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Summary

Conventional imaging techniques from medical ultrasound and seismic imaging are not suitable for multi-
layered domains where there is no separation between received reflection events. This happens in layered
structures where the thickness of the individual layer is small with respect to the induced wavelengths. An
example of these structures is the wall of a typical blast furnace. Imaging these domains require a method
based on the interference pattern in the frequency domain. This method is already widely used for imaging
concrete structures. However, these consists of only one or two layers. This study introduces a Full Waveform
Inversion scheme which extends the usability of the method to multilayered domains. It minimizes the error
between measurements and a forward model. To reduce the computation load, a simplified forward model
based on a plane wave response in a vertically layered medium is adopted. Pre-processing steps are neces-
sary to remove the effect of the source wavelet and to enhance the peaks and troughs positions. A sensitivity
analysis provides information about the usability of the method. This shows only layers with standing wave
frequencies in the range of the induced source wavelet can be imaged. Furthermore, results show it is impos-
sible to measure the wave velocity and thickness of a single layer simultaneously given our simplified forward
model. Multichannel measurements over an aperture of 500 mm are required to transform a spherical wave
response to its plane wave equivalent in order to fit the forward model. Tapering the sides of the aperture is
essential to reduce simulation artefacts. The inversion scheme is successfully tested on synthetic data of a
blast furnace wall in the acoustic and elastic domain using realistic simulations of the measured data.
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1
Introduction

Sound waves are widely used for imaging. High frequencies are required to image small domains. Medi-
cal ultrasound is such an example where acoustic waves with frequencies of multiple megahertz are used.
Larger domains, such as in geophysics, require longer wavelengths to counteract absorption of the media. In
both fields the arrivals are separated in time. This makes it possible to use traditional imaging and inversion
techniques. These methods, however, do not suffice when there is no clear distinction between arrivals. This
phenomena occurs mostly in imaging layers smaller than the induced wavelength. For multilayered domains
this effect becomes even more apparent. Here an imaging technique called Impact-Echo (IE) can be used. It
uses an impact device, normally a hammer, to induce a wave. The received signal is Fourier transformed and
the frequency spectrum contains information about the system parameters. Fig. 1.1a shows a typical signal
of one receiver. There is no distinction between arriving waves. However, when this signal is Fourier trans-
formed, see Fig. 1.1b, more information is visible. This method has been the standard for imaging concrete
structures for several decades (Theocaris and Prassianakis, 1974; John et al., 1982). However, these structures
are limited to only one or two layers such that the resonance frequency can be easily determined. This study
introduces an inversion scheme for imaging multilayered domains using the IE method and multichannel
data.
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Figure 1.1: A typical A-scan of a signal with no separated arrivals in the (a) time domain and (b) frequency domain.
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2 1. Introduction

Figure 1.2: Schematic cross section of the inside lining of a furnace wall with: (1) air, (2) steel shell, (3) mortar joint, (4)
graphite, (5) ramming layer, (6) semi-graphite blocks, and (7) liquid steel.

1.1. Applications
The proposed inversion scheme can be used for various multilayered systems with layers thinner than the
induced wavelengths. In this study the inversion scheme is tested on simulated measurements of the hearth
of a typical blast furnace. This hearth is cylindrically shaped with a diameter of 13 meter and a height of al-
most 9 meter. Its wall, called the refractory, consists of five different layers with a design thickness varying
between 2 and 750 millimetre, see Fig 1.2 for a schematic cross-section. There is a need for imaging the re-
fractory as it degrades over time. Especially the semi-graphite blocks (layer 6 in Fig. 1.2) experience a high
level of degradation. This is mainly caused by high temperature molten corrosion, thermal shock, and carbon
brig fragmentation (Wang et al., 2014; Sadri et al., 2015). Monitoring the degradation will increase the overall
safety and maintenance scheduling (Sadri et al., 2014). Moreover, the lifespan of the furnace can be increased
up to 15 percent when imaging the refractory with an accurate technique.

Currently there exist several imaging methods for this application. However, these all have their own dis-
advantages and limitations. The top five most used methods are given in the following subsections.

1.1.1. Thermocouples
This is, together with infrared-thermography, the most common monitoring technique. It uses the temper-
ature values and a mathematical model to determine the thickness. The temperature values are obtained
via thermocouples at specific positions inside the wall. This method seems sufficient, however, assumptions
and predictability strongly influence the accuracy. When the medium is assumed to be homogeneous, while
in fact this is never the case, significant errors will arise. Furthermore, the accuracy of the temperature data
is limited. This will have a significant effect on the thickness determination (Sadri et al., 2015; Sharp et al.,
2012).

1.1.2. Infrared-thermography
Infrared-thermography uses an infrared camera to detect hot spots on the steel shell. Weak parts of the wall
can be determined using these hot spots. This method has some drawbacks. Cracks, gaps and looseness of
the bonding will affect the result dramatically. Additionally, these rough estimates need to be compared to
earlier data sets. This requires similar measurement conditions. Also, rusting, nearby heat, and reflections
will affect the temperature reading (Sadri et al., 2015; Bolf, 2004; Sadri et al., 2009).

1.1.3. Radioactive tracers
Radioactive tracers are inserted through the top of the furnace, after which the descent and radiate through
the wall. The radioactive intensity measured outside the furnace is proportional to the remaining thickness.
However, non uniformity of the layers, the presence of molten metal throughout the layers, and quality of
the remaining lining will result in inconsistent radiation counts. Furthermore, the tracers can be toxic which
might lead to health risks for operators (Sadri et al., 2015).
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1.1.4. Electromagnetic techniques
Radar and microwave systems are used to measure spatial variations in the dielectric constants. These vari-
ations can be linked to the remaining thickness (Varghese et al., 2005). Because it is impossible for electro-
magnetic waves to penetrate the steel shell, antennas need to be placed inside the furnace wall. However,
any other steel in the lining – which will occur either by design or by deterioration – will result in interfer-
ence or completely block the signal. It is also impossible to detect empty voids as electromagnetic waves are
insensitive to refractory-air interfaces (Sadri et al., 2015).

1.1.5. Core drilling
Core drilling is the most accurate technique. Here a core is drilled up to a pre-determined temperature depth.
Within this core the remaining thickness can be determined. However, the use of this technique is limited as
it affects the structure and safety of the furnace. Furthermore, this method results in a local profile only.

1.2. Research aim and outline
Due to the various limitations of the above described technique, there is a need for a more safe and robust
imaging method. The aim of this study is to test the feasibility of an interference pattern based inversion
scheme as imaging technique. This is tested for both plane wave and point sources in acoustic and elastic
media. Due to the preliminary nature of this study, only vertical profile geometries are considered. This
entails no local degradation or tilted boundaries. The proposed inversion scheme is tested on synthetic data
of a refractory only. Multichannel measurements are used to transform the response of a point source to its
plane wave equivalent.
The outline of this thesis is as follows. First, wave propagation in both acoustic and elastic media is described.
This chapter also encloses the standing wave theory and the theory of multichannel measurements. The next
chapter introduces two modelling methods. Chapter 4 explores two inversion schemes. Chapter 5 encloses
the results. Here a sensitivity analysis is performed, and the inversion methods are tested on synthetic data.
Furthermore, data of multichannel measurements is explored. Lastly the conclusion and recommendations
are given.





2
Theory

This chapter introduces the necessary theory of both acoustic and elastic wave propagation. Next, reflection
and transmission at boundaries is explained and the standing wave theory is explored for both single and
multilayered domains. Lastly, Fourier theory regarding multichannel measurements is introduced.

2.1. Wave propagation
Sound waves can propagate in two different kinds of media: acoustic media and elastic media. Acoustic me-
dia have zero shear modulus while elastic media do not. This result in two different types of wave equations.
Acoustic waves obey to a scalar equation while elastic waves adhere to a vectorized equation.

2.1.1. Acoustic media
The acoustic wave equation can be derived from Hooke’s law,

−∇·u(r, t ) =−p(r, t )

κ(r)
+q(r, t ), (2.1)

and Newton’s law,

f(r, t )−∇p(r, t ) = ρ(r)
δv(r, t )

δt
. (2.2)

Here u [m], v [m s-1] and p [Pa] represent the particle position, particle velocity and the pressure, respectively.
κ [Pa-1] is the bulk modulus and ρ [kg m-3] is the density. Sources, when present, are given by q [-] and f [N
m-3]. These are the volume injected per unit volume and force per unit volume, respectively. Note that the
bold symbols refer to vectorized quantities. The acoustic wave equation is derived by either eliminating the
particle velocity v or pressure p from Eq. (2.1) and (2.2). Eliminating the particle velocity result in,

∇·
[

1

ρ(r)
∇p(r, t )

]
− 1

κ(r)

δ2p(r, t )

δt 2 = s(r, t ), (2.3)

with the source term,

s(r, t ) = δ2q(r, t )

δt 2 −∇·
[

f(r, t )

ρ(r)

]
. (2.4)

Assuming a homogeneous and source free medium, Eq. (2.3) becomes,

∇2p(r, t )− 1

c2
p

δ2p(r, t )

δt 2 = 0. (2.5)

Here the acoustic wave velocity cp [m s-1] is defined as
√

κ
ρ .

Sometimes it is more convenient to view and manipulate the data in the frequency domain (Gisolf and Ver-
schuur, 2016). This can be achieved by Fourier transforming Eq. (2.5),

∇2p̂(r,ω)+ ω2

c2
p

p̂(r,ω) = 0, (2.6)

5



6 2. Theory

which is called the Helmholtz equation. Here any variable in frequency domain is noted with a caret symbol,
ω [Hz] is the angular frequency. See Appendix A for the definition of the Fourier transform. A typical solution
to the Helmholtz equation are plane waves. These are governed by,

p̂(r,ω) = Ŵ (ω)e− j k·r, (2.7)

with,
k · r = kx rx +ky ry +kz rz , (2.8)

j being the imaginary unit, k the wave vector, r the Cartesian unity vector [rx , ry , rz ]T , and Ŵ the Fourier
transform of the source signal, often called the source wavelet.

2.1.2. Elastic media
Waves in elastic media propagate according to the elastic wave equation. The derivation is significantly more
complex compared to its acoustic counterpart. Because this does not introduce more insight for this thesis,
the derivation is omitted and can be found in literature (Bath, 2013). The elastic wave equation in an isotropic,
source free, slowly varying medium (∇λ≈ 0 and ∇µ≈ 0) equals to,

ρ(r)
δ2u(r, t )

δt 2 = (λ+2µ)∇(∇·u(r, t ))−µ∇×∇×u(r, t ), (2.9)

with λ [kg m-1 s-2] and µ [kg m-1 s-2] the Lamé constants,

λ= σE

(1−2σ)(1+σ)
, µ= E

2(1+σ)
. (2.10)

Here σ [-] and E [kg m-1 s-2] are the Poisson’s ratio (ratio between axial strain and transverse strain) and
Young’s modulus (relation between stress and strain), respectively (Bath, 2013). ∇·u describes the volumetric
deformation whereas ∇×u characterizes the shearing deformation. Eq. (2.9) has two solutions, namely pres-
sure waves (P) and shear waves (S). In P waves the particles displacement is parallel to the direction of wave
propagation. For S waves this excitation is perpendicular to the direction of the wave. In homogeneous me-
dia these waves travel independent from each other according to their own wave equation. These equations
can be derived by taking the curl for P waves or divergence for S waves of Eq. 2.9 (Bath, 2013). Applying the
curl and using ∇· (∇×u) = 0 results in the P wave equation,

∇2 (∇·u(r, t ))− 1

c2
p

δ2(∇·u(r, t ))

δt 2 = 0. (2.11)

Applying the divergence and using ∇×∇×u =∇∇·u−∇2u gives rise to the S wave equation,

∇2 (∇×u(r, t ))− 1

c2
s

δ2(∇×u(r, t ))

δt 2 = 0. (2.12)

Here cp [m s-1] and cs [m s-1] are the acoustic and shear wave velocities respectively,

cp =
√
λ+2µ

ρ
<

√
µ

ρ
= cs . (2.13)

The total wave equation in elastic media can be written as a summation over P and S waves (Bath, 2013),

δ2u(r, t )

δt 2 = c2
p∇ (∇·u(r, t ))︸ ︷︷ ︸

P waves

−c2
s ∇× (∇×u(r, t ))︸ ︷︷ ︸

S waves

. (2.14)

2.1.3. Reflection and Transmission
Waves reflect and transmit upon a change in impedance. Reflection coeffcient (R) and transmission coeffi-
cient (T) for both P and S waves at normal incidence become,

R = Zi+1 −Zi

Zi+1 +Zi
, T = 2Zi+1

Zi+1 +Zi
, (2.15)
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with Z [kg m-2 s-1] the impedance (Zp = ρcp for P waves and Zs = ρcs for S waves). Here the subscript i de-
notes the media in which the wave reflects, i +1 denotes the media to which (a part of) the wave transmits. It
is important to note the possibility of a negative reflection coefficient, i.e. when Zi+1 −Zi < 0.

Eq. (2.15) is only valid for waves intersecting a boundary parallel to the normal. The reflection and transmis-
sion coefficients of P waves under oblique incidence in acoustic media are,

R = Zi+1cos(θi )−Zi cos(θi+1)

Zi+1cos(θi )+Zi cos(θi+1)
, T = 2Zi+1cos(θi )

Zi+1cos(θi )+Zi cos(θi+1)
, (2.16)

with θi [rad] and θi+1 [rad] the angle of incidence and transmission respectively. See Appendix B for the
derivation.

The elastic equivalent of angle-dependent reflection and transmission coefficient like Eq. (2.16) are not so
straight forward. Here there is not only angle-dependency, but also exchange between P and S waves. These
complex relations are described by the Zoeppritz equations (Aki and Richards, 2002). Due to the complexity
and lack of insight these equations are omitted. Note that reflection and transmission of waves in acoustic
media are also described by the Zoeppritz equations. However, these adhere to a special case where there is
no propagation of shear waves, thus cs = 0.

2.2. Standing wave theory
Plane waves will resonate between two reflective boundaries (R1 and R2) according to the standing wave
theory. This concept already dates back to the 19th Century (Scott, 2006). The resonating waves carry infor-
mation about the media parameters wave velocity and thickness. Because the resonating frequency is highly
related to a phase shift at reflection, three cases need to be explored. Namely R1 ·R2 > 0 (R1>0 & R2>0 and
R1<0 & R2<0 ), and R1 ·R2 < 0.

1. R1 > 0 and R2 > 0
When both of the reflection coefficients are positive, waves resonate according to,

f = n
c

2d
, (2.17)

with f [Hz] the resonance frequency, c the wave velocity, d [m] the distance between the two reflective bound-
aries, and n a positive integer. f (n = 1) describes the first harmonic (also called fundamental frequency),
f (n = 2) describes the second harmonic and so on. A visualization of the first three harmonics are shown in
Fig. 2.1a-c.

2. R1 ·R2 < 0
When one of the reflection coefficients is negative, Eq. (2.17) is expanded to,

f = (2n −1)
c

4d
. (2.18)

Figure 2.1: Resonance frequency visualized for the first three harmonics. Top n = 1, centre n = 2, bottom n = 3 taken for
two positive reflection coefficients (left), one negative reflection coefficient on the left side of the domain (middle), and
two negative reflection coefficients (right).
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This equation is called the extended version of the standing wave theory. A wave reflecting with a negative
reflection coefficient will experience a phase shift of π/2. The first three harmonics with a negative reflection
on the left side of the domain are shown in Fig. 2.1d-f.

3. R1 < 0 and R2 < 0
Whenever both reflection coefficients are negative, a phase shift occurs at both sides of the domain. This will
result in the same resonance frequency as in Eq. (2.17). The difference here is a total phase shift of pi , as
shown in Fig. 2.1g-i.

These relations are simple for a single, homogeneous layer. However, they become less intuitive whenever
additional layers are added. As an example, a transmitted phase shifted wave can either (partly) cancel (de-
structive) or amplify (constructive) its encountering wave. This will happen for every wave at any given place
and time. It is for this reason the standing wave theory is not very suitable for calculating the resonance
peaks of multilayered systems. There are, however, simulation methods that can model wave propagation in
any domain. These models can be used to get the desired frequency response and are explained in the next
chapter.

2.3. Multichannel measurements
The proposed inversion scheme, which will be explained in Chapter 4, uses a forward model to simulate the
wave propagation in a vertically layered medium. Simulating the response of a point source is a two dimen-
sional problem (actually this is a three dimensional problem, however in this study only a two dimensional
domain is considered). This is computationally very expensive. Plane wave responses can be simulated for
one dimension and require almost no computation time. This will accelerate the inversion scheme consider-
ably. However, implementing this forward model requires extra steps to interpret the received spherical wave
data as plane wave responses. Here multichannel measurements are essential. This can be proven using
Fourier theory. Recall the transformation of a signal d from receiver space-time domain to wavenumber-
frequency domain,

D̂(kx ,ω) =
∫ ∞

−∞

∫ ∞

−∞
d(x, t )e j (kx x−w t )d x d t . (2.19)

By setting the wavenumber kx to zero, Eq. (2.19) becomes,

D̂(0,ω) =
∫ ∞

−∞

∫ ∞

−∞
d(x, t )e− j w t d x d t =

∫ ∞

−∞
D̂(x, w)d x. (2.20)

This is no more than summing over the entire measurement plane. However, measuring over an infinite plane
is impossible and luckily unnecessary. Fig. 2.2 shows an example of a recorded wavefield of a finite domain.
This wavefield is divided into three sections: S1, S2, and S3. S1 is called the 1th Fresnel zone. This is part
of the wave which is recorded first. Due to the geometric spreading this is also the most horizontal part of
the wavefield. Section S2 contains the wavefields at the boundaries of the domain. The remaining wavefield
between S1 and S2 is denoted by S3. Eq. (2.20) can be rewritten as a summation over these sections,

D̂(0,ω) =
∫

Stot al

D̂(0,ω)d x =
∫

S1
D̂(x,ω)d x +2

∫
S2

D̂(x,ω)d x +2
∫

S3
D̂(x,ω)d x. (2.21)

The integral over S3 is zero. There is a balance between peaks and troughs; destructive addition. However, this
is not applicable in S1 and S2. The peaks in the 1th Fresnel zone have no counteracting troughs. Integrating
over S1 will therefore result in a non zero term. The same occurs in S2. However, in contrary to S1, this is
a simulation artefact due to a limited computation domain. Here there is no balance between positive and
negative amplitude. Fortunately, this can be suppressed by tapering the edges of the recorded wavefield.
Studies to the 1th Fresnel zone date back decades (Sheriff, 1985; Lindsey, 1989; Sheriff, 1996). However, these
all describe seismic applications only. Studies to the 1th Fresnel zone in these multilayered systems are non-
existing. This zone should be found empirically until further research is available.
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Figure 2.2: Example of a recorded wavefield of a domain with one reflective boundary. (S1) 1th Fresnel zone ,(S2) wave-
field at the boundary, (S3) the remaining wavefield.





3
Modelling

The previous chapter listed the limitation of the standing wave theory for multilayered systems. Therefore,
other approaches need to be explored. This chapter provides two simulation methods which gain insight in
the frequency response of a layered media. First, an Elastic Finite Difference (EFD) method is introduced.
Next, the simplified full wavefield modelling scheme is explained.

3.1. Elastic Finite Difference model
Wave propagation can be modelled using a so-called finite difference method as proposed by Virieux (1986).
Here the elastodynamic equations are transformed into a first-order hyperbolic system. The wave equation
in acoustic media is defined through the first-order linearized systems of Hooke’s and Newton’s law,

δu̇x

δt
=− 1

ρ

δP

δx
, (3.1a)

δu̇z

δt
=− 1

ρ

δP

δz
, (3.1b)

δP

δt
=− 1

κ

[
δu̇x

δx
+ δu̇z

δz

]
, (3.1c)

with u̇x , u̇z the particles velocity in x and z-direction, respectively. The temporal derivative can be approxi-
mated using a 2nd order scheme,

δP

δt
≈ P ((I + 1

2 )∆t )−P ((I − 1
2 )∆t )

∆t
, (3.2)

with I the time step and ∆t the time step size. The spatial derivative can be approximated with the 4th order
centralized Crank-Nicolson approximation. This requires a staggered grid shown in Fig. 3.1 for updating u̇x

and u̇z , and Fig. 3.2 for updating P . The 4th order Crank-Nicolson approximation is a linear combination of
four Taylor expansions around x=0 (Fornberg, 1988). These are,

P (x + ∆x

2
) ≈ P (x)+ ∆x

2

δP

δx
+ ∆x2

22 ·2!

δ2P

δ2x
+ ∆x3

23 ·3!

δ3P

δ3x
+ ∆x4

24 ·4!

δ4P

δ4x
+O∆x5, (3.3a)

P (x − ∆x

2
) ≈ P (x)− ∆x

2

δP

δx
+ ∆x2

22 ·2!

δ2P

δ2x
− ∆x3

23 ·3!

δ3P

δ3x
+ ∆x4

24 ·4!

δ4P

δ4x
+O∆x5, (3.3b)

P (x + 3∆x

2
) ≈ P (x)+ 3∆x

2

δP

δx
+ 32∆x2

22 ·2!

δ2P

δx2 + 33∆x3

23 ·3!

δ3P

δx3 + 34∆x4

24 ·4!

δ4P

δx4 +O∆x5, (3.3c)

P (x − 3∆x

2
) ≈ P (x)− 3∆x

2

δP

δx
+ 32∆x2

22 ·2!

δ2P

δx2 − 33∆x3

23 ·3!

δ3P

δx3 + 34∆x4

24 ·4!

δ4P

δx4 +O∆x5. (3.3d)

Subtracting Eq. (3.3b) from (3.3a) and Eq. (3.3d) from (3.3c) eliminates all even power terms,

H1 = P (x + ∆x

2
)−P (x − ∆x

2
) ≈∆x

δP

δx
+2

∆x3

24

δ3P

δx3 +O∆x5, (3.4a)

11
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Figure 3.1: Staggered grid for updating the particles velocity
u̇x and u̇z (Thorbecke and Draganov, 2011).

Figure 3.2: Staggered grid for updating the pressure P
(Thorbecke and Draganov, 2011).

H2 = P (x + 3∆x

2
)−P (x − 3∆x

2
) ≈ 3∆x

δP

δx
+54

∆x3

24

δ3P

δx3 +O∆x5. (3.4b)

The 4th order approximation can be derived by a linear combination of H1 and H2. This eliminates all third
order terms,

δP

δx
+O∆x5 ≈ 27H1 −H2

24∆x
≈ 27(P (x + ∆x

2 )−P (x − ∆x
2 ))−P (x + 3∆x

2 )−P (x − 3∆x
2 )

24∆x
+O∆x4. (3.5)

With Eqs. (3.2) and (3.5) the particle velocity and pressure in Eq. (3.1)a-c can be calculated. Initially u̇x and
u̇z are updated,

u̇x (t +∆t ) = u̇x (t )+∆t
δu̇x (t )

δt
= u̇x (t )−∆t

1

ρ

δP

δx
, (3.6a)

u̇z (t +∆t ) = u̇z (t )+∆t
δu̇z (t )

δt
= u̇z (t )−∆t

1

ρ

δP

δz
. (3.6b)

A source, if present, is added and the boundary conditions are implemented. Next the pressure P is updated
according to Eq. (3.1)c and,

P (I + 1

2
)∆t ) = P ((I − 1

2
)∆t ))+∆t

δP

δt
. (3.7)

A source, if present, is added and u̇x and u̇z are updated again.

The Crank-Nicolson approximation is preferred over other methods because this is more robust, has high or-
der of accuracy (O (∆x4)), and converges faster than the implicit and explicit finite different methods (Fadugba
et al., 2013).

3.1.1. Convergence and stability criteria
For numerical time-marching schemes, which here means calculating u̇x , u̇z and P at time T +∆t with in-
formation at time T , the convergence condition is given by the Courant number (Courant et al., 1967). This
entails that a wave in one time step must not travel further than the distance between two grid points times
the Courant number. For 4th order spatial derivatives as in Eq. (3.5) this number is 0.606 (Sei, 1995). This
approximates to the following stability criteria,

∆t < 0.606∆h

cmax
, (3.8)

with ∆h the distance between two grid points in meter and cmax the maximum wave velocity.

Dispersion can be suppressed when the spatial discretization is five times smaller than the minimal wave-
length (Alford et al., 1974),

∆h < λmi n

5
. (3.9)
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Figure 3.3: Suppression factor β for taper factorα between 0 (blue) and 2 (green) in increments of 0.1 over 50 grid points.

3.1.2. Boundary conditions
It is possible to choose the type of interaction between the modelled waves and the edges of the domain.
This study makes use of absorbing boundaries. Here reflections from the sides of the model are avoided by
suppressing the wave over k grid points. The degree of suppression, β, can be set with the taper factor α and
equals,

β= e
−

(
α·

i k

kmax

)2

. (3.10)

This is visualized in Fig. 3.3 for different taper factors over 50 grid points.

3.2. Wavefield Modelling via Bremmer Serie
Wave propagation can also be modelled by a Full Wavefield Modelling scheme (FWMod). FWMod is based on
the Bremmer series which describes plane wave propagation of electromechanical waves in layered media
(Bremmer, 1951). The concept is introduced for seismic applications and extended to angle dependency by
Berkhout (2012). In this study a simplified FWMod (sFWMod) is introduced. Here only plane waves at normal
incidence are assumed. The advantage of the sFWMod is the ability to use it as a forward model. This entails
propagation between boundaries and not between gridpoints, reducing the computation time significantly.

At every boundary four wavefields are defined. These are the incoming wavefields P̂ and outgoing wave-
fields Q̂. The reflection and transmission coefficients at each boundary are calculated according to Eq. (2.16).
Propagation operators of wavefields between boundaries are denoted by Ŵ , first introduced by Berkhout
(1984). See Fig. 3.1 for a schematic overview of the operators and Table 3.2 for a description of the symbols.
The incoming wavefields in boundary i are defined as,

Table 3.1: Schematic view of the wavefields P̂ and Q̂, reflec-
tion R and transmission T, and propagation operators Ŵ .

Table 3.2: Symbols in the sFWMod scheme.

Symbol Description
i indices layer
P̂+

i incoming wave field from above
P̂−

i incoming wave field from below
Q̂+

i down going wave field
Q̂−

i up going wave field
R̂i reflection coefficient
T̂i transmission coefficient
Ŵ +

i−1,i down going propagation operator

Ŵ −
i ,i+1 up going propagation operator
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P̂+
i (z,ω) = Ŵ +

i−1,i (z,ω) Q̂+
i−1(z,ω), (3.11a)

P̂−
i (z,ω) = Ŵ +

i+1,i (z,ω) Q̂+
i+1(z,ω), (3.11b)

with the propagation operators,
Ŵ +

i−1,i (z,ω) = e− j kdi−1,i , (3.12a)

Ŵ +
i+1,i (z,ω) = e− j kdi ,i+1 . (3.12b)

Here di−1,i [m] is the distance between boundary i −1 and i . Note that Ŵ +
i−1,i and Ŵ −

i ,i−1 are identical. The
outgoing wavefiels are defined as,

Q̂+
i (z,ω) = Ti P̂+

i (z,ω)−Ri P̂−
i (z,ω), (3.13a)

Q̂−
i (z,ω) = (2−Ti ) P̂−

i (z,ω)+Ri P̂+
i (z,ω), (3.13b)

with Ti the downward facing transmission coefficient and Ri upward facing reflection coefficient. The down-
ward facing reflection coefficient, R∩

i , is the negative value of its upward equivalent. The upward facing trans-
mission coefficient equals,

T ↑
i = 1+R∩

i , (3.14)

and can be written a function of the downward facing tranmission coefficient, Ti ,

T ↑
i = 1+R∩

i = 1−R∪
i = 1− (Ti −1) = 2−Ti . (3.15)

The relations in Eq. (3.11) and (3.13) can be written using the following matrix multiplication scheme;


P̂+

i
P̂−

i
Q̂+

i
Q̂−

i

=


0 0 0 0 0 0 Ŵ +

i−1,i 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 Ŵ −
i+1,i

0 0 Ti −Ri 0 0 0 0 0 0 0 0
0 0 Ri 2−Ti 0 0 0 0 0 0 0 0





P̂+
i−1

P̂−
i−1

P̂+
i

P̂−
i

P̂+
i+1

P̂−
i+1

Q̂+
i−1

Q̂−
i−1

Q̂+
i

Q̂−
i

Q̂+
i+1

Q̂−
i+1



+S. (3.16)

Eq. (3.16) can be extended for any number of layers. Introducing a source wavelet is done by adding the
vector S to the right hand side. This vector contains one nonzero element at the position where the source
wavelet is introduced to the medium. It should be noted that Eq. (3.16) is valid for one frequency only and
should be repeated for every component in the source signal. Attenuation can be introduced by adding a
negative imaginary value to the wave vector. However, in this study no attenuation is added. It is possible
to substitute the matrix multiplication to an analytical function. This is called the Kenneth model (Kennett,
1979). However, this model becomes very complex rather quickly and does not introduce more insight for
this thesis. Therefore, a derivation is omitted. An example of the Kenneth model of a five layer system can be
seen in Appendix C.



4
Inversion

Full Waveform Inversion (FWI) is a very popular method for building velocity models. In FWI the difference
between the received signal and modelled wavefronts is minimized. The amplitude and phase of the wave-
front provide additional information to create a local differential approach for calculating the gradient and
Hessian operators (Virieux and Operto, 2009). However, this method requires certain knowledge about the
source. When this knowledge is absent, or when the source wavelet is not constant over multiple measure-
ments, and no distinction between arrivals can be made (see Fig. 1.1), standard FWI fails. This study pro-
poses two inversion schemes which use the peaks (and troughs) of the absolute frequency spectra of received
IE data. Here the phase is omitted as it is strongly linked to the source signal. The first inversion scheme
uses a function that links one frequency peak to domain parameters. The second scheme uses the peaks and
troughs of the entire received frequency spectrum. Here additional pre-processing steps are proposed and
an iterative solver to update the velocity model is introduced.

4.1. Inversion Scheme 1: Single peak inversion
The resonance frequency of each layer can be calculated using the (extended version of the) standing wave
theory as introduced in Chapter 2. This hints that every multilayered system also has its own overall resonat-
ing frequency. This frequency can be determined using the proposed modelling schemes given in Chapter 3.
A function can be created which characterizes a peak position to certain domain parameters. An advantage
to this method is the possibility to create this function offline using an accurate EFD scheme. Inversion can
be done instantly with the created function or within a few iteration steps once the shape of the function can
be estimated. A peak can be chosen above a certain threshold. However, this condition is strongly related to
the source wavelet. It is more robust to select the highest peak within a specific frequency window.

4.2. Inversion Scheme 2: Minimizing an objective function
Single peak inversion has its disadvantage that one peak might not be unique to a single set of parameters.
Furthermore, all additional information in terms of frequency peaks and troughs is discarded. This informa-
tion might be useful to increase the accuracy or is even essential to create a sufficient objective function. The
obvious next step is to create an inversion scheme that considers all peaks and troughs of the frequency spec-
tra. This approach is explored in the second inversion scheme. A block diagram minimizing the objective
function is shown in Figure 4.1. If a point source is used, edges are tapered and all receivers are summed in
order to mimic a plane wave response (see Chapter 2). When a plane wave is induced, only one reflection
signal (trace) is selected. The error between the measured signal and forward model response is defined as,

J =∑
ω

∣∣∣∣ f
(
P̂measur ed (ω)

)− f
(
P̂model l ed (ω)

)∣∣∣∣2
, (4.1)

with f a suitable set of pre-processing steps. P̂measur ed is the measured frequency spectra (either an average
over all receivers or a single trace, depending on the source). P̂model l ed is the frequency spectra of the plane
wave response created with the forward model. The pre-processing steps are necessary to remove the im-
pact of the source wavelet. These also enhances the peaks and troughs position. In this study the following

15
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Figure 4.1: Block diagram for minimizing the objective function.

steps are chosen. Initially the moving mean is subtracted from the absolute spectrum. This leaves the peaks
and troughs only, which we call ∆(ω), being the normalized difference between absolute spectrum and its
moving mean. These are enhanced and small amplitude differences are suppressed using the normalized
compression function,

C (∆) = at an(γ∆)

max(at an(γ∆))
, (4.2)

where γ is a scaling factor controlling the saturation The compression function for different scaling factors is
visualized in Fig. 4.2. An example of the applied pre-processing steps is shown in Fig. 4.3.

Minimizing the objective function is done by a steepest descent method, see Algorithm 1. The parameters for
which the algorithm finds a minimum are the domain parameters, i.e. acoustic wave velocity and thickness
of each layer, stored in the vector m. The total gradient is calculated by a weighted average of all individual
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C
(

)

Figure 4.2: Compression function for different scaling factors γ between 0 (blue) and 5 (green) in increments of 0.5. ∆ is
the normalized difference between the absolute spectrum and its moving mean.
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Figure 4.3: Example of a frequency spectra with and without pre-processing steps. (a) the absolute spectrum (solid) and
the moving mean (dashed). (b) normalized difference between the absolute spectrum and its moving mean, ∆, without
(dashed) and with compression function (solid). Here the moving mean is created with a window size of 750 Hz, γ equals
3.

gradients. These are calculated by a finite difference scheme, see Algorithm 2. Whenever a zig-zag pattern
occurs, i.e. if two elements of consecutive gradient have opposite sign, the step size in that iteration is halved.
Multiple start positions are used to decrease the possibility of ending in a local minima.

The plane wave response of a multilayered system does not adhere to the (extended version of the) stand-
ing wave theory. However, in layers with small travel times high frequency standing waves are present. These
do affect the measured signal according to Eq. (3.16). The level of sensitivity for individual layers can be
tested with a sensitivity analysis. Here the variables of each layer are changed individually. A change in fre-
quency response is a measure of sensitivity. This is a quick way to determine the required source bandwidth
and usability of the IE method for imaging specific layers.

Algorithm 1: Steepest descent

Result: Domain parameters
Input: Set starting parameters {m1

0, . . . ,mN
0 },

step size β
for N starting positions do

Calculate gradient: gi ;
while No minumum reached do

Update parameters: mi+1 = mi +β gi ;
Calculate gradient: gi+1;
foreach element k of gi+1 do

if g k
i · g k

i+1 < 1 then

mk
i+1 = mk

i + β
2 · g k

i+1;

Calculate new gradient: g k
i+1;

else
mk

i+1 = mk
i+1

Pick M parameters with lowest error

Algorithm 2: Calculating gradient

Result: gi+1
Input: mi+1, step size δ
foreach element k of mi+1 do

1hk
i+1 = mk

i+1;

Forward Model(1hk
i+1);

Calculate Error = 1ek
i+1;

2hk
i+1 = mk

i+1 + δ mk
i+1;

Forward Model(2hk
i+1);

Calculate Error = 2ek
i+1;

g k
i+1 =

2ek
i+1−1ek

i+1
δ





5
Results

The proposed inversion methods are tested on synthetic data of a multilayered furnace wall. It is impossible
to do control measurements on an operational furnace. Therefore the EFD model fdelmodc (Thorbecke and
Draganov, 2011) is used to create synthetic data. It is worth noting that this model solves the 2-D Greens
function in a 3-D framework, measuring along a perpendicular plane. This results in an amplitude shift pro-
portional to k−1/2 due to different geometrical spreading (Berkhout, 1987). Properties of the individual layers
as wave velocity and design thickness of every layer are shown in Table 5.1.

A Ricker wavelet with a peak frequency of 3 kHz and a maximum frequency of 10 kHz is introduced as
source. Fig. 5.1 shows the normalized source wavelet in both time and frequency domain. The wavelet is
created with the program makewave, which is provided in the package of fdelmodc (Thorbecke, 1993). The
input parameters are: dt=1e-4 ms, nt=7000, w=g2, and fp=3 kHz. The source is introduced at the air/refractory
interface. A plane wave source is simulated using fdelmdoc’s plane wave option with sources spanning the
entire width of the domain. Spherical waves are created by an array of 15 sources spanning 30 mm.

Receivers at the air/refractory interface record either pressure for acoustic modelling or particle velocity
for elastic schemes. A sample frequency of 20 kHz is used to uphold the Niquist criteria (Cramér and Grenan-
der, 1959). Due to the high computation times of the EFD model, only 10 ms of recording time is simulated.
The frequency spectra are created using Matlab and its Fast Fourier Transform (MATLAB, 2018), and the res-
olution is increased to 9 Hz by adding zeros to the time signal.

First, the results of the sensitivity analysis is introduced. Next, the response of a plane wave source infdelmodc
and sFWMod is compared and the two inversion methods are tested. Lastly, multichannel measurements
with point sources are performed and compared to the plane wave response of sFWMod.

Table 5.1: Properties of the different layers in the refractory and liquid steel. Here the subscript p and s denote the
acoustic and elastic properties, respectively. 1Thicknesses according to design. 2Wave velocities are set to be constant,
while in fact these are not due to a temperature gradient. The reflection and transmission coefficients are valid for plane
waves at normal incidence only and are defined as in Fig. 3.1.

Thickness (mm)1 Density (kg/m3) Wave velocity (m/s)2 Reflection Transmission
Layer cp cs Rp Rs Tp Ts

Air 500 1.2 356 0
1 1 2 2

Steel shell 60 7800 5800 3250
-0.9 -0.9 0.1 0.1

Mortar joint 2 1200 1500 840
0.3 0.3 1.3 1.3

Graphite 350 1750 1900 1064
-0.15 -0.15 0.85 0.85

Ramming 40 1500 1650 924
0.5 0.5 1.5 1.5

Semi-graphite 750 2500 3000 1680
0.7 -1 1.7 0

Liquid steel - 7700 5000 0
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Figure 5.1: Source wavelet used in the experiment: Ricker wavelet with dt=1e-4 ms, nt=7000, a peak frequency of 3 kHz
and a maximum frequency of 10 kHz in (a) the time domain and (b) as absolute frequency spectra.

5.1. Sensitivity analysis
The sensitivity analysis is performed by varying the individual parameters of each layer, i.e. density, wave
velocity and thickness, between 70 and 130 percent of the design specifications (Table 5.1). Simulations are
done with sFWMod due to the large number of calculated spectra. Only the acoustic case is studied, as only
an acoustic source is considered. Even though this method is less accurate and valid for plane waves in
acoustic domains only, it does provide fundamental information about the usability of the IE method. A
single frequency spectra of a medium with the design specification is shown in Fig. 4.3a. Because this section
tests the sensitivity of the IE method, no pre-processing steps are performed.

5.1.1. Density
The absolute spectra for varying densities are shown in Fig. 5.2. Fig 5.2a shows the spectra for varying density
of the steel shell, Fig 5.2b of the mortar joint, etc. (see Fig. 1.2 for the schematic overview of the refractory).
The spectra show IE is rather insensitive to a chance of density. The lack of sensitivity can be explained as
only the reflection and transmission coefficients depend on the density. Changing these coefficients will
only affect relative amplitudes. Because the spectra is build up out of many reflected waves, these small
amplitude differences make small changes in the spectra. However, when the densities are shifted to such an
extend where the reflection or transmission experience a sign flip, bigger differences occur. This dependency
is buried deep in Eq. (3.16). Simulations can provide information about the effect of a sign flip.
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Figure 5.2: Absolute frequency spectra for varying densities between 70 and 130 percent of the design specification. (a)
steel shell, (b) mortar joint, (c) graphite, (d) ramming layer, and (e) semi-graphite. All spectra are made with sFWMod.
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Figure 5.3: Absolute frequency spectra for varying wave velocities between 70 and 130 percent of the design specification.
(a) steel shell, (b) mortar joint, (c) graphite, (d) ramming layer, and (e) semi-graphite. All spectra are made with sFWMod.

5.1.2. Wave velocity
Fig. 5.3 shows the spectra for varying wave velocities in the same layers are previous test. This shows the IE
method is insensitive to a change in wave velocity in both the steel shell and mortar joint. These layers have
very small travel times τ= d/c, i.e. high frequency standing waves, which expresses itself in the propagation
operator Ŵ equal to one. For larger travel times, like in the graphite and semi-graphite layer, the phase of Ŵ
is non-zero. Small changes affect these propagation operators significantly. One could argue that a changing
velocity also affects the reflection and transmission coefficients. This is true, however as shown before, these
coefficients do not influence the frequency spectra significantly.

5.1.3. Thickness
The frequency spectra for varying thickness are shown in Fig. 5.4. The overall trend is similar as for changing
velocities. However, the peaks are shifted in the opposite direction. The reason for this is simple; an increas-
ing thickness d or decreasing wave speed c both result in a higher travel time τ. Consequently, both scenarios
produce the same propagation operator which result in similar spectra. This introduces an important limi-
tation; it is only possible to measure the ratio between thickness and wave velocity of the individual layers.
Furthermore, the most sensitive layers have a standing wave frequency also present in the source wavelet.
This is shown with the frequency of the graphite and semi-graphite layer. These have a fundamental fre-
quency of approximately 5 and 3 kHz, respectively, while the fundamental frequency of the steel shell equals
130 kHz. It must be noted that the IE method does become more sensitive to layers whenever the funda-
mental frequency approximates the frequencies that are present in the source wavelet, e.g. the fundamental
frequency of the ramming layer equals 23 kHz.

5.2. Inversion
The IE method is most sensitive to the graphite and semi-graphite thickness assuming fixed velocities. One
could argue that the thickness of the ramming layer should also be taken into account as a trend is visible.
Inverting for these thicknesses only is explored for reasons explained above. This reduces the overall number
of variables from 15 to 3. First single peak inversion method is introduced with one variable only. Next an
objective function is minimized. Initially the importance of the pre-processing steps are shown and the error
surfaces for different graphite and semi-graphite layers is provided. Thereafter, this method is used to invert
for the graphite, ramming, and semi-graphite thickness.

5.2.1. Single peak inversion
Fig. 5.5a shows the frequency spectra for varying semi-graphite thicknesses created with sFWMod (increased
thickness domain compared to Fig. 5.4e). A function of peak position and thickness is created for the peaks
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Figure 5.4: Absolute frequency spectra for varying thicknesses between 70 and 130 percent of the design specification.
(a) steel shell, (b) mortar joint, (c) graphite, (d) ramming layer, and (e) semi-graphite. All spectra are made with sFWMod.

inside the rectangle box. The fitted function is shown in Fig. 5.5b. These figures already show a limitation
of this method. One peak position is not unique to a single semi-graphite thickness. A peak at 2500 Hz
corresponds to both 660 and 100 mm. However, a more restrictive limitation is the possibility to shift a single
peak by varying different parameters (see the sensitivity analysis). It is for these reasons an inversion method
based on one frequency peak is insufficient.

5.2.2. Minimizing an objective function
The second inversion method is tested on synthetic data created with fdelmodc . Here plane waves are in-
duced. sFWMod is used as forward model to make sure no inverse crime is committed (Wirgin, 2004). The
importance of the pre-processing steps is introduced and the performance of the steepest descent method is
tested.

Preprocessing steps
Figure 5.6a shows a received frequency spectra of fdelmodc and sFWMod for similar parameters. The origin
of the absence of the first peaks and the high resonating artefact in the fdelmodcdata are unknown. However,
creating an inversion scheme regardless makes it more robust. Small differences in amplitude are suppressed
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Figure 5.5: (a) absolute frequency spectra for varying semi-graphite thickness between 0 and 750 mm (made with sFW-
Mod). The rectangle box indicates the region of interest for creating the function. (b) peak position versus semi-graphite
thickness with the straight line being the fit.
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Figure 5.6: Example received frequency spectra for fdelmodc (red) and sFWMod (blue) with (a) no pre-processing steps,
and (b) with pre-processing steps (frequency window of 750 Hz, γ equals 3).

with the suppression function. This is shown in Fig 5.6b.

The error between fdelmodc and sFWMod is calculated according to Eq. (4.1). Fig. 5.7a-b show the error
surfaces without and with pre-processing steps for varying graphite and semi-graphite thicknesses. It is ex-
pected that the global minimum is situated in the centre of the image, as these are the input parameters of
fdelmodc . However, Fig. 5.7a shows a minimum at the wrong place. This is not the case in Fig. 5.7b, which
demonstrates the importance of the proposed pre-processing steps. The valley shape global minimum can
be explained using the spectra in the sensitivity analysis. An upwards frequency shift by decreasing the thick-
ness of one layer can be (partly) cancelled by increasing another.

The overall shape of the objective function will always have this valley-like structure. However, selecting
different frequency window sizes for calculating the moving mean will change its width. This is shown in Fig.
5.8. High-order aberrations will be filtered out when a small window size is used. However, using a small
window size means the moving mean will follow the signal more, and peaks and troughs will become less
apparent after subtraction. Local minima are more easily created if these amplitudes are small. Expanding
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Figure 5.7: Error surfaces for varying graphite and semi-graphite thicknesses The dot represents the input parameters in
fdelmodc . (a) no pre-processing, (b) applied pre-processing (window size of 700 Hz, γ equals 3).
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Figure 5.8: Error surfaces using various window sizes from (a) 300 Hz to (e) 2300 Hz in steps of 500 Hz.

the window size will not filter out the high-order aberrations but maintains the relative peak amplitudes. This
results in fewer local minima on the cost of a larger, more flattened, global minimum.

Performance
The inversion method is tested on inverting for the thickness of the graphite, ramming, and semi-graphite
layer. The parameters in fdelmodc are 300, 40, and 500 mm for the graphite, ramming layer, and semi-
graphite layer, respectively. All other parameters are set as in Table 5.1. A plane wave is induced, and only the
acoustic domain is considered. Due to the expected amount of local minima, 200 starting parameter sets {m}
are chosen (see Algorithm 1). These are uniform randomly selected within a pre-defined domain (200 mm
< graphite < 400 mm, 30 mm < ramming < 50 mm, and 250 mm < semi-graphite < 750 mm). Whenever the
algorithm tries to find a minimum outside this domain, the iteration is aborted and a new parameter set is
initialized.

The convergence plots for different frequency windows are shown in Fig. D.1. Only the 20 parameter sets
with lowest error are selected. Data is visualized in Fig. D.2 and D.3 for all data and the best 20 sets, re-
spectively. Statistics of the best 20 sets is presented in Table 5.2. Results are in line with the expected global
minimum. Its position does not change upon choosing different frequency window sizes. The standard de-
viation of thickness of the ramming layer is significant compared to its mean value. This occurs because the
IE method is rather insensitive to the thickness of this layer. Results for increasing scaling factors γ are shown
in Figs. D.4, D.5, D.6 and Table 5.3. The method seems to become more accurate if a bigger scaling factor is
chosen. However, due to the relative large standard deviation a real conclusion cannot be taken.

5.3. Multichannel measurements
Prior simulations were done with single channel measurements of a plane waves source at normal incidence
in an acoustic domain. This section contains the comparison between the plane wave response and spherical
wave response in both acoustic and elastic media. The spectra are created with fdelmodc with the parame-
ters similar to the input values in the inversion scheme (300, 40, and 500 mm for the graphite, ramming layer,
and semi-graphite layer, respectively). Reflections of the edges of the domain are suppressed by absorbing
boundaries of 1500 grid points with a taper factor of 0.3. The time and frequency signal of acoustic media are
shown in Fig. 5.9. Plane wave and spherical wave responses in elastic media are shown in Fig. 5.10. There
is almost on difference between the acoustic and elastic plane wave spectra. This is expected as an acoustic
plane wave is induced. At normal incidence there is no exchange between S and P waves (see Chapter 2).
However, the spectra differ considerably when a point source is used. This shows that the angle dependent

Table 5.2: Statistics of the best 20 parameter sets with lowest error for different frequency window sizes. d3, d4, and
d5 represent the thickness of the graphite, ramming layer, and semi-graphite layer, respectively. A compression function
with a scaling factor γ of 3 is used.

Error d3 (mm) d4 (mm) d5 (mm)
Window (Hz) Mean Std. Mean Std. Mean Std. Mean Std.
750 26 5 297 17 42 7 508 37
1000 27 5 297 17 42 6 507 37
1250 28 4 294 16 43 6 506 35
1500 28 4 294 16 42 6 509 34
1750 27 3 298 17 40 6 509 35
2000 27 3 296 17 40 6 517 33
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Table 5.3: Statistics of the best 20 parameter sets with lowest error for different scaling factors γ in the compression
function. d3, d4, and d5 represent the thickness of the graphite, ramming layer, and semi-graphite layer, respectively. A
frequency window size of 1000 Hz is used.

Error d3 (mm) d4 (mm) d5 (mm)
Scaling factor Mean Std. Mean Std. Mean Std. Mean Std.
1 12 2 295 16 41 6 519 42
2 19 3 294 17 42 6 514 38
3 27 5 297 17 42 6 507 37
4 36 7 299 18 42 7 495 28
5 46 10 302 20 41 7 498 36
6 55 11 302 20 40 7 499 36

reflection and transmission coefficients affect the spectra significantly.

Chapter 2 showed the theory of transforming a spherical wave response to its plane wave equivalent. This
is done by tapering the edges and summing over the receiver plane. The edges of the aperture are tapered
using a Tukey window with a cosine fraction of 0.6. Fig. 5.11a (acoustic) and 5.12a (elastic) show the averaged
spectra over the entire width of the receiver plane without any tapering. Fig. 5.11b-d and 5.12b-d have in-
creasing aperture widths (500, 1000, and 1500 mm) and do contain the above described taper. These figures
clearly show the importance of tapering the signal at the edge of the receiver plane.

The spectra with different aperture widths in both the acoustic and elastic domain are also used as input
of the inversion scheme. Results are shown in Table 5.4. It is already possible to successfully invert for acous-
tic data with an aperture width of 500 mm. The accuracy will increase when using a larger aperture. However,
this trend is not visible in the elastic domain. One reason can be the presence of reflections from the sides of
the computation domain which are not sufficiently absorbed and produce interference.

Table 5.4: Statistics of the best 20 parameter sets with lowest error for different aperture widths for a point source in
the acoustic domain. d3, d4, and d5 represent the thickness of the graphite, ramming layer, and semi-graphite layer,
respectively. A frequency window size of 1000 Hz and a scaling factor of 3 is used.

Error d3 (mm) d4 (mm) d5 (mm)
Width (mm) Mean Std. Mean Std. Mean Std. Mean Std.

Acoustic
500 55 8 299 20 39 8 470 42
1000 37 6 295 18 42 7 478 40
1500 29 7 298 19 42 7 480 40

Elastic
500 64 5 304 21 43 7 485 43
1000 36 5 307 18 40 6 494 43
1500 34 6 310 22 42 7 459 41
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Figure 5.9: Received signal of multichannel measurements in the acoustic domain. Plane wave source in (a) the time
domain and (b) the frequency domain. Point source in (a) the time domain and (b) the frequency domain.
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Figure 5.10: Received signal of multichannel measurements in the elastic domain. Plane wave source in (a) the time
domain and (b) the frequency domain. Point source in (a) the time domain and (b) the frequency domain.
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Figure 5.11: Normalized frequency responses for the acoustic domain. sFWMod (orange), plane wave response created
with fdelmodc (red), spherical wave response (blue) for a spatial window of (a) 5000 mm with no tapering, and Tukey
apertures of (b) 500 mm, (c) 1000 mm, and (d) 1500 mm with a cosine fraction of 0.6.
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Figure 5.12: Normalized frequency responses for the elastic domain. sFWMod (orange), plane wave response created
with fdelmodc (red), spherical wave response (blue) for a spatial window of (a) 5000 mm with no tapering, and Tukey
apertures of (b) 500 mm, (c) 1000 mm, and (d) 1500 mm with a cosine fraction of 0.6.





6
Discussion, Recommendations, and

Conclusions

This chapter encloses the discussion of the results, recommendation for further research and the conclusions.
First, the modelling schemes are discussed. Next the sensitivity analysis, the proposed inversion method and
multichannel measurements are considered. Lastly the conclusions are provided.

6.1. Discussion and Recommendation
6.1.1. Modelling
The (extended version of the) standing wave theory is not suitable for simulating and predicting the frequency
response of a multilayered system. Therefore, fdelmodc is used and the sFWMod is created. Even though
fdelmodc is primarily used for seismic wavefield modelling, scaling all parameters makes it applicable for
any domain. However, the accuracy of the model is not validated for this use. Especially the absence of
frequency peaks in the first 2000 Hz should be investigated. Furthermore, only vertical profile geometries
are considered. The effect of non-symmetry, curved boundaries, artefacts, and velocity gradients need to be
explored. It is possible to add attenuation in the EFD model. However, this is omitted due to an considerable
increase in computation time and the preliminary nature of this study. Its effect on the measured spectra
should be investigated.

6.1.2. Sensitivity analysis
A sensitivity analysis provides essential information about the usability of the IE method. Results show only
layers with standing wave frequencies within the frequency band of the source wavelet can be imaged. Fur-
thermore, IE is insensitive to small changes in reflection and transmission coefficients. A major limitation is
the inability to measure the thickness and wave velocity individually. Prior information, when present, can
be used to overcome this limitation. However, it should be accepted if this information is not available.

6.1.3. Inversion
It is impossible to create an inversion scheme based on one frequency peak due to its degenerate nature.
Therefore, a scheme based on the peaks and troughs of the entire received frequency spectra is created. The
IE method can only invert for layers with standing wave frequencies in the order of the source wavelet. The
presented pre-processing steps are successfully implemented. They reduce the effect of the source wavelet
and enhances the peaks and troughs positions. However, more research can be conducted to a different set.
Currently, limited prior information is implemented in terms of an enclosed domain. More prior knowledge,
if available, can be implemented by a linear or non-linear weight factor (Gennert and Yuille, 1988). This will
accelerate the minimization finder as the gradients become larger. Prior information can be sourced from
earlier measurements if time-lapse measurements are taken, or from other imaging methods. Additionally,
noise can be added to the measured signal and the number of measurable layers can be increased to test its
robustness.
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The steepest descent method used in this study is a sufficient tool to find the global minima. However,
there exist faster and more accurate algorithms. For instance, a combination between a brute force approach
(where errors in a certain grid are calculated) and a minimum finder can be implemented. Other minimiza-
tion algorithms like a conjugate gradient method can be implemented. However, this is challenging due to
the non-linearity of the problem.

6.1.4. Multichannel measurements
Multichannel measurements are essential to map a spherical wave response to its plane wave equivalent.
This makes it possible to use a fast forward model which simulates plane waves. Results show the impor-
tance of correctly suppressing reflections from the sides of the domain, especially in the elastic domains.
Furthermore, tapering the aperture is essential to minimize simulation artefacts. An aperture width of 500
mm seems sufficient for both acoustic and elastic domains. However, these domains consist of vertical pro-
files geometrics only. Adding non-symmetry, curved boundaries, artefacts or a combination will change the
way this model can be used. Furthermore, multichannel measurements were obtained with a spatial sam-
pling size of 2 mm. This is impossible to achieve in a real measurement setup. Therefore, research to spatial
sampling and additional signal processing methods should be conducted.

6.2. Conclusion
Traditional imaging techniques in medical ultrasound and seismic imaging require separation between re-
ceived reflection events. When these event overlap in time, an imaging technique which uses the interference
pattern in the frequency domain can be used. This method, called Impact Echo, has already been the stan-
dard for imaging concrete structures for decades. However, these usually consists of only one or two layers.
This study introduces an inversion technique for multilayered domains.

Preliminary sensitivity analyses provide essential information about the usability of the Impact Echo method
in combination with the proposed inversion strategy. Only layers with standing wave frequencies in the range
of the source wavelet can be imaged. Layers with smaller travel times do not influence the performance of the
method. Results show the inability to invert for thickness and wave velocity simultaneously. Only their ratio
can be determined. Also, small variations in reflection and transmission coefficients do not alter its usability.
Pre-processing steps are created to decrease the effect of the source wavelet. Moreover, these steps enhance
the peaks and troughs position over their respective amplitude.

Multichannel measurements are necessary to transform a spherical wave response to its plane wave equiva-
lent. This accelerates the inversion scheme as a computationally inexpensive forward model can be imple-
mented. It is necessary to taper the signal at the edges of the receiver plane to minimize simulation artefacts.
Summing over a aperture width of 500 mm seems enough to include the 1th Fresnel zone.

The proposed inversion scheme is tested on data of a simplified refractory wall. Here only vertical profile
geometries are considered and no velocity gradients are implemented. The standing wave frequencies of the
individual layers vary between 2 kHz and 375 kHz. Synthetic data is created with an Elastic Finite Differ-
ence method. A simplified Full Wavefield Modelling scheme is constructed and used as forward model. Here
only plane wave responses are simulated. Results show the inversion scheme successfully inverts for three
thicknesses in both acoustic and elastic domains.



A
Fourier Transform

The temporal Fourier transform is defined as

f̂ (r,ω) =
∫ +∞

−∞
d t f (r, t )e− jωt . (A.1)

The inverse Fourier transform is governed by

f (r, t ) = 1

2π

∫ +∞

−∞
dω f̂ (r,ω)e jωt . (A.2)
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B
Derivation Angle-Dependent Transmission

and Reflection Coefficients

Following (Brekhovskikh and Godin, 2012). Let the domain be in the x,z plane with a boundary at z = 0. The
incoming wave travels in medium 1 where z > 0. Here the density ρ and wave velocity c are denoted with
subscript 1. The second medium is situated at z < 0 with ρ2 and c2. The incident plane wave arrives at the
boundary with an angle θ1 with respect to the z-axis. Using the solution of the Helmholtz equation as given
in Eq. (2.7), the incidence pressure becomes

p̂i nc = P̂0e i k1(xsinθ1−zcosθ1). (B.1)

This wave is reflected. The reflected pressure becomes

p̂r = RP̂0e i k1(xsinθ1+zcosθ1). (B.2)

The total pressure in medium 1 is the summation of these two pressures:

p̂1 = P̂0e i1k(xsinθ1−zcosθ1) +RP̂0e i k1(xsinθ1+zcosθ1). (B.3)

The transmitted pressure becomes

p̂2 = p̂t = T P̂0e i k2(xsinθ2−zcosθ2). (B.4)

Using p =−ρ δṽ
δt 2 with ṽ being the velocity, we could do the same for the velocity. This results in

ṽ1 =− i P̂0

ρ1ω

[
e i k1(xsinθ1−zcosθ1) +Re i k1(xsinθ1+zcosθ1)

]
, (B.5)

ṽ2 = ṽt =− i P̂0

ρ2ω
Te i k2(xsinθ2−zcosθ2). (B.6)

Applying the condition that at z=0 the pressure and parallel component of the velocity should be continuous,
results in

P̂0e i1k(xsinθ1 +RP̂0e i k1(xsinθ1 = T P̂0e i k2(xsinθ2), −∞< x <∞, (B.7)

− i P̂0

ρ1ω

[
e i k1(xsinθ1) +Re i k1(xsinθ1)

]
= ṽt =− i P0

ρ2ω
Te i k2(xsinθ2), −∞< x <∞. (B.8)

Eq. (B.7) results in
T = 1+R, (B.9)

while Eq. (B.8) implies

1−R = ρ1k2cos(θ2)

ρ2k1cos(θ1)
T. (B.10)

From here R and T can be derived. These are

R = Z2cos(θ1)−Z1cos(θ2)

Z2cos(θ1)+Z1cos(θ2)
, T = 2Z2cos(θ1)

Z2cos(θ1)+Z1cos(θ2)
. (B.11)
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C
Kenneth Modelling

Kennett model (Kennett, 1979) for the furnace application. P−
1 is the wavefield at the refractory/air interface.

Here the subscript i denotes the boundary, Wi is the propagation operator between boundary i −1 and i .
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D
Inversion Data

D.1. Varying frequency window
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Figure D.1: Error plots for 200 parameter sets m with varying frequency windows for calculating the moving mean of (a)
750 to (f) 2000 Hz.
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D.2. Varying scaling factor

50 100

Iteration (#)

0

20

40

60

80

100

120

140

E
rr

o
r

a

50 100

Iteration (#)

0

20

40

60

80

100

120

140

160

180

E
rr

o
r

b

50 100

Iteration (#)

0

50

100

150

200

E
rr

o
r

c

50 100

Iteration (#)

0

50

100

150

200

250

E
rr

o
r

d

50 100

Iteration (#)

0

50

100

150

200

250

300

E
rr

o
r

e

50 100

Iteration (#)

0

50

100

150

200

250

300

350

E
rr

o
r

f

Figure D.4: Error plots for 200 parameter sets m with varying compression functions with scaling factors γ of (a) 1 to (f)
6.
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