEEE international conference on data mining, pages 363–372.
IEEE, 2008.

[42] Michael Kuchnik, Ana Klimovic, Jiri Simsa, Virginia Smith, and George Amvrosiadis.
Plumber: Diagnosing and removing performance bottlenecks in machine learning data
pipelines. In D. Marculescu, Y. Chi, and C. Wu, editors, Proceedings of Machine Learning
and Systems, volume 4, pages 33–51, 2022.

[43] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[44] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Bei-
jbom. Pointpillars: Fast encoders for object detection from point clouds, 2019.

[45] Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and
Aleksander Mądry. Ffcv: Accelerating training by removing data bottlenecks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12011–12020, June 2023.

[46] Chao Li and Zhun Sun. Evolutionary topology search for tensor network decomposition.
In International Conference on Machine Learning, pages 5947–5957. PMLR, 2020.

[47] Chao Li, Junhua Zeng, Zerui Tao, and Qibin Zhao. Permutation search of tensor network
structures via local sampling. In International Conference on Machine Learning, pages
13106–13124. PMLR, 2022.

[48] Feng Li, Zhiwei Yu, Bo Wang, and Qianlin Dong. Filtering algorithm for lidar outliers
based on histogram and kd tree. In 2011 4th International Congress on Image and Signal
Processing, volume 5, pages 2741–2745, 2011.

[49] Lingjie Li, Wenjian Yu, and Kim Batselier. Faster tensor train decomposition for sparse
data. Journal of Computational and Applied Mathematics, 405:113972, 2022.

C.V.M.M. Vorage Master of Science Thesis

93

[50] Shihua Li, Jingxian Wang, Zuqin Liang, and Lian Su. Tree point clouds registration using
an improved icp algorithm based on kd-tree. In 2016 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), pages 4545–4548, 2016.

[51] Velodynme LiDAR. Velodyne’s hdl-64e lidar sensor looks back on a legendary career.
https://velodynelidar.com/blog/hdl-64e-lidar-sensor-retires/. Accessed: 09-
01-2024.

[52] Jyh-Ming Lien, Gregorij Kurillo, and Ruzena Bajcsy. Multi-camera tele-immersion sys-
tem with real-time model driven data compression: A new model-based compression
method for massive dynamic point data. The Visual Computer, 26:3–15, 2010.

[53] Hao Liu, Hui Yuan, Qi Liu, Junhui Hou, and Ju Liu. A comprehensive study and com-
parison of core technologies for mpeg 3-d point cloud compression. IEEE Transactions
on Broadcasting, 66(3):701–717, 2020.

[54] Hua Liu, Zhengdong Huang, Qingminga Zhan, and Penga Lin. A database approach to
very large lidar data management. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, Beijing, China, 37(B1):463–468, 2008.

[55] Tao Lu, Xiang Ding, Haisong Liu, Gangshan Wu, and Limin Wang. Link: Linear kernel
for lidar-based 3d perception. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1105–1115, 2023.

[56] Rachel Minster, Irina Viviano, Xiaotian Liu, and Grey Ballard. Cp decomposition for
tensors via alternating least squares with qr decomposition. Numerical Linear Algebra
with Applications, 30(6):e2511, 2023.

[57] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. The Quarterly
Journal of Mathematics, 11(1):50–59, 1960.

[58] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram. An-
alyzing and mitigating data stalls in DNN training. CoRR, abs/2007.06775, 2020.

[59] MPEGGroup. GitHub - MPEGGroup/mpeg-pcc-tmc13: Geometry based point cloud
compression (G-PCC) test model.

[60] Derek Gordon Murray, Jiri Simsa, Ana Klimovic, and Ihor Indyk. tf.data: A machine
learning data processing framework. CoRR, abs/2101.12127, 2021.

[61] Georgii Sergeevich Novikov and Ivan Oseledets. Tensor-train point cloud compression
and efficient approximate nearest neighbor search. 2023.

[62] Nuscenes.org. nuscenes detection task - lidar only. https://www.nuscenes.org/
object-detection?externalData=no&mapData=no&modalities=Lidar. Accessed: 20-
02-2024.

[63] Motional Operations. Motional expands autonomous testing to san diego. https://
motional.com/news/motional-expands-autonomous-testing-san-diego, Jul 2022.
Accessed: 03-01-2024.

Master of Science Thesis C.V.M.M. Vorage

https://velodynelidar.com/blog/hdl-64e-lidar-sensor-retires/
https://www.nuscenes.org/object-detection?externalData=no&mapData=no&modalities=Lidar
https://www.nuscenes.org/object-detection?externalData=no&mapData=no&modalities=Lidar
https://motional.com/news/motional-expands-autonomous-testing-san-diego
https://motional.com/news/motional-expands-autonomous-testing-san-diego

94 Bibliography

[64] I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[65] Andras Palffy, Ewoud Pool, Srimannarayana Baratam, Julian F. P. Kooij, and Dariu M.
Gavrila. Multi-class road user detection with 3+1d radar in the view-of-delft dataset.
IEEE Robotics and Automation Letters, 7(2):4961–4968, 2022.

[66] David A. Patterson, Joseph Gonzalez, Quoc V. Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David R. So, Maud Texier, and Jeff Dean. Carbon emissions and large
neural network training. CoRR, abs/2104.10350, 2021.

[67] Eric T Phipps and Tamara G Kolda. Software for sparse tensor decomposition on emerg-
ing computing architectures. SIAM Journal on Scientific Computing, 41(3):C269–C290,
2019.

[68] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[69] Maurice Quach, Jiahao Pang, Dong Tian, Giuseppe Valenzise, and Frederic Dufaux.
Survey on deep learning-based point cloud compression. Frontiers in Signal Processing,
2, 2022.

[70] Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux. Learning convolutional trans-
forms for lossy point cloud geometry compression. In 2019 IEEE international conference
on image processing (ICIP), pages 4320–4324. IEEE, 2019.

[71] Sirisha Rambhatla, Nikos D. Sidiropoulos, and Jarvis Haupt. Tensormap: Lidar-based
topological mapping and localization via tensor decompositions. In 2018 IEEE Global
Conference on Signal and Information Processing (GlobalSIP). IEEE, November 2018.

[72] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, Pablo Ce-
sar, Philip A. Chou, Robert A. Cohen, Maja Krivokuća, Sébastien Lasserre, Zhu Li,
Joan Llach, Khaled Mammou, Rufael Mekuria, Ohji Nakagami, Ernestasia Siahaan, Ali
Tabatabai, Alexis M. Tourapis, and Vladyslav Zakharchenko. Emerging mpeg standards
for point cloud compression. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 9(1):133–148, 2019.

[73] Jing Shen, Jiping Liu, Rong Zhao, and Xiangguo Lin. A kd-tree-based outlier detection
method for airborne lidar point clouds. In 2011 International Symposium on Image and
Data Fusion, pages 1–4, 2011.

[74] Guangsheng Shi, Ruifeng Li, and Chao Ma. Pillarnet: Real-time and high-performance
pillar-based 3d object detection, 2022.

[75] Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E.
Papalexakis, and Christos Faloutsos. Tensor decomposition for signal processing and
machine learning. IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.

[76] G. W. Stewart. On the early history of the singular value decomposition. SIAM Review,
35(4):551–566, 1993.

C.V.M.M. Vorage Master of Science Thesis

95

[77] Yun-Ting Su, James Bethel, and Shuowen Hu. Octree-based segmentation for terrestrial
lidar point cloud data in industrial applications. ISPRS Journal of Photogrammetry and
Remote Sensing, 113:59–74, 2016.

[78] Will Wei Sun, Junwei Lu, Han Liu, and Guang Cheng. Provable sparse tensor de-
composition. Journal of the Royal Statistical Society Series B: Statistical Methodology,
79(3):899–916, 2017.

[79] Yi-Hsing Tseng and Miao Wang. Automatic plane extraction from lidar data based on
octree splitting and merging segmentation. In Proceedings. 2005 IEEE International
Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05., volume 5, pages 3281–
3284, 2005.

[80] Chenxi Tu, Eijiro Takeuchi, Alexander Carballo, and Kazuya Takeda. Point cloud com-
pression for 3d lidar sensor using recurrent neural network with residual blocks. In 2019
International Conference on Robotics and Automation (ICRA), pages 3274–3280. IEEE,
2019.

[81] Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen. A new truncation strategy
for the higher-order singular value decomposition. SIAM Journal on Scientific Comput-
ing, 34(2):A1027–A1052, 2012.

[82] Michel Verhaegen and Vincent Verdult. Filtering and System Identification: A Least
Squares Approach. Cambridge University Press, 2007.

[83] Miao Wang and Yi-Hsing Tseng. Lidar data segmentation and classification based on
octree structure. parameters, 1(5), 2004.

[84] Hakan Wiman and Yuchu Qin. Fast compression and access of lidar point clouds using
wavelets. In 2009 Joint Urban Remote Sensing Event, pages 1–6, 2009.

[85] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection.
Sensors, 18(10), 2018.

[86] Chih-Chieh Yang and Guojing Cong. Accelerating data loading in deep neural network
training. CoRR, abs/1910.01196, 2019.

[87] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-based 3d object detection
and tracking. CoRR, abs/2006.11275, 2020.

[88] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, and Xin Jin.
Is network the bottleneck of distributed training? In Proceedings of the Workshop on
Network Meets AI & ML, NetAI ’20, page 8–13, New York, NY, USA, 2020. Association
for Computing Machinery.

[89] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring
decomposition. arXiv preprint arXiv:1606.05535, 2016.

[90] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d
object detection. CoRR, abs/1711.06396, 2017.

Master of Science Thesis C.V.M.M. Vorage

96 Bibliography

[91] Walter Zimmer, Ramandika Pranamulia, Xingcheng Zhou, Mingyu Liu, and Alois C
Knoll. Pointcompress3d–a point cloud compression framework for roadside lidars in
intelligent transportation systems. arXiv preprint arXiv:2405.01750, 2024.

[92] Mahdi Zolnouri, Xinlin Li, and Vahid Partovi Nia. Importance of data loading pipeline
in training deep neural networks. CoRR, abs/2005.02130, 2020.

C.V.M.M. Vorage Master of Science Thesis

Glossary

List of Acronyms

KITTI Karlsruhe Institute of Technology and Toyota Technological Institute
ICLR International Conference on Learning Representations
VoD View of Delft
LiDAR Light Detection and Ranging
ICP Iterative Closest Point
CPD Canonical Polyadic Decomposition
CP-ALS Canonical Polyadic - Alternating Least Squares
TT Tensor Train
TT-SVD Tensor Train Singular Value Decomposition
MLSVD Multilinear Singular Value Decomposition
SVD Singular Value Decomposition
HOOI Higher-Order Orthogonal Iteration
PCC Point Cloud Compression
BEV Birds-Eye-View
V-PCC Video-based Point Cloud Compression
G-PCC Geometry-based Point Cloud Compression
codec coder-decoder
PSNR-NN Peak Signal-to-Noise Ratio Nearest Neighbour Loss
BPP Bits Per Point

List of Symbols

ϵ Relative error

Master of Science Thesis C.V.M.M. Vorage

98 Glossary

imax Maximum amount of iterations
R Rank

C.V.M.M. Vorage Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	Acknowledgements

	Main Matter
	Introduction
	Point Cloud Compression
	Research Objective
	Relevance of Research

	Related Work and Theoretical Background
	Point Cloud Representations
	Point Cloud Compression Methods
	Multilinear Algebra & Tensor Decomposition Methods
	Preliminaries
	Basic Operations
	Multilinear Operations
	Notions of Rank
	Overview of Mathematical Notation
	Canonical Polyadic Decomposition
	Multilinear Singular Value Decomposition (MLSVD)
	Tensor Train (TT)

	Methodology
	Baseline Approach
	Voxel-Based Tensor Decompositions for Point Cloud Compression
	Tensorized Voxelizations

	Synthetic Tensor Decompositions for Point Cloud Compression
	Geometry Aware Tensor Decompositions for Point Cloud Compression
	Hierarchical Approach
	Assignment Problem
	Experiment Overview

	Experiments
	Experimental Setup
	Baseline Method: TMC3
	Voxel-Based Tensor Decomposition for Point Cloud Compression
	Voxel-Based CPD
	Voxel-Based Tucker Decomposition
	Voxel-Based Tensor Train Decomposition
	Tensorized Voxelizations
	Discussion

	Synthetic Tensor Decompositions for Point Cloud Compression
	Geometry Aware Tensor Decompositions for Point Cloud Compression
	Hierarchical Approach
	Assignment Problem Approach

	Conclusions
	Future Work

	Appendices
	Code
	Canonical Polyadic Decomposition (CPD)
	Canonical Polyadic - Alternating Least Squares (CP-ALS)
	Reconstruct CPD

	Multilinear Singular Value Decomposition (MLSVD)
	Mode-n Matricization
	Mode-n Product
	MLSVD
	Truncate MLSVD
	Reconstruct MLSVD
	Plotting Singular Values of Mode-n Unfoldings

	Tensor Train Singular Value Decomposition (TT-SVD)
	TT-SVD
	Reconstruct TT-SVD

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

