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Abstract. The Internet of Things rapid growth poses privacy and secu-
rity challenges for the traditional key storage methods. Physical Unclon-
able Functions offer a potential solution but require secure fuzzy extrac-
tors to ensure reliable replication. This paper introduces X-Lock, a novel
and secure computational fuzzy extractor that addresses the limitations
faced by traditional solutions in resource-constrained IoT devices. X-
Lock offers a reusable and robust solution, effectively mitigating the
impacts of bias and correlation through its design. Leveraging the pre-
ferred state of a noisy source, X-Lock encrypts a random string of bits
that can be later used as seed to generate multiple secret keys. To prove
our claims, we provide a comprehensive theoretical analysis, addressing
security considerations, and implement the proposed model. To evaluate
the effectiveness and superiority of our proposal, we also provide practi-
cal experiments and compare the results with existing approaches. The
experimental findings demonstrate the efficacy of our algorithm, showing
comparable memory cost (≈ 2.4 KB for storing 5 keys of 128 bits) while
being 3 orders of magnitude faster with respect to the state-of-the-art
solution (0.086 ms against 15.51 s).

Keywords: Fuzzy extractor · Physical Unclonable Functions · Error
tolerant cryptography

1 Introduction

Within the domain of Internet of Things (IoT), the presence of resource-
constrained devices poses significant obstacles in ensuring the development of
robust privacy and security mechanisms. While numerous cryptographic algo-
rithms can be customized to address these challenges, their effectiveness hinges
on the availability of securely maintained keys. Presently, prevalent practices
involve the storage of digital keys in a Non-Volatile Memory (NVM), typically
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situated externally to the computing platform. However, the practical realiza-
tion of secure digital key storage has emerged as a formidable endeavor, primarily
attributed to technical limitations or cost-related considerations [14].

In this context, Physical Unclonable Functions (PUFs) [20] arise as a promis-
ing alternative solution. PUFs represent a viable replacement for NVM-based
keys and offer several notable advantages, including cost-effectiveness, inherent
uniqueness, and heightened resistance against various attacks [18]. PUFs derive
confidential information from inherent process variations, similar to distinctive
device fingerprints [7]. The replication of identical PUF instances becomes then
practically unattainable, even when originating from the same manufacturer.
Nevertheless, PUFs rely on physical circuit properties for generating responses,
making them susceptible to factors such as thermal noise and environmental
conditions. Consequently, achieving reliable replication of PUF responses poses
a significant challenge [14].

The notion of fuzzy extractor [10] emerged as a highly regarded approach
for addressing key management issues associated with error-prone data. A fuzzy
extractor offers the ability to extract an identical random string from a noisy
source without the need to store the string itself, therefore allowing the usage of
noisy sources such as PUFs as cryptographic primitives. The general construc-
tion comprises two algorithms. The generation algorithm Gen takes an initial
string Sread of the noisy source as input and produces a string K along with
a helper data H. Subsequently, the reproduction algorithm Rep leverages the
helper data H to reproduce the string K from a second string S′

read of the same
source, given that the distance between Sread and S′

read is sufficiently small. The
correctness property of a fuzzy extractor ensures that the reproduction process
yields the same string K when the fuzzy data is generated from the same source.
Additionally, the security aspect of a fuzzy extractor guarantees that the helper
data H does not divulge any information about the original fuzzy data.

Previous works employed secure sketches and randomness extractors as core
components for their constructions [2,25,26]. A secure sketch is an information
reconciliation protocol that enables the recovery of the original Sread from a
received S′

read when they are sufficiently close. Subsequently, a random string
is extracted from Sread using a randomness extractor. However, it has been
observed that secure sketches leak information through the helper data, leading
to a loss of security [13]. Consequently, the construction of a fuzzy extractor
based on secure sketches necessitates the utilization of high entropy source data.

Recently, a novel class of solutions introduced an innovative approach to con-
struct fuzzy extractors [5,6,13,28]. These solutions employ Sread to encrypt a
random string in a manner that allows for decryption with knowledge of a closely
related string S′

read. Fuller et al. [13] presented a computational fuzzy extractor
based on the Learning With Errors (LWE) problem. Their approach effectively
mitigates information leakage from the helper data by concealing secret ran-
domness within it. However, this construction exhibits notable inefficiency and
only tolerates sub-linear errors. Additionally, it lacks guarantees of reusability
(see Definition 2) and robustness (see Definition 3). Canetti et al. [5,6] employed
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digital lockers as their cryptographic primitive. Their solution is applicable even
with low-entropy sources and ensures reusability. However, their sample-then-
lock technique necessitates excessive storage space for the helper values. Woo
et al. [28] proposed a solution based on non-linear LWE, which offers memory
efficiency while simultaneously guaranteeing both reusability and robustness.
Nevertheless, their solution is computationally demanding and may not be suit-
able for restricted environments.

This paper presents X-Lock, a novel design for a secure and cost-effective
computational fuzzy extractor. Similar to [5,6,13,28], X-Lock utilizes the noisy
strings obtained from a fuzzy source to protect a random string of bits. X-Lock
encrypts each bit of the random string by XOR-ing it multiple times with a sub-
set of bits from the noisy string. Through this approach, X-Lock offers reusability
and robustness while inherently addressing bias and correlation issues within the
fuzzy source. Bias quantifies the equilibrium between 0 s and 1 s within the fuzzy
response, whereas correlation evaluates the degree of independence among dis-
tinct bits within the same fuzzy response. To substantiate these assertions, we
conducted a comprehensive theoretical analysis encompassing both the security
and the implementation aspects of our model. Furthermore, we conducted prac-
tical experiments and comparisons with existing state-of-the-art approaches to
demonstrate the superiority of our proposal.

The empirical results demonstrate the optimal performance of our proposed
model. With a key size of 128 bits, our algorithm uses ≈ 2.4 KB to store 5 keys.
Furthermore, the execution time for the Rep procedure amounts to 0.086 ms. In
contrast, Canetti et al. [5,6] necessitates 216.20 MB and ≈ 1 min computational
time, while Woo et al. [28] utilizes ≈ 2.8 KB and operates at a speed of 15.51 s
(see Sect. 6). Overall, our model achieves comparable memory cost with the state-
of-the-art solutions while outperforming them by being 3 orders of magnitude
faster.

Contributions. In summary, this paper offers the following contributions:

– We present X-Lock, a novel design for a secure and cost-effective fuzzy extrac-
tor based on XOR operations;

– We introduce the XOR iteration (XOR-ation) as our cryptographic primitive
that efficiently mitigates source bias and correlation;

– We provision our model with robustness, reusability and insider security
through straightforward and effective strategies;

– We provide a thorough theoretical analysis of our model including storage,
computational and security aspects;

– We implement X-Lock in C language and conduct practical experiments to
compare our results to the current state-of-the-art solutions.

Organization. The rest of the paper is organized as follows. In Sect. 2 we intro-
duce previous works and the state-of-the-art in reusable and robust fuzzy extrac-
tors. In Sect. 3 we provide background information on PUFs, fuzzy extractors,
bias and correlation. In Sect. 4 we describe the algorithm of X-Lock in details. In
Sect. 5 we explain the rationale and conduct a security analysis over our method-
ology. In Sect. 6 we describe our implementation of the algorithm and show the
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results of the comparison with both Canetti et al. [5,6] and Woo et al. [28].
Finally, Sect. 7 closes the paper with some final remarks.

2 Related Works

Since the pioneering work of Dodis et al. [10], the concept of fuzzy extractor has
emerged as a prominent solution for managing keys derived from noisy sources.
Most fuzzy extractors adopt the sketch-then-extract paradigm, employing secure
sketches and randomness extractors as fundamental components [2,25,26]. How-
ever, secure sketches entail a minor data leakage from the helper data, leading to
compromised security [13]. Consequently, the utilization of a secure sketch-based
fuzzy extractor necessitates high-entropy source data.

The notion of reusability, as formalized by Boyen [2], pertains to the secu-
rity of multiple pairs of extracted strings and associated helper data, even when
such helper data is exposed to an adversary. The work showcases that achiev-
ing information-theoretic reusability requires a significant reduction in security,
thereby implying an inherent trade-off. Related again to fuzzy extractors secu-
rity, Boyen et al. [3] introduce the notion of a robust fuzzy extractor to safeguard
the helper data against malicious modifications, ensuring the detection of any
such alterations. Both these security criteria must be satisfied to ensure the via-
bility of fuzzy extractors as secure authentication methods in real-life scenarios.

In a departure from secure sketch-based approaches, Fuller et al. [13] propose
a computational fuzzy extractor based on the LWE problem. Their methodol-
ogy employs noisy strings to encrypt a random string in such a way that it
can be decrypted with the knowledge of another closely related string. By con-
cealing secret randomness within the helper data instead of extracting it from
the noisy string, their approach mitigates data leakage concerns. Nonetheless,
their construction exhibits significant inefficiency in terms of memory require-
ments and computational time and can only tolerate sub-linear errors, while
lacking reusability. Apon et al. [1] improve upon Fuller’s construction to fulfill
the reusability requirement by utilizing either a random oracle or a lattice-based
symmetric encryption technique. However, their solution remains unable to over-
come the limitations of the construction by Fuller et al. [13], allowing only a log-
arithmic fraction of error tolerance. Another proposal by Wen et al. [25] presents
a reusable fuzzy extractor based on the LWE problem, resilient to linear fractions
of errors. Nevertheless, their scheme relies on a secure sketch and consequently
results in the leakage of sensitive data.

Addressing the limitations of prior works, Canetti et al. [5,6] introduce a
fuzzy extractor construction employing inputs from low-entropy distributions,
leveraging the concept of digital lockers [4,16] as a symmetric key cryptographic
primitive. Their strategy involves sampling multiple partial strings from a noisy
input string, hashing them independently, and then locking individual secret keys
with each hashed partial string. Correctness ensues if there is a high likelihood
of successfully recovering at least one hashed subset of data upon a second
measurement. To achieve this, the scheme necessitates a large helper data size
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for storing the hashed values and employs an inefficient reproduction algorithm.
To address this concern, Cheon et al. [8] made adjustments to the first scheme
proposed by Canetti et al. [5], reducing the size of the helper data. However,
this modification results in an increased computational cost for the reproduction
algorithm due to the introduction of a significant amount of hashing operations.

A recent contribution by Woo et al. [28] presents a novel computational
fuzzy extractor that does not rely on a secure sketch or digital lockers. Their
construction offers security under the non-linear LWE problem and encodes the
extracted key using two cryptographic primitives: error correcting codes (ECCs)
and the EMBLEM encoding method [21]. This innovative approach achieves both
robustness and reusability while tolerating linear errors. However, it assumes
that the source data is drawn from a uniform distribution and, although more
efficient than previous works, it still entails a non-negligible computational effort
that may limit its adoption on low-end devices.

In contrast with previous works, X-Lock efficiently satisfies all the security
properties required from a secure fuzzy extractor. The protocol only uses XOR
operations in its procedure, thus cutting the computational complexity. Addi-
tionally, the XOR primitive inherently introduces a mitigation for both source
bias and correlation issues (see Sect. 3). It is noteworthy that none of the pre-
vious works adequately addresses such bias and correlation issues. In real-world
setups, fuzzy sources rarely produce perfectly random outputs and may exhibit
biases towards a specific value, as well as correlations among bits. While the
construction by Canetti et al. [5,6] implicitly addresses the correlation problem,
the bias issue remains unaddressed in the existing literature. Security guarantees
of proposals in the existing literature are summarized in Table 1.

Table 1. Properties comparison.

Construction Correctness Leak Prevention Reusability Robustness Correlation Bias

Canetti et al. [5,6] • • • • •
Fuller et al. [13] • •
Apon et al. [1] • •
Wen et al. [25] • •
Cheon et al. [9] • • • • •
Woo et al. [28] • • • •
Our work • • • • • •

3 Background

General Notation. We use lowercase letters to denote single values. We use
capital letters to denote groups of values that are either organized in sets or
strings. With {·}x we denote a group of cardinality x that contains values from
those described inside the braces. We denote with |X| the cardinality of the
group X. We define ||X|| as the Hamming weight of X, i.e. the number of
its non-zero values. The notation Pr[·] expresses the probability of the event
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described inside the square brackets. We denote the XOR logical operation with
⊕. When applied to sequences of bits, ⊕ is intended to perform a bit-wise XOR.
We introduce the XOR-ation operator

⊕I
i=0, performing the XOR operation

iteratively over a sequence of bits denoted by the indexes 0 ≤ i ≤ I. Note that
the order of the indexes does not change the final result. We provide a summary
of the notation used throughout the paper in Table 2. As a final remark, notice
that we adapted definitions coming from the literature according to our notation,
for sake of clarity and coherence.

Table 2. Notation summary.

Symbol Meaning

|X| Cardinality of group X

||X|| Hamming weight of group X
⊕

y∈Y XOR-ation over the set of indexes Y

F Fuzzy source

Sread, Spref Random string and preferred string of a fuzzy source

erel, eabs Relative error and absolute error

Gen, Rep Procedures involved in a fuzzy extractor

K, H Secret key and helper data generated by Gen

pbias Number of 1s in a string over its total number of bits

φ Correlation factor of a fuzzy source

B Poll of random bits

C Bits involved in the XOR-ation

L Bit-locker, group of locks relative to the same bit

Kpre Final values before obtaining K

V Vault

n nonce

R Set of random indices of original bits constituting a key

T Authentication token

⊥ None value

PUFs Characterization. PUFs leverage the inherent random variations intro-
duced during the silicon manufacturing process to generate secret keys on the
fly [20]. These variations, akin to unique fingerprints, serve as a cost-effective
source of randomness. Conceptually, a PUF can be viewed as a function where
a specific binary input (i.e., a challenge) elicits distinct binary outputs (i.e.,
responses) specific to each individual PUF instance. However, outputs obtained
from the same PUF circuit may exhibit variations due to factors such as thermal
noise and environmental conditions.

Consequently, we conceptualize a PUF circuit as a fuzzy source F that pro-
vides a string of bits Sread upon request. When comparing two such sequences
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from F they can exhibit different values in certain positions. We formalize this
aspect with the relative error erel = ||Sread⊕S′

read||
|Sread| , that is the ratio of bits in

Sread that differ from S′
read. Together with Sread, we introduce the concept of

preferred string Spref , which is obtained by identifying the value appearing most
frequently (i.e., more than 50% of the times) for each bit within the string. We
calculate it by using a statistically significant number of Sread (e.g., more than
100 strings). Figure 1 reports the estimation of the number of bits we expect
to be incorrectly identified with respect to the number of strings read to craft
Spref . The plot shows both the trend of the expected number of errors, which
exponentially decreases as the number of strings increases, and the threshold on
the number of strings that brings such expectation below 1. Similarly to erel,
we define the absolute error eabs as the ratio of bits in Sread that differ from
Spref . Notably, the two errors are linked by the inequality 0 ≤ erel ≤ 2 · eabs.
Indeed, consider two strings Sread and S′

read that have wrong bits in the same
positions, if any. Then their relative error is erel = 0. On the other hand, con-
sider two strings Sread and S′

read that exhibit the maximum possible error eabs

with respect to Spref but have no wrong shared bit. Then their relative error is
erel = 2 · eabs.

Fig. 1. Expected number of wrong bits (logarithmic scale) over number of strings.
(Color figure online)

It is crucial to underscore that when setting up the fuzzy extractor using
the raw Sread instead of Spref , it is likely to introduce additional errors into
the process, ultimately increasing the likelihood of recovering an incorrect key.
Hence, in the context of this paper, we employ Spref as our reference string and,
consequently, we consider eabs to be the error rate associated with F .

Fuzzy Extractors. Fuzzy extractors [10] are cryptographic constructions
designed to derive reliable and uniformly distributed cryptographic keys from
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sources prone to noise or errors. This process involves two probabilistic proce-
dures. The Gen procedure takes a string Sread and produces a random string K
along with a public helper string H. If another string S′

read is sufficiently close
to Sread (i.e., ||Sread ⊕ S′

read|| ≤ t for a small t), the Rep procedure can utilize
the helper string H to correctly reproduce the original random string K from
S′

read.
In this work, we focus on computational fuzzy extractors that consider the

scenario where potential attackers possess knowledge about the noise distribution
and have control over the errors. To formalize this concept, we define a metric
space as a finite set M equipped with a distance function dis : M × M →
R+ = [0,∞) that satisfies the identity property (dis(x, y) = 0 if and only if
x = y), the symmetry property (dis(x, y) = dis(y, x)), and the triangle inequality
(dis(x, z) ≤ dis(x, y) + dis(y, z)). The statistical distance [5,6] SD(X,Y ) is
defined as 1

2

∑
x(Pr[X = x] − Pr[Y = x]).

Definition 1 (Computational fuzzy extractor, [12] Definition 4). Given
a metric space (M, dis), let F be a family of probability distributions over M.
A pair of randomized procedures (Gen,Rep) is an (M,F , k, t, ε)-computational
fuzzy extractor with error δ if Gen and Rep satisfy the following properties:

– Gen on input Sread ∈ M outputs K ∈ {0, 1}k and a helper string H ∈ {0, 1}∗.
– Rep takes S′

read ∈ M and H ∈ {0, 1}∗ as inputs.
– Correctness. If dis(Sread, S

′
read) ≤ t and (K,H) ← Gen(Sread), then

Pr[Rep(S′
read,H) = K] ≥ 1− δ, where the probability is over the randomness

of (Gen,Rep). If dis(Sread, S
′
read) > t, then no guarantee is provided about

the output of Rep.
– Security. For any F ∈ F , K is pseudo-random conditioned on H, that is if

(K,H) ← Gen(Sread) then SD((K,H), (Uk,H)) ≤ ε.

The correctness property guarantees that the fuzzy extractor can accurately
retrieve the protected data when provided with an input that is sufficiently
close to the original. The security property ensures that the output of the fuzzy
extractor does not reveal any specific information about the underlying noisy
distribution.

To utilize a computational fuzzy extractor as an authentication mechanism,
it must possess both reusability and robustness. Reusability [2] is related to the
case where the helper data associated to several extracted strings is revealed to
an adversary.

Definition 2 (Reusability, [6] Definition 6). Let F be a family of distribu-
tions over M. Let (F 1, F 2, . . . , F ρ) be ρ correlated random variables such that
∀i = 1, . . . , ρ : F i ∈ F . Let (Gen,Rep) be a (M,F , k, t, ε)-computational fuzzy
extractor with error δ. Let D be a distinguisher that outputs 0 when it believes
that the input was randomly produced and 1 when it believes it was produced by
(Gen,Rep). Define the following game ∀j = 1, . . . , ρ:
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– Sampling. The challenger samples Sj
read ← F j and u ← {0, 1}k.

– Generation. The challenger computes (Kj ,Hj) ← Gen(Sj
read).

– Distinguishing. The advantage of D is quantifiable as
Adv(D) = Pr[D(K1, . . . ,Kj−1,Kj ,Kj+1, . . . ,Kρ,H1, . . . , Hρ) = 1]−
Pr[D(K1, ...,Kj−1, u,Kj+1, ...,Kρ,H1, ..., Hρ) = 1].

(Gen,Rep) is (ρ, σ)-reusable if ∀D ∈ D and ∀j = 1, . . . , ρ, the advantage is at
most σ.

In an intuitive sense, if a fuzzy extractor is reusable, it implies that a specific
key K remains secure even when the adversary possesses knowledge of all asso-
ciated helper data. This includes both the helper data linked to the key K and
the helper data related to all other keys. In other words, this property ensures
the security of keys generated by the fuzzy extractor even when the generation
process is repeated multiple times across different strings, consequently permit-
ting the reuse of the same secret noisy source (e.g., the same iris, the same
fingerprint, the same PUF, etc.) in multiple contexts.

As underlined in Canetti et al. [5,6], the key aspect is that the family of
distributions F is arbitrarily correlated, meaning no assumption is made on the
correlation between the distributions.

Robustness [3] addresses the scenario where an adversary modifies the helper
data H before it is given to the user. A robust fuzzy extractor ensures that any
changes made by an adversary to H will be detected.

Definition 3 (Robustness, [3] Definition 6). Let F be a family of dis-
tributions over M. Let ⊥ denote that Rep detected a tampered output. Let
(Gen,Rep) be a (M,F , k, t, ε)-computational fuzzy extractor with error δ. Let
(K,H) ← Gen(Sread), with Sread output of F . Let A be an adversary, and
H ′ ← A(K,H) with H �= H ′. Then (Gen,Rep) is a τ -robust fuzzy extractor if
Pr[Rep(S′

read,H
′) �=⊥] ≤ τ .

Bias and Correlation in Fuzzy Sources. In real-world scenarios, fuzzy
sources often exhibit non-uniform distributions in their output bit strings. These
deviations from uniformity can arise from two main factors: bias and correlation
among the physical components of the source. When bias is present [17], it means
that either 0-bits or 1-bits occur more frequently than the other. We quantify
bias by the parameter pbias, with pbias · l being the expected number of 1-bits in
a l-bit response. An unbiased source would have pbias = 0.5, indicating an equal
probability for 0-bits and 1-bits. A biased (non-uniform) source, instead, exhibits
unbalanced quantities of 1-bits and 0-bits, offering the adversary an advantage
when trying to compromise the source itself. Correlation, on the other hand [27],
refers to the lack of independence among the values of the bits generated by
the noisy source. This lack of independence arises due to physical dependen-
cies, such as cross-talk noise among Static Random Access Memory (SRAM)
cells [19], where the value of one bit can be influenced by neighboring bits in
the physical medium. Such relationship among bits significantly decreases the
security guarantees of the system since disclosing a bit may compromise several
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other bits, reducing the overall search space size. To precisely define the concept
of correlation, we introduce the notion of correlation classes of bits.

Definition 4 (Correlation class of a bit). Let F ∈ F be a fuzzy source
drawn from a family of noisy sources F . Let ∼ denote the equivalence relation
such that, given two bits b and b′, the value of a bit can be inferred by knowing the
value of the other one if b ∼ b′. The equivalence relation exhibits the commutative
property, i.e., b ∼ b′ if and only if b′ ∼ b. Let Spref be the preferred string of F .
Then, the correlation class [b] of bit b is the set {b′ ∈ Spref : b′ ∼ b} of elements
that are equivalent to b.

It is important to note that the correlation classes are disjoint, meaning
that a bit can only belong to a single class. The total number of correlation
classes corresponds to the maximum number of independent values that can be
extracted from a particular source. In this work, we assume that the correlation
classes have approximately the same size, meaning that each independent value
has an equal probability of being selected in a random draw. To quantify the
level of correlation, we introduce the correlation factor φ.

Definition 5 (Correlation factor). Let F ∈ F be a fuzzy source drawn from
a family of noisy sources F . Let Spref be the preferred string of F . Let [Spref ]
denote the set of all correlation classes in Spref and |[Spref ]| the total number
of correlation classes in Spref . Then, the correlation factor is defined as φ =
1 − |[Spref ]|

|Spref | .

The correlation factor provides an immediate measure of dependency between
the source bits.

For example, a correlation factor of φ = 0.75 indicates that we expect three
dependant values for every four bits in the source.

Threat Model. The model involves two parties, a legit user and an attacker.
The user leverages the PUF to extract multiple secure keys out of the noisy
source. The user may be either a human owning a device or the device itself.
Instead, the attacker aims at compromising the extracted keys. In this scenario,
we consider an adversary who has complete control over the communication
channels [11]. The adversary has access to the appliance that executes the algo-
rithm and stores its data. However, we explicitly exclude the possibility of exten-
sive physical attacks or invasive side-channel attacks by the adversary. These
types of attacks would require unrestricted access to the device for extended
periods of time, which would raise suspicion and allow for their detection. Fur-
thermore, we assume that the adversary can read data from standard non-volatile
memory and modify it. However, the PUF in the system possesses a tamper-
evidence property. If the adversary attempts to learn the secret stored in it, the
behavior of the PUF will change significantly or be destroyed, thereby indicating
the tampering. Lastly, we assume that all algorithms related to our protocol are
public, but implemented in a way that prevents modification. This assumption
ensures that the adversary cannot tamper with or modify the algorithms to their
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advantage. Overall, our focus is to design a theoretically secure protocol which
ensures reliable replication of a key out of a PUF. Other potential vulnerabilities
are then out of the scope of this work.

4 X-Lock: Construction Details

We consider a noisy source F that outputs a bit-string Sread of length |Sread|
upon request. We denote Spref as the preferred state of F and erel, eabs to
be respectively its relative and absolute errors. Section 3 provides a thorough
description of these quantities.

Similarly to existing works [5,6,13,28], our algorithm shares a common
thread in leveraging the outputs generated by F to encrypt a random string
of bits B. However, we significantly differentiate from the previous proposals as
we employ Spref to encrypt a large pool of bits B by means of the XOR-ation
operator. We then decrypt and combine random subsets of B to generate multi-
ple secret keys. The core element of the algorithm is the vault V resulting from
the encryption of B. We provide a reference of the structure of V in Fig. 2. It
consists of a sequence of bit-lockers, which individually guard the encryption of
a single bit b ∈ B. Each bit-locker is a collection of locks L, where each lock is
the XOR of a distinct b with the XOR-ation of a random subset of bits from
Spref . To restore the bit value b is then sufficient to retrieve a Sread from F and
perform the XOR-ation on the lock value with same subset of bits. In Sect. 5 we
show that this construction indeed forms a valid computational fuzzy extractor.

Fig. 2. Composition of the vault V . It is a collection of bit-lockers, each referring to a
specific bit b ∈ B. A bit-locker contains multiple locks that XOR the bit of reference
with the XOR-ation of a random subset of bits from the source F .

To perform the initial encryption of B into V , our algorithm introduces an
Init procedure that needs to be executed only once.

Subsequently, our approach involves the two standard probabilistic proce-
dures Gen and Rep. In the following, we provide a thorough description of the



194 E. Liberati et al.

three procedures, integrated by the pseudo-code of the design presented in Algo-
rithm 1.

Init. The Init procedure (line 1) is responsible for generating the initial vault
V .

The procedure receives in input the preferred string Spref , the random pool
of bits B, the number of locks |L| per bit-locker, and the number of bits |C| to
use in each XOR-ation. We provide details on the generation of Spref in Sect. 3.
We first iterate over all the bits b ∈ B (line 3), and for each b we generate |L|
locks (line 5). For each lock l, we select |C| random indexes (line 6) and use them
to select the bits in Spref for the XOR-ation (line 7). The procedure eventually
returns V (line 10).

The function drawV aultIndexes (line 6) selects |C| indexes spanning from
1 to |Spref | without replacement, i.e., with no index selected more than once.
We provide details of its implementation in Sect. 5.3.

The use of multiple locks adds correctness to our construction. We demon-
strate this aspect in Sect. 5.1. Additionally, the XOR-ation mitigates the effects
of bias and correlation in F . We provide an explanation in Sect. 5.2.

Gen. The Gen procedure (line 11) generates a novel key K, the nonce n, the
set of indexes R and its authentication token T . Notice that H ′ = (n,R, T )
constitutes part of the helper data H = (V,H ′). In particular, H ′ is the portion
of helper data specifically related to each key, whilst V is common and shared
among all keys.

The procedure takes in input the string Sread, the vault V , the number of
bits |B| of the random pool B, and the number of bits |K| of the key K. We first
generate a random nonce n (line 12) and a sequence R of |K| random indexes
in the range [1, |B|] (line 13). The indexes r ∈ R represent the subset of bits
decrypted from the vault V to form the key K. To achieve this, we perform an
operation that is specular to the one executed in the Init procedure. For each
r ∈ R (line 15), we access all the lock values and index lists (l, C) (line 17).
For each (l, C), we XOR l with the XOR-ation of Sread over C and collect the
resulting bit b′ in X. The final bit value specific to r is then obtained as the
most common value in X and stored into Kpre (line 20). To protect the restored
values, the final value of the key K is generated via hashing Kprewith the nonce
n (line 21). We produce a token T as the hash of key K with the list of indexes
R.

The generation of T adds robustness to the methodology. We discuss it in
further detail in Sect. 5.1. The procedure returns the key K, the nonce n, the
list of indexes R, and the token T .

The function drawKeyIndexes (line 13) selects |K| indexes spanning from 1
to |B| without replacement. We provide more details in Section 5.3. Notice that
drawV aultIndexes and drawKeyIndexes could be implemented with the same
procedure since both draw a certain number of indexes spanning in a certain
range without replacement.

Rep. The Rep procedure (line 24) restores the key K from the vault V .
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The procedure receives in input the string S′
read and the helper data H =

(V,H ′) = (V, (n,R, T )), where V is the vault, n is the nonce, R is the list of
indexes, and T is the authentication token. The procedure first iterates over
r ∈ R and restores the majority values similarly to the Gen procedure (lines 26
- 31). It then generates the key K ′ (line 32) and the token T ′ (line 33). In case T ′

does not coincide with T , the procedure returns a null value (line 35). Otherwise,
it outputs the restored key K ′ as valid (line 36).

5 X-Lock: Algorithm Analysis

5.1 Security Analysis

We first introduce two definitions that are propaedeutic to the security analysis.

Definition 6 (Common elements between combinations). Let X be a
group of elements with cardinality |X|. Consider the process of drawing a random
combination of y elements without replacement out of X. Then the probability
pshare for two combinations to share at most z elements is quantifiable as

pshare =
z∑

i=0

(
y
i

)(|X|−y
y−i

)

(|X|
y

) .

The numerator computes the number of combinations that share exactly i ele-
ments. It selects i elements out of the y available, followed by choosing the
remaining y − i elements out of the remaining |X| − y values. Dividing by the
total number of available combinations yields the partial percentage. The sum-
mation then sums all the contributions up to z common elements.

Definition 7 (Odd binomial distribution). Let consider a Bernoulli trial
with probability p of success and y independent trials. Then the odd binomial
distribution considers the contributions of odd indexes in the summation of trial
probabilities. In formula,

podd =

y
2∑

i=0

(
y

2i + 1

)

· p2i+1 · (1 − p)y−2i−1.

The formula employs Bernoulli trials to assess the probability of having exactly
2i + 1 successes in the elements. The summation from 0 to y/2 and the index
2i + 1 permit to consider all the odd numbers between 0 and y.

We then introduce the Roucé-Capelli theorem that stands at the core of our
security demonstration.

Theorem 1 (Rouché-Capelli). A system of linear equations with n variables
has a solution if and only if the rank of its coefficient matrix A is equal to the
rank of its augmented matrix A|b. If there are solutions, they form an affine
subspace R

n of dimension n − rank(A). In particular:
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Algorithm 1. X-Lock algorithm. [] denotes an empty array. X[y] denotes the
value at index y in array X. [x,y] denotes the interval of numbers from x to y.
1: procedure Init(Spref , B, |L|, |C|)
2: V ← []
3: for b ∈ B do
4: L ← []
5: for in [1, |L|] do
6: C ← drawVaultIndexes([1, |Spref |], |C|)
7: l ← (

⊕
c∈C Spref [c]) ⊕ b

8: L.append(l, C)

9: V .append(L)

10: return V
11: procedure Gen(Sread, V, |B|, |K|)
12: n ← getNonce()
13: R ← drawKeyIndexes([1, |B|], |K|)
14: Kpre ← []
15: for r ∈ R do
16: X ← []
17: for (l, C) ∈ V [r] do
18: b′ ← (

⊕
c∈C Sread[c]) ⊕ l

19: X.append(b′)

20: Kpre.append(getMajorityValue(X))

21: K ← hash(Kpre, n)
22: T ← hash(K, R)
23: return K, n, R, T

24: procedure Rep(S′
read, V, n, R, T )

25: K′
pre ← []

26: for r ∈ R do
27: X ← []
28: for (l, C) ∈ V [r] do
29: b′ ← (

⊕
c∈C S′

read[c]) ⊕ l
30: X.append(b′)

31: K′
pre.append(getMajorityValue(X))

32: K′ ← hash(K′
pre, n)

33: T ′ ← hash(K′, R)
34: if T �= T ′ then
35: return ⊥
36: return K′

– if n = rank(A), then the solution is unique;
– otherwise there are infinitely many solutions.

Proof. See introductory level book on linear algebra and geometry [22]. ��
The Rouché-Capelli theorem states that a system of linear equations possesses a
unique solution only if the number of independent equations equals the number
of total variables. If there are more equations than variables, the system may
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become inconsistent, leading to the absence of a solution. Conversely, if there
are fewer equations, the system becomes under-determined, providing an infinite
number of potential solutions.

We are now ready to provide the proof of the security of the vault V .

Theorem 2 (Solution space of the vault). Let Spref be the preferred string
of F . Let V be a vault with |L| locks per bit-locker and |C| bits per XOR-ation.
Let φ be the correlation factor related to F . Then the solution space of V has at
least dimension (1 − φ) · |Spref | + (1 − |L|) · |B|.
Proof. The pool vault V is a collection of bit-lockers, each composed of |L| locks
that guard an individual bit from B (see Fig. 2). Each lock XORs a distinct bit
from B with a XOR-ation of |C| bits from Spref . It is easy to see that a lock is a
linear equation, thus making the vault V a system of |B| · |L| equations. Given
the correlation factor φ, the independent variables provided by F to the system
are |Spref | − φ · |Spref | = (1 − φ) · |Spref |. B provides exactly |B| variables as its
bits are independent by definition. Thus the number of variables in the system
is (1 − φ) · |Spref | + |B|. We then recall from Theorem 1 that the dimension
of the solution space is calculated as n − rank(A), with n the total number of
involved variables. In our case, rank(V ) ≤ |B| · |L| as some of the equations
may not be independent. Hence we end up with the inequality n − rank(V ) ≥
((1 − φ) · |Spref | + |B|) − (|B| · |L|), thus proving the statement. ��
The solution space of the vault is directly related to the security of the protocol,
as it determines the number of parameters a potential attacker needs to pro-
vide to solve the linear system. A closer look to Theorem 2 suggests that, for
increasing the security of the vault V , we want high |Spref |, |B| and low φ, |L|.
Definition 8 (Security of the vault). A vault V is (α, β)-secure if the num-
ber of total locks equals α and the probability for two locks to share at most half
of the elements is less than β.

By imposing that at most half of the elements are dependent, we make sure that
combining two equations results in an equation with more variables than the
initial ones. We provide experimental evidence of this in Sect. 6. The definition
permits to manage the security of the vault V . Notice that the dimension of the
random pool B is determined by the two parameters α, β. As per Theorem 2,
φ, |Spref |, |L|, |B| determine the solution space. φ, |Spref | are determined by the
physical parameters of the fuzzy source F . We can then set |L| and require
the vault V to provide a certain probability that mixing locks does not provide
information to the attacker. By doing this, we set the desired solution space and
thus the dimension of |B|.

We can now show that Algorithm 1, described in Sect. 4, satisfies the inter-
pretation of computational fuzzy extractor given in Definition 1.

Theorem 3. X-Lock is a (M,F , k, t, ε)-computational fuzzy extractor with
error δ.
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Proof. We first notice that the helper data for a particular key in our construc-
tion is H = (V, (n,R, T )). The vault V is generated once and shared by all
keys, while H ′ = (n,R, T ) is specific for each key. Following Definition 1, we
first show that (Gen,Rep) are valid functions for a computational fuzzy extrac-
tor. Procedure Gen takes in input Sread, V, |B|, |K| and outputs K,n,R, T . This
aligns with the definition (K,H) ← Gen(Sread), where V, |B|, |K| are supporting
input parameters and H = H ′ = (n,R, T ) for the output. Procedure Rep takes
in input S′

read, V, n,R, T and outputs either K ′ or ⊥. This again conforms to the
general definition K ← Rep(S′

read,H), with H = (V, (n,R, T )) in the input and
K = K ′ for the output.

We now proceed in demonstrating the correctness of the algorithm. Specif-
ically, we show that the procedure correctly retrieves the keys with distance
t between strings measured through eabs and retrieval error δ proportional to
ebitlock. We focus on a single bit-locker, as the generalization is trivial. Recalling
from Sect. 4, a bit-locker is a collection of locks that XOR a bit b ∈ B with a
XOR-ation of bits from Spref . By using multiple incorrect bits the probability of
having an error augments. Considering the absolute error eabs, we can calculate
the probability elock for a lock to return the wrong value by using the odd bino-
mial distribution in Definition 7. In particular, we set the probability of success
p = eabs and the number of trials y = |C|. This formulation captures the idea
that a XOR-ation returns an incorrect value whenever there is an odd number
of errors in its elements. Using elock, we can now estimate the probability ebitlock

for a bit-locker to reconstruct an incorrect bit:

ebitlock =
|L|∑

i=
|L|
2

(|L|
i

)

· elock
i · (1 − elock)|L|−i (1)

The final bit is calculated by majority voting. Therefore, the procedure restores
the wrong bit value whenever the number of errors is greater than half of the
total elements |L|. We use a Bernoulli trial to calculate probability of having
exactly i errors, and use a summation to aggregate all the results from |L|

2 to
|L|. To achieve the desired level of correctness we can tune the number of locks
|L| to meet a given error. The same procedure is valid for all bit-lockers, thus
the final error is proportional to ebitlock, hence satisfying the initial claim.

We eventually provide proof of security of the construction. To satisfy Def-
inition 1, we need to show that the key K appears random even if a potential
attacker possesses knowledge of the helper data (V, (n,R, T )). It is important
to note that both K and T are derived using a cryptographic hash function,
where K ← hash(Kpre, n) and T ← hash(K,R). We assume that the hash
function exhibits the typical secure properties (i.e., pre-image resistance, second
pre-image resistance, and collision resistance). Considering all these properties
together, the hash function generates outputs that appear to be random. There-
fore, the pseudo-randomness of the resulting key K is conditioned solely on the
amount of information leaked by the helper data (V, (n,R, T )). H ′ = (n,R, T )
does not leak any information on the underlying vault V : n is a random nonce,
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R is a random collection of indexes, and T is computed through a hash func-
tion. Regarding the vault V , we previously showed that it is (α, β)-secure under
Definition 8. The parameters (α, β) can be used to tune ε, thus satisfying the
requirements in Definition 1. ��

We now provide proof that X-Lock is reusable under Definition 2. Reusability
means that the fuzzy extractor can support multiple independent enrollments of
the same value, allowing users to reuse the same source in different contexts.

Theorem 4. X-Lock is (ρ, σ)-reusable.

Proof. The procedure Gen can be run multiple times on correlated strings of
the same source, S1

read, . . . , S
ρ
read. Each time, Gen produces a different pair of

values (K1,H1), . . . , (Kρ,Hρ). The security for each extracted string Ki should
hold even in the presence of all the helper strings H1, . . . , Hρ. In our specific
case, H = (V, (n,R, T )). Having all H values does not compromise the security
of the respective keys, as n,R are randomly determined and T is generated
through hashing, making it pseudo-random by definition. Additionally, the vault
V remains the same for each key, meaning that the overall reusability is only
conditioned on the security of the vault V . We provide definition of the security
of the pool vault in Definition 8. ��
Notably, our model also provides insider security [5,6]. This means that the
algorithm provides reusability even in the case where the attacker is given all
the Kj for j �= i. Each key Kj is the output of a hash function and provides
no information about the input. Hence, a specific key cannot be used to infer
information about another one, even in the presence of correlation in the input
data between the two keys.

According to Definition 3, a fuzzy extractor is deemed robust if a user is able
to detect any tampering with the public data H. We provide proof that X-Lock
is indeed a robust algorithm.

Theorem 5. X-Lock is a τ -robust fuzzy extractor with error δ.

Proof. The attacker may attempt to change one or more in the helper data
H = (V, (n,R, T )). Nevertheless, any alteration would be detected by the authen-
tication token T ← hash(K,R) = hash(hash(Kpre, n), R). Tampering with the
vault V would lead to changes in the recovered values of Kpre, inevitably affecting
the resulting hash. Furthermore, modifying the nonce n or the indexes R directly
impacts the resulting hash. Additionally, changing token T to T ′ would require
to find suitable values n′, R′,K ′

pre such that T ′ ← hash(hash(K ′
pre, n

′), R′). This
is infeasible, given the properties of cryptographic hash functions. Consequently,
the pair (Gen,Rep) strictly adheres to the requirements specified in Definition 3,
as any alterations introduced by an attacker can be effectively detected through
the validation token T . ��
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5.2 Bias and Correlation Analysis

The scheme proposed in Algorithm 1 offers perfect secrecy when utilizing a
perfectly random source F and employing uncorrelated bits to XOR with the
bits from B. However, obtaining a perfectly random source using physical medi-
ums poses considerable challenges due to issues related to bias and correla-
tion between bits. Nevertheless, Algorithm 1 helps in mitigating these concerns.
Notice that both bias and correlation are intrinsic properties of fuzzy sources.
Some works in literature [23,24] propose methodologies to reduce or even remove
dependencies between bits, but they either require high computational process-
ing or extensive analysis of the physical medium. For instance, removing cor-
related bits requires a perfect identification of such relationships, which is a
costly and partial procedure. Missing even one correlation could be significantly
harmful. Instead, our protocol implicitly mitigates bias and correlation without
making assumptions about their structure. The XOR-ation adopted in the locks
inherently diminishes the final bias (see Sect. 3). The probability pcbias of an
XOR-ation outputting value 1 can be represented by the equation:

pcbias =

|C|
2∑

i=0

( |C|
2i + 1

)

· p2i+1
bias (1 − pbias)|C|−2i−1 (2)

The XOR-ation outputs 1 whenever there is an odd number of 1s in C. Thus,
the summation between 0 and |C| and the indexes 2i + 1 consider only the
odd numbers. For instance, with pbias = 0.77 and |C| = 3, pcbias ≈ 0.579.
Consequently, an almost random source is derived from a skewed one. However,
it is crucial to note that the same mechanism that reduces bias also amplifies
errors. In Sect. 5.3, we provide an analysis of the cost in memory related to a
particular error tolerance.

The XOR-ation also aids in mitigating the effects of correlations among bits
in the source F . The correlation factor φ (see Sect. 3) only requires an estimate
of the level of correlated bits without any specific assumption on its type. By
employing it, we can evaluate how the correlation impacts the overall security
of the linear system. Figure 3 illustrates the impact of correlation on bit security
with varying numbers of elements in the XOR-ation, considering |Spref | = 216,
|B| = 29, |L| = 33, |C| = 4, and φ = 0.75. We randomly drew the XOR-ation
bits from the source F and measured the number of exposed bits from the
random pool while bits from F were defined. The graph clearly illustrates the
significant improvement achieved with an increasing number of elements in the
XOR-ation. Starting with just a single element in the XOR-ation, the system
fails to provide adequate security, as all the 29 pool bits become exposed after
defining only a couple of bits. This is attributable to the relationships among
locks in different bit-lockers. The setting allows one bit-locker to be entirely
solved by merely defining a single bit from F , which, in turn, sets a value for all
other variables in the bit-locker. This creates a cascading effect that subsequently
unlocks multiple other bit-lockers, thus leading to the compromised security.
However, by augmenting the number of elements in the XOR-ation to three, the
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Fig. 3. Impact of correlation on bit security with varying number of elements in the
XOR cascade. The x-axis considers the number of defined bits from the source. The
y-axis shows the corresponding number of exposed bits from the random pool. Using a
single element provides virtually no security. From three elements onwards the number
of defined bits is greater than those in the protected pool (vertical, dashed line). (Color
figure online)

number of required source bits becomes closely aligned with the actual number
of protected bits from the pool (as denoted by the vertical dashed line). This
indicates that a potential attacker would not gain any additional advantage
by exploiting the correlation among variables, as the number of variables to
be defined is equivalent to the number of bits in the random pool they are
attempting to set. Furthermore, when employing four elements in the XOR-
ation, the system significantly surpasses the reference line, demonstrating that
the impact of correlation becomes negligible in this context. The higher the
bias, the correlation and the security requirements to achieve adversarial non-
advantageous contexts, the higher the number of bits in the XOR-ation. However,
the higher |C|, the higher the resulting error rate in reconstructing the keys. We
can estimate such value taking into account the absolute error rate eabs of F .

5.3 Costs Analysis

Memory Cost. Procedure Init creates the supporting pool vault. The vault V
contains |B| bit-lockers, one for each bit in the random pool B. Each bit-locker
hosts |L| locks, with each lock being a single bit. To generate the locks, the algo-
rithm has to choose a subset of bits from Spref . If randomly chosen, the subset
of indexes must be stored in order to permit subsequent recovery. However, this
strategy would consume a lot more memory than V itself. The same applies to
the storage of the set of indexes R related to each key. A more effective solution
would be to design an index routine that can generate the corresponding bits
on the fly. We deployed an example of a custom dynamic strategy that works
as follows. To generate the requisite set of indices, we utilize a Pseudo Random
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Number Generator (PRNG) and define a seed to ensure reproducibility. The
PRNG generates a dependable sequence of random numbers with a given seed,
though collisions may occur. To address collisions, we increase the colliding num-
ber until a fresh and distinct index is achieved. We apply modular arithmetic
when the value reaches the upper limit. As previously discussed in Sect. 4, this
routine is applicable to both drawV aultIndexes and drawKeyIndexes. The
dynamic generation of the subset of indexes does not entail any security impli-
cations when compared to the naive strategy of random generation and subse-
quent storage. In the latter case, the subset becomes publicly available, whereas
in the former case, the algorithm is open-source as well. The system’s security is
not contingent on maintaining the secrecy of the indexes. The tradeoff between
these two approaches is primarily related to performance. Dynamic index gener-
ation reduces memory costs, albeit with a manageable increase in computational
overhead. Conversely, the naive strategy involves a straightforward lookup but
necessitates storing each index, leading to higher memory expenses. In partic-
ular, to store all the indexes leveraging the static approach requires storing an
index spanning between 1 and |Spref | for |B| bit-lockers, each constituted by |L|
locks implementing a XOR-ation of |C| bits for the vault and an index spanning
between 1 and |B| for |K| bits for each key. Considering the dynamic approach,
the cost for storing the pool vault indexes is rather nothing more than the bits
required to represent the seed for the PRNG. The same holds for the set of
indexes for each key. Let us denote the PRNG seed as seed and its size in bits
as |seed|. Hence, the cost for storing the vault boils down to |B| · |L|+ |seed| bits
using the dynamic approach from |B| · |L| · (1 + |C| · log2(|Spref |)) bits obtained
with the static approach. Procedure Gen generates a novel key K. It requires
storing a nonce n, an authentication token T and the set of indexes R used to
generate the key. The static approach requires |n| + |T | + |K| · log2(|B|) bits,
whilst the dynamic approach just necessitates of |n|+ |T |+ |seed| bits. Procedure
Rep does not require additional elements to be stored. Therefore, let us denote
with K the total number of keys generated. Then, the total cost for the static
strategy is O(|B| · |L| · (1 + |C| · log2(|Spref |)) + K · (|n| + |T | + |K| · log2(|B|)))
bits. Rather, leveraging the dynamic strategy decreases the total cost to
O(|B| · |L| + |seed| + K · (|n| + |T | + |seed|)) bits.

Computational Cost. Procedure Init necessitates the preferred state Spref to
generate the vault V . To determine the correct value, multiple strings from F are
required to obtain a statistically relevant sample, often comprising hundreds of
samples. The time to gather this sample may vary depending on the physical sup-
port used. For instance, SRAMs require a non-negligible amount of time (in the
order of milliseconds) for the chip to discharge after shutdown [15]. As a result,
collecting a sufficient sample might take several seconds. Once the preferred state
is obtained, the procedure employs a series of XOR operations to compute the
locks. Each lock utilizes |C| − 1 XORs for the XOR-ation and an additional
XOR for the final bit. Assuming each XOR operation is O(1), the overall cost of
computing all locks is O(|C| · |B| · |L|). Notably, procedure Init is only computed
once, and if energy is a limited resource, it can be performed before deploying
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Fig. 4. Number of locks required to achieve a given error tolerance for varying absolute
errors. The x-axis considers the absolute error. The y-axis uses logarithmic scale and
considers the number of lockers. The gray dashed lines provide a linear reference for the
four curves. The curves show an initial linear trend that slowly diverges to exponential
at around value 0.85 for the error. (Color figure online)

the appliance, as the vault V can be made public. Procedure Gen utilizes the
normal state Sread to recover the bits from the vault and generate a new key. It
then draws a random nonce n and |K| random values. Considering these oper-
ations to be O(1), the cost becomes O(|K| + 1). Subsequently, it proceeds to
recover the protected bit from each lock, requiring |C| XORs for each unlocking
operation. This process must be performed |K| · |L| times, resulting in a cost of
O(|K| · |C| · |L|). Finally, it computes two hashes, denoted as O(2 · thash). Thus,
the overall cost is O(|K| · (1 + |C| · |L|) + 1 + 2 · thash). Procedure Rep follows a
similar pattern to Gen. For each lock, it unlocks the protected bit, incurring a
cost of O(|K| · |C| · |L|). Additionally, it computes two hashes, yielding a total
cost of O(|K| · (1 + |C| + |L|) + 1 + 2 · thash). The dynamic index generation
strategy adds extra computational cost to the algorithm. In particular, let us
denote with tPRNG the time required to query the PRNG and with collisions
the number of collisions. Generating and reproducing the indexes for the vault
takes O(tPRNG · |B| · |L| · |C| + collisions), whereas the same routine for the set
of indexes for each key takes O(tPRNG · |K|+ collisions). The decision to utilize
dynamic index generation or static index storage depends on the specific sce-
nario. Dynamic index generation proves advantageous in contexts characterized
by limited memory resources and available energy supply. On the other hand,
static index storage is a more viable option when energy is scarce but memory
resources are more readily available.

Impact of Error Tolerance. In Sect. 5.1, we demonstrated that by adjusting
the number of locks |L| within a bit-locker, it is possible to manage the error
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tolerance elock of the system. In this analysis, we examine the impact of elock

on |L| and set four different levels of tolerance as reference points. Utilizing
the formula provided in Sect. 5.1, we computed the number of expected locks
required to achieve a given tolerance for each specified error rate. The results
are plot in Fig. 4.

The four lines in the graph represent distinct error tolerances. We observe
that the trend is approximately linear for lower rates of absolute errors. How-
ever, at around an error rate of 0.85, the trends start to diverge and become
exponential. Notably, the curve corresponding to elock = 1e − 05 presents an
interesting exception. Here, the number of locks exhibits an under-linear trend
that extends until an error rate of 0.8. This graph effectively demonstrates that
our solution experiences linear growth for low to medium error rates, resulting
in linear memory and computational costs within that range.

6 Implementation and Comparison

In order to further validate the correctness and efficiency of our approach, we
implemented the algorithm on a physical test-bed using a 2.3 GHz Intel Core i5
quad-core processor with 8 GB of 2133 MHz LPDDR3 memory. We employed
a SRAM as our PUF, which was easily accessible using a Keystudio MEGA
2560 R3 microcontroller board with an 8 KB SRAM. The selection of an SRAM
PUF was motivated by several factors, including its user-friendly nature, ease
of development, cost-effectiveness, and its widespread availability as a piece of
hardware. To determine the preferred state Spref of the SRAM, we collected 200
strings and computed the majority value for each bit. We found that 88% of
the bits presented a stable value, with the remaining 12% showing an average
absolute error of 0.0223 and a maximum error of 0.0455.

The algorithm was implemented in C language and compared against both
Woo et al. [28], which is the best-performing algorithm in terms of both memory
and computational complexity, and Canetti et al. [5,6], which is the algorithm
providing the highest security guarantees. We evaluated three sets of parameters
based on security levels: 80-bit, 128-bit, and 256-bit. For each level, we performed
two experiments with different setups. Table 3 presents the parameters used for
each security level.

The values for |C| were carefully chosen in order to mitigate the effect of
correlation as shown in Sect. 5.2. We did not consider the bias in this simulation
because also the comparison works did not consider it. We decided to experiment
with two specific values for the correlation factor: φ = 0.75 represents a realistic
correlation factor for SRAMs [19], and φ = 0.00 corresponds to a limit case where
all the PUF bits are independent. In such scenario, no correlation relationship
affects the bits of the PUF meaning that no XOR-ation is mandatory, net of the
bias phenomenon. The correlation factor directly impacts the error tolerance
by determining the number of available equations for the linear system (see
Sect. 5.1). The sixth column (i.e., Exp. key error rate) reports the expected error
rates in recovering the key for each configuration. We kept it at around 1 error
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Table 3. Parameters for the three security levels.

Chosen params PUF params Resulting params

|K| |L| |C| φ eabs elock ebitlock Exp. key error rate

80 64 2 0.75 0.15 0.255 2.243 · 10−5 0.0018

80 256 2 0.00 0.25 0.375 3.089 · 10−5 0.0025

128 64 2 0.75 0.15 0.255 2.243 · 10−5 0.0029

128 256 2 0.00 0.245 0.370 1.483 · 10−5 0.0019

256 64 3 0.75 0.10 0.244 8.519 · 10−6 0.0022

256 256 3 0.00 0.175 0.363 4.891 · 10−6 0.0013

every 500. We set |Sread| = 216 based on the size of our SRAM and |B| = 28 for
the random pool size. Expected key error rate parameter is resulting from the
choice of the other parameters. In particular, recall Eq. 1 which is the probability
that a bit-locker is wrongly unlocked. Then, the probability that all bit-lockers
of a given key are successfully unlocked is (1 − elock)|K|. Finally, the expected
key error rate is the probability that at least one bit-locker of a given key is
wrongly unlocked and it is given by 1 − (1 − elock)|K|.

We measured the time needed to perform the Rep procedure. We performed
100000 experiments. To perform a fair comparison with the state-of-the-art,
we downloaded the code of Woo et al. [28] from the public repository1, we
implemented by ourselves the algorithm proposed by Canetti et al. [5,6], and
run them on the same appliance in order to obtain results originating from the
same evaluation environment. In fact, differences affecting computational power
among distinct machines could compromise the reliability of our experiments.

Table 4 summarizes the results and compares our work with [28] and [5,6].
Different eabs values are arising from other parameters, such as key length |K|,
correlation factor φ and expected key error rate. In particular, we set each eabs

value as the maximum we could afford in each configuration before performance
degradation and security flaws significantly increased.

We considered two state-of-the-art constructions for the comparison with our
work. Our choice was driven by the guarantees they offer and the performances,
in terms of memory requirements and computational time, they achieve. In par-
ticular we chose the proposal of Canetti et al. [5,6] and the proposal of Woo et
al. [28]. The former one provides optimal security guarantees, offering reusabil-
ity, insider security and robustness, while also addressing source correlation. The
latter one offers reusability and robustness with an easily manageable memory
overhead and linear error tolerance.

The other works either do not provide a sufficient level of security, exhibiting
data leakage or not supplying reusability and/or robustness, or are completely
unfeasible. In particular:

– Secure sketch-based constructions [2,25,26] suffer from data leakage;
1 https://github.com/KU-Cryptographic-Protocol-Lab/Fuzzy Extractor.

https://github.com/KU-Cryptographic-Protocol-Lab/Fuzzy_Extractor
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Table 4. Performance comparisons. The time value includes both the generation and
the reproduction procedure.

Solution |K| eabs Memory Time

Canetti et al. [5,6] (φ = 0.00) 80 0.25 K · 143.95 MB 43.50 s

128 0.245 K · 216.20 MB 57.71 s

256 0.175 K · 431.02 MB 104.99 s

Woo et al. [28] (φ = 0.00) 80 0.30 K · 297 B 4.62 s

128 0.20 K · 559 B 15.51 s

256 0.11 K · 1087 B 52.209 s

Our work (φ = 0.75) 80 0.15 2064 B + K · 64 B 0.054 ms

128 0.15 2064 B + K · 64 B 0.086 ms

256 0.10 2064 B + K · 64 B 0.222 ms

Our work (φ = 0.00) 80 0.25 8208 B + K · 64 B 0.205 ms

128 0.245 8208 B + K · 64 B 0.305 ms

256 0.175 8208 B + K · 64 B 0.845 ms

– The construction proposed by Cheon et al. [9] improves the proposal of
Canetti et al. [5,6] by reducing the memory requirements. Nevertheless, the
price to pay for such improvement is the introduction of a significant amount
of hashing operations, which are costly, determining an increase of the already
expensive computational cost;

– Fuller et al. [13] and Apon et al. [1] constructions lack of reusability.

The memory cost of Woo et al. [28] algorithms is comparable with our imple-
mentation incurring an initial overhead for storing the vault V . However, our
memory consumption grows slower with the number of generated keys K. For
instance, the memory cost for a security class of 128-bit and φ = 0.75 would
become equivalent to [28] after generating 5 keys. In terms of computation time,
our algorithm outperforms [28] by at least three orders of magnitude. The sig-
nificant difference is due to the use of more efficient operations, mainly XORs
and a limited number of hashes, in our work. On the other hand, [28] employs
more resource-intensive LWE-based cryptography and error correction codes.

As for the error tolerance, our implementation with φ = 0.75 handles smaller
amounts of error, which is a side effect of the XOR-ation mechanism (see
Sect. 5.1). The correlation factor φ and the resulting number of available bits
in the SRAM PUF significantly affect the overall performances. In fact, by set-
ting φ = 0.00 the error tolerance of our solution becomes superior to [28] in two
security levels, while being almost comparable in the third level. This setting is
equivalent of having a source F with 217 bits and a correlation factor φ = 0.75.

To validate the result from Sect. 5.1, we also measured the number of errors
committed in each security class. We measured 163 errors for class 80-bits, 259
for class 128-bits, and 129 for class 256-bits. These are in line with the expected
errors calculated in Table 3 (respectively 180, 280, and 220) We then checked the
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claim made in Sect. 5.1 by assessing the capability of an adversary to combine
different locks for gaining additional knowledge. We performed 100000 cycles,
with every cycle randomly shuffling the locks and adding them together. We
monitored the total number of elements forming the XOR-ation. Figure 5 plots
the minimum number of elements observed in a XOR-ation by combining mul-
tiple locks. The graph clearly shows a growing trend that finds its upper bound
at a value that is half of the total dimension of the source. This result validates
the claim made in Sect. 5.1 on the security of the pool vault. The vast major-
ity of locks shares no common elements, hence combining them greatly increase
the XOR-ation dimension. The presence of locks with more than half common
elements has little to no impact on the overall security.

Fig. 5. XOR-ation size while combining multiple locks. The x-axis considers the number
of locks added. The y-axis considers the number of elements forming the XOR-ation.
Both axes are logarithmic. The graph considers the worst case, that is the minimum
number of elements in the resulting cascade. (Color figure online)

7 Conclusion

The proliferation of resource-constrained devices within the IoT domain has
caused considerable challenges concerning privacy and security. Traditional
methods of storing digital keys in non-volatile memory have proven intricate
and costly, prompting the need for alternative solutions. This paper introduces
X-Lock, a novel computational fuzzy extractor specifically designed to address
the limitations faced by traditional solutions in resource-constrained IoT devices.
X-Lock employs a unique approach, utilizing the preferred state of a noisy source
to encrypt a random string of bits, which subsequently serves as a seed to gen-
erate multiple secret keys. This design not only ensures both reusability (even
insider security), and robustness, but also effectively mitigates bias and cor-
relation, enhancing overall security. To substantiate the claims of X-Lock, a
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comprehensive theoretical analysis is presented, encompassing security consid-
erations and detailed implementation insights. The rigorous analysis validates
the effectiveness and security of the proposed model. To evaluate the superior-
ity of X-Lock, an extensive set of practical experiments is also conducted, and
the results are compared against existing approaches. The experimental findings
demonstrate the efficacy of our proposed model, showcasing its comparable mem-
ory cost (approximately 2.4 KB for storing 5 keys of 128 bits) and remarkable
speed gains, which outperform the state-of-the-art solution by three orders of
magnitude (0.086 ms compared to 15.51 s). By offering reusability, insider secu-
rity, and robustness, X-Lock presents a compelling solution to the challenges
posed by traditional key storage methods. The comprehensive theoretical analy-
sis and practical experiments affirm the superior performance of X-Lock, making
it a promising advancement for enhancing privacy and security in the rapidly
evolving IoT landscape.
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