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Probabilistic Risk Assessment for Chance-Constrained Collision
Avoidance in Uncertain Dynamic Environments

Khaled A. Mustafa, Oscar de Groot, Xinwei Wang, Jens Kober, and Javier Alonso-Mora

Abstract— Balancing safety and efficiency when planning
in crowded scenarios with uncertain dynamics is challenging
where it is imperative to accomplish the robot’s mission without
incurring any safety violations. Typically, chance constraints are
incorporated into the planning problem to provide probabilistic
safety guarantees by imposing an upper bound on the collision
probability of the planned trajectory. Yet, this results in an
overly conservative behavior on the grounds that the gap
between the obtained risk and the specified upper limit is
not explicitly restricted. To address this issue, we propose
a real-time capable approach to quantify the risk associated
with planned trajectories obtained from multiple probabilistic
planners, running in parallel, with different upper bounds of
the acceptable risk level. Based on the evaluated risk, the least
conservative plan is selected provided that its associated risk
is below a specified threshold. In such a way, the proposed
approach provides probabilistic safety guarantees by attaining
a closer bound to the specified risk, while being applicable to
generic uncertainties of moving obstacles. We demonstrate the
efficiency of our proposed approach, by improving the perfor-
mance of a state-of-the-art probabilistic planner, in simulations
and experiments using a mobile robot in an environment shared
with humans.

I. INTRODUCTION

Mobile robots are appealed to work in complex environ-
ments shared with humans, such as smart warehouses [1],
autonomous driving [2] and maritime transportation [3]. In
these applications, the robot needs to progress towards its
goal while safely avoiding static and dynamic obstacles. This
task poses great challenges due to the fact that the robot
needs to account for the possible uncertainties associated
with the future predicted states of moving obstacles, as well
as localisation errors. These uncertainties make it difficult
to decide whether the planned trajectories by the robot are
safe or if given specifications, such as safety distance, are
not violated. As a consequence, uncertain scenarios require
mobile robots to find a reasonable trade-off between safety
and efficiency. This gives rise to the problem of risk-aware
motion planning in uncertain dynamic environments [4]–[9].

In this paper, we address the problem of estimating the risk
associated with the collision probability of mobile robots sur-
rounded with moving obstacles, and integrating the estimated
risk in a local motion planning framework to plan collision-
free trajectories while balancing between risk and progress.

The authors are with the Dept. of Cognitive Robotics, TU Delft, 2628 CD
Delft, The Netherlands. Email: k.a.mustafa@tudelft.nl.
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No. NWA.1292.19.298), and the European Union’s Horizon 2020 research
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861570.

In particular, the probability of collision is estimated by
integrating over the spatial domain at which the robot’s plan
and obstacles’ predicted states overlap. The proposed risk
metric is, consequently, measured by the maximum risk value
over different time instants within a prediction horizon. To
that end, we integrate this risk metric into a probabilistic
motion planning framework to enhance its efficiency, in
terms of travelling time, while maintaining the estimated risk
below a specified upper level.

A. Related Work

1) Collision Avoidance Under Uncertainty: Optimization-
based motion planning algorithms can plan collision-free
trajectories in uncertain environments by incorporating the
uncertain behavior of dynamic obstacles as constraints into
the optimization problem. These algorithms can be classified
into two common approaches, namely robust optimization
[10] and stochastic optimization [11]. Robust optimization
approaches are able to provide safety guarantees by rigor-
ously accounting for bounded sets of uncertainties, that is
the probability density function of the uncertainty is non-
zero over a bounded domain of the robot’s workspace and is
zero elsewhere. However, since robust optimization accounts
for all possible realization of the uncertainty, its behavior
is too conservative and may lead to infeasible solutions in
crowded scenarios [12]. On the contrary, stochastic optimiza-
tion allows for the violation of the constraints as long as the
probability of this violation is below an acceptable upper
bound, which is specified through chance constraints [13],
[14], [15]. In this work, we rely on a stochastic optimization
approach.

2) Safety Assessment in Motion Planning: One of the
key components in safety analysis for motion planners is
the risk metric that quantifies the risk level. For risk-aware
motion planning algorithms, this risk metric usually indicates
the collision probability due to, among others, the uncertain
behavior of dynamic obstacles or imprecise localization of
the robot. In [5], Gaussian process regression is employed to
build a probabilistic model of the environment which is used
to construct a risk-aware cost function. This cost function is
then encoded into an optimal motion planning algorithm. [6]
builds spatio-temporal probabilistic risk maps. These maps
indicate how risky a planned trajectory (computed by a
rapidly-exploring random tree algorithm) will be, and are
used to plan the best possible future behavior that maximises
utility while minimizing risk. A similar idea is used in
[7] to estimate the risk of violating a predefined safety
specification and encode it into a sampling-based trajectory
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planner [16] to plan minimal-risk trajectories. A drawback
of these approaches, however, is the high computational cost
due to the extensive trajectory generation as well as the bias
in the trajectory selection. Related to our risk definition,
[8] and [17] propose an analytic approach to calculate the
probability of spatial overlap for a ground vehicle with dy-
namic obstacles at discrete times. Along the same line as our
approach, [9] proposes a framework, using signal temporal
logic, which provides probabilistic safety guarantees that
can be embedded in a receding horizon controller. However,
their approach is restricted to safety constraints on random
variables with unimodal distributions. Differently from the
aforementioned approaches, in this paper, we propose an ap-
proach to incorporate a posterior risk assessment for planned
trajectories into a probabilistic motion planning framework
which applies to general probability distributions. From [14],
[15], [18], it is noted that the observed risk of the planned
trajectory is much lower than the upper bound of the specified
risk in the chance constraint problem. This conservatism can
be attributed to the collision probability marginalization of
the planned trajectory. That is, the collision probability at
each planning step along the horizon is independent [19].

B. Contribution

To alleviate the over-conservatism problem with proba-
bilistic motion planners, we propose the following:

(i) Multiple probabilistic planners run in parallel with
different upper bounds of the specified risk. The set
of planners should include the planner where the upper
bound of the risk is the desired one, which is the most
conservative planner.

(ii) An online posterior risk assessment is provided to quan-
tify the risk associated with each planned trajectory
from the multiple planners.

(iii) Deploy the control commands from the planner with
the least conservative behavior as long as its associated
risk is below the specified risk of the most conservative
planner.

In this way, the proposed approach provides probabilistic
safety guarantees while achieving a closer bound to the spec-
ified risk, resulting in more efficient and less conservative
performance.

II. PRELIMINARIES

Throughout this paper, vectors and matrices are expressed
in bold, x, and capital bold, A, letters respectively. ||x|| is
the Euclidean norm of x, and the subscript .k indicates the
value at stage k.

A. Robot Model

The dynamics of a ground robot moving in a 2D plane,
W ∈ R2, are modelled as a non-linear discrete time system,

xk+1 = f(xk,uk), (1)

where xk = [pk, ψk] ∈ Rnx and uk ∈ Rnu denote the state
and control input of the robot at stage k respectively. The
state of the robot xk contains its position pk = (x, y) and

orientation ψk. The area occupied by the robot at state xk

is denoted by O(xk) which is approximated by the union of
nc circles.

B. Dynamic Obstacle Model
Each dynamic obstacle v ∈ Iv := {1, ..., n} is represented

by a circle with radius rv . The probability measure associated
with the uncertainty of the perception of the dynamic obsta-
cles is denoted by P and defined over the probability space
∆. Without loss of generality, the uncertainty associated
with obstacle movement is modelled as a Gaussian Mixture
Model,

fvk (x, y) =

n∑
i=1

ϕif
v
k,i(x, y), (2)

where n is the number of modes of the GMM, ϕi represents
the weight of each mode such that

∑n
i=1 ϕi = 1, and fvk,i(.)

is the probability density function of each mode with mean
µi and covariance Σi.
Assumption 1. We assume that at each stage, a perception
module provides the planner with a model of the probability.

C. Probabilistic Collision Avoidance
Definition 1. (Chance-Constrained Collision Avoidance)
Given a cost function J , the initial state of the robot x0 =
xinit, and the state distribution of obstacles v ∈ Iv , the
objective is to compute optimal control inputs that guide the
robot from its initial state to progress along a reference path,
while the collision probability with the moving obstacles
at each stage k is below an acceptable threshold ϵk. The
resulting optimization problem is given by

min
u∈U

N−1∑
k=0

Jk(xk,uk) + JN (xN ) (3a)

s.t. x0 = xinit, (3b)
xk+1 = f(xk,uk), x ∈ X,u ∈ U, (3c)

P
[
||xd

k − δvk ||2 > r,∀d, v
]
≥ 1− ϵk,∀k, (3d)

where Jk(xk,uk) represents the stage cost of the robot, and
JN (xN ) denotes the terminal cost. States xk and inputs
uk are bounded by the state and input constraint sets X
and U respectively. δvk ∈ ∆v

k is the realization of the
uncertain position of obstacle v at stage k. The radius r is
the summed radii for the robot’s disc d, and obstacle v. The
chance constraint, defined in (3d), constrains the marginal
probability of collision at each stage of the trajectory to
be below the risk level ϵk. In this paper, the stage cost
Jk(xk,uk) is defined by the Model Predictive Contouring
Control framework proposed in [20] to track a reference
path, and a reference velocity while penalizing the control
inputs. By solving the optimization problem, we obtain a
locally optimal sequence of commands [u∗

k]
k=N−1
k=0 to guide

the robot along the reference path while avoiding collisions
with dynamic obstacles. Here it should be pointed out that a
global reference path is assumed to be provided to our local
planner by a means of a global planner. This reference path
is composed of M way-points prm = [xrm, y

r
m, θ

r
m] ∈ W with

m ∈ {1, ...,M}.
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(a) Predicted positions of the robot and pedestrian
at stage k are visualized in faded orange and green,
respectively. One realization of the pedestrian’s un-
certainty spatially overlaps with robot’s planned tra-
jectory.
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(b) Probability density function of the GMM repre-
senting pedestrian motion uncertainty at stage k. Only
two modes are presented in this Fig.

Fig. 1: An illustrating example of the proposed approach for one robot’s disc, single pedestrian and one realization of the associated uncertainty at stage
k. As described in results section, for GMM case, each pedestrian has N + 1 modes where only two of them are visualized in Fig. 1a, and Fig. 1b. The
estimated risk can be evaluated by integrating the PDF visualized in Fig. 1b over a circular domain with radius r = rc + rv .

III. PROPOSED APPROACH

In this work, we aim to define a risk metric that can be
incorporated in a probabilistic motion planner framework to
balance safety and efficiency in a comprehensible way. This
is motivated by the fact that state of the art probabilistic
planners, for navigation in environments with non-gaussian
uncertainties, are overly conservative, e.g. [15], [18]. In par-
ticular, we rely on scenario-based MPC proposed in [18] as
our probabilistic planner to enhance its efficiency. Neverthe-
less, the proposed approach is agnostic to the deployed prob-
abilistic planner and can be widely applicable. In scenario-
based MPC, the risk bound ϵk, at each stage k, is correlated
to the number of samples drawn from the uncertainty. From
[18], it is noted that without manually tuning the number of
samples extracted from dynamic obstacles uncertainty, the
level of risk associated with the planned trajectory is much
lower than the upper bound of the acceptable risk. This, in
turn, results in conservative plans. Here it is worth pointing
out that tuning the samples manually can only be done a
posteriori and thus it is not suitable for online planning
where the observed risk is not known a priori. Therefore,
we propose to quantify the risk associated with the planned
trajectories from multiple scenario-based MPCs, running in
parallel with different risk bounds, online and pick the least
conservative plan as long as its associated risk is below a
specified threshold.

A. Scenario-based MPC

Similar to [18], since the chance constraint defined in
(3d) is non-convex, we first linearize it with respect to the
previously planned robot trajectory x̂k. The linearization is
applied locally at each stage k, and robot disc d. This results
in

Ak(δk, x̂k) =
δk − x̂k

||δk − x̂k||
, bk(δk, x̂k) = AT

k δk − r, (4a)

P
[
AT

k (δk, x̂k)xk ≤ bk(δk, x̂k)
]
≥ 1− ϵk,∀k, δk ∈ ∆k,

(4b)

By linearizing the collision region with respect to x̂k, it can
be seen that each scenario constraint in (4b) defines a half-

space. The free space of the scenario program is, in turn,
formed by the intersection of these half-spaces resulting in
a convex constraint, that spans a polytope Pk, with respect
to the robot’s position.
Evaluating the chance constraints in closed loop is not com-
putationally feasible. Thus, it is aimed to formulate them into
deterministic constraints using scenario optimization, result-
ing in a tractable constrained optimization problem that can
be solved online in a receding horizon manner. As shown in
[18], the probabilistic chance constraints can be transformed
to deterministic ones by leveraging a deterministic scenario
program (SP) [21] for a finite set of samples/scenarios
ω =

(
δ(1), ..., δ(S)

)
, where each scenario is independently

extracted from P. Hence, the chance constraint problem can
be reformulated as

min
u∈U

N−1∑
k=0

Jk(xk,uk) + JN (xN ) (5a)

s.t. x0 = xinit, (5b)
xk+1 = f(xk,uk), x ∈ X,u ∈ U, (5c)

AT
k (δ

i
k, x̂k)xk ≤ bk(δik, x̂k),∀k, i = 1, ...,S, (5d)

where the chance constraint (4b) has been replaced with the
deterministic constraints (5d) for each extracted scenario.
The probability that the planned input u violates the pre-
defined acceptable risk ϵ is defined as V (u∗) and upper
bounded by a confidence level β. This confidence bound is
defined by

PS [V (u∗) > ϵ(s)] ≤
S−1∑
s=0

(
S

s

)
[1− ϵ(s)]S−s

= β, (6)

where PS is the product probability measure, given by PS =
P × · · · × P (S times), and s is the size of the support
subsample, that is the minimum number of samples that
results in the same solution as the original sample S. In other
words, if a scenario can be excluded from the scenario set
ω without affecting the optimizer solution, this scenario is
then not part of the support subsample. (6) establishes a re-
lationship between sample size, risk, and support subsample.
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The readers can refer to [18] for a comprehensive overview.

B. Risk Assessment

In this paper, the risk is defined as the probability of
collision of each of the robot’s discs with any of the moving
obstacles. Given the planned trajectory T of the robot for a
controller, and the probability density function fvk (x, y) that
defines the uncertainty of the dynamic obstacle’s movement
in a 2D plane, it is possible to calculate the cumulative
density function (CDF) for each obstacle v at each stage
k along the prediction horizon by evaluating the integration
of their associated probability density function at the robot’s
disc predicted position xd

k.
Definition 2. (Risk Metric) Let Z denote the set of random
variables representing the uncertainty of the pedestrians
motion in the x and y directions. The risk metric maps
the distribution of the random variables to a real number
indicating the probability of collision, ζ : Z 7→ R, by
estimating their spatial overlap with the robot’s plan T . The
probability of collision can, subsequently, be defined as

Cv
k (x

d
k) =

∫∫
xd
k,y

d
k∈D

fvk (x, y)dxdy,∀k, v, d, (7)

This integration can be approximated numerically using the
Monte Carlo method [22], where the integration domain D
is defined as a circle whose centre is located at the predicted
vehicle pose xd

k at stage k along the prediction horizon, and
its radius r is the sum of the vehicle and obstacle radii.
After calculating the probability of collision for each pedes-
trian along the robot’s planned trajectory, the predicted risk
at the current time step is defined by maximizing over
the collision probability for all pedestrians at all planning
horizon stages.

ζ = max
v∈Iv,k,d

Cv
k (x

d
k), (8)

The max operator in (8) ensures that the worst-case overlap
is considered over the planned trajectory. The proposed
approach is illustrated in Fig. 1, for a single pedestrian
and one realization of the associated uncertainty at stage k,
and summarized in Algorithm 1, where ∅ indicates that no
feasible solution is obtained from any of the controllers.

IV. RESULTS

In this section, we describe our implementation of the
proposed method, for a mobile robot navigating in a crowded
environment shared with humans, and evaluate it in simula-
tions and experiments.

A. Experimental Setup

1) Software Setup: The motion planner is implemented
as a ROS node in C++. Our simulations use the open-source
ROS implementation of the Jackal Gazebo for the robot
simulation. To solve SP (5), we use ForcesPro solver [23].
A horizon of N = 20 steps is defined, with a discretization
step of 0.2 s, resulting in a time horizon of 4.0 s. The control
rate is set to 20 Hz corresponding to a sampling time of 50
ms. The computer running the simulations is equipped with

Algorithm 1 Risk-Aware scenario-based MPC

Input: A set of scenario-based MPCs π ∈ Iπ := {1, ..., n}
with different ϵi ∈ {ϵ1, ..., ϵn} values where they are
defined in a descending order, and a predefined risk
threshold ϵ◦ = ϵn

Output: Control input command: u = ∅
while x0 := x(t) /∈ Xgoal do

[xπ
k ]

k=N
k=0 , [uπ

k ]
k=N−1
k=0 ← Solve (5) simultaneously ∀π

for each π ∈ Iπ do
Evaluate the estimated maximum risk ζ from (8)
if ζ < ϵ◦ then

u← uπ
0

return
end if

end for
if u = ∅ then

u← Deploy maximum deceleration
end if

end while

an Intel® CoreTM i7 CPU@2.6GHz. The robot dynamics are
described by a continuous-time second-order unicycle model
[24]. The radius of each robot’s circle is set to 0.325 m with
nc = 2, and the obstacle radius is set to 0.3 m.

B. Simulation Results

To create the reference path, a series of waypoints are
defined and connected with a clothoid. The goal of the robot
is to track the reference path as close as possible, while
avoiding colliding with its surrounding dynamic obstacles,
which are crossing freely. The baseline that we compare
our results against is the scenario-based MPC approach
proposed in [18], with different risk levels ϵ. In the following
simulations, three scenario-based MPCs run in parallel with
different acceptable risk levels, 0.05, 0.1, and 0.2. These
values are chosen as a proof of concept of the proposed
method. An upper bound of collision probability (CP), along
a single planned trajectory, is set to 0.05. After each plan-
ning cycle, the maximum risk associated with each planned
trajectory, from the three planners, is estimated according to
(8), then the control commands form the controller with the
least conservative solution, i.e., the one with the maximum
risk level, are applied as long as the associated risk is less
than ϵ◦ = 0.05. In case no feasible solution is obtained from
all controllers without violating the threshold risk level, an
emergency braking is deployed so that the robot decelerates.
Several metrics are defined to compare safety and efficiency
of the proposed approach with the baseline. As safety met-
rics, we measure the maximum probability of collision per
stage along the robot’s planned trajectory, and the average
minimum distance between the robot and the pedestrians,
that is the distance between robot’s and pedestrian’s circles
boundaries together with percentage of physical collisions.
As efficiency metrics, average speed, duration, and the tem-
porary freezing percentage, that is the situations in which the
robot has to come to a standstill in order to retain safety, are
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(a) At t = 1.0 s (b) At t = 8.0 s (c) At t = 11.0 s
Fig. 2: Snapshots from the simulated environment under Gaussian pedestrian motion at different time instants. The pedestrians are represented by black
circles where the red arrows indicate their direction of motion, blue circles depict the robot’s planned trajectory. The constraints are visualized for stages
0, 5, 10, 15, and 19.
TABLE I: Statistical results over 100 experiments for a uni-modal simulation with 6 pedestrians. The comparison is done with respect to the maximum
risk endured by the robot, duration, robot velocity, number of times the robot has to come to standstill, and minimum distance to the obstacles. The results
are reported as “average (standard deviation)”. The percentage of controller usage with ϵ = 0.2, ϵ = 0.1 and ϵ = 0.05 is 87.98%, 12.02% and 0%,
respectively.

Upper Bound Max CP Dur. [s] Vel. [m/s] Temp. Freezing Avg. Min Dist. [m] Task Incomp.
ϵ = 0.05 0.0094 18.18 (0.169) 1.15 (0.133) 16 % 0.359 (0.06) 13 %
ϵ = 0.1 0.0456 17.24 (0.359) 1.18 (0.186) 15 % 0.308 (0.06) 9 %
ϵ = 0.2 0.0727 15.88 (0.317) 1.24 (0.162) 8 % 0.232 (0.06) 4 %

Hybrid ϵ = {0.05, 0.1, 0.2} 0.0454 16.08 (0.176) 1.23 (0.233) 5 % 0.301 (0.07) 6 %

TABLE II: Results similar to those in I for uni-modal simulation with 10 pedestrians. The percentage of controller usage with ϵ = 0.2, ϵ = 0.1 and
ϵ = 0.05 is 87.45%, 7.25% and 5.30%, respectively.

Upper Bound Max CP Dur. [s] Vel. [m/s] Temp. Freezing Avg. Min Dist. [m] Collision
ϵ = 0.05 0.0214 18.89 (0.324) 1.01 (0.168) 21 % 0.319 (0.07) 0 %
ϵ = 0.1 0.0636 18.04 (0.369) 1.17 (0.141) 18 % 0.264 (0.06) 2 %
ϵ = 0.2 0.1113 16.43 (0.302) 1.20 (0.167) 8 % 0.213 (0.05) 3 %

Hybrid ϵ = {0.05, 0.1, 0.2} 0.0454 16.68 (0.185) 1.19 (0.152) 10 % 0.231 (0.09) 0 %

calculated. We consider a scenario as a temporary freezing
scenario, when the robot takes more than 2.0 s before it starts
to accelerate again from standstill. The reference velocity
of the robot is set to 2.0 m/s whereas the velocity of the
pedestrians is set to 1.0 m/s. The setup of the simulation is
shown in Fig. 2.

1) Pedestrians with Gaussian noise: In the first scenario,
the uncertainty of the pedestrian predictions is uni-modal
Gaussian with a variance of Σw = 0.52I . We define the
pedestrian dynamics as

δk+1 = δk + (v + δw,k)dt, δw,k ∼ N (0,Σw), (9)

where v ∈ R2 describes a constant velocity. Aggregated
results in environments with 6 and 10 pedestrians, over 100
simulations, are presented in Tables I and II respectively. As
shown in Table I, the controller with ϵ = 0.05 achieves the
lowest collision probability compared to other controllers,
however, at the expense of resulting in excessively conser-
vative trajectories. This conservatism can also be observed in
the percentage of temporary freezing, in which the controller
cannot find a solution that satisfies the risk bound along
the planning horizon and the robot decelerates till standstill.
It can also be seen that the temporary freezing behavior
decreases as the acceptable risk level increases, but this
happens at the expense of violating the acceptable risk level
ϵ◦, for the controller with ϵ = 0.2. On the contrary, by
switching between the controllers based on the associated
risk level, we can obtain less conservative results where the
performance is comparable to the behavior of the controller
with ϵ = 0.2, but, most importantly, without violating ϵ◦.

Since the maximum collision probability for the controller
with ϵ = 0.1 never exceeds ϵ◦, our method did not switch
to the controller with ϵ = 0.05, as the same safety level
can be achieved with a less conservative behavior. A task
is denoted as incomplete when the robot deviates from the
reference path and does not get back to it by the end of the
scenario while avoiding obstacles. The controller with ϵ =
0.2, together with our method achieve the best performance
with respect to the task completeness. A similar behavior
has been obtained in the environment with 10 pedestrians, as
depicted in Table II. In this environment the controller with
ϵ = 0.2 achieves the best performance with respect to the
efficiency metrics, however it results in a higher maximum
collision probability 11.1%, and 3 physical crashes with
one of the pedestrians. Again our approach manages to
balance between safety and efficiency by obtaining shorter
trajectories while providing a closer bound to the acceptable
risk level, 0.0454/0.05, and without leading to physical
collisions, or many temporary freezing behavior.

2) Pedestrians with Gaussian Mixture Model: In this
section, we model the pedestrian movement by a Markov
Chain that changes the pedestrian movement from horizontal
to diagonal, with p = 0.975 of staying in horizontal state and
p = 0.025 of switching to diagonal state, in addition to the
Gaussian noise of the previous simulation. The pedestrian
dynamics are given by

δk+1 = δk + (Bv + δw,k)dt, δw,k ∼ N (0,Σw), (10)

where B is either Bh =
[
1 0

]T
or Bd =

[
1/

√
2 1/

√
2
]T

based on the state of the Markov Chain. The uncertainties
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TABLE III: Statistical results over 100 experiments for a multi-modal simulation with 6 pedestrians. The comparison is done with respect to the maximum
risk endured by the robot, duration, robot velocity, number of times the robot has to come to standstill, and minimum distance to the obstacles. The results
are reported as “average (standard deviation)”. The percentage of controller usage with ϵ = 0.2, ϵ = 0.1 and ϵ = 0.05 is 83.67%, 5.22% and 1.11%,
respectively.

Upper Bound Max CP Dur. [s] Vel. [m/s] Temp. Freezing Avg. Min Dist. [m] Task Incomp.
ϵ = 0.05 0.0165 17.12 (0.717) 1.22 (0.204) 11 % 0.479 (0.16) 9 %
ϵ = 0.1 0.0693 15.88 (0.637) 1.24 (0.185) 6 % 0.407 (0.11) 8 %
ϵ = 0.2 0.1184 14.32 (0.673) 1.29 (0.215) 2 % 0.266 (0.12) 6 %

Hybrid ϵ = {0.05, 0.1, 0.2} 0.0486 14.81 (0.655) 1.29 (0.161) 3 % 0.340 (0.13) 1 %

TABLE IV: Results similar to those in III for multi-modal simulation with 10 pedestrians. The percentage of controller usage with ϵ = 0.2, ϵ = 0.1 and
ϵ = 0.05 is 81.02%, 15.22% and 3.76%, respectively.

Upper Bound Max CP Dur. [s] Vel. [m/s] Temp. Freezing Avg. Min Dist. [m] Collision
ϵ = 0.05 0.0234 18.34 (0.324) 1.14 (0.258) 13 % 0.426 (0.17) 1 %
ϵ = 0.1 0.0722 17.83 (0.369) 1.19 (0.240) 12 % 0.387 (0.16) 6 %
ϵ = 0.2 0.1396 15.89 (0.302) 1.28 (0.223) 8 % 0.291 (0.15) 8 %

Hybrid ϵ = {0.05, 0.1, 0.2} 0.0452 16.12 (0.185) 1.26 (0.292) 6 % 0.329 (0.14) 2 %
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(c) At t = 7.5 s (d) A snapshot from experiment
Fig. 3: Experimental results with the robot avoiding two crossing pedestrians at different time instants. The blue circles depict the robot’s plan, whereas
the lime and green circles visualize the pedestrians predictions where newer positions are depicted with lighter shades. The solid black line represents the
reference path, and black circles illustrate current positions. The robot takes 7.8 s to complete the task with 0.0416/0.05 max CP, 1.56 m/s average speed,
and 25.784 ms computation time. The percentage of controller usage with ϵ = 0.2, ϵ = 0.1 and ϵ = 0.05 is, 94.13%, 5.87% and 0%, respectively.

associated with this motion can be modelled as a Gaussian
Mixture Model where each state transition in the Markov
Chain leads to a separate mode with an associated probability
(21 modes in total). Similar to the first scenario, the results
are validated in environments with 6 and 10 pedestrians
respectively. The results for 6 pedestrians are summarized
in Table III. The results are in line with the 6-pedestrian
Gaussian case. Here it can be noted that our approach
outperforms the baselines on almost all risk metrics, while
attaining, compared to the baseline with ϵ = 0.05, a higher
but still safe CP of 0.0486. By balancing the minimum
distances to the pedestrians, the temporal freezing behavior
is reduced compared to the other controllers which results
in faster trajectories. Moreover, the robot manages to get
back to the reference path in almost all simulations. For the
case of 10 pedestrians, results are summarized in Table IV,
where collisions occur for all methods in this environment. A
significant improvement in the number of physical collisions,
from 8% to 2%, can be observed with respect to the baseline
with ϵ = 0.2 while attaining a comparable efficiency. 12.1%
and 10.2% improvements are obtained in the trajectory
duration, and speed respectively, compared to the baseline
with ϵ = 0.05. In all simulations, the average computation
time of the full control loop of our approach is 74.68 ms with
a maximum computation time of 91.16 ms which makes it
real-time capable.

C. Real-World Results

We evaluated our method on a real robot navigating on a
road, following the lane central line, while two pedestrians

cross the road. A snapshot from our experiment1 is shown in
Fig. 3, where quantitative results are illustrated in its caption.

V. CONCLUSION

In this paper, we showed that our proposed hybrid ap-
proach provides probabilistic safety guarantees while achiev-
ing a closer bound to the specified risk for a mobile robot
operating among humans with uni-modal and multi-modal
Gaussian uncertainties. This is attained by running multiple
probabilistic planners in parallel with different specified risk
levels, and quantifies the risk associated with each planned
trajectory. The risk metric is estimated by integrating over
the domain at which the robot trajectory, and predicted
pedestrians states spatially overlap at each stage along the
prediction horizon. Accordingly, the plan with the least
conservative behavior is chosen provided that its associated
risk is below the risk level of the most conservative planner.
Our simulations and experiments showed that, the robot
can follow the trajectories planned by the least conservative
controller most of the time and only switches to more
conservative controllers when the estimated risk violates the
specified threshold. In such a way, the robot can plan faster
trajectories while attaining the same safety level as the most
conservative controller. Future works shall explore elaborated
risk metrics in case the robot has a biased prediction for
obstacle motion uncertainty, in addition to a criterion to set
the risk upper bound for the probabilistic planner.

1A video of the experiments and simulations accompanies this paper.
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