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This paper proposes an Incremental Sliding Mode Control driven by Sliding Mode Disturbance Observers 
(INDI-SMC/SMDO), with application to a quadrotor fault tolerant control problem. By designing the 
SMC/SMDO based on the control structure of the sensor-based Incremental Nonlinear Dynamic Inversion 
(INDI), instead of the model-based Nonlinear Dynamic Inversion (NDI) in the literature, the model 
dependency of the controller and the uncertainties in the closed-loop system are simultaneously reduced. 
This allows INDI-SMC/SMDO to passively resist a wider variety of faults and external disturbances using 
continuous control inputs with lower control and observer gains. When applied to a quadrotor, both 
numerical simulations and real-world flight tests demonstrate that INDI based SMC/SMDO has better 
performance and robustness over NDI based SMC/SMDO, in the presence of model uncertainties, wind 
disturbances, and sudden actuator faults. Moreover, the implementation process is simplified because of 
the reduced model dependency and smaller uncertainty variations of INDI-SMC/SMDO. Therefore, the 
proposed control method can be easily implemented to improve the performance and survivability of 
quadrotors in real life.

© 2019 Elsevier Masson SAS. All rights reserved.
1. Introduction

Characterized by mechanical simplicity, high maneuverability, 
and task adaptability, autonomous quadrotors have attracted con-
siderable interests in academic and industrial communities. A re-
cent research revealed the usage of quadrotors has a potential 
for reducing the greenhouse gas emissions and energy consump-
tion [1]. Due to the lack of redundancies, rotor failures have high 
impacts on quadrotor safety. To make widespread applications of 
quadrotors possible in the future, improving their reliability while 
maintaining affordability becomes more and more important.

Being invariant (better than just robust) to matched uncertain-
ties [2,3], Sliding Mode Control (SMC) is a promising candidate to 
fulfill this goal. A variety of SMC methods have been proposed 
for quadrotors to resist external disturbances and to cope with 
faults [4–14]. In spite of the varieties in SMC designs, for most 
SMC algorithms, the required control gains are positively corre-
lated with uncertainty bounds (for first-order SMC), or the bounds 
of uncertainty derivatives (for higher-order SMC). However, high-
gain SMC methods are problematic, they amplify the measurement 
noise, excite unmodeled dynamics, and aggravate the well-known 
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chattering phenomenon [15]. On account of these side-effects, one 
of the research focuses in the SMC community is on achieving the 
minimum possible value of the SMC gains [15–18].

Two effective approaches can be used to reduce the SMC gains. 
One is using a continuous model-based preliminary feedback con-
trol term to roughly cancel the nonlinearities and dynamic cou-
plings, such that only the remaining uncertainties need to be 
compensated by SMC. Regrading nonlinear control problems, this 
feedback term is commonly derived by dynamically inverting non-
linear algebraic equations, namely, by using Nonlinear Dynamic 
Inversion (NDI). Examples can be given for both first-order [4–9,12,
19] and higher-order [11,13,20,21] sliding mode control methods. 
The other approach is incorporating the uncertainty estimations, 
for example by using Sliding Mode Disturbance Observers (SMDO), 
such that only the estimation errors need to be dealt with by 
SMC [8,13,19,22]. Although these two approaches have their ad-
vantages, it is impractical and tedious to pursue a perfect model. 
Moreover, the switching gains used in SMDO still need to be larger 
than the uncertainty bounds or their derivatives [8,13,19,22]. Even 
though continuity can be retained by using a filtering process in 
the equivalent control estimations of SMDO, the high-frequency 
switching component can only be attenuated instead of being to-
tally rejected [19]. Therefore, it is valuable to design a control 
method which could fundamentally reduce the control efforts of 
SMC/SMDO whilst requiring less model knowledge.
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Incremental Nonlinear Dynamic Inversion (INDI) is a sensor-
based control method, which not only has less model dependency, 
but also obtains better robustness as compared to the NDI con-
trol [23,24]. INDI was initially proposed in [25], and has been 
successfully applied on the angular rate control [26] and position 
control [27] problems of quadrotors. Flight tests on a CS-25 cer-
tified passenger aircraft demonstrate that INDI outperforms NDI, 
in the presence of model uncertainties, sensor noises, and real-
world disturbances [23]. Recently, this INDI control method was 
reformulated in [24] to broaden its applicability. The stability and 
robustness of this method are also analyzed in [24] using Lyapunov 
methods and the nonlinear system perturbation theories. It has 
been proved in [24] that for a nonlinear system with stable inter-
nal dynamics, if the remaining regular perturbation term in INDI is 
bounded, then the states will be ultimately bounded by a class K
function of the regular perturbation bound. Although the ultimate 
bound of the states can be reduced by increasing the sampling fre-
quency and the control gains, these two approaches have practical 
limitations.

A nonlinear control framework named Incremental Sliding 
Mode Control (INDI-SMC), which hybridizes the reformulated INDI 
with SMC was proposed in [28]. This hybridization inherits the ad-
vantages and remedies the drawbacks of both methods. On the one 
hand, by introducing a SMC term into INDI, the influences of the 
remaining regular perturbation term can be compensated. On the 
other hand, by designing SMC based on the sensor-based INDI con-
trol framework, the model dependency and the minimum possible 
control gains of SMC can simultaneously be reduced. Nevertheless, 
Ref. [28] still has some limitations. First of all, the influences of 
sudden faults were not explicitly considered in the control deriva-
tions and the stability analyses. Also, the external disturbances 
were not included in the control derivations, analyses and simula-
tion tests. Finally, only a classical first-order SMC hybridized with 
INDI was numerically verified in [28], whilst the consequences of 
incorporating SMDO have not been demonstrated yet. These issues 
will be dealt with in the present paper.

The main contributions of this paper are the proposal of Incre-
mental Sliding Model Control driven by Sliding Mode Disturbance 
Observers (INDI-SMC/SMDO), and its application to a quadrotor 
fault tolerant control problem. Apart from its lower model de-
pendency, the proposed method also has improved robustness and 
performance as compared to SMC/SMDO designs based on NDI in 
the literature. Moreover, by virtue of the sensor-based character-
istic of INDI, the control objectives can be achieved using lower 
switching gains, which effectively mitigates the chattering effects 
of SMC. Furthermore, a wider range of disturbances and faults can 
be passively resisted without gain adaption. Finally, the effective-
ness of this method is verified by both numerical simulations and 
real-world flight tests.

The structure of this paper is as follows: Sec. 2 proposes the 
INDI-SMC/SMDO method and analyzes its stability and robustness. 
Theoretical comparisons with NDI based SMC/SMDO are also con-
ducted in Sec. 2. Both the NDI and INDI based SMC/SMDO meth-
ods are applied to a quadrotor fault tolerant control problem in 
Sec. 3. The effectiveness of the proposed INDI-SMC/SMDO method 
is demonstrated by simulations in Sec. 4 and by flight tests in 
Sec. 5. Main conclusions are drawn in Sec. 6.

2. Incremental sliding mode control driven by sliding mode 
disturbance observers

Consider a nonlinear multi-input/multi-output control-affine 
system:

ẋ = f (x, κ(t)) + G(x, κ(t))u + d(t), y = x (1)
where x ∈ Rn, u ∈ Rn, f (x, κ(t)) ∈ Rn, G(x, κ(t)) = [g1, g2, .., gn]
∈ Rn×n, g i ∈ Rn, i = 1, 2, ..., n. d ∈ Rn represents the bounded ex-
ternal disturbances. To indicate the sudden fault at t = t f during 
flight, κ(t) ∈ R is designed as a step function, with t < t f , κ = 0
indicates the fault-free case and t ≥ t f , κ = 1 denotes the post-
fault condition. f and G are expanded as:

f = f̄ + ( f f − f̄ )κ + f̂ , G = Ḡ + (G f − Ḡ)κ + Ĝ (2)

where f̄ , Ḡ are the nominal dynamics used for controller design, 
f f , G f denote the post-fault dynamics, and f̂ , Ĝ represent the 
model uncertainties as continuous functions of x.

Assumption 1. G(x, κ(t)) in Eq. (1) is nonsingular for all t .

Assumption 1 constrains the damage intensity considered in 
the present paper. If G(x, κ(t)) becomes singular because of faults, 
subspace control strategies need to be used. For example, a sub-
space control strategy is used in conjunction with Incremental 
Nonlinear Dynamic Inversion (INDI) in [29] for achieving the high 
speed flight (over 9 m/s) of a damaged quadrotor with complete 
loss of a single rotor.

The control aim is to design a continuous Sliding Mode Control 
(SMC) input that achieves decoupled asymptotic output tracking 
yc − y = e → 0, in the presence of model uncertainties, external 
disturbances, and sudden faults. The output reference yc should 
be differentiable with continuous ẏc . In the context of the sliding 
mode control, the sliding variable σ is designed such that when 
σ = 0 is reached, the desired error dynamics are achieved. For fair 
comparisons, a sliding variable designed as

σ = e + K c

∫
edt (3)

will be consistently used in this paper. K c = diag{Kci }, i = 1, 2, .., n, 
and Kci are chosen to achieve desired error dynamics.

In subsection 2.1, SMC/Sliding Mode Disturbance Observer 
(SMDO) based on the control structure of NDI will be introduced 
first as a benchmark, then INDI-SMC/SMDO will be proposed in 
subsection 2.2. These two control approaches will be compared 
analytically in subsection 2.3.

2.1. NDI-SMC/SMDO

Using Eq. (1), the dynamics of the sliding variable in Eq. (3) are 
given by:

σ̇ = ė + K ce = ( ẏc + K ce − f̄ ) + ( f̄ − f − d) − Ḡu − (G − Ḡ)u

� �̄ + �� − Ḡu − �Gu (4)

in which �� and �G are unavailable for controller design. It 
is noteworthy that �G represents the multiplicative uncertainties 
in the control effectiveness matrix, which was not considered in 
Ref. [8,19].

In order to reduce the control gains, SMC can be used along 
with SMDO, which can estimate bounded uncertainties. SMDO de-
signs are independent of the model structure, only the bounds of 
uncertainties are needed by the classical SMDO designs, and the 
bounds of the uncertainty derivatives are required by the higher-
order SMDO (e.g. Super-twisting SMDO [8,19,22]) designs. This pa-
per designs a classical SMDO as an example, where the auxiliary 
sliding variables are introduced as:

s = σ + z, ż = −�̄ + Ḡu − νo (5)
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Substituting Eq. (4) into Eq. (5) yields:

ṡ = (�� − �Gu) − νo � −εndi − νo (6)

Denote the control input as undi, then using Eqs. (2, 4), εndi in 
Eq. (6) is rewritten as:

εndi = −�� + �Gundi

= [ f̂ + Ĝundi + d] + κ[( f f − f̄ ) + (G f − Ḡ)undi] (7)

Assumption 2. For all x ∈ Rn, κ ∈ R, and bounded external dis-
turbance d ∈Rn , εndi in Eq. (7) is bounded.

The boundedness of the perturbations is the precondition of 
many robust control methods. For example, Assumption 2 is made 
in [19,30–33]. Design νo as:

νo = K sSign(s) = [Ks,1sign(s1), Ks,2sign(s2), ..., Ks,nsign(sn)]T ,

Ks,i ≥ η + |εndi,i| (8)

where η is a small positive constant. Then s is stabilized at zero 
in finite time. This can be proved by introducing a candidate Lya-
punov function V 1 = 1

2 sT s. Using Eqs. (6, 8), the time derivative of 
V 1 is:

V̇ 1 = sT ṡ = sT (−εndi −νo) ≤
n∑

i=1

|si ||εndi,i|− Ks,i|si | ≤ −η

n∑
i=1

|si |

(9)

sT ṡ ≤ −η
∑n

i=1 |si| is referred to as the η reaching law, which 
ensures si = 0 is reached in finite time tr,i ≤ |si(0)|/η [19,18]. 
Therefore, in view of Eq. (6), the equivalent control [2,19] νeq,i
estimates exactly −εndi,i , ∀ti ≥ tr,i . One way to obtain νeq is filter-
ing νo as ν̂eq,i(s) = G L P F (s)νo,i(s), in which s is a Laplace variable 
and G L P F (s) is the transfer function of a low-pass filter. When 
first-order low-pass filters with time constant τi are used, ν̂eq es-
timates −εndi with a small estimation error proportional to τi , i.e. 
| − εndi,i − ν̂eq,i | < O(τi). Using ‖ · ‖ to denote the 2-norm of a 
vector, then ‖εndi + ν̂eq‖ < O(τ ) � ‖[O(τ1), ..., O(τn)]T ‖. As pre-
sented in [19], τi can be taken very small, and its lower boundary 
is the sampling interval of the onboard computer.

Following the SMDO design, the continuous SMC/SMDO control 
input that asymptotically stabilizes σ is designed as:

undi = Ḡ
−1

(�̄ + K σ σ + ν̂eq) (10)

where K σ = diag{Kσ ,i}, Kσ ,i > 0. Substituting Eqs. (6, 10) into 
Eq. (4) leads to σ̇ = −K σ σ + [�� − �Gundi] − ν̂eq = −K σ σ −
(εndi + ν̂eq). Introduce a candidate Lyapunov function V 2 = σ T Pσ , 
where P = P T > 0 is the solution of the Lyapunov equation 
P K σ + K T

σ P = I . I ∈ Rn×n is an identity matrix. Then when 
t > max{tr,i}, the time derivative of V 2 is:

V̇ 2 = −σ T [P K σ + K T
σ P ]σ − 2σ T P (εndi + ν̂eq)

< −‖σ‖2 + 2‖σ‖‖P‖O(τ )

≤ −γ ‖σ‖2, ∀‖σ‖ ≥ 2‖P‖O(τ )

1 − γ
(11)

with constant γ ∈ (0, 1). Eq. (11) proves that under Assumptions 1
and 2, the NDI-SMC/SMDO control law given by Eq. (10), in which 
ν̂eq is observed using a SMDO with gain condition given in Eq. (8)
ensures that the state σ is ultimately bounded by a class K func-
tion [24,34] of O(τ ). Theoretically, this ultimate bound can be 
made arbitrarily small [19,31] by reducing τi and increasing Kσ ,i .
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emark 1. The control input given by Eq. (10) is essentially based 
 the control structure of Nonlinear Dynamic Inversion (NDI), 

hose virtual control now contains three parts: the classical NDI 
rtual control ẏc + K ce, the SMC virtual control K σ σ , and the 

DO virtual control ν̂eq. Therefore, Eq. (10) is referred to as NDI 
sed SMC driven by SMDO in this paper, which is abbreviated to 

DI-SMC/SMDO.

emark 2. Many other SMC/SMDO designs in the literature also 
ntain a preliminary feedback term using NDI to reduce the 
ntrol efforts of SMC/SMDO. For example, adaptive fuzzy gain-
heduling SMC [12], first-order SMC using the equivalent control 
timated from the nominal model [4,6–9,19], adaptive SMC [5], 
gher-order SMC [20–22], adaptive super-twisting SMC [11], mod-
ed super-twisting SMC using a higher-order sliding mode ob-
rver [13].

One well-known drawback of NDI is its model dependency, 
hich consequently reduces its robustness to model uncertainties, 
-board faults and external disturbances. SMC/SMDO is able to 
serve and compensate for bounded perturbations, as shown in 
s. (9, 10). Even though the SMC/SMDO control input designed 
 Eq. (10) is continuous, the high-frequency switchings of νo are 
ly attenuated by filtering, instead of being totally rejected [19]. 
 other words, the ν̂eq term in Eq. (10) is still oscillating. A 
ethod that can simultaneously reduce the model dependency of 
DI and mitigate the side effects of SMC/SMDO would be benefi-
al.

2. INDI-SMC/SMDO

INDI-SMC/SMDO aims to reduce the model dependency, and 
prove the robustness of NDI-SMC/SMDO, without using high 
ntrol/observer gains. Denote the sampling interval as �t . To be-
n with, the incremental dynamic equation is derived by taking 
e first-order Taylor series expansion of Eq. (1) around the condi-

on at t − �t (denoted by the subscript 0) as:

= ẏ0 + G(x0, κ0)�u + ∂[ f (x, κ) + G(x, κ)u]
∂x

∣∣∣∣
0
�x

+ ∂[ f (x, κ) + G(x, κ)u]
∂κ

∣∣∣∣
0
�κ

+ �d +O(�x2) � ẏ0 + G(x0, κ0)�u + �d + δ(x, κ,�t)
(12)

In the above equation, �x = x − x0, �u = u − u0, respectively 
note the variations of states and control inputs in one incremen-
l time step �t . �κ = κ − κ0 denotes the changes of the fault in-
cator κ , while �d = d −d0 denotes the variations of the external 
sturbances d in �t . ẏ0 is the latest sampled output derivate vec-
r. If ẏ0 cannot be measured, it can be estimated from the sam-
ed outputs. The approaches of obtaining ẏ0 for control imple-
entation will be further discussed in Sec. 5. The remainder term 
(�x2) is only a function of �x2, since according to Eqs. (1, 2), 
ẏ

ui = 0, ∂ i ẏ
∂di = 0, ∂ i ẏ

∂κ i = 0 for all i ≥ 2. It is noteworthy that, com-
red to the incremental dynamic equations derived in [28,24], 
. (12) takes partial derivatives with respect to both κ and d.
The same sliding variable σ in Eq. (3) is also used by INDI-
C/SMDO for fair comparisons. However, the controller will be 

signed based on Eq. (12) instead of Eq. (1). The dynamics of σ
e then derived as:

= ė + K ce = ( ẏc + K ce − ẏ0) + (−δ(x, κ,�t) − �d)

− Ḡ�u − (G − Ḡ)�u

� �̄
′ + ��′ − Ḡ�u − �G�u (13)
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Design an auxiliary sliding variable s′ = σ + z′, ż′ = −�̄
′ +

Ḡ�u − ν ′
o , then by using Eq. (13), the dynamics of s′ are:

ṡ′ = (��′ − �G�u) − ν ′
o � −εindi − ν ′

o (14)

εindi in Eq. (14) is the lumped perturbation term in INDI-
SMC/SMDO. Denote the control input as uindi, which will be de-
signed in Theorem 1. Using Eq. (2), δ(x, κ, �t) in Eq. (12) is further 
derived as:

δ(x, κ,�t) = δb(x,�t) + δd(x,�t)κ0 + δκ (x)�κ (15)

where

δb(x,�t) = ∂[ f̄ + f̂ + (Ḡ + Ĝ)uindi]
∂x

∣∣∣∣
0
�x +O(�x2)

δd(x,�t) = ∂[( f f − f̄ ) + (G f − Ḡ)uindi]
∂x

∣∣∣∣
0
�x

δκ (x) = [( f f − f̄ ) + (G f − Ḡ)uindi]|0 (16)

Therefore, recall Eq. (13), εindi in Eq. (14) is written as:

εindi = −��′ + �G�uindi

= [δb + Ĝ�uindi + �d] + κ0δd + κ(G f − Ḡ)�uindi + δκ�κ
(17)

For a bounded εindi, design ν ′
o in Eq. (14) as:

ν ′
o = K ′

sSign(s′) = [K ′
s,1sign(s′

1), K ′
s,2sign(s′

2), ..., K ′
s,nsign(s′

n)]T ,

K ′
s,i ≥ η + |εindi,i| (18)

where η is a small positive constant.

Theorem 1. For system described by Eqs. (1, 2), and the sliding variable 
σ in Eq. (3), if the INDI-SMC/SMDO control is designed as

�uindi = Ḡ
−1

(�̄
′ + K ′

σ σ + ν̂ ′
eq) (19)

where �̄′
is defined in Eq. (13), K ′

σ = diag{K ′
σ ,i}, K ′

σ ,i > 0, and ν̂ ′
eq

is low-pass filtered from ν′
o in Eq. (18), then under Assumption 1, for a 

bounded εindi (Eq. (17)), σ will be ultimately bounded by an arbitrarily 
small bound.

Proof. Chose a candidate Lyapunov function V 3 = 1
2 s′ T s′ , and use 

Eqs. (14, 18) lead to:

V̇ 3 = s′ T ṡ′ = s′ T (−εindi − ν ′
o) ≤

n∑
i=1

|s′
i ||εindi,i| − K ′

s,i|s′
i |

≤ −η

n∑
i=1

|s′
i | (20)

Therefore, according to the η reaching law [19,18], the slid-
ing surfaces s′

i = 0, i = 1, 2, ..., n are reached in finite time t′
r,i ≤

|s′
i(0)|/η. On the sliding surfaces, using Eq. (14), the equivalent 

control [2,19] ν ′
eq,i equals −εindi,i . This equivalent control can 

be estimated by filtering ν ′
o as ν̂ ′

eq,i(s) = G L P F (s)ν ′
o,i(s), where 

G L P F (s) is the transfer function of a low-pass filter. Consequently, 
ν̂ ′

eq,i estimates −εindi,i in finite time with a small estimation 
error proportional to the time constant of the filter, i.e. | −
εindi,i − ν̂ ′

eq,i | < O(τi). In a vector form, ‖εindi + ν̂ ′
eq‖ < O(τ ) �

‖[O(τ1), ..., O(τn)]T ‖.
Use the observed perturbation term ν̂ ′

eq, and substitute Eqs. (17, 19)
into Eq. (13) result in:

σ̇ =

P ′
K ′

σ

V̇ 4

wit
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εin
−K ′
σ σ + [��′ − �G�uindi] − ν̂ ′

eq = −K ′
σ σ − (εindi + ν̂ ′

eq)

(21)

Introduce a candidate Lyapunov function V 4 = σ T P ′σ , where 
= P ′ T > 0 is the solution of the Lyapunov equation P ′ K ′

σ +
T P ′ = I . Then when t > max{t′

r,i}, the time derivative of V 4 is:

= −σ T [P ′ K ′
σ + K ′ T

σ P ′]σ − 2σ T P ′(εindi + ν̂ ′
eq)

< −‖σ‖2 + 2‖σ‖‖P ′‖O(τ )

≤ −γ ‖σ‖2, ∀‖σ‖ ≥ 2‖P ′‖O(τ )

1 − γ
(22)

h constant γ ∈ (0, 1). Eq. (22) proves σ is ultimately bounded 
a class K function [24,34] of O(τ ). In theory, this ultimate 
nd can be made arbitrarily small [19,31] by reducing τi and 

reasing K ′
σ ,i . �

The total control command of INDI-SMC/SMDO is uindi =
di|0 + �uindi, where �uindi is designed as Eq. (19), uindi|0 is 
 latest sampled uindi. If uindi|0 is not directly measurable, it can 
o be estimated online [35]. In view of Eqs. (13, 19), the con-
l law designed using the structure of INDI does not require the 
del information of f . Even through the model dependency of 
I-SMC/SMDO is reduced, its robustness is enhanced by virtue 

its sensor-based structure [24,28,36]. This distinguishes INDI-
C/SMDO from Ref. [37,38], where the nominal model of f is 
l needed. The sensor-based structure also has lower compu-
ion load than the online dynamic reconstruction using neural 
works [39]. Apart from its reduced model dependency, other 
efits of using the INDI control structure in SMC/SMDO designs 

l be further explored.
For both NDI and INDI based SMC/SMDO, the boundedness of 
 perturbation term is the precondition of controller design. The 
ndedness of εndi for all t is assumed in Assumption 2. In-

ad of making a similar assumption for εindi, it will be shown 
Theorem 2 that some less strict conditions can guarantee the 
ndedness of εindi.

umption 3. The partial derivatives of f and G in Eq. (1) with 
pect to x, up to any order, are bounded.

umption 4. δκ (x) in Eq. (16) is bounded for t f ≤ t < t f + �t .

Assumption 4 is less strict than Assumption 2. It can be seen 
m Eqs. (7, 16) that the κ[( f f − f̄ ) + (G f − Ḡ)undi] term con-
ed in εndi corresponds to δκ (x) in εindi. However, only the 
ndedness of δκ (x) for a short time interval �t is needed in 
umption 4, while the boundedness of the entire εndi for all t
equired in Assumption 2. Since κ(t) is a step function to indi-
e a sudden fault, �κ is a single square pulse with magnitude of 
 and width of �t . Consequently, the term δκ (x)�κ is only non-

o during a short time interval t f ≤ t < t f +�t . After t = t f +�t , 
 main influences of the fault have already been included by the 
asurements/estimations at the latest sampled condition.

orem 2. If ‖I − G Ḡ
−1‖ ≤ b̄ < 1 for all t, under Assumptions 3 and 4, 

sufficiently high sampling frequency, εindi given by Eq. (17) is ulti-
tely bounded.

of. Using Eqs. (13, 17, 19), εindi is written as

di = δ(x, κ,�t) + �d + �G Ḡ
−1

(�̄
′ + K ′

σ σ + ν̂ ′
eq)

= δ(x, κ,�t) + �d + (G Ḡ
−1 − I)(( ẏc + K ce)

+ K ′
σ σ + ν̂ ′

eq − ẏ0) (23)
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Define the lumped virtual control term as ν = ( ẏc + K ce) +
K ′

σ σ + ν̂ ′
eq, which contains three parts: the classical INDI virtual 

control ẏc + K ce, the SMC virtual control K ′
σ σ , and the observa-

tion term ν̂ ′
eq. These three terms are all continuous in time.

Using the definition σ = e + K c
∫

edt , e = yc − y, and the 
closed-loop dynamics given by Eq. (21), then

σ̇ = −K ′
σ σ − (εindi + ν̂ ′

eq) = ẏc − ẏ + K ce (24)

Therefore

ẏ = ( ẏc + K ce) + K ′
σσ + ν̂ ′

eq + εindi = ν + εindi (25)

Eq. (25) is valid for all t , thus for the previous time step, ẏ0 =
ν0 + εindi0 . Substituting this equation into Eq. (23) yields:

εindi = δ(x, κ,�t) + �d + (G Ḡ
−1 − I)(ν − ẏ0)

= (I − G Ḡ
−1

)εindi0 − (I − G Ḡ
−1

)(ν − ν0)

+ δ(x, κ,�t) + �d

� Eεindi0 − E�ν + δ(x, κ,�t) + �d (26)

which can be written in a recursive way as:

εindi(k) = E(k)εindi(k − 1) − E(k)�ν(k) + δ(k) + �d(k) (27)

k in the above equation indicates the k-th time step. Since x
is continuously differentiable, lim�t→0 ‖�x‖ = 0. Therefore, using 
Assumption 3, the perturbation terms satisfy:

lim
�t→0

‖δb(x,�t)‖ = 0, lim
�t→0

‖δd(x,�t)‖ = 0, ∀x ∈ Rn (28)

which means that the norms of these perturbation terms become 
negligible for sufficiently small sampling interval [24,28]. Eq. (28)
also indicates that ∀δ̄ε > 0, ∃�t > 0, s.t. ∀�t ∈ (0, �t], ∀x ∈
Rn, ‖δb(x, �t)‖ ≤ δ̄ε, ‖δd(x, �t)‖ ≤ δ̄ε . In other words, there ex-
ists a �t that ensures the boundedness of both δb(x, �t) and 
δd(x, �t). Also, these bounds can be further diminished by reduc-
ing the sampling interval. Moreover, since �κ is only non-zero for 
t f ≤ t < t f + �t , then δκ�κ is bounded under Assumption 4. Re-
call Eq. (15), since ‖δ(x, κ, �t)‖ ≤ ‖δb(x, �t)‖ + ‖δd(x, �t)‖ · 1 +
‖δκ (x)�κ‖, then Assumptions 3, 4 and a sufficiently small �t en-
sure a bounded δ(x, κ, �t). Denote the bound as δ̄. Furthermore, ν
is designed to be continuous in time, thus

lim
�t→0

‖ν − ν0‖ = 0, ∀x ∈ Rn (29)

consequently, for a sufficient small �t , �ν = ν − ν0 is bounded. 
Denote this bound as �ν . In addition, for a bounded disturbance 
vector d, its increment in one time step �d is also bounded. De-
note this bound as �d. Using these bounds, and recall the condi-
tion ‖E‖ = ‖I − G Ḡ

−1‖ ≤ b̄ < 1 in this theorem, Eq. (27) satisfies:

‖εindi(k)‖ ≤ (b̄)k‖εindi(0)‖ +
k∑

j=1

(b̄)k− j+1‖�ν( j)‖

+
k−1∑
j=1

(b̄)k− j‖δ( j) + �d( j)‖ + ‖δ( j) + �d( j)‖

≤ (b̄)k‖εindi(0)‖ + �ν

k∑
j=1

(b̄)k− j+1

+ (δ̄ + �d)

k−1∑
(b̄)k− j + (δ̄ + �d)
j=1
= (b̄)k‖εindi(0)‖ + �ν
b̄ − b̄k+1

1 − b̄
+ (δ̄ + �d)

1 − b̄k

1 − b̄
(30)

Since b̄ < 1, Eq. (30) satisfies:

‖εindi‖ ≤ b̄�ν + δ̄ + �d

1 − b̄
, as k → ∞ (31)

In conclusion, εindi is bounded for all k, and is ultimately 
bounded by b̄�ν+δ̄+�d

1−b̄
. �

Remark 3. Theorem 2 in this paper improves the Theorem 1 
in [28] in three aspects: 1) consideration of the external distur-
bances d; 2) consideration of the sudden faults, as δ(x, κ, �t) is a 
function of the fault indicator κ ; 3) the virtual control ν in this pa-
per also includes the contributions from SMC and SMDO, while the 
νc in [28] only considers the classical INDI virtual control term.

Remark 4. Theorem 2 proves that a diagonally dominate structure 
of G Ḡ

−1
, a sufficiently high sampling frequency, as well as As-

sumptions 3 and 4 guarantee a bounded εindi. This bound can also 
be further diminished by increasing the sampling frequency. By 
contrast, εndi is independent of �t , and its boundedness is unde-
termined under the same conditions. Therefore, for the feasibility 
of the NDI-SMC/SMDO design, the stricter Assumption 2 needs to 
be imposed.

2.3. Comparisons between NDI and INDI based SMC/SMDO

A block diagram is shown by Fig. 1, in which two switches 
are used to transform between NDI and INDI based SMC/SMDO. 
When these switches are connected to black solid lines, the INDI-
SMC/SMDO control structure is activated, where the controller 
uses the measurements/estimations of ẏ0 and uindi|0. On the con-
trary, when the switches are connected to blue dashed lines, the 
NDI-SMC/SMDO control structure is activated, which depends on 
the model f̄ (x). This block diagram mainly illustrates the control 
structures, so the gain matrices K σ , K s can be different for these 
two approaches.

As can be seen from the derivations of NDI and INDI based 
SMC/SMDO and Fig. 1, the same SMC/SMDO design is used to com-
pensate for different perturbations, εndi and εindi. The properties 
of these perturbations are crucial to the stability and robustness 
of the closed-loop systems. As discussed in subsection 2.2, εindi
is bounded when the conditions in Theorem 2 are satisfied, while 
the boundedness of εndi is undetermined under the same condi-
tions. Moreover, it has been proved in [28] that there exists a �t
such that εindi has smaller bound as compared to εndi. This feature 
of the incremental framework is fundamentally beneficial for re-
ducing the switching gains in SMC [28]. However, only the model 
uncertainties are considered in [28]. In this paper, the properties 
of εndi and εindi will be compared considering model uncertain-
ties, external disturbances and sudden faults. Their influences on 
SMC/SMDO design will also be revealed.

Denote the fault instant as t = t f , the values of εndi and εindi
will be analyzed in three cases:

1. Pre-fault t < t f : κ0 = κ = 0, �κ = 0.
2. Fault instant t f ≤ t < t f + �t: κ0 = 0, κ = 1, �κ = 1.
3. Post-fault t ≥ t f + �t: κ0 = κ = 1, �κ = 0.

For the pre-fault condition, recall Eqs. (7, 17), εndi = f̂ +
Ĝundi + d, while εindi = δb + Ĝ�uindi + �d. ‖ f̂ ‖ is normally large 
because f̂ contains the uncertainties of inertia and aerodynamic 
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Fig. 1. Block diagram for INDI-SMC/SMDO (black solid lines) and NDI-SMC/SMDO (blue dashed lines).
properties for aerospace systems, which are the most challeng-
ing parts to model. On the contrary, as a function of �t , ‖δb‖
can become negligible as shown by Eq. (28). Also, when undi �= 0, 
there exists a �t that ensures ‖Ĝ‖‖�uindi‖ < ‖Ĝ‖‖undi‖ [24,28]. 
As compared to the fixed-wing aircraft control, this inequality is 
easier to fulfill in quadrotor control, because the control inputs 
(rotor speeds) are far from zero for overcoming gravity. More-
over, most external disturbances in real life are continuous, thus 
lim�t→0 ‖d‖ = 0. In other words, when d �= 0, ∃�t, s.t. ‖�d‖ <
‖d‖. For the discontinuous disturbances, such as a bird strike or a 
sudden collision, the influences of d can be analyzed in the same 
way as that of κ . In summary, when t < t f , if d �= 0, undi �= 0, 
there exists a �t , such that the upper bound of εindi is smaller 
than that of εndi.

During t f ≤ t < t f + �t , κ0 = 0, κ = 1, �κ = 1. Recall 
Eqs. (7, 17), an additional term ( f f − f̄ ) + (G f − Ḡ)undi is added 
to εndi, while (G f − Ḡ)�uindi + δκ is added to εindi. Using the for-
mulation of δκ (Eq. (16)), and the condition uindi = uindi|0 +�uindi, 
it can be seen that these two additional perturbation terms have 
comparable bounds.

When compared to the pre-fault condition, εndi is augmented 
by ( f f − f̄ ) + (G f − Ḡ)undi in the post-fault condition, while δd +
(G f − Ḡ)�uindi is added to εindi. As discussed in subsection 2.2, 
the δκ (x)�κ term in εindi converges to zero after the fault. Even 
though the multiplicative uncertain term (G f − Ḡ)�uindi still ex-
ists in εindi, there exists a �t that ensures ‖(G f − Ḡ)‖‖�uindi‖ <
‖(G f − Ḡ)‖‖undi‖, when undi �= 0. Moreover, system using the INDI 
control structure is only perturbed by δd instead of f f − f̄ . Recall 
Eq. (28), after the fault occurs, if d �= 0, undi �= 0, there exists a �t , 
such that the upper bound of εindi is smaller than that of εndi.

In summary, there exists a sampling interval �t , such that in 
the perturbed circumstances, if undi �= 0, the upper bound of εindi
is smaller than that of εndi, before and after the fault. Also, the 
upper bound of εindi can be diminished by decreasing �t . These 
properties of εindi can fundamentally reduce the control efforts of 
SMC/SMDO, because for most SMC and SMDO methods, the re-
quired switching gains are monotonically increasing functions of 
the uncertainty bounds. As a consequence, the SMC/SMDO designs 
based on the incremental control structure can achieve better per-
formance and robustness using not only less model information 
but also reduced gains, as compared to those NDI based methods. 
The robustness of the incremental control structure is contributed 
by its sensor-based characteristic, that the uncertainties can be re-
duced by fully exploring the measurements.

It is worth noting that εindi also has smaller variations in dif-
ferent fault cases, while the augmented uncertainty term ( f f −
f̄ ) + (G f − Ḡ)undi in εndi is more fault-case dependent. Therefore, 
INDI-SMC/SMDO has the potential of passively resisting a wider 
range of perturbations, while gain adjustments may be required by 
NDI-SMC/SMDO in different fault scenarios.
Fig. 2. A Bebop 2 quadrotor and axes definition.

The above analyses are conducted for generic nonlinear sys-
tems. The condition of “sufficiently high sampling frequency” may 
sound strict, but actually it is not difficult to find a reasonable �t
in practice. Further discussions about the selections of �t can be 
found in [24]. In the following two sections, the benefits of INDI-
SMC/SMDO will be demonstrated via both simulations and flight 
tests for a quadrotor fault tolerant control problem.

3. Quadrotor fault tolerant flight control

In order to compare the performance and robustness of NDI and 
INDI based SMC/SMDO, a quadrotor attitude control problem in the 
presence of model uncertainties, wind disturbances, and actuator 
faults will be considered in this section. The position control of 
quadrotors can be designed in the same way.

3.1. Quadrotor model

A Parrot Bebop 2 quadrotor is shown in Fig. 2. Denote the body 
frame as (O B , XB , Y B , Z B), where O B coincides with the aircraft 
center of mass, and O B XB Z B represents the aircraft symmetrical 
plane. The distances to each of the rotors along the O B XB and 
O B Y B axes are respectively given by l and b. The rotation rates of 
the four rotors are denoted by ω = [ω1, ω2, ω3, ω4]T . The orien-
tation of the vehicle is described by Euler angles θ = [φ, θ, ψ]T . 
Assume θ ∈ (−π

2 , π2 ), φ ∈ (−π
2 , π2 ). Expressing the angular rate of 

the quadrotor in the body frame as � = [p, q, r]T , then the kine-
matic equations for the Euler angles are:

θ̇ = Rθ (θ)� (32)

in which Rθ (θ) can be found in [40]. The quadrotor rotational dy-
namics are given by:

I v(κ)�̇ + � × I v(κ)� = Mc(ω
2, κ) + Ma(�, V a, κ)

+ Mr(ω, ω̇,�, I rzz (κ)) (33)

where I v(κ) is the inertia matrix of the whole quadrotor, Ma(�,

V a, κ) is the aerodynamic moment vector, V a is the quadrotor 
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airspeed, Mc(ω2, κ) is the control moment vector. Mr(ω, ω̇, �,

I rzz (κ)) contains two parts: the gyroscopic moments of the rotors 
(as a function of ω, �, rotor inertia vector I rzz (κ)), and also the 
spin-up torque of the rotors (as a function of ω̇ and I rzz (κ)). For 
the rotor failure cases considered in the present paper, the fault 
indicator κ is introduced to I v , I rzz , Mc, Ma in Eq. (33). On the 
one hand, rotor failures directly lead to changes in the rotor inertia 
I rzz and the inertia matrix of the whole quadrotor I v . On the other 
hand, rotor failures modify the aerodynamic properties of the ve-
hicle, thus the aerodynamic moment Ma and the control moment 
Mc are also functions of κ .

The thrust and reactive torque of the rotors are approximately 
proportional to ω2 [26,41], and the proportionality coefficients are 
respectively denoted by ki, λi, i = 1, 2, 3, 4. Therefore, using the 
geometry parameters shown in Fig. 2, Mc and the total thrust T
can be modeled by:
⎛
⎜⎜⎜⎝

Mc

T

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−bk1 bk2 bk3 −bk4
lk1 lk2 −lk3 −lk4
λ1 −λ2 λ3 −λ4

k1 k2 k3 k4

⎞
⎟⎟⎟⎠ω2 � Gm(κ)ω2 (34)

The spin-up toque in Mr was neglected by most publications 
about quadrotor control, but it was shown in Ref. [26] via flight 
tests that this term is influential to the yaw channel control. How-
ever, if Mr is incorporated into the controller design, the system 
dynamics become ẋ = f (x, κ) + G(x, ω, ω̇, ω2, κ), which is not 
affine in ω. Actually, because the incremental dynamic equation 
is derived by taking partial derivatives with respect to u (Eq. (12)), 
the INDI control structure can also deal with non-affine in the con-
trol systems, as also shown in [26,24]. In spite of this benefit of 
INDI, for fair comparisons with NDI-SMC/SMDO, Mr is viewed as 
uncertainty in this paper, and will be observed by a SMDO. Con-
sequently, the dynamic model for controller design becomes affine 
in ω2.

3.2. Controller design

The control objective is quadrotor attitude command tracking, 
i.e. θ = [φ, θ, ψ]T → θ c . Considering the natural time-scale sep-
aration of the quadrotor dynamics [8,26,27], the control law can 
be designed using two nested control loops. An alternative way is 
taking y = θ , which makes the relative degree of y with respect 
to ω2 equals two. Non-cascaded controllers can then be designed 
analogous to Eqs. (10, 19) [24]. Since these two approaches are 
analogous, and the cascaded control structure is more widely used 
in aerospace systems, this paper also designs the controllers in a 
cascaded way.

The inner-loop controller will be separately designed using NDI 
and INDI based SMC/SMDO methods, aiming at � → �c, T → Tc , 
where �c and Tc will be provided by the outer-loop controllers. In 
view of Eqs. (33, 34), the inner-loop dynamics are written as:(

�̇
T /m

)
=

( −I−1
v (� × I v�) + I−1

v Ma

0

)

+
(

I−1
v 03×1

01×3 1/m

)
Gmω2 +

(
d1 + I−1

v Mr

d2

)
(35)

in which d1 ∈R3, d2 ∈R represent external disturbances.

Remark 5. In Ref. [4,5,7,9–12,14], the control input vector is taken 
as u = [Mc, T ]T . This choice is deficient because only the uncer-
tainties of I v can be considered in the controller designs. However, 
it is more difficult to estimate Gm owing to the aerodynamic ef-
fects. Furthermore, actuator faults have the largest influences on 
Gm . In addition, for real-life implementations, u = [Mc, T ]T still 
needs to be converted into rotor speed commands. Therefore, this 
paper takes u = ω2, and the rotor speed command vector is ac-
cordingly 

√
u.

Define x = [�,
∫
(T /m)dt]T , then Eq. (35) can be expressed in 

the form of Eq. (1). Following the procedures in subsection 2.1, the 
inner-loop control using NDI-SMC/SMDO is designed by Eq. (10). 
On the other hand, the INDI-SMC/SMDO controller is designed us-
ing the incremental dynamic equation, which is derived as:
(

�̇
T /m

)
=

(
�̇0

T0/m

)
+

(
δ(�, V a, κ,�t)

0

)

+
(

I−1
v 03×1

01×3 1/m

)
Gm�ω2 +

(
�d1 + δMr (�t)

�d2

)

(36)

where

δ(�, V a, κ,�t) = ∂[I−1
v (−� × I v� + Ma)]

∂�

∣∣∣∣
0
��

+ ∂[I−1
v Ma]
∂V a

∣∣∣∣
0
�V a +O(��2,�V 2

a)

+ ∂[I−1
v (−� × I v� + Ma + Mc)]

∂κ

∣∣∣∣
0
�κ (37)

and with δMr (�t) representing the variations of I−1
v Mr in one 

incremental time step. According to the physical time-scale separa-
tions of quadrotor dynamics, the variations of velocities are slower 
than the variations of angular rates. Also, V a is a continuous func-
tion of time. Based on the above two reasons, Eq. (28) is still valid. 
Following the procedures in subsection 2.2, the inner-loop control 
using INDI-SMC/SMDO is then designed by Eq. (19).

After the design of the inner-loop controllers using both NDI 
and INDI based SMC/SMDO, the outer-loop controllers are designed 
to provide the commands �c and Tc . �c is designed to achieve 
attitude control: θ → θ c , while Tc is designed to control height: 
h → hc .

Recall Eq. (32), since there is no model uncertainty in this 
kinematic equation, a simple NDI controller can be adopted. 
Design the virtual control as νatt = θ̇ c + K att(θ c − θ), K att =
diag{Katti }, Katti > 0, i = 1, 2, 3, then the reference for the angu-
lar rates is designed as �c = R−1

θ (θ)νatt . Rθ (θ) is invertible when 
θ ∈ (−π

2 , π2 ).
For the height control, define the position vector as P =

[x, y, −h]T , then its dynamics are given as:

P̈ = g + R I B(F a + T )/m (38)

where g = [0, 0, g]T is the gravitational acceleration vector, R I B is 
the rotational matrix from the body frame to the inertial frame. F a

is the aerodynamic force vector expressed in the body frame, and 
T = [0, 0, −T ]T is the thrust vector. Denote the z component of P̈
as az , and assume the aerodynamic force in the O B Z B direction 
is negligible as compared to thrust, then the last row of Eq. (38)
is written as az = g − (cosθcosφ)T /m. Design the command for 
az as azc = −ḧc − Kd(ḣc − ḣ) − K p(hc − h), Kd > 0, K p > 0, 
then the command for thrust is accordingly given by (Tc/m) =
(g − azc )/(cosθcosφ).

At this point, the height, attitude, and angular rate controllers 
have been completely designed. In order to enforce the natural 
time-scale separations in the closed-loop system, the gain matri-
ces K c, K att , need to fulfill min(Kci ) > max(Katti ) for roll, pitch, 
and yaw control channels.
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Fig. 3. Wind disturbances.

4. Numerical validations

In this section, the controllers designed in Sec. 2 and Sec. 3
will be tested in the Matlab/Simulink environment. Two models 
for a Parrot Bebop quadrotor are set up. One high fidelity model 
identified from wind tunnel test data [41] is used for simulations. 
Another simplified model, which excludes aerodynamic effects, gy-
roscopic moments and spin-up torque, is used by the controllers. It 
is worth noting that neglecting these factors in quadrotor control 
design is a common practice. The actuator dynamics are modeled 
as first-order low-pass filters with time constants of 0.02 s. The 
maximum and minimum rotational speed of the rotors are 12000 
revolutions per minute (rpm) and 3000 rpm respectively. The con-
troller sampling frequency is 500 Hz.

Three perturbation sources are tested: model uncertainties, 
wind disturbances and sudden actuator faults during flight.

For the model uncertainties, the inertia matrix Ī v used by on-
board controllers equals 70% of the nominal I v . The mismatch 
between I v and Ī v brings model uncertainties to both f and 
G . The Gm matrix used for simulations is time varying because 
ki, λi, i = 1, 2, 3, 4 are influenced by the aerodynamic conditions 
(airspeed, air density, etc.). However, for the simplicity of imple-
mentation, constant Ḡm matrix evaluated at the hover condition 
is used by the controllers, which brings model mismatches even 
without actuator fault.

Remark 6. The pure INDI control designed for a quadrotor in 
Ref. [26] identifies the time varying control effectiveness matrix 
during flight. This system identification based adaption is a modu-
lar approach, whose stability cannot be ensured. The usage of con-
stant control effectiveness matrix in this paper is simpler, and the 
corresponding uncertainties can be compensated by SMC/SMDO.

The airspeed V a of a quadrotor equals V − V w [40], where V is 
the ground speed, and V w denotes the velocity of the atmosphere 
relative to the inertial frame. In this paper, V w is considered as the 
“1-cos” gust [42]. As shown in Fig. 3, gusts are added along the x
and y directions of the inertial frame. The maximum gust veloc-
ity equals 3 m/s. Since the airspeed V a contains V w , the dynamic 
pressure and the angle of attack of the rotor system are influenced 
by V w . Consequently, the thrust, in-plane forces, and moments on 
each rotor are affected by V w . As mentioned in Sec. 3, these aero-
dynamic effects caused by V w are viewed as external disturbances. 
For more details about the influences of atmospheric disturbances 
on the quadrotors, readers are recommended to Ref. [29].

Finally, to model a sudden fault of the i-th rotor during flight, 
for t ≥ t f , the corresponding effectiveness in Gm is scaled in the 
simulation model, i.e. k′

i = μiki, λ′
i = μiλi, μi ∈ (0, 1]. However, 

in spite of faults, constant Ḡm matrix is consistently used by both 
controllers.
The attitude commands are smoothly combined sigmoid func-
tions (shown in Fig. 4 and Fig. 8) as continuous realizations of 
doublet signals. These commands on different channels have phase 
shifts with each other, in which way the decoupling performance 
of the controllers can be tested. The height command is h = 1 m. 
The initial conditions are φ(t = 0) = 0◦, θ(t = 0) = 0◦, ψ(t = 0) =
0◦, h(t = 0) = 0 m.

The main focus of this paper is on the comparisons between 
NDI and INDI based SMC/SMDO designs, so the outer-loop con-
trollers are kept identical. The gains used by the outer-loop 
controllers are: K p = 10, Kd = 5, K att = diag([2, 2, 1]), K c =
diag([8, 8, 6]). Trade-offs should be made when tuning the inner-
loop parameters: K σ , K s , and the filter time constants τi . High 
K σ gains can accelerate the convergence of σ , but will am-
plify measurement noise at the meanwhile. Trade-offs also ex-
ist in tuning the filter parameters in SMDO. Specifically, high 
cut-off frequency introduces more chattering and noise into 
ν̂eq, but low cut-off frequency increases the observation errors 
O(τi). For fair comparison, K σ = diag([0.5, 0.5, 0.5, 1]), and τ =
[0.05, 0.05, 0.08, 0.05]T are used by both NDI and INDI based 
SMC/SMDO controllers. The filter time constant in the yaw chan-
nel is larger for suppressing the oscillations caused by the spin-up 
torque.

The gain requirements presented in Eqs. (8, 18) are the min-
imum possible gains for enforcing sliding motions [15–18]. Since 
εndi and εindi are time-varying, the minimum possible gains are 
also time-varying. The dual layer nested adaptive methodology 
in [18] can be used to adjust the gains online. In subsection 2.3, it 
has been shown that there exists a �t , the upper bound of εindi
is smaller than that of εndi in the presence of model uncertain-
ties, wind disturbances, and sudden faults. Moreover, εindi also has 
smaller variations in different fault cases. Because of these mer-
its, the required K s gains for INDI-SMC/SMDO are lower and need 
less adjustments. For the simplicity of implementation, constant 
K s gains will be used by both NDI and INDI based SMC/SMDO. In 
the following two subsections, the robustness and chattering mag-
nitude of the two methods will be compared.

4.1. Simulation results of NDI-SMC/SMDO

Fig. 4 illustrates the tracking performance of NDI-SMC/SMDO. 
In all of the three different cases, model uncertainties and wind 
disturbances are incorporated, while the degree of actuator faults 
varies. Without loss of generality, sudden effectiveness losses are 
imposed on the third rotor at t = 5 s, which are reflected by the 
abrupt tracking overshoots in Fig. 4. Regardless of these overshoots, 
the quadrotor using NDI-SMC/SMDO control is able to recover from 
faults within seconds, and resist the perturbations of model un-
certainties and wind disturbances at the same time. However, the 
tracking and decoupling performance of this controller indeed de-
teriorates with the increases of fault degree.

The responses of the sliding variables σ are shown in Fig. 5, 
as consistent with the analyses in Sec. 2, σ asymptotically con-
verges to the sliding surface. Additionally, ‖σ ‖ distinctly increases 
after the actuator fault occurs, and ‖σ‖ is positively correlated to 
the fault degree. It can also be observed from Fig. 5 that the auxil-
iary sliding variable s converges in finite time under perturbations. 
The high frequency switchings of s (which is normal [19]) will not 
influence the continuity of u because of the filtering process in 
SMDO.

One core parameter that guarantees the convergence of s is K s . 
As proved by Eqs. (8, 9), the elements of K s need to be larger 
than the uncertainty bounds. In view of Eq. (7) and the discus-
sions in subsection 2.3, the uncertain term εndi is influenced by all 
the three perturbation sources. Moreover, owing to the term ( f f −
f̄ ) + (G f − Ḡ)undi, ‖εndi‖ varies significantly for different fault 
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Fig. 4. Quadrotor responses under NDI-SMC/SMDO control.

Fig. 5. Responses of sliding variables under NDI-SMC/SMDO control.

cases. This is verified by Fig. 6, which presents abrupt increases 
of ‖εndi‖ after t = 5 s, and also strong correlations of ‖εndi‖ with 
the fault degree. As a consequence, the K s used in NDI-SMC/SMDO 
must be adapted or manually adjusted in different scenarios. For 
the simulation cases shown in Fig. 6, K s = diag([4, 5, 3, 8]) is used 
when no actuator fault occurs. To guarantee the convergence of s, 
K s needs to be increased to diag([50, 40, 4, 10]) for the ‘25% fault’ 
case, and be further raised to diag([150, 90, 5, 12]) when half of 
the rotor effectiveness is lost. These gain increases induce a side 
effect, chattering. As illustrated by Fig. 6, the oscillation magni-
tudes of ν̂eq increase with the rise of K s .

Furthermore, in view of Eq. (10), an increase of K s will lead 
to the oscillations in the control input. It can be seen from Fig. 7
that even though filtered by the actuator dynamics, the measured 
(without noise in simulations) rotor speeds are still oscillating. In 
addition, ω3 in Fig. 7 increases after t = 5 s to compensate for the 
effectiveness loss.
Fig. 6. Observed uncertainties ν̂eq under NDI-SMC/SMDO control.

Fig. 7. Measured rotor speeds under NDI-SMC/SMDO control in the ‘50% fault’ case.

4.2. Simulation results of INDI-SMC/SMDO

In this subsection, the same fault scenarios will be used to test 
the effectiveness of INDI-SMC/SMDO.

When comparing Fig. 8 with Fig. 4, obvious tracking perfor-
mance improvements of INDI based control can be observed. The 
effectiveness of INDI-SMC/SMDO is hardly influenced by the per-
turbations, and only small ripples appear after t = 5 s.

The responses of the sliding variables in Fig. 9 also show im-
provements when compared to the responses in Fig. 5. Specifi-
cally, |σp |, |σq| under INDI-SMC/SMDO are one order of magnitude 
smaller than the values using NDI-SMC/SMDO control. Moreover, σ
in Fig. 9 has a higher convergence rate, and smaller variations. The 
auxiliary sliding variable s also shows smaller fluctuations in Fig. 9.

The main reason for the performance and robustness improve-
ments of INDI based SMC/SMDO can be seen from Fig. 10. Since 
s in both Fig. 5 and Fig. 9 converges, ν̂eq in Fig. 6 and Fig. 10
can respectively estimate −εndi and −εindi. According to the anal-
yses in subsection 2.3, the upper bound of εindi is smaller than 
that of εndi in the presence of faults, model uncertainties and 
disturbances. This is verified by comparing Fig. 10 with Fig. 6, 
where |νeq,p| and |νeq,q| are two orders of magnitude smaller un-
der INDI based SMC/SMDO control than NDI based in the ‘50% 
fault’ case. Also, |νeq,r | and |νeq,T /m| are one order of magnitude 
smaller under INDI-SMC/SMDO control. Furthermore, as illustrated 
in Fig. 10, since δκ (x)�κ is only non-zero for t f ≤ t < t f + �t
(subsection 2.3), εindi has comparable bounds before and after a 
sudden fault. Furthermore, according to Eq. (17), after a fault oc-
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Fig. 8. Quadrotor responses under INDI-SMC/SMDO control.

Fig. 9. Responses of sliding variables under INDI-SMC/SMDO control.

curs, the term δd + (G f − Ḡ)�uindi is added to εindi, which also 
has smaller changes in different fault cases as verified by Fig. 10.

These beneficial properties of εindi allow a lower and fixed 
gain matrix K s = diag([2, 2, 0.5, 1]) to be used for resisting all the 
tested perturbations, which simplifies the implementation process, 
and fundamentally reduces the chattering effects of SMC/SMDO. As 
can be seen by comparing Fig. 10 with Fig. 6, the uncertainty ob-
servations ν̂eq are much smoother when using INDI-SMC/SMDO. 
The rotor speeds in Fig. 11 are also much smoother than those 
shown in Fig. 7.

5. Experimental validations

5.1. Experimental setup

The performance and robustness of the proposed INDI-SMC/
SMDO controller are further validated via flight tests. These exper-
iments are conducted using a Parrot Bebop 2 quadrotor as shown 
Fig. 10. Observed uncertainties ν̂eq under INDI-SMC/SMDO control.

Fig. 11. Measured rotor speeds under INDI-SMC/SMDO control in the ‘50% fault’ case.

in Fig. 12. The control laws are executed on-board using an open-
source autopilot software, Paparazzi, which is able to read the MPU 
6050 Inertia Measurement Unit (IMU) measurements and drive the 
motors at 512 Hz. The position and attitude are measured by exter-
nal motion capture system (OptiTrack) in 120 Hz and transmitted 
to the on-board controller via Wi-Fi.

Some practical issues should be considered before implement-
ing the INDI-SMC/SMDO control law. The first issue is the way of 
obtaining �̇0 when applying Eqs. (19, 36) in the inner-loop. The 
feasibility of directly measuring �̇0 via angular accelerometers has 
been demonstrated in Ref. [43]. Another simple way is estimating 
�̇0 from gyroscope measurements using a wash-out filter [26]. To 
deal with the corresponding lag, the input signal should be syn-
chronized with the estimations. Since this way of estimation and 
synchronization has been verified via both passenger aircraft and 
quadrotor flight tests [26,27,23], it is also adopted in the present 
flight tests. T0/m in Eq. (36) is calculated from the specific force 
measured by linear accelerometers. The rotor speed uindi|0 is mea-
sured by the Brushless DC Motor Driver of the Bebop2 quadrotor.

The outer-loop controllers used in flight tests are identical with 
the simulated controllers. For the inner-loop, K σ is still equal to 
diag([0.5, 0.5, 0.5, 1]), while τ is increased to [0.1, 0.1, 0.17, 0.1]T

for attenuating the measurement noise. An estimated constant 
control effectiveness matrix Ḡ is used by both NDI and INDI 
based controllers. The nominal model f̄ used by NDI-SMC/SMDO 
is a hover model which excludes aerodynamic effects, gyroscopic 
moments and spin-up torque. As shown in Eqs. (13, 19), INDI-
SMC/SMDO does not need the model information f̄ .

Both controllers are tested in two scenarios: with and without 
actuator faults. Even if four unbroken rotors are equipped, model 
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Fig. 12. A Bebop 2 quadrotor with one damaged rotor.

Fig. 13. Quadrotor tracking responses without actuator fault. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

mismatches still exist, which become more conspicuous when air-
speed increases during maneuvers. For the faulty configuration, the 
diameter of the right rear rotor disk (third) is reduced by 5 cm as 
shown by Fig. 12, which approximately reduce its effectiveness by 
55% according to flight test results.

5.2. Flights without actuator fault

The SMDO gain matrix K s = diag([20, 20, 1, 1]) is used by INDI-
SMD/SMDO in flight tests. The K s used by NDI-SMC/SMDO is first 
tuned to be identical to the INDI based, as denoted by ‘NDI-S/S’ in 
the subsequent figures, then it is increased to ensure the conver-
gence of s as denoted by ‘NDI-S/S-HG’.

Fig. 13 illustrates the responses of a quadrotor tracking a fil-
tered doublet pitch angle command. When using INDI-SMC/SMDO 
control, the quadrotor performs the best with smallest overshoots 
and tracking errors. Although NDI based SMC/SMDO control us-
ing the same K s is able to follow the command, large transi-
tion errors are present. This performance deterioration is mainly 
caused by model uncertainties. As also shown by Fig. 14, ‘NDI-
S/S’, which uses the same K s as ‘INDI-S/S’, is unable to adequately 
observe the uncertainties in pitch, yaw and thrust channels. The 
large variations of εndi can only be observed when K s is raised 
to diag([20, 50, 20, 10]), as shown by the high-gain ‘NDI-S/S-HG’ 
in Fig. 14. This high-gain controller performs better than the low-
gain ‘NDI-S/S’, but is still inferior than INDI based SMC/SMDO as 
illustrated by Fig. 13.

It can also be seen from Fig. 14 that the observed uncertain-
ties under INDI based control have smaller variations. Increasing 
the switching gains in NDI-SMC/SMDO can better observe εndi, but 
Fig. 14. Observed uncertainties ν̂eq without actuator fault.

Fig. 15. Sliding variable responses without actuator fault.

consequently cause severe oscillations, especially in pitch and yaw 
channels.

The responses of the sliding variables are presented in Fig. 15. 
As is consistent with the above analyses, using the same K s with 
INDI based control is insufficient for NDI-SMC/SMDO, because sr

diverges, and sq, sT are absent from the sliding surfaces for about 
two seconds. Moreover, σr under low-gain NDI based control also 
diverges. High-gain NDI-SMC/SMDO can enforce the convergence 
of σ and s. However, severe oscillations in sq are present, and the 
convergence of σq, σT /m is still slower than the response under 
INDI-SMC/SMDO control.

5.3. Flights with actuator fault

This subsection presents the flight test results of NDI and 
INDI based SMC/SMDO controllers applied to a quadrotor with 
one damaged rotor (Fig. 12). As verified by simulations, INDI 
based SMC/SMDO is able to passively tolerate actuator faults and 
model uncertainties, thus the same SMDO gain matrix K s =
diag([20, 20, 1, 1]) is still used by the faulty quadrotor. However, 
this gain matrix is insufficient for NDI based SMC/SMDO, even 
without actuator fault, as shown in the previous subsection. There-
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Fig. 16. Quadrotor tracking responses with actuator fault.

Fig. 17. Observed uncertainties ν̂eq with actuator fault.

fore, in this subsection, it is going to be tested whether NDI based 
SMC/SMDO can passively resist the actuator fault without gain ad-
justment. Namely, K s = diag([20, 50, 20, 10]) is used by NDI based 
controller first, as denoted by ‘NDI-S/S-HG’ in the subsequent fig-
ures.

Fig. 16 shows that although the faulty quadrotor can follow 
the trend of command without gain adjustment, its performance 
deteriorates. Recall from Eq. (7) that actuator faults introduce 
( f f − f̄ ) + (G f − Ḡ)undi into εndi. This term causes large vari-
ations in ‖εndi‖ after fault occurs because undi is far from zero 
for trimming the quadrotor. Therefore, as exposed by Fig. 17, the 
gain matrix tuned for the fault-free case is insufficient, which leads 
to saturations in the observed uncertainties in the pitch and roll 
channels. In order to fully observe the uncertainties, K s needs to 
be increased to diag([80, 100, 20, 10]) according to the flight test 
results. This very high gain control case is denoted by ‘NDI-S/S-
VHG’ in Fig. 16–19. This controller with even higher switching 
gains can better observe −εndi as shown in Fig. 17, and conse-
quently improve the tracking performance as illustrated in Fig. 16.

On the contrary, INDI-SMC/SMDO is able to tolerate the ac-
tuator fault passively without any gain adjustment. In view of 
Fig. 17, the observed −εindi has much smaller oscillations as 
compared to the observed −εndi. Moreover, as shown in Fig. 16, 
INDI-SMC/SMDO performs the best with smallest transition errors. 
Analogous to the above analyses, when using NDI-SMC/SMDO con-
trol without gain adjustment, sp diverges and sq is absence from 
the sliding surface throughout the maneuvering time period, as il-
Fig. 18. Sliding variable responses with actuator fault.

Fig. 19. Rotor speeds using NDI (left) and INDI (right) based SMC/SMDO in faulty 
condition.

lustrated by Fig. 18. Even though without gain adaption, the sliding 
variables σ and s under INDI-SMC/SMDO control have the high-
est convergence rates and lightest oscillations among all the tested 
controllers.

Reducing the switching gains is crucial for chattering reduc-
tion of SMC/SMDO methods. As verified by both simulations and 
flight tests, the filtering process in SMDO can only attenuate in-
stead of rejecting the oscillations in ν̂eq. Therefore, the lower gains 
used by INDI-SMC/SMDO also lead to lighter oscillations in ν̂eq
(Fig. 10, 14, 17) and in the rotor speeds (Fig. 11).

The rotor speeds under the control of very-high-gain NDI-
SMC/SMDO and INDI-SMC/SMDO are shown in Fig. 19. The first 
rotor get saturated at 3000 rpm for 0.3 s under NDI-SMC/SMDO 
control, while the rotor speeds are within limits using INDI-
SMC/SMDO. Owing to the measurement noise, the chattering re-
duction advantage of INDI based SMC/SMDO becomes less obvious 
in Fig. 19, where the rotor speeds using NDI and INDI based con-
trollers seem to have comparable oscillations.

The reason behind this phenomenon can be better revealed 
in the frequency domain. Divide undi (Eq. (10)) into undi,s =
Ḡ

−1
(K σ σ + ν̂eq) (the contributions of SMC/SMDO), and undi,c =

Ḡ
−1

�̄ (the contributions of the traditional NDI). Also, uindi

(Eq. (19)) is divided into uindi,s = Ḡ
−1

(K ′
σ σ + ν̂ ′

eq) and uindi,c =
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Fig. 20. The left subplot presents the PSD of undi,s, uindi,s , while the right shows the 
PSD of undi, uindi .

uindi|0 + Ḡ
−1

�̄
′
. The Power Spectral Densities (PSD) of undi,si and 

uindi,si , i = 1, 2, 3, 4 for the four rotors are illustrated in the left 
subplot of Fig. 20, where it can be seen that P uu,indi,s is lower 
than P uu,ndi,s in most frequency ranges. This verifies that the 
control efforts of SMC/SMDO is indeed released using the INDI 
control structure, and the chattering is reduced in uindi,s . On the 
other hand, INDI-SMC/SMDO is contributed more by uindi,c , which 
has less model dependency than undi,c but relies more on sensor 
measurements. The corresponding measurement noise in uindi,c
conceals the benefit of uindi,s in high frequency range, and leads 
to a comparable PSD of the overall uindi and undi as illustrated by 
the right subplot of Fig. 20. The noise level in uindi,c can be re-
duced by using better sensors, which can be easier than perfecting 
the model used by NDI-SMC/SMDO.

6. Conclusions

A control method named INDI-SMC/SMDO, which designs the 
Sliding Mode Control (SMC) driven by Sliding Mode Disturbance 
Observers (SMDO) based on the control structure of Incremental 
Nonlinear Dynamics Inversion (INDI) is proposed in this paper. By 
virtue of the sensor-based characteristic of INDI, SMC/SMDO de-
signs based on INDI require less model knowledge than designs 
based on NDI. In the presence of model uncertainties, external 
disturbances and sudden faults, it has been shown both analyti-
cally and numerically that the perturbation terms under NDI and 
INDI based SMC/SMDO control (εndi and εindi) have different prop-
erties. First of all, the boundedness of εindi is guaranteed when 
the conditions in Theorem 2 are satisfied, while the boundedness 
of εndi is undetermined under the same conditions. More impor-
tantly, there exists a sampling frequency that makes the upper 
bound of εindi is smaller than that of εndi, which can fundamen-
tally reduce the control efforts of SMC/SMDO because for most 
SMC and SMDO designs, there is a positive correlation between the 
required switching gains and the uncertainty bounds. εindi is also 
proved to have smaller variations in different fault circumstances, 
while εndi is more fault-case dependent. These merits of εindi al-
low INDI-SMC/SMDO to use reduced and fixed gains for resisting 
a wider variety of faults and disturbances, while the gains for NDI 
based SMC/SMDO are higher and require adjustments in different 
scenarios. Finally, the advantages of INDI-SMC/SMDO are demon-
strated by both numerical simulations and real-world quadrotor 
flight tests. In conclusion, easier implementation, reduced model 
dependency, improved performance and robustness make the pro-
posed INDI-SMC/SMDO a promising method for enhancing aircraft 
safety in real life.
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