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a b s t r a c t

Maritime structures operating out at sea experience large changes in wetted area
because of free surface waves. Although these conditions are typical for maritime
applications, a fundamental experiment that includes a structure in the air–water
interface undergoing transitions from dry to wet and back does not appear to exist. This
paper aims to fill that knowledge gap. We present an experiment in which a pendulum
is suspended just above the still water level and then exposed to monochromatic
free surface waves with different wave lengths. Additionally a reduced-order model is
derived to compute the response of the pendulum and help interpret the experimental
results.

The motion response of the pendulum is demonstrated to depend highly on whether
the wave period is much lower or higher than the dry natural period of the pendulum.
Additionally, a sensitivity study with the wave amplitude in the model and a quantifica-
tion of the variability in the experiment both indicate that the variability in the motion
response of the pendulum is increased with respect to the variability of the incoming
wave. We believe this experiment and the results make for an interesting benchmark
of fluid–structure interaction in free surface waves. The properties of the pendulum and
the experiment are available as open data at doi:10.4121/13187594 (Wellens and Bos,
2020).
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Ships and offshore structures are subject to waves, and being able to predict how the structure responds is important
or safety and efficiency. A ship operates in the interface between water and air and undergoes motion as a result of the
nteraction with free surface waves. This fluid–structure interaction (FSI) commonly is modelled assuming small waves
nd taking the wetted surface of the ship constant, such as in added resistance (Kim et al., 2017; Feng et al., 2017; Bennett
t al., 2013). Also when assessing the hydroelasticity of ice sheets in the ocean (Porter, 2019) or a multi-body wave energy
arvester (Zheng and Zhang, 2017), the wetted surface is considered constant. We are however interested in the situation
n which interaction with waves causes large variations of the wetted surface of the structure. Typical examples of these
ituations are the speed loss of ships sailing through large waves and the speed variations of a planing ship in initially calm
ater. Moreover the large change in wetted area and the interaction between the load and the structure has potentially
large effect on the load, as is described for sloshing model tests in Lugni et al. (2014). Existing models to describe these
ffects are limited, and therefore numerical methods such as Computational Fluid Dynamics (CFD) need to be used to
valuate them.
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We focus on the interaction of water waves with maritime structures, which is characterized by the following three
oints:

1. The average density of the structure is approximately equal to the average density of the fluid (required for
buoyancy, and in contrast to for instance an airplane, which is held in air by lift). Because of this, maritime structures
generally have a large added mass. This is important because a small change in wetted area could give a large change
in added mass.

2. The change in wetted area is large and varies constantly due to water waves and structure motion
3. The motion of the structure is large, oscillatory and originates primarily from the rigid body modes. The structure

is increasingly stiff going to more local vibration modes

t is a challenge is to find validation cases for FSI codes which satisfy all aforementioned points. For instance Weidenfeld
nd Arad (2018), require FSI to consider the sound of a flapping airfoil, Sader et al. (2016) study large-amplitude, vortex-
nduced vibration of an inverted flag. These are typical examples of FSI, but they do not satisfy our criteria 1 and 2. One
alidation experiment describes a sloshing tank with a continuously submerged beam that deforms in waves as the tank
s rotated (Botia-Vera et al., 2010); this study does not satisfy criterion 2. Another experiment is a dam break held back by
n elastic flap (Liao et al., 2015) or a dam break on a vertical cylinder (Kamra et al., 2019). In the latter two, the structure
ransitions from wet to dry (criterion 2), but does not undergo the back-and-forth motion induced by free surface waves
criterion 3). Losada and Merino (1987) study incipient motion of sea bed particles in waves. Draycott et al. (2019) consider
ave loading on horizontal axis tidal turbines. The experiment of Castellino et al. (2018) includes the variations of the
etted surface of a fixed wall with a parapet. Young et al. (2020) investigates the hydroelastic response of a vertical strut

n waves, while Hayatdavoodi and Ertekin (2015) and Hayatdavoodi et al. (2019) deal with submerged plates and decks
n waves. These references feature motion, sometimes large (criterion 3), but they do not account for large variations in
etted area (criterion 2). Summarizing, to our knowledge there are no existing benchmark problems that satisfy all our
emands at the same time.
In order to fill this gap, we propose a fundamental benchmark problem to validate numerical codes for maritime FSI

pplications. The novelty with respect to existing literature is that we study a structure in the interface between water
nd air that undergoes motion as its surface changes from dry to wet in non-breaking waves. As a model for the structure
e choose a pendulum. Earlier Mathai et al. (2019) studied the free decay of a pendulum that is always submerged,
ndreeva et al. (2016) studied the dynamics of a pendulum loaded by analytical models of wave profiles, Lenci et al. (2012)
nd Lenci and Rega (2011) studied a pendulum on a barge that is excited by waves. Ours is suspended above the mean
ree surface and then periodically loaded by monochromatic waves. Therefore this experiment satisfies all three criteria.
ith our experiment, we answer the following question: How does an initially dry structure respond to monochromatic
ave loading? In other words, our objective is to use the pendulum to obtain a more fundamental understanding of the

nteraction of a maritime structure with free surface waves.
The experimental data and a description thereof are available as open data (Wellens and Bos, 2020).

. Experiment

The experiment was conducted in the small towing tank of Delft University of Technology. A schematic overview of
he pendulum above the towing tank is shown in Fig. 1. It shows the pendulum together with three wave gauges. The
eft side of the overview shows the wave dissipating beach, the right side shows the wave maker. The axis system of the
xperiment is at the horizontal position of the wave maker at the vertical position of the mean free surface. We have
hosen the positive x axis in the propagation direction of the waves, and the angle of the pendulum is positive when it
oves along with the waves.
Fig. 2 shows photos of the front and side view of the experimental setup. The front view shows the pendulum

uspended from the towing carriage. It also shows that extra care was taken to rigidly fix the frame supporting the
earings by shoring it to the carriage with transverse braces. The right image shows the pendulum from the side of the
ank with the wave gauge nearest to the pendulum in the background.

The pendulum consists of two parts: the frame and the tube. The frame is made of aluminium profiles and connected
ith two bearings to the towing carriage. Thin strips, which are assumed to be drag free, connect the frame to the tube.

n this way only the tube experiences hydrodynamic loading and not the frame. The tube is positioned 10 mm above
he mean free surface level, with the pendulum fulcrum at 1050 mm above the centre of the tube. A PVC tube with a
iameter of 50 mm and a length of 1500 mm was chosen.
It is taken nearly as long as the tank is wide to make 3D wave interaction effects negligible compared to the overall

oading, yielding essentially a 2D experiment. We chose a tube because the shape does not change when it rotates. The
rag coefficient, therefore, does not depend on the angle of the pendulum. End caps are fitted to the tube to make it
atertight.
The pendulum is positioned 29.880 m away from the wave maker. The wave maker rotation is prescribed and the

enerated waves pass three wave gauges: one in front of the pendulum, one at and one behind it. Measured with a laser
istance metre, they are at 25.849 m, 29.880 m and 34.666 m from the wave maker. When wave interaction with the tube
egins, the pendulum starts rotating, which is measured by a potentiometer. The pendulum was weighed on a scale to a
2
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Fig. 1. Schematic overview of the experimental setup. At the far left side the beach, at the far right the wave maker with the axis system. In
between, the three wave gauges at 25.849 m, 29.880 m and 34.666 m from the wave maker, as well as the pendulum at 29.880 m from the wave
maker.

Fig. 2. Photos from front (left) and side (right) of the experimental setup, showing the frame, bearings, potentiometer and wave gauge nearest to
the pendulum. These photos are a close-up of Fig. 1.

Table 1
Name, position and error of the three wave gauges in the experiment.
Name Position To Pendulum Measurement error

WHM 1 Side of the wave maker −4.031 m 0.5 mm
WHM 2 At pendulum 0.000 m 0.3 mm
WHM 3 Side of the beach 4.786 m 0.6 mm

mass of 8.86 kg. The centre of gravity was found by putting it over a support and moving it until stable. It was positioned
at 365 mm from the fulcrum, giving a restoring force coefficient k = 31.7 N m rad−1.

The potentiometer is calibrated by giving it 10◦ rotations within its measuring range and fitting a straight line. Over
the complete range the maximum error with respect to the fitted calibration factor is within 0.5◦. The wave gauges are
calibrated by measuring the output at 20 mm intervals and also fitting a straight line. Table 1 shows the names, positions
with respect to the pendulum and maximum errors with respect to the calibration of the wave gauges.

At the beginning of each test the average signal of the first second defines the new ‘zero’, for which the entire signal
is corrected; this corrects for drift in the wave gauges. All measurements are taken at 1000 Hz and then passed through
a 100 Hz analog second order low pass filter. Additionally, we applied a digital moving average filter with a width of 25
samples for four times to remove higher vibration modes of the pendulum.

The wave maker generates waves according to a sine wave modulated with a window function to slowly ramp up the
signal towards the desired amplitude and then down again. The signal is held at the desired amplitude for 50 s.

Each test features one wave length: λ = 1, 3, 5 or 7 m, with three repetitions for each wave length to get a
quantification of the variability between experiments. The water depth was kept at 994 mm for all experiments, a wave
amplitude of 50 mm was desired. Two measures were taken to keep the starting conditions for each experiment the same.
First, because shorter wave modes dissipate faster, the tests were done in a series of increasing wave length. Second, a
waiting time of 15 min was taken between tests to allow the water in the tank to come to rest. The effectiveness of these
measures is assessed in the results section.
3
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Fig. 3. Reduced-order model of free pendulum decay fitted to the experiment, with convergence study for the time step.

3. Analytical model

To better understand the experimental results we will use an analytical model based on the following assumptions.
The pendulum has only one degree of freedom: rotation about its fulcrum. Only the tube at the bottom of the pendulum
experiences a hydrodynamic force, which is constant along the length of the tube (width of the towing tank). Every
occurrence of wave interaction in our experiment has four phases:

1. Water entry: the wetted area increases over time (Wagner, 1932; Mei et al., 1999)
2. Submerged motion: fully wet, with mostly drag and buoyancy (Morison et al., 1950; Mathai et al., 2019)
3. Water exit: wetted area decreases over time
4. Free vibration: only air and friction damping (Dolfo et al., 2016)

Water entry and exit can generate high peak pressures (Van Nuffel et al., 2014; Mathai et al., 2015), which are generally
localized in space and time. Because the pendulum integrates all local pressures in its global motion we will assume that
we can neglect peak pressures. The buoyancy force acts upward and is multiplied with the position and sine of pendulum
angle to obtain the moment on the pendulum. For small angles, the moment is small and therefore ignored. Other studies
Dolfo et al. (2016) mention that the air drag is small, and therefore it is not taken into account here. We will reflect upon
these assumptions in the results section.

The following reduced-order model describes how the pendulum responds after the interaction with the waves starts.
The first component of the model is the equation of motion of the pendulum:

I θ̈ + cθ̇ + k sin θ = M (1)

where I is the inertia, c damping and k the restoring force coefficient, with θ the instantaneous angular position and M
an external moment. We performed a free vibration test with the pendulum to determine these parameters. By taking
the first and second time derivative of the angle we obtain the angular velocity and acceleration. These are substituted
into the equations of motion to find the inertia and damping with a least squares approximation. With k = 31.7 N m
ad−1 found as described above, we obtain the values I = 2.17 kg m2 and c = 0.205 N m s rad−1.

Fig. 3 shows the free vibration of the experiment and reduced-order model (with M in Eq. (1) equal to 0) for the same
starting position. Eq. (1) was rewritten in a state-space representation and integrated numerically with two-stage Runge–
Kutta. The figure shows results for three time steps: 20, 10 and 5 ms. Reducing the time step from 20 ms to 5 ms does
not bring about a significant change in error: 0.2% comparing the final maxima. We however choose to use the 5 ms time
step to have enough temporal resolution to capture the period of the shortest waves (period T = 0.8 s for L = 1 m) with
more than 150 time steps. The reduced-order model in Fig. 3 shows a slightly faster decay than the experiment, which
is likely because the actual dissipation mechanisms require more elaborate modelling than a linear damping coefficient.
However, at the last shown maximum angle after 7 full periods of 1.64 s, the reduced-order model is only 0.07 s and 0.5◦

behind the experiment. This error is smaller than the calibration error of the potentiometer, and therefore acceptable.
In comparing the model with the experiment, the time integration error has even less influence, because repeated wave
forcing takes place in intervals of at most 2.5 s (period of the longest wave of 7 m), and the modelling error of the wave
force is larger than the numerical error.

The forcing on the pendulum M is modelled as the cross product of moment arm, given as L = 1050 mm above, and
the hydrodynamic force on the tube Fm scaled by a factor β:
M = βFmL cos θ (2)

4
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he reason for scale factor β is elaborated upon below. The force on the tube per unit width is given by the Morison
quation (Morison et al., 1950):

Fm = ρ

(
CmVa +

1
2
CdA|u|u

)
(3)

Here, ρ is the density of water, taken as 1000 kg m−3. Parameters Cd, Cm are the added mass and drag coefficients based
on the Keulegan–Carpenter number KC , which can be found in Sarpkaya (1986). Variables a, u are the acceleration and
velocity of the water relative to the pendulum. The frontal area and volume of the cylinder are given by A and V .

One of the key ingredients of our experiment is the large change in wetted area. Since the pendulum is not completely
wet or dry all the time we need another function to estimate the wet surface. How the force on a horizontal member
depends on the wet surface was hypothesized before by Kaplan and Silbert (1976), who alter drag and added mass
coefficient with an analytical model, yet without validation. They describe only vertical forces, where we need a model
for the horizontal force. In the model we approximate the varying wetness with a scaling factor for the Morison equation:
our novel wetness parameter β . This parameter is 0 for a dry cylinder and 1 for a fully submerged cylinder, and linearly
scales based on the submersion depth at the centre of the tube:

β = max
(
min

(
η − (zp − D/2)

D
, 1

)
, 0

)
(4)

where D is the tube diameter, η wave elevation and zp the instantaneous vertical position of the centre of the tube. Note
that for an underwater pendulum β = 1, which yields the equation of motion in Mathai et al. (2019). While this wetness
function is a large simplification of the physics that take place with water entry and exit, we believe it can be seen as a
suitable approximation to explain the results of the experiments.

In our model we first assume that the free surface waves satisfy small amplitude potential flow, or Airy theory.
Disregarding start-up effects and reflection from the beach, the surface elevation is then described by:

η = ηa cos(kwx − ωt)

where ω, kw are the angular velocity and wave number, and ηa is the amplitude. The velocity and acceleration of a fluid
particle in horizontal direction are:

up = ηaω
cosh(k(z + h))

sinh(kh)
cos(kwx − ωt) (5)

ap = ηaω
2 cosh(k(z + h))

sinh(kh)
sin(kwx − ωt) (6)

For the Morison equation we however need the relative velocity and acceleration of the water with respect to the
pendulum:

u = L cos θ θ̇ − up (7)

a = L cos θ θ̈ − L sin θ θ̇2
− ap (8)

Velocities and accelerations above the still water level are obtained by constant extrapolation from the value at the mean
free surface position.

The interaction between waves and pendulum is a nonlinear process. For the chosen steepnesses the waves themselves
are also nonlinear, albeit mildly. In order to investigate how important this wave nonlinearity is, the reduced order model
was equipped with the nonlinear steady wave solution proposed by Rienecker and Fenton (1981). This is a wave solution
that follows from fitting a truncated Fourier series to the nonlinear flow equations and nonlinear boundary conditions at
the initially unknown instantaneous position of the free surface. The solution features no errors other than from truncating
the Fourier series. As such, it is a more suitable approach for modelling the waves in our experiment in limited water
depth, than the more often used nonlinear Stokes steady wave solution that is based on an expansion around the mean free
surface with an expansion error and the requirement that the water depth should be sufficiently deep for the expansion
to converge. Our nonlinear waves with the Rienecker–Fenton approach were solved with N = 16 Fourier components
and converged until the error was smaller than 10−10.

In order to determine the forces on the tube we need to use the drag and added mass coefficients Cd and Cm. These
coefficients depend on the Keulegan–Carpenter number, in which we use the particle velocity, wave period and tube
diameter. Since we use constant extrapolation for velocities above the water we substitute the amplitude at z = 0 m
from Eq. (5):

KC =
UT
D

=
ηaω

cosh(k(z+h))
sinh(kh)

2π
ω

D
=

2πηa

D
(9)

which, by using 50 mm for the diameter D of the tube and 50 mm for ηa, gives KC ≈ 6. From Sarpkaya (1986) we find
C = 2.0 and C = 1.0 for our setup. Note that two assumptions are made here. First, choosing the particle velocity
d m

5
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Fig. 4. Wave elevation for wave gauge 1 and 2 (top two rows) and pendulum response (bottom) in experiment and model. Wave height measured at
pendulum rest location. Legend same as in Fig. 3, the additional red dotted line shows the results using the Rienecker–Fenton wave model (Rienecker
and Fenton, 1981). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in determining KC is a modelling choice; we can equally well justify using the relative velocity of the pendulum with
respect to the undisturbed wave particle velocity, as this is the velocity the tube truly experiences. That would make the
procedure somewhat cumbersome, however. Second, we assume that the added mass and drag coefficients are equally
valid for partially submerged cylinders as they are for the fully submerged cylinders from the original experiments.

4. Results and discussion

Here we describe the results of the experiment with the help of the analytical model. Then we compare the repetitions
of the tests in order to investigate the variability of the surface elevation and the motion response of the pendulum. The
waiting time of 15 min between each experiment was found to be sufficient because the wave gauge signal at the start
of a new experiment was of the order of the calibration error of the wave gauges.

4.1. Comparison with analytical model

The comparison between experiments starts after the wave elevation at the second wave gauge (next to the pendulum)
has reached the desired level. The 20 s of signal after that is input to our analysis. After that, there will be reflection from
the longest wave components that exist due to ramping up the wave maker signal. The simulations are started at arbitrary
time instances and run for 20 s. Then the transient response is cut off and the ‘steady’ part is compared to the previously
selected 20 s of the experiment. Time synchronization between the experiments is done using a synchronization pulse. To
synchronize the experiments with the numerical results the second wave gauge (WHM 2) and modelled surface elevation
at the pendulum are matched.
6
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Table 2
Ratio of modelled response due to a 10% lower and higher wave amplitude compared to
the original wave amplitude.
ηa R|λ = 1 m R|λ = 3 m R|λ = 5 m R|λ = 7 m

+10% 1.24 1.17 1.08 1.35
−10% 1.28 1.20 1.13 1.40

The measured and modelled waves are plotted in Fig. 4: in green the three repetitions of the experiment and in
blue dashed lines the analytical model. We aimed for 50 mm wave amplitude in all tests, which is close to what was
achieved (an average of ηa = 45, 54, 50, 45 mm for λ = 1, 3, 5, 7 m respectively). The steepness of the waves equals
H/λ = 0.090, 0.036, 0.020, 0.013, the steepest wave therefore is slightly over half of the breaking limit of 1/7. Wave
breaking is not expected, but the shortest wave demonstrates nonlinear behaviour. As the wave length λ depends on
wave height for steep waves we see a slight phase difference between simulations and experiment in WHM 1 for the
shortest (and steepest) wave.

Fig. 4 shows that the free surface extremes are somewhat irregular. These irregularities do not repeat well between
tests, as becomes apparent from the green lines for λ = 1 m that do not completely overlap. For the other wave lengths,
the green lines overlap is nearly complete.

Additionally Fig. 4 shows the pendulum response for the four wave lengths: positive response means the pendulum
swings towards the wave maker. Recall that the dry natural period of the pendulum was found to be 1.64 s. The wet
natural period of the pendulum is expected to be higher because of added mass.

The first thing that stands out is the average value of the response, which is close to zero for all but the 1 m wave
length. Apparently, loading the pendulum with a wave period much lower than the natural period results in a mean
position shift. This mean position shift marks the nonlinearity in the response, as the incoming wave is nearly sinusoidal
with zero mean. We also observe that the pronounced maxima, and the irregularity of the maxima that are present in
the surface elevation, are transferred to the pendulum motion.

The response to the 5 m wave is highest, indicating that resonance occurs for a period close to this wave’s period. As
expected, the natural period for our wet-and-dry pendulum is higher because of added mass, which cannot be assumed
constant because the pendulum transitions from dry to wet intermittently. A clear indication that the resonance period
of the pendulum with added mass is between the periods for the waves with λ = 3 m and λ = 5 m, is that the phase
between the wave height and the pendulum response changes from in-phase to counter-phase. Finally, we reflect on
the shape of the 7 m wave signal. Here there are two maxima: the first one is from the free vibration stage, when the
pendulum is dry. When it is swinging back, the pendulum is grazed by the wave, giving a second maximum. We can see
energy is added in this latter peak because it is higher than the previous one. The wave period is long enough to allow the
pendulum to go fully in the other direction and back, after which the process repeats. For even longer waves we expect
this to be more pronounced (although this could not be tested due to stroke limitations of the wave maker). This is also a
clear nonlinear effect. The incoming 7 m wave is close to sinusoidal as shown by the wave gauges. Then the double peak
in the response demonstrates that higher frequency components were generated in the interaction between pendulum
and waves.

In Fig. 4, and more clearly 5, the red dotted line shows the wave profile following Rienecker and Fenton (1981) and
the response of the pendulum when using this wave model with the higher frequency components. The wave height at
wave gauges 1 and 2 is very similar to that of the Airy model, even when zooming in. The pendulum response to the
Rienecker–Fenton wave is somewhat lower than for the Airy wave, which is explained by the crests of the Rienecker–
Fenton wave being sharper. With sharper crests the pendulum is under water for less time, allowing less time for energy
transfer. As the waves become longer, meaning less steep, the wave becomes more sinusoidal and the models overlap
again.

The wave height is not exactly constant during a single test, due to for instance start up effects or interaction with the
pendulum. It is therefore interesting to investigate by means of the analytical model what the sensitivity of the response
is to a change in the wave amplitude. Fig. 5 shows two additional lines compared to Fig. 4, representing the response to a
regular wave with a 10% bigger or smaller amplitude. A 10% higher amplitude means 10% higher velocity, with quadratic
drag that should lead to a 21% larger response. Table 2 shows what this 10% change in wave amplitude does. It gives
the ratio R of increased or reduced pendulum amplitudes over the original response amplitude, for all wave lengths.
Surprisingly, the 5 m wave which excites the pendulum near its natural frequency shows the least sensitivity to change
in amplitude. The effect of increasing the amplitude is smaller than the effect of decreasing it. Another counter-intuitive
finding is that the expected ratio of 1.21 is only found for the 3 m wave. For the other wave lengths, wetness clearly also
has a large influence on the sensitivity of the response amplitude to changes in the wave amplitude.

The analytical model is a good representation of the experiment because it captures important aspects of the dynamic
interaction between waves and pendulum and allows us to investigate the experimental results in more detail. From the
comparison with the analytical model we find that the main drivers for nonlinear motion behaviour are the wetting and
drying of the pendulum and the drag on the cylinder when it is under water. Note, however, in Fig. 5 that the response
from the experiment is not inside the band formed by the analytical results with lower and higher amplitudes. This is an
7
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Fig. 5. Detailed response of the pendulum. The model response has a band representing the outcomes when the wave amplitude is increased or
ecreased by 10%. RF is the nonlinear wave model of Rienecker and Fenton (1981).

ndication that in the experiment more is going on than can be captured by the analytical model. The water entry, buoyant
ehaviour and water exit are included in the experiment but not in the model. Structures in the interface between water
nd air are notoriously difficult to study by means of numerical models, because the intermittent presence of the structure
reaks the continuity of the interface. Apparently, even for situations that are not that violent, modelling a structure that
s in one medium for some time, and then transitions to the other medium for the next stretch of time, will require
umerical techniques like Volume-of-Fluid or Level Set to capture the air–water interface near the structure. This is why
e believe the experiment can be a useful benchmark for the community that works on developing these techniques.

.2. Variability

In Fig. 5 the variability (dissimilarity or irregularity of surface and pendulum position from period to period) is largest
or the steepest wave with λ = 1 m. The variability in the surface elevation is transferred to the angular position of the
endulum. But is the variability of the angular position as large as of the surface elevation?
Loading as a result of wave interaction with free-surface-piercing structures is highly variable (Bullock et al., 2007). It

as reported that – locally – pressures on a wall resulting from the same (or highly similar) wave input were strongly
issimilar, but also that – globally – the wave force on the wall varied between experiments with the same input (Hofland
t al., 2010). Among others, Bullock et al. (2007) and Hofland et al. (2010) also found that the impulse, which is the integral
f force over a meaningful time span, between experiments shows less variability. The analyses using impulse have in
ommon that the structures are fixed and rigid, and therefore cannot undergo a change of momentum. Translating this
pproach to our experiment with a structure that is free to move, leads to the hypothesis that the variability of the motion
esponse is smaller than that of the wave input.

Figs. 6–9 show the variability of the measured surface elevation at WHM 2 and the measured angle of the pendulum.
ere we divided the signal in parts as long as the period of the incoming wave. All these parts are then shifted to start
8
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Table 3
Summary of the results: wave length, test series, number of tests n, mean and coefficient
of variation of maxima response θ and wave height η.
λ, series n Mean max θ Mean max η CoV max θ CoV max η

(1.0, 300) 28 2.36 47.8 0.230 0.100
(1.0, 304) 28 2.40 49.6 0.176 0.0874
(1.0, 308) 28 2.32 47.9 0.170 0.0759
(3.0, 301) 15 2.03 52.9 0.0551 0.0316
(3.0, 305) 15 2.02 52.9 0.0596 0.0305
(3.0, 309) 15 2.04 51.8 0.0561 0.0315
(5.0, 302) 10 9.00 49.6 0.0143 0.0323
(5.0, 306) 10 8.87 49.2 0.0217 0.0250
(5.0, 310) 10 8.92 48.4 0.0143 0.0195
(7.0, 303) 7 2.14 44.8 0.0254 0.0376
(7.0, 307) 7 2.15 43.6 0.0332 0.0181
(7.0, 311) 7 2.22 43.1 0.0324 0.0136

Fig. 6. Surface elevation (top) and response (bottom) in experiments for wave length λ = 1 m, with statistics over 28 periods. Left, middle and right
olumn represent the first, second and third repetition of the test. Mean position at a time indicated by continuous green, 25th and 75th percentile
ndicated by dashed green and the grey band, minimum and maximum values indicated by dotted red. (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)

t the same time. The minimum, maximum and, 25th, 50th and 75th percentile are calculated at every time instant and
lotted in a single graph per experiment repetition. The top row shows the wave height at the pendulum, the bottom row
hows the pendulum angle. Each column is one repetition of the experiment with the same input parameters. Table 3
hows a summary of the peaks of the wave elevation η and the pendulum response θ as well as the number of peaks n.
or both of these variables the mean and coefficient of variation (CoV, standard deviation divided by mean) are given.
For the longer wave lengths λ ≥ 5 m in Figs. 8 and 9 we see the 25th and 75th percentile results visually overlapping,

eaning there is not much variability. This is also shown in Table 3. For λ = 3 m we see a surface elevation with hardly
ny variability, but a larger variability for the pendulum angle. The shortest wave λ = 1 m has the largest variability in
oth surface elevation and pendulum angle, which is true for all repetitions. For almost all experiments, the pendulum
esponse has larger coefficient of variation than the wave height. This finding disproves the hypothesis, which stated that
he variability of the fluid is local and would be smeared out in the global response of a structure. Instead variability of
he fluid is amplified in the structural response. Note in Table 3 that the λ = 1 m wave of series 300 has a coefficient
f variation of 0.10 on the wave elevation, giving a coefficient of variation of 0.23 for the maximum angle. A similar
ensitivity was found with the analytical model for this wave length, as shown in Table 2.
9
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Fig. 7. Surface elevation (top) and response (bottom) in experiments for λ = 3 m, statistics over 15 periods. Description as in Fig. 6.

Fig. 8. Surface elevation (top) and response (bottom) in experiments for λ = 5 m, statistics over 10 periods. Description as in Fig. 6.

We conclude that the variability in the wave is amplified by the interaction with the pendulum. Using the findings
from Table 2 confirms that a small variation in wave amplitude can indeed in most cases cause a superlinear increase in
10
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Fig. 9. Surface elevation (top) and response (bottom) in experiments for λ = 7 m, statistics over 7 periods. Description as in Fig. 6.

he response. Figs. 6–9 and Table 3 show that the pendulum response is more variable when the angle is positive, that is
hen the pendulum is dragged along by the wave. Underwater turbulence may explain the added uncertainty when the
endulum is loaded by the wave. The pendulum swings through the wake field it has left, which is different for every
oading cycle. This would imply that the drag coefficient changes as the experiment progresses. Another possibility is
hat the structure starts moving already due to some droplet or filament. With this initial velocity the relative velocity
etween fluid and structure changes, giving a different response.

. Conclusion

In this paper we have presented a benchmark experiment for fluid–structure interaction in maritime applications:
pendulum in monochromatic waves. The experiment captures water entry, submerged behaviour and water exit,
odelling the large variations of wetted area that are typical for structures at sea. Large variations in wetted area cause
ifferent types of motion behaviour for different wave lengths. For a wave period much smaller than the dry natural
eriod a mean position shift of the pendulum was observed. For a wave period much larger than the dry natural period,
econdary local maxima in the signal of the pendulum position were observed. As expected, resonant motion behaviour
or a wave period higher than the dry natural period was observed (higher because of added mass).

A reduced-order model was made which includes the added mass and drag components of the hydrodynamic loading,
ogether with a wetness factor. A good comparison between model and experiment was obtained. The distinguishing
ynamics of the wet-and-dry pendulum are captured by the model, and the Morison equations with the chosen
oefficients are suitable for the entire wet-and-dry behaviour. The main drivers for nonlinearity are the wetting and
rying and the drag. Seeing the small angles we obtained confirms buoyancy was rightfully disregarded from the model.
here is no reason to assume that inclusion of air drag or buoyancy would have altered the results significantly.
A sensitivity analysis with the model that varied the wave amplitude demonstrated that model and experiment differ

n details. A better correspondence would require a model that is able to represent the water entry and exit phenomena.
oing into more detail it should model the wake of the pendulum as well as droplets and filaments. On the other hand,
sing linearized potential flow with small surface waves proved to be good enough.
The variability in surface elevation for waves with λ ≥ 3 m was low, the variability of the shortest wave length was

learly the largest. For nearly all experiments the variability of the surface elevation was amplified in the response of
he pendulum. This is confirmed by the sensitivity study, which showed that a 10% difference in wave amplitude gives a
arger than 10% increase in pendulum response for all wave lengths except the 5 m wave. A hypothesis, extended from
he literature about using impulse to interpret wave loading on non-moving structures, that the variability in the motion
11
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f the structure should be lower than that of surface elevation, could not be confirmed. The variability was also found to
e larger when the pendulum is dragged along by the wave, than when the pendulum moves back through air.
We believe that the presented experiment is a good benchmark for maritime FSI problems. The experiment could be

ugmented by investigating local vibrations of the structure, or additional (plastic) hinges. This will keep the experiment
imple, but allows validation of other FSI phenomena. Another idea would be to repeat these tests for focused waves
nstead of monochromatic waves. Focused waves can be higher, and have a larger horizontal velocity when they break,
ncreasing the water entry forces.
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