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SUMMARY

Soil moisture is a key variable in controlling land surface and atmospheric interactions.
It plays a pivotal role in both the land surface water and energy balance. Large scale
soil moisture measurements can be obtained using remote sensing techniques. Calibra-
tion/validation of large scale measurements is usually challenging, as it requires accu-
rately representing soil moisture over large areas using point sensors. Capturing the soil
moisture spatial variability using point sensors is usually economically infeasible. This
thesis provides a way of continuously mapping meter resolution soil moisture over large
areas using Distributed Temperature Sensing (DTS).

DTS is an environmental temperature measurement tool, which can provide meter
resolution temperature data up to kilometers using fiber optical cables. Soil temperature
data at discrete depths can be observed with fine resolution over large areas, when fiber
optical cable are installed in the soil. A main focus of this thesis is to extract soil moisture
information from soil temperature observations.

Great challenges were shown in estimating soil moisture using soil temperatures in
the past decades. A discussion on the difficulties met in the previous studies, and the
reasons of why data assimilation is considered to be more suitable for this research are
presented in Chapter 1.

The data assimilation approach is more complex than traditional methods, e.g. meth-
ods related to thermal inertia, amplitude analysis and inversion of the heat diffusion
model. Distinguishing the contributions of different sources of uncertainties and errors
in data assimilation is necessary. Synthetic experiments, in which the error sources were
known by design, were used to investigate the impacts of each type of error/uncertainty.
Multiple-truth synthetic tests were also used to test the robustness of the proposed data
assimilation method across a wide range of soil textures.

Motivated by the fact that a sequence of soil temperatures may contain more infor-
mation of soil moisture, a Particle Batch Smoother (PBS) was proposed to assimilate soil
temperature observations within a window to estimate soil moisture estimates of that
window. Chapter 3 provides detailed discussions on the performance of the PBS, the
impacts of observations intervals, and the window lengths. The PBS was shown to out-
perform the Particle Filter (PF), which demonstrated the hypothesis that assimilating a
sequence of soil temperatures is more suitable for soil moisture estimation.

Updating soil moisture without updating hydraulic soil properties may lead to incon-
sistent combinations of soil moisture and soil hydraulic properties. Chapter 4 showed
the physical links between soil temperatures and soil hydraulic properties. The accuracy
of estimating soil hydraulic properties using soil temperatures was tested using a set of
synthetic experiments. It was also shown that jointly updating soil moisture and soil hy-
draulic properties provided significantly improved soil moisture estimates compared to
the case that only soil moisture was updated.
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xii SUMMARY

To apply the proposed data assimilation method under different vegetation cover,
Chapter 5 improved the current state of the art vadose zone model by including a vege-
tation energy balance scheme. In addition, a data assimilation scheme that can handle
the uncertainties of the cable depths was proposed. This is particularly relevant to the
DTS applications, since the cable depths of the DTS are rarely known accurately.

Meter resolution soil moisture along a 71 m DTS cable was estimated in Chapter 6.
This high resolution soil moisture map was evaluated using field measurements. Fur-
thermore, the statistics of the soil moisture spatial variability presented by this high res-
olution soil moisture map were shown to be consistent with previous studies. This high-
lighted the feasibility and the potential of using DTS as a tool for continuous high reso-
lution soil moisture mapping, which may fundamentally improve our knowledge about
soil moisture scaling, and large scale soil moisture validation.

In addition to soil moisture mapping, a new data assimilation algorithm, the Adap-
tive Particle Batch Smoother (APBS) was also proposed in Chapter 6. The APBS algo-
rithm was developed for handling the particle weight degeneracy problem. This APBS
algorithm will also be applicable to general hydrological data assimilation as discussed
in Chapter 7.



SAMENVATTING

Bodemvocht is een sleutel variabele die interacties tussen het landoppervlak en de at-
mosfeer controleert. Het speelt een centrale rol in zowel water op het landoppervlak als
de energiebalans. Grootschalige bodemvochtmetingen kunnen gedaan worden met re-
mote sensing technieken. Kalibratie/validatie van grootschalige metingen is over het al-
gemeen een uitdaging, omdat bodemvocht accuraat gerepresenteerd moet worden door
punt sensoren over grote gebieden. Het vatten van de ruimtelijke variabiliteit van bo-
demvocht is meestal economisch gezien niet mogelijk. Dit proefschrift voorziet een ma-
nier van het continu in kaart brengen van bodemvocht met meter-resolutie over grote
gebieden met behulp van gedistribueerde temperatuur waarneming (Distributed Tem-
perature Sensing, DTS).

DTS is een meetinstrument voor omgevingstemperatuur, dat met een lengte van vele
kilometers meter-resolutie temperatuurdata kan leveren met behulp van glasvezelka-
bels. Als glasvezelkabels in de bodem geïnstalleerd zijn, kan de bodemtemperatuur op
bepaalde dieptes worden waargenomen met een hoge resolutie over grote gebieden. Een
belangrijke focus van dit proefschrift bestaat uit het afleiden van informatie over bodem-
vocht uit waarnemingen van bodemtemperatuur.

De afgelopen decennia heeft men grote uitdagingen laten zien in het schatten van
bodemvocht met behulp van bodemtemperatuur. Een discussie over de moeilijkheden
die voorgaande studies zijn tegengekomen en de redenen waarom data-assimilatie voor
dit onderzoek meer gepast wordt verondersteld, wordt gepresenteerd in Hoofdstuk 1.

De data-assimilatie benadering is complexer dan traditionele methodes, zoals me-
thodes gerelateerd aan thermische traagheid, amplitude analyse en inversie van het warmte-
diffusie model. Het onderscheiden van het aandeel van de verschillende bronnen van
onzekerheden en fouten in data-assimilatie is noodzakelijk. Kunstmatige experimen-
ten, waar de foutenbronnen bekend zijn door het ontwerp van het experiment, zijn ge-
bruikt om de impact van elk type fout/onzekerheid te onderzoeken. Meerdere-waarheid
kunstmatige tests zijn ook gebruikt om de robuustheid van de voorgestelde data assimi-
latiemethode te testen over een breed scala van bodemtexturen.

Gemotiveerd doordat een serie van bodemtemperaturen mogelijk meer informatie
over bodemvocht bevat, is een Particle Batch Smoother (PBS) voorgesteld om waarne-
mingen van bodemtemperatuur te assimileren binnen een interval om bodemvocht in
te schatten van dat interval. Hoofdstuk 3 geeft een gedetailleerde discussie over de pres-
tatie van PBS, de impact van waarnemingsintervals, en de interval lengte. Het wordt
aangetoond dat PBS beter presteert dan een Particle Filter (PF), wat de hypothese beves-
tigt dat het assimileren van bodemtemperaturen geschikter is voor het inschatten van
bodemvocht.

Het bijwerken van bodemvocht zonder het bijwerken van hydraulische bodemeigen-
schappen kan leiden tot inconsistente combinaties van bodemvocht en hydraulische
bodemeigenschappen. Hoofdstuk 4 laat de fysieke relaties zien tussen bodemtempera-
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turen en hydraulische bodemeigenschappen. De accuraatheid van het schatten van hy-
draulische bodemeigenschappen met bodemtemperaturen is getest met behulp van een
aantal kunstmatige experimenten. Het wordt ook aangetoond dat het gezamenlijk bij-
werken van bodemvocht en hydraulische bodemeigenschappen in een significant ver-
beterde bodemvochtschatting voorziet in vergelijking met het geval waarin alleen bo-
demvocht wordt bijgewerkt.

Hoofdstuk 5 verbetert het huidige ’state-of-the-art’ onverzadigde zone model door
het toevoegen van een vegetatie-energiebalans-schema om de voorgestelde data assi-
milatiemethode toe te passen met een verschillende vegetatiebedekking. Bovendien
wordt een data-assimilatieschema dat de onzekerheden van kabeldieptes kan meene-
men voorgesteld. Dit is in het bijzonder relevant voor DTS-toepassingen, omdat de ka-
beldieptes zelden bekend zijn.

Meter-resolutie bodemvocht langs een 71 m DTS-kabel wordt ingeschat in Hoofd-
stuk 6. Deze hoge resolutie bodemvochtkaart is geëvalueerd met behulp van veldmetin-
gen. Verder wordt aangetoond dat de statistieken van de ruimtelijke variabiliteit van bo-
demvocht gerepresenteerd door deze hoge resolutie bodemvochtkaart, overeenkomen
met voorgaande studies.

Dit benadrukte de haalbaarheid en het potentieel van het gebruik van DTS als een in-
strument voor het continu in kaart brengen van bodemvocht met een hoge resolutie, wat
onze kennis over het schalen van bodemvocht fundamenteel verbetert, en bodemvocht-
validatie op grote schaal.

Als toevoeging op het in kaart brengen van bodemvocht, een nieuw data-assimilatie
algoritme, de Adaptive Particle Batch Smoother (APBS) wordt voorgesteld in Hoofdstuk
6. Het APBS algoritme was ontwikkeld voor het omgaan met het probleem van de weeg-
factor van een deeltje. Dit APBS-algoritme zal ook toepasbaar zijn op algemene hydro-
logische data-assimilatie, zoals bediscussieerd in Hoofdstuk 7.



PREFACE

Microwave remote sensing might be the most feasible way for us to measure soil mois-
ture globally. The resolution of the microwave remote sensing soil moisture products is
usually larger than 10 km2. It is usually necessary to upscale point measurements to this
footprint scale for calibrating and validating the microwave remote sensing products.

The real challenge of scaling soil moisture products is to understand soil moisture
variability at different scales. The spatial variability of soil type, vegetation cover, topog-
raphy and meteorological forcing lead to the spatial variability of soil moisture. We also
found that this spatial variability evolves in time. The most reliable way of understand-
ing the soil moisture spatial variability, and the rules of soil moisture scaling, is inten-
sively (both in space and time) measuring soil moisture at point scales. DTS can provide
soil temperature measurements with temporal resolution < 1 min, spatial resolution < 1
m, up to kilometers. Hence, DTS might be a suitable tool for continuously measuring
high spatial resolution soil moisture over large scales, provided that the soil temperature
measurements can be used for soil moisture estimation.

Very limited satisfactory results of estimating soil moisture using soil temperature
data were reported in the past decades. In the past 40 years, heat transfer processes
were usually simplified by making different types of assumptions. Soil thermal proper-
ties are then estimated using the simplified heat conduction equation and the observed
soil temperatures. The estimated soil thermal properties can be linked to soil moisture,
provided soil thermal property to moisture relationship is known. Structural errors in the
simplified soil heat transfer equation and the uncertainties in the soil thermal property
to soil moisture sometimes mask the soil moisture information. As a result, it is diffi-
cult to accurately quantify either the absolute soil moisture value, or the soil moisture
dynamics using these traditional methods.

This thesis uses a different concept of extracting soil moisture information from soil
temperature, i.e. data assimilation. In data assimilation, soil moisture is first simulated
using the state of the art vadose zone model. Ensemble model runs are used to map
the prior distribution of the soil moisture and soil temperature under different sources
of uncertainties. Then this prior estimated soil moisture will be constrained using soil
temperature. I agree that “the main purpose of science is simplicity" (Edward Teller).
However, there are reasons why solving this problem in a more “complex" way is pre-
ferred here. By increasing the complexity, more information can be included to con-
strain the estimated soil moisture. For example, provided the meteorological forcing is
known, the forward model can already provide reasonable soil moisture dynamics. This
information is not considered in traditional methods. Soil evaporation is a key clue for
linking soil moisture and temperature, which is not included in the traditional methods.

The thesis also presents a learning and understanding process of how to extract soil
moisture information from such a complex system. Distinguishing the contributions of
different sources of uncertainties is challenging. The performance of the forward model

xv
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and the robustness of the data assimilation algorithm can both affect the final estimates.
In synthetic tests, the uncertainties and the model structural errors are known by design.
The “true" values are also perfectly known. This provides a way of accurately evaluating
the concept and the data assimilation algorithm. Synthetic tests were frequently used to
investigate the conceptual feasibility, and the robustness of the data assimilation algo-
rithm in this thesis. Then, the proposed algorithms were tested using traditional point
sensors, which have the best quality controlled soil temperature and moisture measure-
ments. This is to minimize the impacts of observation errors on the algorithm evalua-
tion. Finally, this algorithm is applied to real DTS data, which can continuously map the
soil moisture field with high spatial resolution. The estimates are evaluated using field
measurements at a nearby site.

I am, or maybe was, (probably) a good fieldworker. At least, I didn’t work on a lot
of equations before my Ph.D. research. I planned to focus on field experiments, though
not messing up all the DTS cables in the field is still a big challenge for me. However,
this thesis mainly focused on the algorithm development. This is because robustly es-
timating soil moisture using soil temperatures is still a big challenge to the soil physics
community, and it is more attractive to me. I have to say I am lucky, and I would thank all
my colleagues, both in the Netherlands and the USA, who made the field experimental
data available for me. This gave me the opportunity of focusing on the equations of the
data assimilation, and the physics of soil water and heat transfer processes.

I hope this thesis can contribute to the area of high resolution environmental variable
mapping and hydrological data assimilation. In particular, I hope this thesis could also
remind myself that I have done something that I am really proud of.

Jianzhi Dong
Delft, June 2016



1
INTRODUCTION

We can’t solve problems by using the same kind of
thinking we used when we created them.

Albert Einstein
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2 1. INTRODUCTION

1.1. IMPORTANCE OF SOIL MOISTURE

S OIL moisture refers to the water content of a certain volume of soil. Soil moisture
plays a central role in the land surface - atmosphere processes [1]. For example,

the infiltration capacity of a watershed is largely determined by prevailing soil moisture
conditions [2]. Consequently, rainfall - runoff processes strongly depend on surface soil
moisture [3]. Soil moisture also determines the availability of the land surface water that
can be evaporated into the atmosphere [4], and hence soil moisture also has significant
impacts on the land surface energy balance, and land surface atmosphere interactions.
[5, 6]. Thus, improved understanding of soil moisture may fundamentally improve flood
forecasting [7], drought monitoring [8], and heat wave prediction [6].

1.2. SOIL MOISTURE MEASUREMENT TECHNIQUES

The most feasible way of providing global coverage large scale soil moisture measure-
ments is to use remote sensing techniques. Estimating soil moisture using thermal re-
mote sensing was intensively discussed in the 1970s [e.g. 9–12]. Soil thermal inertia is
correlated to the differences of daily maximum and minimum soil temperature. Regres-
sion methods can link daily maximum and minimum temperature differences or soil
thermal inertia to the soil moisture values, provided the calibration soil moisture data
are available. However, it is challenging to retrieve soil moisture using the thermal iner-
tia method at the global scale. First of all, the observed land surface temperature (LST)
is a weighted average of soil and vegetation temperatures. Hence, the thermal inertia
method is only applicable to bare soil and sparsely vegetated areas [13]. Second, LST
cannot be observed during cloudy days, which will limit the availability of the thermal
inertia method. Third, the maximum and the minimum soil temperature differences
were assumed to be primarily attributed to soil thermal inertia, an assumption which is
often violated. For example, low maximum and minimum soil temperature differences
can be attributed to solar radiation, rather than soil thermal inertia or soil moisture [9].
Soil evaporation also significantly affects soil temperature evolution, and hence the dif-
ferences of the maximum and minimum soil temperature. This may lead to substantial
errors in soil moisture retrieval using soil thermal inertia methods [14].

Microwave remote sensing is the most popular technique for providing footprint
scale (> 10km2) soil moisture observations. Compared to soil thermal remote sensing
methods, microwave remote sensing methods are less affected by the atmospheric con-
ditions. Soil dielectric constant is a strong function of soil moisture, which has a value of
approximately 3.5 for dry soil, and approximately 80 for water [15]. In active microwave
remote sensing, pulses are sent to the ground, and the backscatter of these pulses are
measured. The backscatters depend on soil dielectric constant, which can thus be re-
lated to soil moisture [16]. Passive microwave remote sensing measures the soil bright-
ness temperature (Tb), which can be used for solving soil dielectric constant [15]. How-
ever, retrieving soil moisture can be complicated by vegetation cover and soil surface
roughness. To accurately retrieve soil moisture, different algorithms were proposed [17],
which can be primarily categorized into two groups. The first group is to use statistical
or machine learning methods to calibrate/train the relationship between ground based
soil moisture measurements and brightness temperatures or backscatters [e.g. 18, 19].
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Another group of retrieval methods is to invert soil moisture from more physically based
models [e.g. 20–23]. Ancillary data, e.g. land cover classification maps, vegetation in-
dices, multiangular microwave remote sensing observations, were usually used to quan-
tify the impacts of vegetation and soil surface roughness in these methods. Since remote
sensing measurements are at scales of kilometers, ground based soil moisture measure-
ments at those scales are also required to calibrate or validate the soil moisture retrieval
algorithms.

Many ground based methods are available for soil moisture measurement. The only
direct soil moisture measurement approach is the gravimetric method, which is usually
used for calibrating and validating other soil moisture techniques. In the gravimetric
method, soil moisture is derived by oven drying a certain volume of a soil sample. How-
ever, the gravimetric method is destructive, laborious and time consuming [24]. Time
Domain Reflectometer (TDR) and capacitance probes are alternatives of the gravimetric
method for point scale soil moisture measurement. Similar to microwave remote sens-
ing techniques, TDR and capacitance probes also measure soil moisture by measuring
the soil dielectric constant [25]. Compared to the gravimetric method, TDR and capac-
itance probes are more efficient, and good accuracies can be achieved after site specific
calibration.

Accurately representing footprint scale soil moisture may require numerous point
scale measurements to capture the soil moisture spatial variability. It is challenging since
intensively sampling point scale soil moisture across large areas is usually economically
infeasible. Innovative devices were proposed to measure intermediate scale soil mois-
ture with the aim of linking point scale and intermediate scale soil moisture measure-
ments. A popular intermediate scale soil moisture measurement technique is Global
Positioning System Reflectometry (GPS-R), which was shown to be capable of monitor-
ing the areal mean surface soil moisture of 300 m2 [26, 27]. The reflection depth depends
on land surface soil moisture conditions, which determines the phase offset of the Signal
to Noise Ratio (SNR) expression. Hence, the SNR detected by GPS-R receivers could be
used for measuring surface soil moisture. Similar to microwave remote sensing, GPS-R
technique is sensitive to the soil surface roughness and the vegetation conditions [28],
which may be of practical concern for GPS-R applications.

In parallel to the GPS-R technique, the Cosmic-ray probe was proposed to represent
the average soil moisture of a large area (∼ 300 m radius) [29]. The hydrogen atoms
have the greatest capacity of slowing down the fast cosmic-ray neutrons [29]. There-
fore, the intensity of fast neutrons is negatively related to total hydrogen atoms of the
environment. A reference value of the neutron counting rate over dry soil is required,
which can be obtained using field calibration. To estimate soil moisture, other sources
of hydrogen atoms (water content), e.g. atmospheric water vapor, soil surface ponding
water, biomass and lattice water, have to be separately estimated [30]. Separating the
contribution of vegetation water content is usually most challenging, especially when
the vegetation water content changes with time, e.g. during the grow seasons. A second
key challenge of successfully using cosmic-ray probes is to deal with the variances in the
measurement depths, with a measurement depth of 5 cm for wet soils and approximately
70 cm for dry soils [29]. Therefore, the cosmic-ray probe essentially integrates soil mois-
ture values at different depths over the measurement area, instead of one single depth.
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This may complicate the interpretation of Cosmic-ray probe measurements. This means
calibrating the Cosmic-ray probe may also require high resolution point scale measure-
ments, especially when field spatial variability is high.

1.3. SOIL MOISTURE UPSCALING
As shown in the previous section, measuring soil moisture at large scales is usually com-
plicated by different sources of uncertainties. Different upscaling algorithms have been
proposed with the aim of accurately representing the large scale soil moisture using
sparse point scale measurements, which may reduce the cost of validating large scale
soil moisture measurement techniques.

Temporal stability is a popular upscaling technique. The concept is to only moni-
tor soil moisture at locations that can best represent the areal mean soil moisture [e.g.
31, 32]. Hence, the temporal stability method can reduce the number of point sale sen-
sors required to observe large scale soil moisture. In order to locate the representative
locations, high spatial resolution soil moisture measurements with a period of approx-
imately 1 year are usually required [33]. Kriging interpolation methods were also fre-
quently investigated [e.g. 34, 35]. This type of algorithm calculates the areal mean soil
moisture by weighted averaging the available point measurements [36]. Similar to the
temporal stability method, the upscaling equation has to be parameterized using a se-
quence of observations. The feasibility of upscaling soil moisture observations using
land surface modeling was also explored [37]. Well-parameterized land surface models
may be helpful in capturing the spatial variability within a footprint, and improving the
accuracy of the upscaled soil moisture estimates. However, it is also shown that point
measurements within the footprint are essential in removing the bias of the model esti-
mates. Hence, the accuracy of the algorithm also depends on the availability of the point
measurements [37].

Clearly, the first step of successfully applying an upscaling algorithm is to accurately
represent the soil moisture spatial variability. Otherwise, applying the upscaling algo-
rithms may even yield larger sampling errors comparing to the cases that no upscaling
algorithms are applied [37]. This indicates that though different upscaling algorithms are
available, well distributed point scale measurements over large scales are still required.

1.4. SOIL MOISTURE MAPPING USING DTS
As clearly shown in the previous two sections, both intermediate scale soil moisture
measurement techniques and upscaling algorithms can be affected by different sources
of uncertainties. The most reliable way of bridging the gap between point and interme-
diate scale soil moisture is to intensively collect point measurements over intermediate
scales. Distributed temperature sensing (DTS) has been considered to have the potential
of providing cost-effective high resolution soil moisture measurements over large areas
[38, 39].

DTS measures environmental temperature using fiber-optic cables. In DTS, a light
pulse is first sent into the fiber-optic cable. Due to the Raman scattering, a portion of
light will be scattered at a decreased (Stokes) or increased (anti-Stokes) frequency. The
backscatter of the Stokes and anti-Stokes will be received by the DTS unit. The inten-
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sities of Stokes are linearly correlated with the illumination [40], while the intensities of
the anti-Stokes depend on both the illumination and the temperature of fiber-optic ca-
ble. Hence, the ratio of the two signals strongly depends on the fiber temperature. The
velocity of light in the fiber is a constant, which can be used for locating the measured
temperature by recording the time that the backscattered signal is received. DTS can
provide high resolution (temporal < 1 min, and spatial < 1 m) environmental soil tem-
perature measurements using cables up to kilometers in length [40].

There are two categories of DTS methods for soil moisture measurement, namely
Active DTS and Passive DTS. Active DTS methods apply an electrically generated heat
pulse to the fiber optic cables. Due to the large heat capacity and conductivity of water,
the electrically generated heat is more likely to dissipate in wetter soils. Consequently,
wetter soil will present a smaller temperature increase after heating. Therefore, temper-
ature change during and after this heat pulse can be related to soil moisture using either
empirically or physically based equations [39, 41]. Passive DTS, on the other hand, uses
soil thermal responses to the net solar radiation to estimate soil moisture. The feasibility
of the Passive DTS was demonstrated by an “inversion" method [38]. In the inversion
method, the soil thermal diffusivity is estimated by finding the value that gives the best
fit between the observed and estimated soil temperature within a certain period. This
estimated soil thermal diffusivity can be used for estimating soil moisture, provided soil
thermal diffusivity to soil moisture relationship is known.

Active DTS is relatively more accurate, particularly when soil moisture is low. How-
ever, the energy consumption of the heat pulses may be a logistic obstacle for field appli-
cations. This is particularly true for experiment sites that rely on electric power collected
using solar panels.

Passive DTS can overcome the drawbacks of the Active DTS methods. First of all, no
energy is required for generating heat pulses. Hence, it is easier to operate the Passive
DTS than Active DTS in field applications. Further, Passive DTS uses soil temperature
data of a longer time window (e.g. 24 hours), which provides sufficient time for the ther-
mal equilibrium between soil and air gaps. Hence, Passive DTS is insensitive to the gaps
between fiber optic cable and soil.

However, the current inversion approach based Passive DTS also has several key
challenges in the field applications. First, soil thermal diffusivity is insensitive to soil
moisture for a wide range of soil moisture values. Second, physically reasonable es-
timates cannot be obtained from the inversion approach when solar radiation is low.
Third, it is difficult to determine the soil thermal diffusivity to moisture relationship
along the cable, when the spatial variability of soil properties is high. Finally, the soil
thermal diffusivity/soil moisture estimates are very sensitive to uncertainties in the ca-
ble depths.

1.5. DATA ASSIMILATION
Data assimilation may be useful in handling the uncertainties in the Passive DTS method,
and improving the accuracy of the soil moisture estimates. Data assimilation refers to a
broad range of techniques that can optimally combine model estimates and observa-
tions, in which different sources of uncertainties can be considered [42]. The Kalman
filter is one of the most popular data assimilation techniques. For linear systems, the
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predicted model states (prior) are normally distributed, provided initial states and the
model errors are both normally distributed. When observations are available, the prior
estimates can be updated (posterior) using Bayes’ theorem. By optimally combining
two different sources of information, i.e. the prior and the observation, the posterior
has smaller uncertainties and is closer to the “truth". The Kalman filter was modified
for solving non-linear problems, such as unscented Kalman filter and extended Kalman
filter. The Ensemble Kalman Filter (EnKF) algorithm is a popular variant of the Kalman
filter ([43]). The EnKF also assumes the model prior is normally distributed and approx-
imates its first two momentums using random samples, since analytical expressions are
usually unavailable. Once the prior distribution is estimated, the posterior is calculated
using similar procedures as described in the Kalman filter. The EnKF is conceptually
simple, and can be easily implemented for complex systems. Hence, the EnKF algo-
rithm is widely used in hydrology related research, e.g in improving footprint scale soil
moisture estimates [e.g. 44–48], terrestrial water storage [e.g. 49–51], and stream flow
estimates [e.g. 2, 52].

When the Gaussian assumptions are violated and the system is highly non-linear, the
EnKF cannot provide optimal solutions. Instead of only preserving the first two momen-
tums of the prior, the Particle Filter (PF) maps the entire prior distribution using Monte
Carlo samples and the associated weights [53]. The posterior distribution is derived by
updating the weight of each particle using Bayes’ theorem. The PF algorithm was in-
tensively tested and widely applied for hydrology related studies [e.g. 53–56]. A recent
study also shows PF algorithm outperforms the EnKF, particularly in parameter estima-
tion [57]. However, the PF algorithm is not without drawbacks. The prior distribution is
essentially approximated using a discrete form, which means few particles will be sam-
pled at the tails of the prior distribution. As a consequence, when the observations are
located at the tails of the prior, the PF algorithm may have severe weight degeneration
problems. Hence, the EnKF can usually provide superior estimates under these condi-
tions [56]. To address this problem, Markov Chain Monte Carlo (MCMC) was included
to reduce the weight degeneracy problem [58].

Batch smoothing may be more suitable for the estimation problems when a sequence
of observations contains more information than observations made at instantaneous
time steps. The Ensemble Smoother (ES) is a popular smoothing technique. The ES
algorithm is essentially the same as the EnKF algorithm, except that observations are as-
similated in a batch to update all states within some window in time. This allows the ES
to consider observations beyond the estimation time. The ES is shown to be suitable for
estimating land surface soil moisture states by assimilating microwave remote sensing
observations [59]. Series of soil temperature measurements contain more information
about the soil heating and cooling rate, and therefore may contain more information
about land surface evapotranspiration information. Hence, the ES algorithm was also
demonstrated to be useful in estimating land surface latent heat fluxes using land sur-
face temperatures [60]. However, the ES may be inaccurate when the system is highly
non-linear or the prior distribution is not normally distributed [61].
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1.6. DATA ASSIMILATION & DTS
Data assimilation has the potential to improve the current Passive DTS method, tackling
the challenges in the inversion method and making DTS a viable tool for high resolution
intermediate scale soil moisture measurement.

In data assimilation, the joint distribution of soil moisture and temperature could
be estimated using a fully coupled soil water, heat and vapor transfer model (forward
model). Therefore, the prior estimates can already provide reasonable soil moisture es-
timates in data assimilation. For cases when soil temperature has little soil moisture
information (e.g. on low radiation days), data assimilation methods can use the prior
guessed soil moisture, instead of converging to physically unreasonable values, as in the
inversion approach. Second, the link of soil moisture and soil temperatures are implic-
itly considered in the coupled processes of soil water, heat and vapor transfer, which is
advantageous compared to the inversion method. In the inversion approach, only the
impacts of soil moisture on the vertical soil heat transfer are considered. In addition to
the soil heat transfer process, soil moisture and soil temperature links were also consid-
ered via vapor transfer processes in data assimilation. Hence, soil moisture may be more
effectively estimated using soil temperatures in data assimilation. In sequential data
assimilation, the joint distribution of soil moisture and temperature is firstly estimated
using ensemble runs. Uncertainties in the meteorological forcing, soil properties, model
and observation errors were considered in each ensemble run. The prior estimates are
then updated using observations to yield posterior estimates, which essentially adjusts
the probability (weights) of the prior estimates. Hence, the data assimilation estimates
can account for the uncertainties from different sources, and always provide physically
reasonable estimates. On the other hand, the inversion approach calculates soil mois-
ture in a deterministic way, i.e. the forward model (soil thermal diffusion model) and soil
moisture - diffusivity relationship are all assumed to be perfect. As a result, the uncer-
tainties in the inversion approach will accumulate in the soil moisture, and may result
in physically unreasonable estimates.

Although it is promising, the concept of estimating soil moisture by assimilating soil
temperatures has never been proposed or tested, and several key challenges have to be
addressed. First, it is still unknown whether the coupling between soil water and heat
transfer process is strong enough to estimate soil moisture using soil temperatures. If
the correlation between soil moisture and temperature is weak, it may be masked by the
uncertainties. Second, the optimal data assimilation technique for this estimation prob-
lem, and how to implement the data assimilation techniques to yield robust estimates
are still yet unknown. DTS can observe soil temperature every minute or less. However,
assimilating soil temperature every minute may lead to ensemble collapse and ignore
the observations. An optimal assimilation interval,that can provide sufficient soil mois-
ture information and can keep the data assimilation system healthy, is required. Fur-
ther, a batch smoother, rather than sequential filtering may be more suitable for this
estimation problem. A sequence of soil temperatures can better describe the soil heat-
ing and cooling rate, and hence it contains more information of soil moisture. However,
assimilating soil temperatures within a batch window using ES may yield less accurate
soil moisture estimates, since projecting the joint distribution of soil temperature and
moisture estimates into Gaussian distributions can be inappropriate. Therefore, a new
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batch smoothing algorithm is required to robustly assimilate a sequence of observations.
Third, the state of the art of the vadose zone model cannot simulate the surface energy
balance under vegetated areas. This will lead to incorrectly estimated soil moisture and
temperature relationships, and may result in biased soil moisture estimates. Improve-
ments have to be made in the forward model to account for the vegetation affects on the
land surface energy balance. Finally, the observation depths are uncertain due to the dif-
ficulties in DTS installation. As shown in the inversion approach, the uncertainties in the
observation depths can usually lead to physically unreasonable soil moisture estimates.
Dealing with this type of uncertainty is also rarely reported. Thus, a data assimilation
algorithm that can account for the observation depth uncertainties is needed. The main
objective of this thesis is to design and test such an algorithm.

1.7. RESEARCH OUTLINE
The goal of this thesis is to develop a new Passive DTS framework for large scale soil
moisture mapping by assimilation DTS observed soil temperature data. The rest of the
thesis is structured as follows:

Chapter 2 tests the hypothesis that soil moisture can be estimated by assimilating
soil temperatures. Synthetic experiments under different assumptions of model struc-
tural errors are used to test the robustness of the proposed data assimilation method,
which demonstrate the strong physical links between the soil heat and water transfer
processes. The impacts of assimilating soil temperature at different intervals and at dif-
ferent depths are discussed, which aims to investigate the optimal strategies for applying
the data assimilation method in estimating soil moisture using soil temperatures. The
popular Ensemble Kalman Filter will be used in this chapter.

Chapter 3 tests the hypothesis that soil temperature evolution within a certain length
of time window, rather than an instantaneous soil temperature measurement, contains
more soil moisture information. In order to assimilate all the soil temperature observa-
tions within a batch window, we proposed a new data assimilation technique, the Parti-
cle Batch Smoother (PBS). We will also demonstrate that batch smoothing outperforms
sequential filtering.

Chapter 4 tests the hypothesis that soil moisture, thermal properties, and hydraulic
properties can be jointly estimated by assimilating soil temperatures. We show that es-
timating model states and parameters jointly leads to significantly improved estimates
compared to the cases of updating state alone, as presented in Chapter 3.

Chapter 5 solves two key challenges in applying the methodology developed in chap-
ter 4 to real DTS data. First, the state of the art vadose zone model is improved by cou-
pling a vegetation energy balance scheme. This allows us to apply the proposed method
under various land covers. Second, we provide a method for estimating observation
depths. This allows us to estimate soil moisture information when the observation (DTS
cable) depths are poorly known. Data collected from an intermediate scale soil moisture
network are used for demonstration.

Chapter 6 applies the PBS methods to a section of real DTS data. The theories and
algorithms presented in chapter 5 are used in this chapter. The estimated soil mois-
ture, thermal and hydraulic properties are validated using measurements collected at a
nearby site. An improved PBS is also presented to provide robust estimates by assimilat-
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ing DTS observed soil temperatures.
Chapter 7 synthesizes the key contributions of this thesis in high spatial resolution

soil moisture monitoring using Passive DTS. The knowledge generated and the contri-
butions of the thesis are also discussed in a broader context, e.g. intermediate scale soil
moisture monitoring, soil - hydrology research, data assimilation.
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USING THE ENSEMBLE KALMAN FILTER

2.1. INTRODUCTION
The previous chapter summarized the importance and the challenges of measuring high
spatial resolution soil moisture using Passive DTS over large scales. It also proposed
the concept of using data assimilation to handle the uncertainties in Passive DTS. Since
the hypothesis that soil moisture can be estimated by assimilating soil temperatures has
never been tested, this chapter tests this hypothesis using synthetic tests.

In this chapter, synthetic experiments are used to demonstrate that the ensemble
Kalman filter [43, 62] could be used to estimate soil moisture by merging soil mois-
ture and temperature profiles from a fully coupled soil heat and water transport model
(Hydrus-1D, [63]) with temperature observations at a limited number of depths (section
2.2). Synthetic experiments are preferred in this chapter is because the true soil tem-
perature and moisture are perfectly known at every time step and depth and the input
uncertainties are known by design. Therefore, the performance of the data assimilation
algorithm and the concept of this chapter can be explicitly and precisely evaluated. We
also demonstrate that synthetic experiments can be a useful tool in designing DTS ex-
periments, e.g. in determining the number of depths at which cables are required and
which combinations of cable depths yields the most information on soil moisture (sec-
tion 2.3).

2.2. METHOD AND MATERIALS

2.2.1. HYDRUS-1D MODEL
In this chapter, the vertical soil water, heat and vapor transport processes in the unsat-
urated zone are simulated using the Hydrus-1D model [63]. The governing equation for
one-dimensional liquid and vapor flow is expressed as:

∂θ
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= ∂
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∂h
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+KLh +KT T
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∂z

]
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where θ is soil water content (m3m−3) at time t (s), and z is the vertical coordinate (pos-
itive upward) (m). KT h and KT T are the isothermal and thermal total hydraulic con-
ductivities, respectively, and KLh is the isothermal unsaturated hydraulic conductivity. S
is a sink term (m3m−3s−1). KLh and the soil retention curve are determined using van
Genuchten’s model [64] :
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θs h ≥ 0
(2.3)

where Ks is the saturated hydraulic conductivity (ms−1), Se is the effective saturation, l ,
m, n and α are empirical shape parameters and θr and θs are the residual and saturated
soil water contents (m3m−3). The parameters in equation (2.2) and (2.3) were estimated
using the ROSETTA model [65]. The basic input soil properties for ROSETTA model are
soil texture (in terms of percentage sand, silt and clay) and bulk density(ρb).

The governing equation for soil heat transport is:
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where T is soil temperature in Kelvin, Cw ,Cv and Cp are the volumetric heat capacities
of water, vapor and moist soil (Jm−3K−1), L0 is the volumetric latent heat of vaporization
of liquid water (Jm−3), qL and qv are the flux densities of liquid water and vapor (ms−1),
and λ(θ) is the apparent soil thermal conductivity (Wm−1K−1). λ(θ) is estimated from:

λ(θ) =λ0(θ)+β0Cw |qL | (2.5)

where β0 is the thermal dispersivity (m), and thermal conductivity λ0 can be estimated
in Hydrus-1D using either the model of Campbell et al. [66] or Chung and Horton [67].
The Chung and Horton model only provides three parameter sets for sand, loam and clay
soil types. The Campbell model can estimate the relationship between soil thermal con-
ductivity and soil moisture for any given soil texture. Therefore, the Campbell model will
be used here in the forward model of ensemble open loop and assimilation experiments.

The upper boundary condition in the soil water movement calculations was “Atmo-
spheric boundary condition with surface runoff". Several options for the lower bound-
ary condition for soil water movement are available in Hydrus. In the forward model of
ensemble open loop and assimilation experiments, the “free drainage" lower boundary
condition will be used. The upper boundary for heat transfer was “Heat flux", which
is calculated based on the soil surface energy balance, and the lower boundary is “zero
gradient". Model details and a complete description of these boundary conditions are
provided by Saito et al. [68]. In this chapter, the model time step is approximately 1min,
and the soil column to 1m depth is simulated with a vertical resolution of 1cm.

2.2.2. ENSEMBLE KALMAN FILTER IMPLEMENTATION
In the EnKF([43, 62, 69]), each of the N ensemble members is propagated forward in
time using the forward model:

xi , f
t = f

(
xi ,a

t−1,ui
t ,bi

)
+wi

t (2.6)

where f represents the forward model (Hydrus-1D in this case), xi , f
t is the i th ensemble

model forecast (prior) state at time t , and the xi ,a
t−1 is the updated (posterior) model state

at time t −1, ui is the perturbed forcing data, bi is a vector of time invariant model pa-
rameters (e.g. soil thermal and hydraulic properties), and wi is the model error. In this
experiment, the state vector (xi

t ) is defined to include the temperature and soil moisture
in each layer of the soil column, and we use 100 ensemble members . The state update
equation is as follows:

xi ,a
t = xi , f

t +K(di
t −Hxi , f

t ) (2.7)

where di
t is the vector of perturbed observations, K is the Kalman gain term and H is the

measurement operator that relates the model states to the observations. In this chapter,
the observations are temperatures at a limited number of depths.
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The Kalman gain term (K) is given by:

K = P f HT (HP f HT +R)−1 (2.8)

where R is the observation error covariance, and P f is the forecast error covariance. In
EnKF, P f is estimated from the ensemble as follows:

P f =
1

N −1

N∑
i=1

(xi , f
t −x f

t )(xi , f
t −x f

t )T (2.9)

x f
t = 1

N

N∑
i=1

xi , f
t (2.10)

2.2.3. INVERSION METHOD
Steele-Dunne et al. [38] estimated thermal diffusivity from DTS temperature measure-
ments at three depths. The temperatures measured in the top and bottom cables provide
boundary conditions for a diffusion model:

∂T

∂t
= λ(θ)

C (θ)

∂2T

∂z2 = D(θ)
∂2T

∂z2 (2.11)

where D is soil thermal diffusivity (m2s−1), which is the ratio of soil thermal conductivity
to heat capacity. Matlab’s “fminsearch” function (a Nelder-Mead simplex direct search)
was used to find the diffusivity value that minimizes the RMSE between simulated and
observed temperature in the middle cable. The optimal diffusivity is found for a 24 hour
window, which is moved in 3 hourly increments. The initial value for each window is
the best estimate from the previous window. This moving window strategy ensures that
enough data is available to estimate diffusivity, while yielding estimates at an acceptable
temporal resolution. The soil moisture can be inferred from the estimated soil thermal
diffusivity if the relationship between soil moisture and thermal diffusivity is known or
can be assumed. Note that a single value of D is estimated for the soil column between
the top and bottom cables, i.e. it is assumed that D is uniform between the top and
bottom cables. Additional details on the implementation of this inversion method are
provided in [38].

2.2.4. DATA ASSIMILATION EXPERIMENTS
The meteorological data and soil properties used in this chapter were collected at the
Soil Moisture Active Passive (SMAP) Marena Oklahoma In-Situ Sensor Testbed (MOISST)
site (refer to A.1). Uncertainty is included in the meteorological forcing data, soil tex-
ture and the initial conditions. For each ensemble member, these are perturbed using
the assumptions summarized in Table 2.1. Precipitation and solar radiation were per-
turbed assuming multiplicative errors to ensure that the values remain positive. The as-
sumed standard deviations reflect instrument error as well as spatial representativeness
- weather data is collected at a point, while DTS observations are distributed in space.
Figure 2.1 (a) and (b) show a histogram of the ensemble of precipitation values and solar
radiation values at some model time step.
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Table 2.1: Generation of perturbed inputs (soil property and forcing) for each ensemble member.

Variable Error Distribution Mean Standard deviation Bound
Sand (%) Gaussian, Additive 0 (%) 17 (%) 15, 55
Silt (%) Gaussian, Additive 0 (%) 5 (%) -, -
ρb(g /cm3) Gaussian, Additive 0 (g /cm3) 0.05 (g /cm3) -, -
Precipitation (mm) Gaussian, Multiplicative 1 × 0.2 -, -
Radiation (W /m2) Gaussian, Multiplicative 1 × 0.075 -, 1350
Air temperature (oC) Gaussian, Multiplicative 1 × 0.05 -, -
Relative humidity (%) Gaussian, Multiplicative 1 × 0.05 -, 100
Wind speed (K m/h) Gaussian, Multiplicative 1 × 0.2 -, -

Figure 2.1: Distribution of the model forcing for the ensemble members (histogram) and the truth (triangle)
at one model step, taking precipitation (a) and radiation (b) as an example. Soil water retention (c) and soil
thermal conductivity (d) as a function of soil moisture. Each thin gray line represents the soil property of
one ensemble member, and the ensemble mean is shown as the blue line. The soil properties used for truth
generation are shown as the black lines.
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Figure 2.2: The "true" soil texture for each of the 50 synthetic truths as being presented in USDA textural
triangle. The silt and sand content are sampled from the distribution decided in Table 2.1, with the clay content
calculated as (100-Silt-Sand)%.

The ensemble mean values of the sand and silt contents and bulk density (ρb) are set
to the values measured at site A. The sand and silt content are perturbed assuming addi-
tive Gaussian error with zero mean and a standard deviation based on the observed vari-
ability in the field (≈ 17% for sand, and ≈ %5 for silt). The clay content for each ensem-
ble member is calculated as the residual (100−Sand−Silt)%. We perturbed bulk den-
sity using additive white Gaussian error, with standard deviation of 0.05 gcm−3, which is
larger than calculated using field measurements. Soil properties (texture and bulk den-
sity) are assumed to be uniform over the entire profile. For each ensemble member, soil
hydraulic properties were calculated from this perturbed soil texture and bulk density
using ROSETTA. The Campbell model was used to generate soil thermal conductivity
curves for each ensemble member. Figure 2.1 (c) and (d) show the soil water retention
and thermal conductivity curves for each ensemble member. The initial soil moisture
and temperature profiles are assumed to be homogeneous with depth. The initial soil
moisture and temperature values are sampled from uniform probability distributions
with a range of 0.2 to 0.35 m3/m3 and 17 to 25 oC respectively.

The synthetic truth was generated as an additional ensemble member from the model
assuming the error distributions described in Table 2.1. This means that the forcing data
used to generate the “true” soil temperature and moisture is different from the individual
ensemble members and the ensemble mean. In addition, the truth is generated using a
randomly sampled soil texture and bulk density. As a result, the derived soil hydraulic
and thermal properties also differ from the individual ensemble members and the en-
semble mean (see Figure 2.1 c and d). This is to represent the errors/uncertainties in soil
hydraulic and thermal properties caused by spatial variability and measurement error.
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Similarly, the “true” soil temperature and moisture are initialized using the same distri-
bution as the ensemble. Hence, the truth used here considered the error from model
forcing data, initial conditions and the error caused by incorrect soil parameters (i.e.
soil hydraulic and thermal properties). Synthetic DTS observations were generated by
adding Gaussian error to the “true” soil temperature from a limited number of depths.
DTS temperature resolution can approach 0.03K over integration times of 60 to 300s [70].
With good calibration, even less expensive DTS systems can achieve 0.1K accuracies for
integration times of 60s [71]. Therefore, as a conservative estimate, an observation error
of an observation error of 0.1K is assumed for the synthetic “DTS" temperature observa-
tions.

Using this set-up, the following experiments were performed:

1. Illustrative example For a single “truth”, temperature observations at three depths
(5,10 and 20cm) are assimilated into Hydrus-1D every hour. The estimates after
data assimilation (EnKF) are compared to the synthetic truth (Truth), and an en-
semble open loop run of Hydrus-1D without any assimilation (EnOL). In this illus-
trative case, the soil water retention and thermal conductivity curves used for the
truth are shown in black in Figure 2.1. The data assimilation approach will also be
compared with the inversion method as employed by Steele-Dunne et al [38]. Note
that in the inversion method, the relationship between soil moisture and thermal
diffusivity is assumed to be known and is based on the soil texture from the truth.
This requirement, that the relationship between soil moisture and thermal diffu-
sivity is known, is one of the major limitations of the inversion approach [38].

2. Robustness test To investigate the robustness of our data assimilation algorithm
across a wide range of soil properties, the first experiment is repeated for fifty dif-
ferent “truths”. Each truth has different perturbed inputs (e.g. soil properties, ini-
tial condition and forcing). Figure 2.2 shows the fifty soil texture values considered.
This range of values was chosen to be consistent with the range of soil texture val-
ues observed at the SMAP MOISST site. This gives an indication of how uncertain
soil texture would be along a Passive DTS installation at this site, with the soil type
varying from clay to loam and one instance of sandy loam.

3. Impacts of data assimilation interval. For ten different “truths”, the soil moisture
and temperature profiles were estimated by assimilating temperature data at 5, 10
and 20cm at intervals of 1, 3, 6, 12, 24 and 72 hours.

4. Comparing observation strategies Observing System Simulation Experiments (OSSEs)
are used in remote sensing to evaluate and develop the optimal observation strat-
egy and to analyze the influence of observation strategy and errors on retrievals.
Here, an OSSE is conducted to determine how many cables are really needed, and
at which depths they should be installed. Installing cables at fewer depths allows
us to measure over a larger area with the same amount of cable.

5. Impact of model structural errors - lower boundary condition This set of experi-
ment investigates the impact of an incorrectly defined lower boundary condition.
The truth is generated in a similar manner to the previous experiments, except
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Figure 2.3: An illustrative example of comparing soil thermal conductivity curve (a) and diffusivity curve esti-
mated using the Campbell and Lu model. Soil properties for the two models are identical, with a sand content
of 32%, and bulk density of 1.45 g/cm3

that the hydraulic lower boundary condition is set to be “zero flux". The EnKF and
the EnOL used here are the same as previous experiments, i.e. the hydraulic lower
boundary condition was assumed to be “free drainage".

6. Impact of model structural errors - thermal conductivity model In previous ex-
periments, the Campbell model was used in generating the true relationship be-
tween soil moisture and thermal conductivity, as well as the relationship in the
forward model of the EnOL and the EnKF. Here, we consider the case where the
“true" relationship is generated using the model of Lu et al. [72] and the EnOL
and the EnKF use the Campbell model. A comparison of the modeled soil thermal
conductivity and diffusivity using the two models are shown in Figure 2.3.

7. Impact of model structural errors - heterogeneity soil property profile All of the
previous experiments were based on the assumption that the true soil properties
are homogeneous with depth. However, this assumption may be violated in re-
ality. This set of experiments is to evaluate the impact of vertical heterogeneity in
the true soil thermal and hydraulic property profile on the performance of the pro-
posed data assimilation method. A vertically heterogeneous soil texture and bulk
density profile is generated using the field measurements of soil texture at discrete
depths from site C. As shown in Figure 2.4, the soil texture is quite variable at shal-
low depths, and the profile mean is significantly different from that used in the
EnKF. Soil thermal and hydraulic properties for the truth are generated using the
heterogeneous soil texture and bulk density profiles, and hence the true soil ther-
mal and hydraulic properties are vertically heterogeneous. The EnOL and EnKF
are the same as in the previous experiments, i.e. the soil texture and bulk den-
sity profiles, and therefore the soil thermal and hydraulic properties, are vertically
homogeneous (Figure 2.4).
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Figure 2.4: Sand (a), Clay (b) and bulk density (c) profiles used for generating soil thermal and hydraulic prop-
erties in the truth and the EnKF. Only the top 0.5m of the simulation soil column is presented. Each thin blue
line represents one ensemble member.

2.3. RESULTS AND DISCUSSION

2.3.1. AN ILLUSTRATIVE EXAMPLE
Figure 2.5 (a) to (c) show the true temperature profile, and the difference between the
true profile and that obtained from the EnOL and EnKF. It is clear that this particular
realization of the “truth” is much warmer than the EnOL, with errors up to 5K at depth.
Assimilation of temperature observations at 5, 10 and 20cm reduces this simulation er-
ror to close to zero throughout the soil column. Figures 2.5 (d) to (f) show time series
of the error in the estimated temperature at 1, 5 and 10cm. They show that solar radi-
ation, and uncertainty in solar radiation result in a significant daily cycle in the error
in estimated temperature from the EnOL. The maximum errors coincide with the daily
maximum values of solar radiation at noon. The EnKF reduces the error of the temper-
ature estimates considerably, and the daily cycle in temperature error is no longer ap-
parent. Soil temperature close to the surface is more likely affected by the uncertainties
of the forcing (e.g. radiation, air temperature, and wind speed). Hence, the tempera-
ture estimates have larger errors than those at depth. The smallest errors in estimated
temperature from the EnOL are during large precipitation events (e.g. 05/19, 06/15 and
07/04) when temperatures in the top 20 cm are primarily influenced by water fluxes in
the soil column.

It is noticed that the innovations are biased in Figure 2.5 (d) to (f). This may be
avoided when a bias correction algorithm is used [e.g. 73–76]. However, the bias of the
innovations is attributed to the biased model parameters (Figure 2.3). Hence, a more
physically based way of removing this bias is to remove the bias in the prior guessed
model parameters. Providing unbiased model parameter along each meter of DTS ca-
ble is challenging, if possible. Hence, we are interested in investigating the accuracy of
the soil moisture estimates, when the prior guessed model parameters are biased, in this
chapter.

In Figure 2.6, the soil moisture truth is compared to the ensemble mean from EnOL
and EnKF for the entire profile. By comparing Figures 2.6 (d) and (e), one can see that,
assimilating temperature observations also leads to an improved soil moisture estimate.
Comparing Figures 2.6 (a) and (b), it is clear that the EnOL overestimates the soil mois-
ture throughout the profile. The extended periods of elevated soil moisture after pre-
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Figure 2.5: Comparison of soil temperature profile estimated by EnOL and EnKF. a: the synthetic true soil
temperature profile, b: the difference between the True and the EnOL estimated soil temperature profile, and
d to f: the error of the EnOL and EnKF estimates at 1, 5 and 10 cm.

cipitation events are particularly striking. The bias is particularly noticeable at depth in
the second half of the experiment. From Figure 2.6 (d), the most significant improve-
ment due to assimilation is in drying the surface layers after precipitation events. In the
EnKF, the soil moisture at depth is updated through the update equation directly, but
also through the model physics. If the surface moisture near the surface is updated to
a moister condition, this extra moisture ultimately increases the soil moisture at depth.
Similarly, the physics of the model ensure that the “extraction” of moisture from the sur-
face layers in the EnKF contribute to a drier soil at depth between precipitation events.
Figure 2.6 (e) shows that the largest discrepancy between the estimated (EnKF) and true
soil moisture occurs during precipitation (e.g. 05/19, 06/15 and 07/04).

Figure 2.7 provides insight into how the soil temperature and moisture states are up-
dated by the temperature observations. It shows the forecast error covariance between
instantaneous temperature and temperature (PT T ) and temperature and moisture (PTθ)
states across the three observation depths (5, 10 and 20cm). The forecast error covari-
ance was determined at each time step, and averaged over the experiment duration to
yield this daily cycle of values.

When the forecast error covariance is low, the corresponding element of the Kalman
gain matrix will be close to zero and the states will barely be updated. When the fore-
cast error covariance is high, the EnKF updates towards the observations. Any highly
correlated states (including unobserved states) will also be updated.

From the left column, PT T clearly has a significant daily pattern driven primarily by
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Figure 2.6: Comparison of soil moisture profile estimated by EnOL and EnKF.

Figure 2.7: Averaged daily cycle of temperature and soil moisture error covariance at three depths. The left
column presents the error covariance between modeled temperature, and the right column shows the er-
ror covariance between temperature and moisture. The error covariances presented are vectors in P f , e.g.

PT5cmθ5cm
= 1

N−1
∑N

i=1(T5cm −T5cm )(θ5cm −θ5cm )T .
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the uncertainty in solar radiation. The largest forecast error covariance occurs around
the noon, while smallest values occur when solar radiation is low (e.g. 0:00 to 6:00 and
18:00 to 24:00). The temperature forecast error covariance decreases with depth due to
the exponential decrease in soil temperature amplitude with depth [77].

The right column in Figure 2.7 shows the error covariances between instantaneous
soil moisture and temperature (PTθ). This strong negative covariance between tempera-
ture and soil moisture explains why the soil moisture can be updated using observations
of temperature alone. PTθ also has a significant daily cycle due to the temperature errors,
with a maximum absolute value around noon. This suggests that assimilating tempera-
ture observations around noon will be most effective in updating soil temperature and
moisture estimates. PTθ also decreases with depth, but to a lesser degree than PT T does.
Consequently, temperature observations at 20cm can still contribute to soil moisture es-
timates. It is worth noting that soil moisture at different depths is highly correlated, so
any update to the shallow soil moisture will also influence values at depth.

Recall from Figure 2.6 (e) that the largest discrepancy between the estimated (EnKF)
and true soil moisture occurs during precipitation. At these times, heat convection due
to water flux during precipitation cools the soil column at all layers (Figure 2.5 (d) and
(e)). The ensemble of temperature values collapses, reducing the covariance with soil
moisture and prevents the soil moisture from being updated with temperature during
and just after precipitation events.

The EnKF approach is compared with the inversion method in Figure 2.8. The in-
version method can only provide the average of the soil thermal diffusivity between the
boundaries (5 and 20cm in this case), as shown in Figure 2.8 (a). Therefore, the true
values are also averaged for the purpose of comparison. The spikes in the estimated dif-
fusivity are due to the fact that heat convection processes are neglected in the inversion
method (e.g. May 9th and June 13th). In the dry period (e.g. July 7th to August 4th),
the estimated diffusivity is biased, which might be explained by ignoring the heat trans-
ported by vapor fluxes. Diffusivity is a non-monotonic function of soil moisture. We
can select the right estimates by selecting the soil moisture value that ensures the soil
in drying down, except during precipitation events. Provided the soil diffusivity curve is
perfectly known, the inversion method can provide reasonable soil moisture estimates.
In practice, it is difficult to have this relationship for every meter of cable in the field. The
EnOL deviates from the truth due to the incorrect parameterization and model forcing
errors. When soil temperature data are assimilated, soil moisture estimates are signifi-
cantly improved. The soil moisture estimated using the EnKF is closer to the truth than
the estimates from the inversion method. It is worth noting that, in contrast to the in-
version method, the data assimilation approach does not require a known relationship
between soil thermal diffusivity and soil moisture. This will greatly facilitate the field
implementation of this method.

2.3.2. ROBUSTNESS OF THE DATA ASSIMILATION ALGORITHM

Figure 2.9 compares the RMSE of soil moisture estimated by EnOL and EnKF at different
depths for each of the fifty “truths”. Generally, the EnKF provides better soil moisture
estimates. The improvement is greatest close to the surface where the covariance be-
tween temperature and soil moisture is largest. The EnOL estimate is unconstrained by
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Figure 2.8: Comparison of soil thermal diffusivity estimated using inversion method with the truth (a), and the
soil moisture estimated using inversion method (Inv-High and Inv-low), EnKF, EnOL with the truth (b).

observations, so the estimate is always the same. Sometimes, the “truth” coincides with
this mean, yielding a very low RMSE for the EnOL. In this case, the EnKF yields little im-
provement. Conversely, if the synthetic truth is far from this EnOL mean, the EnKF yields
a significant improvement by drawing the ensemble mean towards the observations.

Recall that for the fifty tests, each truth was generated with a different “true” soil
texture, which can be significantly different from the ensemble mean (see also Figure
2.1). This means that the DA approach has a significant advantage over the inversion
approach. Steele-Dunne et al. [38] demonstrated that the need to know the relationship
between soil thermal conductivity and soil moisture for each meter of the cable was a
serious limitation of the inversion approach. The DA approach used here can estimate
soil moisture in the presence of uncertainty in soil texture and therefore overcome this
limitation.

2.3.3. IMPACT OF ASSIMILATION INTERVAL

Figure 2.10 shows the impact of assimilation interval on the RMSE in estimated temper-
ature and soil moisture. For assimilation intervals of 12, 24 or 72 hours, the states were
updated at noon to maximize the covariance between temperature and soil moisture.

Soil temperature at the surface is influenced by high frequency variations in solar
radiation. As thermal energy is propagated through the soil column, evidence of higher
frequency fluctuations is damped and the temperature is dominated by longer (e.g. daily,
seasonal and annual) cycles of temperature variation. Figure 2.10 (a) shows that at depth
(e.g. at 50cm), an assimilation interval of 72 hours or 24 hours yields a substantial im-
provement over the EnOL. Reducing the assimilation interval further has a limited ben-
efit at depth because fluctuations on this time scale are less relevant deep in the soil col-
umn. Closer to the surface (e.g. at 10cm), infrequent assimilation (72 hours) has limited
benefit, but reducing the assimilation interval continues to yield a reduction in RMSE.
Therefore, to minimize the RMSE in estimated temperature, temperature observations



2

24
2. DETERMINING SOIL MOISTURE BY ASSIMILATING SOIL TEMPERATURE MEASUREMENTS

USING THE ENSEMBLE KALMAN FILTER

Figure 2.9: Comparison of RMSE in soil moisture estimated using EnKF and EnOL. Results are presented at six
depths. Each cycle represents the RMSE from a single synthetic experiment.

should be assimilated as often as possible.

From Figure 2.10 (b), assimilating temperature observations every 72 hours reduces
the RMSE in soil moisture by almost 50% compared to the EnOL. Results are similar
throughout the profile. The profile in RMSE is almost uniform apart from a slight in-
crease between the location of the first cable and the surface where the estimate is pri-
marily updated through the state update and not through model physics (heat and mois-
ture were primarily propagated downward during this simulation period). Generally,
more frequent assimilation reduces the RMSE, though there is little difference between
hourly and three-hourly assimilation. Given that hourly assimilation yields an almost
uniform profile in RMSE in both temperature and soil moisture, one hour is considered
a reasonable assimilation interval. However, reducing the assimilation interval further
to five minutes leads to ensemble collapse and an increase in RMSE. Hourly assimilation
ensures that the ensemble has a chance to grow between updates.

2.3.4. OBSERVATION STRATEGY

In Figure 2.11, different observation strategies (number of cables and depths) are com-
pared to the EnOL (no observations), and EnKF using cables at all three depths. Figure
2.11 (a) compares the RMSE in temperature for these two benchmarks against the EnKF
assimilating observations at a single depth which is varied from 5cm to 50cm. As ex-
pected, all single depth EnKF assimilation results lie between the two benchmarks and
the largest RMSEs are closest to the surface. The minimum RMSE is at the depth of the
observation because the model and observations are most correlated at this depth. The
RMSE increases with increasing distance from the observations. From Figure 2.11 (c), it
is clear that using observations at two depths greatly improves the temperature estimates
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Figure 2.10: RMSE of estimated temperature and soil moisture as a function of data assimilation intervals.
Each line represents the averaged RMSE from 10 synthetic experiments. Temperature observations at noon
were assimilated in the cases with assimilation interval of 12, 24 and 72h.

of the entire profile. This is because observations at two or more depths constrain the
temperature gradient, yielding improved estimates of the entire soil temperature profile.
As the greatest errors occur close to the surface, Figure 2.11 (c) shows that locating the
uppermost cable close to the surface yields the best results.

Results in Figure 2.11 (b) and (d) indicate that installing cables at two depths might
also be sufficient for soil moisture estimation. If only one cable is to be installed, it ap-
pears from Figure 2.11 (b) that this should be installed at 10 or 20cm. While the tempera-
ture at 5cm layer is dominated by solar radiation, the temperature at 20cm is influenced
by the thermal properties (and hence moisture content) of the overlying soil. Installing
any deeper (e.g. at 50cm) means observing close to or deeper than the damping depth,
where the temperature variations are probably too low to yield useful information.

From Figure 2.11 (d), there is no clear optimal pair of depths at which temperatures
should be observed to estimate soil moisture. Though the RMSE values are lower than
those obtained with temperature observations at one depth, there is little difference in
RMSE between depth combinations. It appears that capturing the temperature gradient
somewhere in the soil column is enough to constrain the soil moisture estimate. Ob-
serving temperatures at 10 and 20cm yields just a marginal improvement over the other
options.

Using the proposed data assimilation approach to estimate soil moisture from DTS
observations would allow us to measure at two, rather than three, depths. This makes
installation in the field much easier, and can allow us to measure over a larger area with
the same amount of cable. The data assimilation approach allows us to determine, for a
given soil type, the depths at which the cables should be installed. Hence, by integrating
DTS and data assimilation, we can design better DTS installations.

2.3.5. IMPACT OF MODEL STRUCTURE ERRORS
The impact of incorrectly defining the lower boundary condition is shown in Figure 2.12.
Based on 50 truths, the RMSE of soil moisture estimates in the surface layers (above
10cm) are significantly reduced using the EnKF. At 50cm, the soil moisture estimates
can be worse after data assimilation. This is because the impacts of the lower bound-
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Figure 2.11: RMSE of estimated temperature (a and c) and soil moisture (b and d) using observations at dif-
ferent depths in the EnKF. In the top row, temperature observations at a single depth are assimilated. In the
bottom row, two observation depths were assimilated (5 and 10cm, 5 and 20cm, and 10 and 20cm respectively).
For each case, 10 synthetic truths were used for testing. Each line represents the averaged RMSE of the 10 tests.
Results are compared to EnOL and EnKF results in which observations from all 3 depths were assimilated.
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Figure 2.12: Similar with Figure 2.9, but the truth is generated using a lower boundary of "zero flux".

ary condition mainly affects the soil moisture at deep layers. Furthermore, only surface
soil temperatures (5 to 20cm) were assimilated and their correlation with the deep soil
moisture is limited.

Figure 2.13 shows the impact of assuming an incorrect model structure for the soil
thermal conductivity as a function of soil moisture. Recall that in this experiment, the
truth was generated using the Lu Model, while the EnKF and the EnOL use the Campbell
model. At 2cm, the soil moisture estimates are greatly improved by EnKF. With increasing
depth, the improvement decreases gradually (the red circles are getting closer to the 1:1
line). Solar radiation propagates downward from the surface to the lower boundary, so
the soil heat transfer process is from the surface downwards. As a result, the error due
to assuming an incorrect soil thermal conductivity model accumulates from the surface
to the lower boundary. Hence, soil moisture estimates at deeper layers are more likely to
be affected.

Table 2.2 shows the RMSE of soil moisture estimated using the EnOL and EnKF when
the assumption of vertically homogeneous soil thermal and hydraulic property profile
is violated. The soil moisture estimated using EnOL has a RMSE above 0.05 m3/m3 at
all depths. Compared to the EnOL estimates, the EnKF provides improved soil mois-
ture estimates across the entire profile. The largest RMSE of the EnKF estimates are at
5cm, where there is a sharp change of soil bulk density in the vertical profile (Figure 4).
Identical to the EnOL, the EnKF assumes the soil thermal and hydraulic properties are
uniformly distributed in the profile. As a result, the error covariance between the soil
temperature and moisture predicted by the forward model will be less accurate, par-
ticularly at depths where there are sharp changes of soil thermal/hydraulic properties.
Nevertheless, this set of experiments demonstrates soil temperature at shallow surfaces
can be used to improve and constrain the soil moisture profile estimates, even when
soil thermal/hydraulic properties are heterogeneously distributed in the profile. How-
ever, the performance is obviously better when the soil properties are relatively homo-
geneous with depth, i.e. when the model is closer to the truth. Hence, prior knowledge
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Figure 2.13: Similar with Figure 2.9, but the thermal conductivity of the truth is estimated using Lu model.

Table 2.2: The RMSE of soil moisture (m3/m3) estimated using the EnOL and the EnKF at 6 depths with truth
generated using a heterogeneity soil thermal and hdyraulic property profile, as shown in Figure 2.4.

Depths 1cm 2cm 5cm 10cm 20cm 50cm
EnOL 0.0566 0.0589 0.0632 0.0813 0.0529 0.0675
EnKF 0.0398 0.0371 0.0430 0.0317 0.0175 0.0315

or methodologies that can constrain soil thermal and hydraulic property profiles in the
forward model may further improve the proposed method.

2.4. CONCLUSIONS
This synthetic study demonstrates that the profile of soil moisture and temperature can
be estimated more accurately by assimilating soil temperature observations into a cou-
pled heat and moisture transport model. The soil temperature is observed directly at a
limited number of depths, but the strong correlation in temperature across the profile
ensures that temperature at all depths is updated by each observation. The strong nega-
tive error covariance between instantaneous soil moisture and temperature is enough to
ensure that information from the temperature observations also updates the soil mois-
ture throughout the profile. In addition to the increments from the update equation it-
self, the physics of the model also play an important role in updating the states at depth
e.g. if the surface soil moisture is reduced, that ultimately leads to drier soil at depth.

The data assimilation approach presented here offers a promising new way to es-
timate soil moisture from Passive DTS. It offers several advantages over an amplitude
analysis or the previously used inversion method: 1) It provides a detailed vertical dis-
tribution of soil moisture and temperature in the soil column. 2) It avoids the need to
infer soil moisture from thermal diffusivity, which can be problematic due to the non-
monotonic nature of the relationship between soil moisture and thermal diffusivity. 3)
The estimate is constrained by the model as well as the observations. If the net radiation
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is low, the inversion method fails because there is no daily temperature signal to propa-
gate into the soil column. In this data assimilation approach, the model keeps the esti-
mate on track in this case. 4) Data assimilation approaches, particularly the EnKF used
here, are appealing because they provide a means to handle uncertainty. This is particu-
larly relevant due to the importance of uncertainty in soil properties in the application of
DTS to estimate soil moisture in the field. In this chapter, it has been shown that provid-
ing the model with a distribution of soil texture that reflects the expected range of values,
soil moisture can be estimated regardless of the “true” soil texture. 5) While the inversion
method required observations at three depths, assimilating temperature at two depths
is enough to constrain the temperature gradient and yield equally good results as three
depths. For DTS, this means that cables need to be installed at two, rather than three,
depths. This allows us to measure over a larger area with the same amount of cable.

The model structural error impacts were also investigated by generating the truth us-
ing different assumptions to those made in the EnOL and EnKF simulations. Results sug-
gest that soil moisture estimates down to 20cm can be robustly estimated even when the
lower boundary condition or the soil thermal properties are poorly parameterized. The
performance of the proposed method might be affected when true soil thermal and hy-
draulic properties have sharp changes in the vertical profile. The results presented here
are limited to synthetic experiments. It is important to note that synthetic experiments
are based on a “truth" that is infinitely simpler than reality. Applications of data assim-
ilation in real world situations are therefore always more complicated and less accurate
than in synthetic cases. In this chapter, some of the main sources of uncertainty are con-
sidered (i.e. soil thermal and hydraulic properties caused by the uncertainties in the soil
texture, soil moisture-thermal conductivity relationship, vertical heterogeneity), albeit
in a simplistic way. In practice, there are many other potential sources of uncertainty
including the structural error in modeling water retention curve (i.e. van Genuchten’s
model) and preferential flow. Consequently, the performance of this approach in a real
world case is expected to be poorer than the synthetic study case here. The obvious
next step is to evaluate this approach in the field. Application of the methodology for a
real-world case with additional types of errors is still a further, challenging and also in-
teresting step. The primary goal will be to see how well this approach works when the
physics of the true soil column are more complicated than that simulated by Hydrus-1D.

The model forecasts are shown to be biased in some cases, which is primarily due
to the differences between the ensemble mean model parameters and the true parame-
ters. Assuming the model parameters are unbiased everywhere along the DTS cable may
not be valid for the DTS applications. A bias correction algorithm [e.g. 73–76] might be
useful in removing the forecast minus observation biases, and further improve the esti-
mates. When a bias correction scheme is included, the data assimilation performance in
terms of unbiased metrics will change and the findings in the results would be different.
However, since the bias of the forecasts are primarily attributed to the model parame-
ters, an alternative approach of removing the forecast biases is to jointly estimating the
model parameters with the states [69]. Provided the model parameters can converge to
the “truth", the forecast biases will be removed automatically. This may also allow us to
extract soil property information along the DTS cable.

Future research will also explore the potential of using smoothing rather than fil-
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tering for assimilation. This is often beneficial in soil moisture estimation due to the
strong correlation in time [78]. In this application, it is particularly relevant because soil
moisture influences the amplitude of the diurnal temperature wave as it is propagated
through the soil column. So, there may be additional information in a sequence of tem-
perature observations compared to an instantaneous temperature measurement [79].
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TEMPERATURES

3.1. INTRODUCTION
The previous chapter demonstrated that soil moisture can be estimated by assimilating
soil temperatures sequentially using the Ensemble Kalman Filter (EnKF). Soil moisture
determines the portion of energy that used for evaporative cooling. Consequently, a se-
quence of soil temperature observations contains more information about soil moisture.
Hence, assimilating a sequence of soil temperatures might lead to superior soil moisture
estimates than sequentially assimilating soil temperatures at instantaneous time steps.
This chapter tests this hypothesis.

The Ensemble Smoother (ES) can assimilate a sequence of observations. However,
the ES may lead to incorrect estimates when the system is highly nonlinear or the Gaus-
sian assumptions are not satisfied. Apparently, projecting the joint distribution of a se-
quence of soil temperature and soil moisture estimates into a multivariate Gaussian dis-
tribution can be inappropriate and risky. Particle approaches, e.g. Particle Filter (PF),
approximate the entire model posterior distribution using Monte Carlo sampling. Thus,
instead of preserving just the first two moments of the distribution, they also track the
higher moments. It may be possible to extend this PF algorithm to a batch smoother
algorithm, in which soil temperatures within a batch window can be assimilated, and
robustly estimate the soil moisture within that window.

In this chapter, a new data assimilation method, the Particle Batch Smoother (PBS),
is proposed in section 3.2. Section 3.4 provides detailed discussions and comparisons
of the PF and the PBS algorithm, which shows that show the PBS outperforms the PF
algorithm in soil moisture estimation. This also demonstrates that the evolution of soil
temperature, rather than instantaneous points, contains more soil moisture informa-
tion.

3.2. METHOD AND MATERIALS

3.2.1. SEQUENTIAL DATA ASSIMILATION
Same as Chapter 2, the model states of interest are soil moisture and temperature from
the surface (0cm) to 1 meter, which are propagated forward using the Hydrus-1D model
(Eq.2.6). The model estimates are related to the observations by:

ŷi
t = h(xi

t )+vi
t (3.1)

where ŷi
t is the simulated observation vector, h is a nonlinear operator relating the prior

estimated states (xi
t ) to the measured variable and vi

t is the observation error [58]. The
observation error is set to be 0.1K, according to the field calibration of the temperature
sensors. In this study, the observations are the temperatures at 4 and 8 cm.

3.2.2. PARTICLE FILTER AND BATCH SMOOTHER
In the PF, the posterior distribution of the model state can be written in recursive form
as follows [80]:

p(xi
1:t |y1:t ) = p(xi

1:t−1|y1:t−1)
p(xi

t |xi
1:t−1)p(yt |xi

t )

p(yt |y1:t−1)
(3.2)
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Integrating out xi
1:t−1, gives the marginal distribution [80, 81]:

p(xi
t |y1:t ) = p(yt |xi

t )p(xi
t |y1:t−1)

p(yt |y1:t−1)
(3.3)

where y1:t is the observation vector. This equation is called the updating step in which
the likelihood function, p(yt |xi

t ), is used to update the prior estimates. The prior esti-
mates at time step t are described as [81]:

p(xi
t |y1:t−1) =

∫
p(xi

t |xi
t−1)p(xi

t−1|y1:t−1)dxi
t−1 (3.4)

In the PF, the model state posterior density is approximated as:

p(x1:t |y1:t ) =
N∑

i=1
w i

tδ(x1:t −xi
1:t ) (3.5)

where δ() is the Direc delta function [82]. Because the posterior density is difficult to
sample directly, importance sampling is often used to draw particles from a known func-
tion q(x1:t |y1:t ) and assign the weights according to:

w i∗
t = p(xi

1:t |y1:t )

q(xi
1:t |y1:t )

(3.6)

where w i∗
t is the importance weight. Equation (3.6) can be expressed as [53]:

w i∗
t ∝ w i∗

t−1

p(yt |xi
t )p(xi

t |xi
t−1)

q(xi
t |xi

t−1,yt )
(3.7)

where p(yt|xi
t ) is the likelihood, p(xi

t |xi
t−1) is the transition prior, i.e. the probability of

moving to xi
t from xi

t−1, and q(xi
k+1|xi

k ,yt ) is the proposal distribution in the importance
sampling. Usually, the transition prior is used for the proposal distribution [53]. Hence,
Equation (3.7) can be simplified as:

w i∗
t ∝ w i∗

t−1p(yt |xi
t ) (3.8)

The likelihood function is expressed as:

p(yt|xi
t ) = 1

(2π)n/2det (R)1/2
e

[−0.5(yt−ŷi
t )T R−1(yt−ŷi

t )
]

(3.9)

where R is the error covariance of observations, and n is the number of the observations,
e.g. n = 2 in this case (temperatures at 4 and 8 cm were assimilated). The normalized
weight (w i

t ) is calculated as:

w i
t =

w i∗
t∑N

i=1 w i∗
t

(3.10)

Figure 3.1 (top panel) illustrates the PF algorithm at an update step. Initially, the uni-
formly distributed weights are assigned to the particles. When observations are avail-
able, the PF will update the weights of each particle according to the prior distribution
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Figure 3.1: A diagram for illustrating the PF at one updating step (upper panel) and the Particle Batch Smoother
(PBS) moving window strategy (lower panel). In the PBS moving window strategy plot, the solid lines are the
mean of the prior and posterior, and the distributions of the prior and posterior are shown as the shaded red
and blue area. Black circles represent the observations, and the strategy of using different observation interval
in the PBS is shown in (d) and (e) respectively.

and likelihood (i.e. Equation (3.9)). As shown in Figure 3.1(a), the PF adds weights to
the particles closer to the observation. Resampling is usually required to prevent weight
degeneration, i.e. a situation where most of the particles have negligible weights. Morad-
khni et al. [53] demonstrated that resampling the posterior after each update will avoid
the degeneracy problem, and result in a significantly improved performance. A detailed
description of resampling is given by Moradkhni et al. [53]. Therefore, we also perform
resampling when the particle weights are updated (Figure 3.1b), which results in up-
dated states (Figure 3.1 c).

Figure 3.1 (lower panel) illustrates the implementation of the PBS. While the PF as-
similates observations sequentially, the PBS assimilates all of the observations within a
window in a single batch. Therefore, the posterior density is calculated for a series of
model states in a window (L) i.e. p(xt−L+1:t |y1:t ).

Similar to the PF algorithm, this marginal distribution is used to derive the weights
updating equation:

w i∗
t ,s ∝ w i∗

t−L,s p(yt−L+1:t |xi
t−L+1:t ) (3.11)

w i
t ,s =

w i∗
t ,s∑N

i=1 w i∗
t ,s

(3.12)

where the subscript s denotes smoother. The calculated weights will be assigned to the
entire window, i.e. w i

t−L+1:t ,s = w i
t ,s . The likelihood function is calculated based on the
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Table 3.1: Generation of perturbed inputs (soil property and forcing) for each particle member.

Variable Error Distribution Mean Standard deviation Bound
Sand (%) Uniform - - 55, 95
Silt (%) Uniform - - 0, 20
ρb(g /cm3) Gaussian, Additive 0 0.05 -, -
Precipitation (mm) Gaussian, Multiplicative 1 × 0.2 -, -
Radiation (W /m2) Gaussian, Multiplicative 1 × 0.075 -, 1350
Air temperature (oC) Gaussian, Multiplicative 1 × 0.05 -, -
Relative humidity (%) Gaussian, Multiplicative 1 × 0.05 -, 100
Wind speed (K m/h) Gaussian, Multiplicative 1 × 0.2 -, -

observations of the entire window:

p(yt−L+1:t |xi
t−L+1:t ) =

t∏
j=t−L+1

1

(2π)no /2det (R)1/2
e

[
−0.5(y j −ŷi

j )T R−1(y j −ŷi
j )

]
(3.13)

where no is the number of observation depths. Clearly, the PF algorithm can be consid-
ered as a special case of the PBS algorithm where L = 1. The update procedure is the
same as illustrated in Figure 3.1, except that the state vector includes all states within
that window. After resampling, the algorithm will move to the next window with all the
weights initialized to 1/N . Different observations intervals can be used in the PBS algo-
rithm, as shown in Figure 3.1 (d) and (e). When a longer observation interval is used, the
PBS will discard the observations collected between the observation intervals.

3.2.3. DATA ASSIMILATION SET-UP
Data from the Microwex-2 experiment (A.2) are used to test and compare the perfor-
mance of the PF and PBS. The distribution assumed for each perturbed model input is
shown in Table 3.1. We are interested in investigating whether the proposed algorithms
can handle the biases/ uncertainties in the soil properties, when only rough soil texture
classification information is available. This is often the case in distributed temperature
sensing applications where soil texture can vary considerably over the scale of the in-
stallation [38]. Sand and silt content were sampled uniformly within the USDA classes
of sand and sandy loam, i.e. sand from 55% to 95% and silt from 0% to 20%. This is to
represent the spatial variability of the soil texture. Similar to the previous chapter, me-
teorological forcing data were also perturbed to represent the instrument error and the
spatial variability.

The objectives of this chapter are to demonstrate that particle-based data assimila-
tion can determine soil moisture by assimilating soil temperature observations in real
world data, and that particle batch smoothing yields better results than filtering.

First, we will demonstrate that the PF can be used to assimilate soil temperature ob-
servations at two depths into the Hydrus-1D model to estimate soil moisture estimates.
In this first test, an observation interval of 45 minutes will be assumed, and the number
of the particles will be set to be 100. Results from the PF will be compared to a model
open loop (OL) run, which is identical to running the 100 particles without performing
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any assimilations. Results from the PF and OL are also compared to in-situ observations
of soil moisture throughout the profile.

Second, we will determine the optimal observation interval in the PF algorithm. With
DTS, observations can be made every minute. However, assimilating these observations
too frequently can limit the range of particle values. If this becomes too small, the ob-
servation may fall outside the particle range, resulting in a poor update. To examine the
impact of increasing observation intervals on the range of particle values, we will vary
this interval from 15 minutes to 3 hours. Due to the limited duration of the experiment,
the initial condition has a significant influence on the estimated soil moisture, partic-
ularly at depth. To account for this, experiments are repeated 20 times with different
initial conditions, and the median and range of RMSE will be used to determined the
optimal observation interval for the PF.

Next, we will focus on the PBS algorithm. We will examine the impact of observation
interval on the PBS algorithm. As in the PF, the observation interval may affect the per-
formance. The observation interval will be varied from 15 minutes to 1.5 hours. In this
case, a window length of 3 hours will be assumed. Then we will investigate the impact
of assumed window length on the PBS estimate. As shown in Section 2.2, if the win-
dow length (L) is one (i.e. the window length is equal to the observation interval), the
PBS and the PF are equivalent. Our hypothesis is that the evolution of temperature in
time contains more information on soil moisture than the relationship between instan-
taneous soil moisture and temperature. Hence, increasing the window length should
lead to an improved estimate. However, increasing the length of the window increases
the dimension of the distributions to be estimated. This may increase the number of
particles required, and hence the computational expense. Maintaining the observation
interval of 15 minutes, the window length will be varied from 1 to 12 hours. Then we will
compare the optimal PF and the optimal PBS.

Finally, we consider the number of particles required by the two optimal approaches.
Though we expect the PBS to yield an improved estimate, this approach may require
more particles and therefore greater computational expense. A trade-off is necessary
between the reduction in RMSE and the increase in computational demand between
the two approaches. The PF and the PBS will be compared as the number of particles is
increased from 10 to 300.

3.3. DETERMINISTIC AND PROBABILISTIC PERFORMANCE AS-
SESSMENT

The RMSE is calculated as following:

RMSE =
√√√√ 1

Nt

Nt∑
t=1

(
θt −θt ,obs

)2
(3.14)

where Nt is the number of total time steps that has observations, θt is the mean of the
particle estimates at time step t , and θt ,obs is the observed soil moisture at t . The abso-
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lute bias of the estimates will also be calculated as:

Bi as =
∣∣∣ 1

Nt

Nt∑
t=1

(
θt −θt ,obs

)∣∣∣ (3.15)

Probabilistic verification tools Quantile - Quantile (Q-Q) plot and reliability (αr ) will
be used for assessing the performance of the proposed algorithms. Probabilistic metrics
are mainly concerning whether the uncertainty of the estimates (particle range or en-
semble spread) is appropriate, instead of the accuracy of the estimates. The quantile of
the predictive distribution is calculated at each time step [83]:

zt = 1

N

N∑
i=1

ki (3.16)

where zt is the quantile of the predictive distribution calculated at time t , ki = 1 when
θt ,obs > θt ,i , and ki = 0, otherwise [84]. In the perfect case, the cumulative distribution
of zt should be the same as the cumulative uniform distribution (U [0,1]). If zt clustered
at the middle range, it indicates the uncertainty is overestimated. The uncertainty is
underestimated when the zt clustered around the tails. In the case that zt is constantly
lower/higher than U [0,1], it indicates the estimates are biased [85]. Based on the Q-Q
plot, the reliability (αr ) of the estimates can be computed as:

αr = 1− 2

Nt

N t∑
t=1

∣∣∣zt −U [0,1]
∣∣∣ (3.17)

The reliability (αr ) varies from 0 (zero reliability) to 1 (perfect reliability).

3.4. RESULTS AND DISCUSSION

3.4.1. THE PARTICLE FILTER
Figure 3.2 shows an example of the soil moisture profile estimated using the PF when
temperature observations at 4 cm and 8 cm are assimilated every 45 minutes. Note that
the case with a significantly biased initial soil moisture condition is presented here. In
the DTS implementation, the soil moisture is supposed to be measured every meter up to
kilometers by assimilating soil temperatures at shallow soil depths. Hence, it is impossi-
ble to provide correct initial soil moisture profiles everywhere along the DTS installation.
As a result, we are interested in the ability of the proposed data assimilation approach to
correct for errors in the initial condition. The first thing to note is that the estimated soil
moisture from the PF is generally closer to the observed soil moisture than that from the
open loop (OL). The OL generally overestimates soil moisture at all depths. The range
of particle values in the OL (indicated in pink) is due to the sources of uncertainty de-
scribed in Table 3.1. Because the OL estimate is never constrained by observations, the
impact of uncertainty in the initial condition persists through the study interval. The
range of soil moisture values from the OL generally even exceeds the dynamic range of
the observed soil moisture.

The greatest improvements due to the PF are observed at 4 cm and 8cm, which are
the depths at which soil temperatures were assimilated. At 4 cm, the RMSE is reduced
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Figure 3.2: Comparison of soil moisture estimated by the open loop (OL) and the Particle Filter (PF) with ob-
servations at 5 depths (a to e represent depths 2, 4, 8, 32 and 64 cm, respectively). The PF algorithm, in this
case, updates soil moisture using temperature observations every 45min. The Solid lines for the OL and the PF
are the mean of the particles. The shaded areas are the range of the particles for the OL (red) and the PF (blue).

from 0.069 to 0.039m3m−3 and at 8 cm it is reduced from 0.074 to 0.045m3m−3. The
soil moisture estimates are improved when the PF resamples the particles with larger
likelihoods. The soil moisture estimates at 2 cm are also greatly improved (from 0.060
to 0.037m3m−3 ), primarily by resampling the particles that provide larger likelihoods
at 4 and 8 cm. This resampling also has a significant impact on the range of particles.
It generally takes about a day for the PF to shed the influence of the uncertain initial
condition. Due to uncertainty in precipitation, the range in soil moisture between 2
and 8 cm from the PF increases after precipitation. Assimilation with the PF has limited
impact at 32 cm and 64 cm (Figure 3.2 (d) and (e)). Because of the sandy soil and high
evaporative demand, there is little variability in soil moisture in response to precipitation
at these depths. The estimated soil moisture is largely determined by the prescribed
initial condition. The lack of correlation between soil moisture and temperature at this
depth means that assimilation is ineffective. The only manner in which soil moisture at
these depths is corrected is through the eventual impact of the updated surface (2 to 8
cm) soil moisture on the lower layers through the model physics. The lower soil moisture
values in the PF compared to the OL between 2 cm and 8 cm eventually lead to drier soil
at 32 cm (after April 1) and 64 cm (after April 3). Figure 3.3 gives some additional insight
into how and when the PF is most effective in updating soil moisture. Figure 3.3 (a)
and (b) show the influence of uncertainty in shortwave radiation and soil texture on the
soil temperatures at 4 and 8 cm. The spread of particle values is largest during sunlight
hours and at a maximum in the afternoon. Figure 3.3 (c) shows the spread of particle
values of soil moisture after a precipitation event. Note that the PF is ineffective until
just before noon when the spread of temperature values is large enough for the PF to
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Figure 3.3: Soil temperature and moisture estimates at 4 and 8 cm on 2nd April. The thin blue lines represent
the ensemble members.

update temperature and hence soil moisture. This is also apparent at 8 cm (Figure 3.3
(d)). This explains why the soil moisture estimated in the PF is not updated immediately
after precipitation in Figure 3.2.

Figure 3.4 shows the impact of observation interval on the performance of the PF.
From Figure 3.2, it is clear that the initial condition can influence the estimate, particu-
larly at depth. Therefore, results for this experiment are presented in terms of box plots
constructed using 20 cases, each of which has a different initial condition. Hence, Figure
3.4 also provides insight into the robustness of the PF to different initial conditions. From
2 to 8 cm (Figure 3.4 (a) to (c)), the median RMSE from the PF is always lower than that
of the OL. At greater depth (Figure 3.4 d and e), the median RMSE is close to that of the
OL regardless of the observation interval. The range of RMSE values is also larger than
that closer to the surface. Recall that the particle range of soil moisture at depths reduces
dramatically after a few updates. The limited influence of precipitation and temperature
at depth mean that the particle range at depths will not grow again. Therefore, if the ini-
tial distribution of particles leads to the PF updating soil moisture towards an incorrect
value, it is difficult to correct the estimates towards the observations. At 32 cm and 64
cm, Figure 3.4 shows that the estimated soil moisture can even be worse than that from
the OL.

With less frequent assimilation, the median PF RMSE approaches that of the OL. As-
similating more often than every 45 minutes yields little improvement in terms of me-
dian RMSE, but the interquartile range (IQR) and the full range of values is often higher
at lower observation intervals. The PF can only adjust the weights of particles, so the
range of particle values must be wide enough to include the true value if the estimate
is to be correct. Due to the observation error is very small, assimilating too frequently
prevents the range of values from growing and can therefore yield a poorer estimate.
Though no distinct RMSE minimum is shown in Figure 3.4 between assimilation inter-
val of 30 to 120 minutes, the IQR seems to be the minimum when assimilation interval is
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Figure 3.4: Comparison of RMSE of soil moisture estimated using the PF with different data observation inter-
vals. The PF was tested using different initialized model inputs, and 20 runs were used for each observation
interval. The black dashed line represents the RMSE of the open loop. In the box plot, the middle black line
denotes the median value, the edges of the box are the interquartile range (IQR), the maximum length of the
whiskers is set to be the 1.5 times of the IQR, and values larger/smaller than the maximum/minimum the
whiskers are considered as outliers (black dots). The legends are the same for the following boxplots.

45 minutes. For the purpose of comparison, 45 minutes is considered to be the optimal
observation interval for the PF, which will be compared with the PBS estimates.

3.4.2. THE PARTICLE BATCH SMOOTHER

First, we will compare the PF and the PBS algorithms assuming they both use an ob-
servation interval of 45 minutes (PF-45min and PBS-45min in Table 3.2). The window
length for the PBS is 3 hours, i.e. the PBS will update temperature and soil moisture ev-
ery 45 minutes in a 3 hour window using all temperature observations (at 4 cm and 8 cm)
within that window. Table 3.2 shows the RMSE of soil moisture estimated using the PF
and the PBS. The PBS results in a statistically significant reduction in RMSE compared
to the PF (using a two-tailed paired T-test, p < 0.05). This is analogous to the improve-
ment observed by using an ensemble batch smoother compared to an ensemble Kalman
filter (e.g. [59]). Furthermore, by assimilating a series of temperature observations, the
PBS exploits the influence of soil moisture in propagating a thermal wave from the sur-
face into the soil [79]. This is a stronger relationship than that between instantaneous
temperature and soil moisture values.

The advantage of using the PBS algorithm is also shown in the reduction of the bias,
and the increased reliability. At depth above 32cm, the reliability of the PBS is nearly
twice as high as that in the PF.

Despite resampling, the PF reduces the range of particle values every time there is
an update as it proceeds sequentially through the 3 hour period. The PBS, on the other
hand, allows the range of particle values to grow over the 3 hour window. Across all
model time steps in the whole study period, the range of the particle values is on average
17% larger than that of the PF algorithm. Consequently, the observations are more likely
to fall within the range of values considered by the PBS.
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Table 3.2: Comparison of soil moisture RMSE (m3m−3), Bias (m3m−3) and Reliability estimated using the PF
and PBS at five layers. The value presented are the averaged RMSE from 20 tests. The observation interval being
considered are 15 minutes (PBS-15min) and 45 minutes (PF-45min and PBS-45min). The window length for
the PBS is 3 hours.

Metric Algorithm
Depths

2cm 4 cm 8 cm 32cm 64 cm
RMSE PF-45min 0.037 0.039 0.045 0.062 0.094

PBS-45min 0.035 0.037 0.042 0.059 0.094
PBS-15min 0.029 0.029 0.030 0.039 0.074

Bias PF-45min 0.029 0.035 0.042 0.059 0.098
PBS-45min 0.027 0.032 0.036 0.052 0.090
PBS-15min 0.019 0.020 0.023 0.033 0.081

Reliability PF-45min 0.087 0.031 0.021 0.002 0.000
PBS-45min 0.143 0.074 0.053 0.004 0.000
PBS-15min 0.346 0.314 0.155 0.004 0.000

IMPACT OF OBSERVATION INTERVAL

Figure 3.5 shows the influence of the observation interval on the PBS algorithm. The
total number of the observations within the assumed 3 hour window is varied from 2
(1.5 hour interval) to 12 (15 minute assimilation interval). If the observation interval is
equal to or greater than 45 minutes, the PBS yields little if any improvement over the PF
with an observation interval of 45 minutes (shown in black dashed line for reference).
However, unlike the PF algorithm (Figure 3.4), the median RMSE consistently increases
with increased assimilation interval. This is particularly noticeable between 2cm to 8 cm.
Therefore, the best results are obtained when all available observations are assimilated.
This may prove particularly useful in the context of DTS as observations can be made
every minute or less.

IMPACT OF WINDOW LENGTH

The impact of window length in the PBS algorithm is explored in Figure 3.6, where an
observation interval of 15 minutes, and 100 particles are used. From 2cm to 32cm, in-
creasing the window length from 1 to 3 hours results in a reduction in the median RMSE.
The improvement is greatest at the assimilation depths of 4 cm and 8 cm. This confirms
that assimilating a series of temperature observations may contain more soil moisture
information than sequentially assimilation of instantaneous observations. However, in-
creasing the window length further to 6 or 12 hours leads to an increase in both median
RMSE and the IQR. There are two contributors to this degradation in performance. First,
when precipitation occurs within a window, the estimated soil moisture prior to the pre-
cipitation event may be drawn to a moister condition by the subsequent observations.
This was observed when brightness temperature was assimilated to estimate soil mois-
ture using an ensemble batch smoother [59]. Second, the dimension of the distributions
to be estimated increases with window length, and additional particles may be needed
to accurately capture the posterior distribution.
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Figure 3.5: Impacts of soil temperature observation interval on the PBS algorithm. The PBS algorithm uses a 3
hour window length with 100 particles. The black dashed line represents the averaged RMSE of the estimates
from the PF using an observation interval of 45 minutes. Similar to Figure 3.4, 20 tests with different model
initialization are used.

Figure 3.6: Comparison of RMSE of soil moisture estimated using the PBS with different assimilation window
lengths at 5 depths. For each window length, 20 tests with different model initialization is used. The observa-
tion interval is 15 minutes, with 100 particles.
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COMPARISON OF THE “OPTIMAL” PF AND THE PBS APPROACHES

Based on the results in Figure 3.5 and Figure 3.6, the optimal assimilation strategy for
the PBS combines a 15 minutes observation interval with a window length of 3 hours.
Figure 3.7 shows an example of soil moisture estimated using this optimal PBS and the
optimal PF (45 minute observation interval). The initial particle settings are the same for
both algorithms. The soil moisture at all depths (Figure 3.7) benefit from the significant
improvement in the correction from the assumed initial conditions. The PBS draws the
estimate to the truth within the first day, while the PF adjusts it slightly before the particle
range collapses inhibiting further improvement. At 32cm and 64 cm, the PBS estimate
continues to track the truth as the impact of improved soil moisture at 2cm to 8 cm is
propagated downwards through the model physics; while the PF estimate is drying out
at 8 cm to 64 cm, the PBS increases at a similar rate to the true observed soil moisture.
At 2cm and 4 cm, the PBS also draws the moisture estimates closer towards observations
after precipitation (e.g. 30 Mar, 01, 03 and 07 Apr). The Q-Q plot in Figure 3.8 compares
the PF and the PBS from a probabilistic point of view. In general, the PF estimates are
biased compared to the observed soil moisture, since the predicted quantiles are con-
sistently lower than the uniform distribution. As discussed above, this is caused by the
errors in the initial condition, and the uncertainties in the parameters. Compared with
the PF, the PBS reduces the bias of the estimates, which is most significant at depth of
32cm. Both the PF and the PBS are overconfident in the estimates, i.e. the particle range
is too narrow to encompass the observations. This is partly because soil moisture was
not directly assimilated, and partly because the observation accuracy of soil tempera-
ture is very small, which leads to particle weight degeneracy.

Results in Figure 3.7 and Figure 3.8 are illustrative and based on one assumed ini-
tial condition. Table 3.2 shows the averaged RMSE from 20 tests, each with a different
assumed initial condition. It is clear that the optimal PBS (PBS-15min) yields a signifi-
cant reduction in RMSE compared to the optimal PF (PF-45min). Similar to the results
in Figure 3.7, the greatest improvements are at 32cm and 64 cm where the RMSE is re-
duced by 0.023 and 0.020m3m−3 respectively. The bias in the PBS-15min is significantly
smaller than that of PF-45min estimated soil moisture. This may indicate that the PBS
algorithm is more suitable in correcting the errors in the initial conditions. The reliability
of the PBS-15min is approximately 4 to 7 times higher than that of PF-45min at depths
above 8 cm. At 32 and 64 cm, the differences in reliability are insignificant. This indicates
that both algorithms are overconfident in the estimates, which is consistent with Figure
3.8. The PBS may be further improved by including a MCMC algorithm [e.g. 58, 80], or
by modifying the likelihood function to a distribution with heavy tails [86]. Both tech-
niques may help to identify the location with larger posterior probability, and reduce the
overconfidence of the estimates.

3.4.3. COMPUTATIONAL BURDEN OF THE PBS AND THE PF
Here, we quantify the potential increase in computational burden associated with using
a smoothing approach (PBS) rather than a filter (PF). There are two factors to consider.
The first is that the posterior distribution has a larger dimension in the PBS as so addi-
tional particles may be required to capture it. Figure 3.9 (a) to (e) show the impact of the
number of particles on the RMSE in soil moisture at each depth. For any given number
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Figure 3.7: An illustrative example of comparing the soil moisture estimates at 5 depths using the optimal PF
(observation interval of 45 minutes), and the optimal PBS (observation interval of 15 minutes and window
length of 3 hours). The blue and red solid lines represent the mean of the PF and the PBS estimates. The shade
areas are the particle range of the PF (blue) and the PBS (red). The initial conditions for the PBS and PF are the
same, and identical to these used in Figure 3.2.

Figure 3.8: The QQ plot for the PF and the PBS estimated soil moisture at five depths. The estimates are from
the results presented in Figure 3.7.
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Figure 3.9: Comparison of RMSE of soil moisture estimated using the PBS and the PF with different number
of particle sizes at 5 depths (a to e), and the computation time for different number of particles (f). A window
length of 3 hours and 15 minutes observation interval is used for the PBS. The observation interval for the PF
is 45 minutes. For each window length, 20 different initialized model inputs were used for testing.

of the particles, the PBS outperforms the PF at each depth. For both algorithms, the me-
dian and the range of the RMSE is generally lower for a larger number of particles. The
greatest reduction in RMSE is observed between 2cm and 8 cm as the number of parti-
cles is increased up to 100. Any further increase leads to a marginal, if any, reduction in
median RMSE for both algorithms.

The second is the additional cost of performing the sequential importance sampling
calculations for the larger state vector. Furthermore, the states at previous times are
stored in memory which adds input/output costs. Figure 3.9 (f) shows that the difference
in clock time required by the PBS and PF is negligible (< 3%). The dominant control is
the number of particles, so the computational burden is determined by the Hydrus-1D
simulations rather than the PF or PBS update steps.

3.5. CONCLUSION
In this chapter, we investigated the potential to use particle approaches to estimate soil
moisture from temperature observations. Two particle-based approaches (i.e. the Parti-
cle Filter, PF and the Particle Batch Smoother, PBS) were tested by assimilating tempera-
ture observations and validating the estimated soil moisture profile against soil moisture
observed using conventional Hydra probes. The PBS uses the evolution of soil tempera-
ture within a window, instead of instantaneous measurements. Therefore, the PBS may
be more suitable for capturing the temperature heating/cooling rate, hence more suit-
able for soil moisture estimation. We considered sources of uncertainty comparable to
those which would be encountered in a DTS application, i.e uncertain meteorological
forcing, soil texture parameters etc.

Results demonstrate that assimilation using a PF yields a significant improvement
over an open loop (no assimilation) run. The best estimates were obtained between
the surface and the depth of the deepest temperature observation. Estimates at greater
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depth were particularly sensitive to the prescribed initial condition as the range of par-
ticle values collapsed soon after the first updates preventing any additional update. The
PF updates the states by updating the weights of the particles, giving those that agree
with the observations a larger weight. It can only adjust within the range of predicted
values, so it is essential that this range includes the observation. Results indicate that the
PF performs best when observations are assimilated at an interval that allows this pre-
dicted range to grow. Further research will investigate whether including MCMC and/or
alternative proposal distributions could alleviate this problem.

In addition, we implemented a PBS algorithm, in which a series of temperature ob-
servations within a window are assimilated to update the trajectory of soil moisture in
that window. Results demonstrated that this smoothing approach yielded a statistically
significant reduction in RMSE compared to the PF. Furthermore, this improvement was
achieved with a negligible increase in computational cost. The PBS uses a trajectory of
temperature observations within a window, which contains more moisture information
than one instantaneous observation. This results in a reduction of RMSE up to 0.023
m3m−3, or a RMSE reduction of 33%, compared with PF algorithm. The PBS updates the
prior moisture estimates once per window, which allows us to use all available obser-
vations without particle degeneration. As the PBS performs assimilation on the entire
window at once, the dimension of the joint distribution of the states is larger than in the
PF. For soil moisture estimates, a window length of 3 hour with observation frequency of
15 minutes was shown to yield the best results. For both the PF and PBS, the number of
particles was found to be about 100. Increasing the number any further resulted in only
a marginal improvement in RMSE, while the computational burden increased linearly
with the number of particles.

The approaches studied here were developed to use Distributed Temperature Sens-
ing to estimate soil moisture. Applying the particle approaches with DTS would allow us
to estimate soil moisture every 1 m or less along fiber-optic cables that can be several
kilometers in length. Though these first results are already promising, we will consider
the additional benefit of performing dual state-parameter estimation, e.g. [53, 69], in
the next chapter. Improving the soil parameters, would improve the performance of the
model itself and potentially provide a means to monitor soil heat flux using DTS.
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4.1. INTRODUCTION
The previous chapter showed the importance of assimilating a sequence of soil temper-
ature observations for soil moisture estimation. Improved model parameters can sig-
nificantly improve the performance of the forward model, which means the prior es-
timated model states can better encompass the observations. Thus, updating model
states together with model parameters can yield significantly improved estimates, com-
pared with the cases that only model states are updated [e.g. 54, 87, 88]. This joint model
state-parameter estimation scheme may also improve the data assimilation approach
presented in the previous chapter, provided the soil temperature observations contain
information of soil thermal and hydraulic properties. This joint model state-parameter
estimation scheme can keep the consistency of the states and the parameters, and hence
provide physically reasonable soil state and parameter combinations.

Soil thermal properties can be estimated using soil temperatures is already shown in
several previous studies [e.g. 12, 38, 89]. As shown in the previous chapters, different soil
moisture dynamics will eventually lead to different soil temperature evolution patterns.
Soil hydraulic properties are key factors that control soil moisture dynamics. Hence, soil
hydraulic properties may also be inferred from soil temperature observations.

This chapter tests the hypothesis that soil thermal and hydraulic properties can be
estimated using soil temperatures. The benefit of jointly estimating soil properties with
soil states will also be investigated. This chapter will first present a sensitivity analysis
between soil temperature and soil hydraulic properties, which aims to explore the phys-
ical links between the two quantities (section 4.3.1). The algorithm of jointly estimating
model states and parameters using the particle batch smoother to extract soil moisture
and soil property information from soil temperatures is presented in section 4.2. Finally,
the robustness and the benefit of this joint model state-parameter estimation scheme
will be tested using a series of synthetic experiments 4.4.

4.2. JOINT PARAMETER AND STATE ESTIMATION
The forward model and the implementation of the PBS are essentially the same with
the algorithms described in section 3.2.1 and 3.2.2, except that the state vector (xi

t ) is
augmented as:

Xi
t =

[
xi

t ,bi
t

]T
(4.1)

Consequently, the estimated posterior distribution is expressed as:

p(Xt−L+1:t |y1:t ) = p(xt−L+1:t ,bt−L+1:t |y1:t )

=
N∑

i=1
w i

tδ
(
xt−L+1:t −xi

t−L+1:t ,bt −bi
t

)
(4.2)

Note that the model parameters are assumed to be constant within each batch window
(i.e. bi

t−L+1:t = bi
t ). Perturbing the estimated parameter set is usually required to avoid

parameter impoverishment [53, 54]:

bi
t = bi

t +εb (4.3)
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where εb is normally distributed noise with zero mean, and standard deviation (Std) of
s. In this study, s is determined as:

s = max (0,Q0 −Std(bt )) (4.4)

where Q0 is a prescribed threshold [90], which is set to be 10% of the initial parameter
standard deviation. A discussion of the choice of Q0 can be found in [90] and [91]. This
perturbation technique guarantees the parameter distribution has a minimum spread,
and this spread cannot grow uncontrollably through perturbation [91].

TUNING FACTOR FOR THE PBS
In case observation is near perfect (i.e. R is small) or all the particles have large errors in
the prior estimated model states, resampling cannot entirely avoid the weight degener-
acy problem [86]. As a result, the variance of the weights is high, and estimated posterior
relies on only a few particles. This will lead to unreliable estimates. Stordal et al. [86]
suggest to avoid this problem by approximating a posterior that has heavier tails, rather
than the true posterior. Though biases might be introduced, the final estimates will al-
most surely converge to the true posterior [86, 92]. Similar to their study, we introduce a
tuning factor of β which modifies the likelihood function (Equation 3.13) in the form of:

p(yt−L+1:t |xi
t−L+1:t ) =

t∏
j=t−L+1

1

(2π)no /2det(R)1/2
e

[
−0.5β2(y j −ŷi

j )T R−1(y j −ŷi
j )

]
(4.5)

The tuning factor of β ranges from zero to one. The modified likelihood function is
equivalent to the original likelihood function if β is set to be one. For the cases β < 1.0,
the variance of the estimated weights will be significantly reduced, which may efficiently
avoid the weight degeneracy problem. The β value smaller than 1.0 is essential to com-
pensate for cases in which the PBS is overly confident with respect to estimating param-
eter values.

4.3. EXPERIMENT SET-UP

4.3.1. SENSITIVITY OF MODEL STATES TO SOIL HYDRAULIC PROPERTIES
Data collected from Marena Oklahoma In-Situ Sensor Testbed (MOISST) site (A.1) are
used in this Chapter. Prior to the data assimilation experiments, we will first demonstrate
that different soil hydraulic properties will lead to different soil temperatures. A Monte
Carlo simulation with 300 samples (runs) using identical model inputs, except for the
soil hydraulic properties, will be conducted. The forcing data is the nominal value of the
field measurements, and the soil hydraulic properties were generated using ROSETTA
[65] with randomly sampled soil texture and bulk density drawn from the distributions
described in Table 4.1. The variance of the soil moisture and temperature of the 300
simulations can shed light on the extent to which the soil temperature variations can be
explained by the variance of soil hydraulic properties.

Then, we will provide a more quantitative sensitivity test between the change of soil
temperatures to the change of the soil hydraulic properties. A reference run will be first
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Table 4.1: Generation of perturbed inputs (soil property and forcing) for each particle.

Variable Error Distribution Mean Standard deviation Bound
Sand (%) Uniform - - 0, 55
Silt (%) Uniform - - 20, 30
ρb(g /cm3) Uniform - - 1.05, 1.85
Precipitation (mm) Gaussian, Multiplicative 1 × 0.2 -, -
Radiation (W /m2) Gaussian, Multiplicative 1 × 0.075 -, 1350
Air temperature (oC) Gaussian, Multiplicative 1 × 0.05 -, -
Relative humidity (%) Gaussian, Multiplicative 1 × 0.05 -, 100
Wind speed (K m/h) Gaussian, Multiplicative 1 × 0.2 -, -

performed using Hydrus-1D, in which soil texture and bulk density is set to be the nom-
inal value of the field measurements. Soil thermal and hydraulic properties were then
calculated based on this set of soil texture and bulk density for the reference run. We will
then fix all the inputs but only vary one of the soil hydraulic properties within the range
of [90% 110%] of the nominal value. Five soil hydraulic properties (θr , θs , α, n, Ks ) will
be considered.

4.3.2. DATA ASSIMILATION EXPERIMENTS
Five data assimilation algorithms are compared in this study: (1) the open-loop (OL),
which is identical to running the particles in parallel without any data assimilation. (2)
PBS-State, in which soil temperature is used to update soil moisture and temperature
states. (3) PBS-DT, where the state vector is augmented with the soil thermal proper-
ties. In the Campbell model, the sand, clay and bulk density are input parameters to
determine the relationship between thermal conductivity and soil moisture. This study
takes the three quantities as three free soil thermal property parameters. (4) PBS-DH, in
which state vector is augmented with the soil hydraulic parameters (θr , θs ,α, n, Ks ), and
(5) PBS-DTH, in which both the soil thermal and hydraulic properties are jointly updated
with soil moisture and temperature.

This study is limited to synthetic experiments. The truth is generated using per-
turbed forcing data and parameters from the distributions summarized in Table 4.1. Pre-
cipitation and solar radiation were perturbed using multiplicative errors to ensure that
the values remain positive. Sand, clay content and bulk density (ρb) are randomly sam-
pled from a uniform distribution as described in Table 4.1, which covers the soil texture
spatial variability of the study area. The clay content for each particle is calculated as the
residual, i.e. (100 - Sand -Silt)%. Soil texture and bulk density are assumed to be uniform
over the entire profile. The soil texture and bulk density for each particle were sampled
from the distribution described in Table 4.1. This randomly sampled soil texture and
bulk will be used to generate the prior guessed soil hydraulic and thermal properties us-
ing ROSETTA [65] and Campbell model. Initial soil temperature and moisture profiles
are assumed to be homogeneous in depth. The initial soil temperature value is drawn
from a uniform distribution with the range 17 to 25 oC, and soil moisture is drawn from
a uniform distribution with the range 0.2 to 0.35 m3/m3. The assumed errors in the
forcing data, initial soil moisture and temperature profile, and soil properties reflect the
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measurement error as well as spatial representativeness - weather and soil property data
are collected at a point, while DTS observations are distributed in space. Synthetic DTS
temperature observations are generated by adding Gaussian error with zero mean and
standard deviation of 0.1 oC to the “true” soil temperature at these depths.

A detailed discussion on the impacts of the window length and assimilation interval
is provided in the previous chapter. They demonstrated that soil temperature within a
short window length (e.g. 1 hour) may not contain enough soil temperature informa-
tion. On the other hand, using overly long window lengths will increase the dimension
of the state vector and hence of all the probability distributions. The previous chapter
showed that a window length of 3 hours with an observation interval of 15 minutes was
the most suitable. Because the experiment design of the current study is similar to the
previous chapter, the same window length and assimilation interval are used here. The
PBS requires sufficient particles to map the prior and the posterior distributions. The
previous chapter shows using 100 particles provides similar estimates to the cases using
300 particles, when only states were estimated. In this study, model parameters were
estimated in addition to the states. We found that 300 particles were sufficient to ensure
that the PBS could map the prior and the posterior distribution.

The first experiment is an illustrative example for a single “truth" to compare the four
assimilation approaches. The soil thermal and hydraulic properties estimated from the
four assimilation approaches will be compared, and the benefit of estimating the soil
properties on the soil moisture and temperature estimates will be investigated.

To provide a more robust comparison of the different data assimilation strategies,
the experiment described above will then be repeated for 10 randomly selected truths.
The initial conditions and the prior guess of soil thermal and hydraulic properties for
the PBS data assimilation strategies will be the same as that described in the previous
experiment.

Finally, we will explore the impact of the tuning factor (β) on the performance of the
PBS. As shown in Equation 4.5, the estimated posterior distribution will have heavier
tails when β is small. This might be helpful in avoiding severe weight degeneracy prob-
lem, and ensuring that the particle range is large enough to encompass the observations.
However, an extremely small β will lead to very uncertain estimates, and the observa-
tions may be ignored. For example, the PBS is equivalent to the OL if β = 0. Therefore,
in the final experiment, the impact of the tuning factor will be investigated by varying β
from 0.25 to 1. Note that in all other experiments, the tuning factor β is assumed to be
0.75 for the PBS-State, and 0.25 for PBS-DT, PBS-DH and PBS-DTH.

4.4. RESULTS AND DISCUSSION

4.4.1. SENSITIVITY OF MODEL STATES TO SOIL HYDRAULIC PROPERTIES

Figure 4.1 shows the mean and the standard deviation (Std) of the soil temperature and
moisture simulated in the 300 Monte Carlo runs. Only soil hydraulic properties were var-
ied for the simulations. Hence, in Figure 4.1 (b), a larger standard deviation in the sim-
ulated soil moisture indicates a higher sensitivity of soil moisture to the soil hydraulic
properties. The soil hydraulic properties determine the liquid water that infiltrates into
the soil column during the precipitation events. As a result, the highest standard devia-
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Figure 4.1: The mean and standard deviation (Std) of soil moisture (a and b) and soil temperature (c and d)
using 300 Monte Carlo runs which differ in soil hydraulic properties. For each run, the soil texture and bulk
density are sampled from the distribution described in Table 4.1, and ROSETTA [65] is used to determine the
soil hydraulic properties.

tion in soil moisture occurs around precipitation events (e.g. June 15 in Figure 4.1 b), and
decreases gradually as the soil dries down. Solar radiation forcing is the main driver for
the diurnal variations observed in both the mean (Figure 4.1 c) and standard deviation
(Figure 1d) of soil temperature. However, soil moisture affects soil thermal properties
which in turn influences the temperature. Hence, variations in soil temperature also
occur due to variations in soil moisture which lead to different rates of heat diffusion
and evaporative cooling. The standard deviation of soil temperature can exceed 0.6 oC,
which is significantly larger than the accuracy of most temperature observations.

Figure 4.2 shows the temporal mean of soil moisture and temperature at 5 cm as a
function of soil hydraulic properties. Of the five soil hydraulic properties, soil moisture
and soil temperature are most sensitive to n. Increasing/Decreasing n by 10% can result
in 0.2 oC change in the temporal mean of soil temperature. θs , and to a lesser degree θr ,
also have a small impact on the temporal mean of soil temperature. The soil temperature
is shown to be less sensitive to α and Ks . Note that the range within which the mean
temperature varies is less than 0.5 oC. From Figure 4.1, it is clear that variations are
higher at certain times of day and in response to precipitation events.
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Figure 4.2: The temporal mean (from 18 May to 10 August) of soil temperature and moisture at 5 cm using
different soil hydraulic properties. Each symbol represents the results from one simulation.

4.4.2. AN ILLUSTRATIVE EXAMPLE

The soil moisture profiles estimated using the OL, PBS-State, PBS-DT, PBS-DH and PBS-
DTH are shown in Figure 4.3. A case from multiple truth tests, in which PBS-State esti-
mated soil moisture significantly deviates from the truth is presented here to illustrate
the benefit of estimating the soil properties. Due to the errors in the prior estimated soil
hydraulic properties, the entire profile in the OL is generally much drier than the truth
(Figure 4.3 a and b). Comparing the four data assimilation strategies, it demonstrates
updating soil hydraulic properties is the key to provide accurate soil moisture estimates
(Figure 4.3 c to f).

In this illustrative case, the estimated bulk density (Figure 4.4 a) and sand (Figure 4.4
b) and clay contents (Figure 4.4 c) from the PBS-DT and PBS-DTH converge quickly to
the true values. This results in almost perfect estimates of the soil thermal conductivity
and diffusivity curves (Figure 4.4 d and e).

The soil hydraulic properties estimated with the PBS-DH and PBS-DTH are shown
in Figure 4.5. Recall from Figure 4.2 that θs and n were found to be the most sensitive.
When only the hydraulic properties are updated with the states, θs does not converge
to the truth (Figure 4.5 b). Because the thermal properties are not updated in the PBS-
DH, it seems that the PBS has overfitted the hydraulic parameters to compensate for the
errors in the soil thermal properties. When both the thermal and hydraulic properties
are estimated (PBS-DTH), all parameters converge to the truth (Figure 4.5 a to d). The
temporal evolution of α estimated using both methods is noisier than that of other soil
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Figure 4.3: The synthetic truth (a) in compared to the open loop (b), PBS with state estimation only (c), PBS for
state and thermal properties estimation (d), PBS for state and hydraulic properties (e), and PBS for state, and
thermal and hydraulic properties estimation (f).

Figure 4.4: The convergence of the soil thermal properties (a to c). The “true" values are from one single
realization, and comparison of estimated and true soil thermal conductivity (d) and diffusivity curve (e), and.
The shaded area represents the range of the particles. The value of the true parameter is shown as the black
triangle at the final time step.
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Figure 4.5: An illustrative example of the convergence of the soil hydraulic properties. The “true" values are
from one single realization (a to e), and comparison of the true and estimated soil water retention curve (f).
The shaded area represents the range of the particles. The value of the true parameter is shown as the black
triangle at the final time step.

hydraulic properties (Figure 4.5 c), which is due to the low sensitivity to the soil temper-
ature (Figure 4.2 c). Both the PBS-DH and PBS-DTH provide a good estimate of the soil
water retention curve, with the PBS-DTH performing better at higher moisture contents
(Figure 4.5 f).

Results from the illustrative case presented in Figure 4.3 to Figure 4.5 confirm what
we expect from Figure 4.2. First of all, the PBS-State may correct the prior estimated soil
moisture to a significantly biased value when only states were updated. A dry soil mois-
ture can provide a similar thermal response to that of the wet soil moisture ([38], also
see Figure 4.2). In this illustrative example, the soil hydraulic property is biased, which
leads to a faster dry down compared to the truth (Figure 4.2 b). Hence, the PBS-State
may converge to an incorrect dry soil moisture value. The PBS-DT does not significantly
benefit the soil moisture estimates, since it cannot remove the biases in the prior esti-
mated soil moisture. Updating soil hydraulic properties contributes the most to the soil
moisture estimation (Figure 4.3 e and f). The PBS-DTH provides the best performance,
as it ensures consistency between the model parameters and model states for both soil
heat and water transportation.

4.4.3. ROBUSTNESS TEST USING MULTIPLE TRUTHS
The experiment discussed in the previous section was repeated 10 times for each of 10
different synthetic truths, which will provide insights about the robustness of the differ-
ent PBS schemes across a wide range of soil textures. The estimated soil thermal proper-
ties from these tests are compared to the true values in Figure 4.6, and performance met-
rics are reported in Table 4.2. The RMSE and bias are lower and the correlation is higher
when the PBS-DTH is used rather than the PBS-DT. The reduction in bias is particularly
noteworthy. These results are consistent with those in the illustrative case. When the
soil hydraulic properties are not updated, the soil moisture estimates may converge to
an incorrect value resulting in incorrect or biased soil thermal property estimates.

The soil hydraulic properties estimated using the PBS-DH and the PBS-DTH are com-
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Table 4.2: The RMSE, absolute bias and the correlation between the true and estimated soil thermal properties
using the PBS-DT and PBS-DTH. The values presented are calculated based on the estimates from 10 tests

Metric Approach ρb(g /cm3) Sand (%) Clay (%)
RMSE PBS-DT 0.052 8.147 12.324

PBS-DTH 0.014 3.266 2.111
Bias PBS-DT 0.028 3.693 4.666

PBS-DTH 0.002 0.538 0.044
Correlation PBS-DT 0.881 0.915 0.797

PBS-DTH 0.984 0.984 0.993

Table 4.3: The RMSE, absolute bias and the correlation between the true and estimated soil hydraulic prop-
erties using the PBS-DH and PBS-DTH. The values presented are calculated based on the estimates from 10
tests

Metric Approach θr (m3/m3) θs (m3/m3) α(1/m) n Ks (m/d ay)
RMSE PBS-DH 0.006 0.024 0.320 0.033 0.039

PBS-DTH 0.001 0.008 0.170 0.013 0.026
Bias PBS-DH 0.002 0.002 0.076 0.002 0.023

PBS-DTH 0.000 0.001 0.102 0.004 0.015
Correlation PBS-DH 0.926 0.885 0.566 0.930 0.991

PBS-DTH 0.996 0.989 0.703 0.990 0.996

pared in Table 4.3 and Figure 4.7. The bias of the estimated soil hydraulic properties us-
ing the two approaches are similar. However, the PBS-DTH shows significantly reduced
RMSEs and improved correlations between the true and estimated parameters. Since
only soil temperatures are assimilated, improved soil thermal properties also benefit the
estimated soil moisture and hydraulic properties.

The RMSE in soil temperature estimated using OL, PBS-State, PBS-DT, PBS-DH and
the PBS-DTH tested by the 10 truths are shown in Figure 4.8. Compared to the OL es-
timates, all PBS strategies (i.e. the PBS-State, PBS-DT, PBS-DH and PBS-DTH) signifi-
cantly improve the soil temperature estimates across the entire profile. At depths where
soil temperatures are observed (i.e. 5 and 10 cm), the 4 PBS strategies provide similar
results. However, at depths without temperature observations, updating soil thermal
properties (i.e. PBS-DT and PBS-DTH) can reduce the median and IQR of the RMSE of

Figure 4.6: Comparison of the estimated and the true soil thermal properties tested using ten different truths.
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Figure 4.7: Comparison of the estimated and the true soil hydraulic properties tested using ten different truths.

the soil temperature estimates, compared to PBS-State and PBS-DH. This is particularly
noticeable at 20 and 50 cm (Figure 4.8 d and e). Because heat transfer in the soil is pri-
marily downwards, better soil thermal properties improve the model’s ability to simulate
temperature at depth. Soil moisture and hydraulic properties determine the soil evapo-
ration processes, which essentially control the cooling rate of the soil surface. Hence, a
better knowledge of the soil surface moisture and hydraulic properties can significantly
improve the soil temperature estimates, and remove the bias of the estimated soil tem-
peratures at shallow soil depths.

The RMSE and the bias in the soil moisture estimates using OL, PBS-State, PBS-DT,
PBS-DH and the PBS-DTH across the 10 different truths are shown in Figure 4.9. Consis-
tent with the results presented in the illustrative case, Figure 4.9 shows that estimating
soil hydraulic properties leads to improved soil moisture estimates. If the soil hydraulic
properties are not updated, the PBS may converge to an incorrect dry soil moisture value,
as occurred in Figure 4.3. Hence, the IQR of the RMSE using the PBS-State and PBS-DT
are both larger than the OL, though the median of the RMSE is reduced. Compared to
the PBS-State and PBS-DT, both the median value and the IQR of the RMSE of the soil
moisture estimates are significantly reduced by PBS-DH.

This set of experiments demonstrates the importance of removing the errors/biases
in the soil moisture estimates by improving the soil hydraulic properties. The further
reduction in the median and IQR of RMSE when PBS-DTH is used rather than PBS-DH,
indicates the benefit of updating soil thermal properties as well as hydraulic properties.
This confirms the importance of maintaining consistent model parameters and states.

4.4.4. IMPACTS OF TUNING FACTOR

The results presented so far are from experiments in which a tuning factor β is set to 0.75
in the state estimation case, and 0.25 in the parameter estimation. In this section, this
choice of values will be justified.

Figure 4.10 shows an illustrative example of the evolution of the estimated soil tem-
perature, moisture and porosity (θs ) when different β values were used in the PBS-DTH.
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Figure 4.8: Comparison of soil temperature estimates using OL, PBS-State, PBS-DT, PBS-DH, and PBS-DTH at 5
depths. Each box plot presents the results from 10 tests using different truths. In the box plot, the middle black
line denotes the median value, the edges of the box are the interquartile range (IQR), the maximum length of
the whiskers is set to be the 1.5 times the IQR, and values larger/smaller than the maximum/minimum the
whiskers are considered as outliers (black crosses). The legends are the same for the following box plots.

Figure 4.9: Comparison of soil moisture estimates using OL, PBS-State, PBS-DT, PBS-DH, and PBS-DTH at 5
depths. Each box plot presents the results from 10 tests using different truths.
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Figure 4.10: The PBS-DTH estimated the soil temperature (first column), moisture (second column) at 5 cm,
and the convergence of soil hydraulic properties (third column) , using saturated water content (θs ) as an
example. The first row shows the temporal evolution of the estimates. The estimated posterior at some model
steps are shown in row 2 to 4, and the black triangle denotes the value of the truth. The shaded blue area is the
estimated posterior using β = 0.25, and shaded red is for β = 1.00.

Only the first 14 days are shown in the soil temperature and moisture estimates. When
β = 0.25, the estimates are closer to the synthetic true values. However, the estimates are
significantly biased when β is set to be 1.00 (Figure 4.10 b and c). The second to fourth
rows provide some insight into the impact of β. After the first update step, using differ-
ent β values provide similar estimated soil temperature posteriors. The main differences
are shown in the soil moisture and θs posteriors. Using β of 0.25 results in a heavier
tailed distribution, which can better encompass the truth (Figure 4.10 f). After about 10
update steps (Figure 4.10 g-i), the true soil moisture and θs are almost always beyond
the range of the posterior for β = 1.0, even though soil temperature can still be reason-
ably estimated (Figure 4.10 j). When β = 0.25, the estimated posterior is wide enough to
encompass the truth. This is critical for successfully implementing PBS, since PBS only
adjusts the weights of the particles. Hence, the optimal value cannot be estimated using
PBS if the truth falls out of the particle range. Different soil moisture and hydraulic prop-
erties can provide similar soil thermal responses (Figure 4.2). If the truth is not within the
particle range, the PBS estimated soil moisture and hydraulic properties can converge to
an incorrect value. This is evident when β of 1.0 is used. The incorrectly estimated soil
moisture and soil properties, and the narrow particle range in turn affect the soil tem-
perature estimates (Figure 4.10 g and j).

The impact of β on the error of the estimated soil thermal and hydraulic properties
tested on 10 randomly selected truths is shown in Figure 4.11. As expected, the error of
the estimated parameters generally increases with increased β. The IQR of the param-
eter estimation error with β = 1.0 is generally 5 to 10 times higher than that using β of
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Figure 4.11: The error of the estimated soil thermal and hydraulic properties as a function of the tuning factor
β using the PBS-DTH tested using 10 different truths.

0.25.
The impact of β on soil temperature estimates are shown in the left column of Figure

4.12. In contrast to the PBS-State, the IQR of the RMSE of the PBS-DTH estimated soil
temperature increases with increased β. It is quite striking that PBS-DTH generally has
a larger IQR of soil temperature estimates compared to the PBS-State, when β is larger
than 0.25. There are two contributors to this degraded soil temperature estimate. First,
the estimated soil properties may converge to an incorrect value in the PBS-DTH, when
a large β value is used (Figure 4.10 to 4.11). Second, because the variance of the soil
thermal parameters is reduced by the PBS-DTH, the particle range of soil temperature
estimates will also be significantly reduced. As a result, the particle range is less likely
to encompass the truth. Hence, using a large β value may lead to worse temperature
estimates, compared with the PBS-State.

The right column of Figure 4.12 shows the impact of β on the RMSE of the estimated
soil moisture. As in the temperature case, the PBS-State is not sensitive to β. Using a β of
0.75 seems to produce slightly lower median RMSE at the surface. However, PBS-DTH is
more sensitive to the choice of β. The median and the IQR of the RMSE of the PBS-DTH
estimated soil moisture show a clear minimum at β = 0.25 at all depths. Similar to the
soil temperature estimates, the dependency of the PBS-DTH estimated soil moisture on
β can also be partly explained by the accuracy of the soil hydraulic parameters as shown
in Figure 4.11. Soil hydraulic parameters are most accurately estimated when β is set to
0.25. The error of the estimated soil hydraulic properties increases with increased β, and
hence the RMSE of soil moisture estimates also increases.

Figure 4.10 to 4.12 also show that once a reasonable β value is selected, soil moisture,
temperature, thermal and hydraulic properties can be robustly estimated, regardless of
the soil types. This indicates that β is not a site dependent parameter. Rather, the pur-
pose of β is to avoid severe particle weight degeneration in the PBS. Hence, a reasonable
value for β can be determined by examining the parameter estimates. If they are highly
variable in time and show little convergence, this suggests that the PBS is overfitting the
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parameters and a smaller β is needed.

4.5. CONCLUSIONS
In this chapter, we investigated the potential of estimating soil states (temperature and
moisture profile) and soil properties simultaneously by assimilating soil temperatures
into Hydrus-1D using a Particle Batch Smoother (PBS). Different data assimilation strate-
gies, specifically state versus joint state-parameter estimation, were compared to inves-
tigate the impact of estimating soil thermal and hydraulic properties on the soil moisture
estimates.

It was shown that soil hydraulic properties determine the temporal evolution of soil
moisture, which results in different soil temperatures. Hence, the soil hydraulic prop-
erties can be inferred from soil temperature observations. Correcting the soil hydraulic
properties improves the performance of the forward model. As a result, the estimated
prior distribution is more likely to encompass the truth, which results in significantly
improved soil temperature and moisture estimates. However, an improperly tuned PBS
algorithm may have a severe weight degeneracy problem when parameters are jointly es-
timated. The potential for weight degeneracy is associated with using very small obser-
vation errors, and an insufficient parameter range, i.e. in particle methods, the weights
are updated, not the particles themselves. So the prior must encompass the truth at each
time, otherwise there will be a significant bias. There are a few possible solutions, e.g. us-
ing tuning factors to modify the distributions with heavier tails [86, 92], using more so-
phisticated parameter perturbation techniques e.g. Variable Variance Multiplier (VVM)
[93] to increase the variability of the parameter distribution, and using the MCMC al-
gorithm [88] to iteratively provide better proposal distributions. Alternatively, Yang and
DelSole [94], and Su et al. [90] have handled similar problems in ensemble data assimila-
tion using so-called “smoothing" factors. This chapter primarily focused on how to use a
tuning factor to provide robust and computational effective estimated model states and
parameters. Combining the tuning factor with VVM and MCMC algorithms may also
have the potential of improving the model parameter estimates.
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Figure 4.12: Impact of β on the RMSE of estimated soil temperature (left column) and moisture (right column)
at 5 depths using the PBS-State and PBS-DTH.
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5.1. INTRODUCTION
It was demonstrated that PBS can robustly estimate the soil moisture and soil thermal
and hydraulic properties in Chapter 4. There are still two key challenges in applying
this joint model state-parameter estimation approach presented in real DTS data. The
first challenge is that the forward model is limited to bare soil and the data assimilation
scheme presented in Chapter 4 assumes that the cable depths are perfectly known. In
order for Passive DTS to be more broadly applicable as a soil hydrology research tool,
and as a remote sensing soil moisture product validation tool, it must be applicable in
vegetated areas. Further, the uncertainties in the DTS cable depths has to be handled,
since the cable depths are rarely perfectly known in the DTS installations.

This chapter solves the first challenge by including a canopy energy balance scheme
into Hydrus-1D model as presented in Section 5.2.1. The second challenge is solved in
section 5.2.2, in which the cable depths is estimated as a free parameter. In Chapter 5.3,
synthetic tests are used to demonstrate that without the canopy energy balance scheme,
the PBS estimated soil moisture could be even worse than the open loop case (no assim-
ilation). When the improved Hydrus-1D model is used as the forward model in the PBS,
vegetation impacts on the soil heat and water transfer were well accounted for. This led
to accurate and robust estimates of soil moisture and soil properties. Synthetic tests are
also used to demonstrate that observation depths can be jointly estimated with other
model states and parameters. The state and parameter results are only slightly poorer
than those obtained when the cable depths were perfectly known. Finally, in-situ tem-
perature data collected from the SMAP MOISST site (refer to A.1) are used to test the
proposed approach. Results show good agreement between the observed and estimated
soil moisture, hydraulic properties, thermal properties and observation depths at all lo-
cations. The proposed method resulted in soil moisture estimates in the top 10 cm with
RMSE values typically < 0.04 m3/m3.

5.2. METHOD AND MATERIALS

5.2.1. SOIL WATER, HEAT AND VAPOR TRANSFER UNDER VEGETATED AREA
In this chapter, the state of the art vadose zone model, Hydrus-1D is coupled with a
canopy energy balance scheme originally presented by Oleson et al. [95]. The surface
energy balance equations for the vegetation and ground are as follows:

−→
S v −−→

L v = Hv +λEv (5.1)

−→
S g −−→

L g = Hg +λEg +G (5.2)

where
−→
S v is the solar radiation absorbed by the vegetation canopy,

−→
L v is the net long-

wave radiation for the vegetation canopy (positive upwards from the canopy), and
−→
S g

and
−→
L g are defined similarly such that

−→
S g −−→

L g is the net radiation at the ground sur-
face. The radiation terms were estimated using the radiative transfer model proposed by
[96]. Hv and λEv are the sensible and latent heat fluxes from the canopy, Hg and λEg

are the sensible and latent heat fluxes from the ground, λ ≈ 2.501× 106Jkg−1, and G is
the ground heat flux [95]. All the energy fluxes have a unit of Wm−2. The water vapor
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flux from canopy (i.e. Ev , in kgs−1m−2) includes evaporation of intercepted water and
transpiration.

The sensible heat fluxes are calculated as follows:

Hv =−ρatmCp
(Ts −Tv )

rb
(Llea f +Lstem) (5.3)

Hg =−ρatmCp

(
Ts −Tg

)
r ′

ah

(5.4)

where ρatm is the density of air (kgm−3), Cp is the specific heat capacity of air at constant
pressure (Jkg−1K−1), Ts , Tv and Tg are the temperatures of canopy air (K), vegetation and
ground surface respectively, Llea f and Lstem are the exposed leaf and stem area indices,
rb is the leaf boundary layer resistance (ms−1), and r ′

ah is the aerodynamic resistance to
the sensible heat transfer between the ground surface and canopy air. Assuming the air
within the vegetation canopy does not store heat, it gives:

H = Hv +Hg (5.5)

H =−ρatmCp
(θatm −Ts )

rah
(5.6)

where θatm is the potential air temperature (K), and rah is the aerodynamic resistance to
the sensible heat transfer from the atmosphere to the vegetated land surface. Combining
Eq.(5.3) to Eq.(5.6), the temperature of the canopy air (Ts ) can be estimated as:

Ts =
ch

aθatm + ch
v Tv + ch

g Tg

ch
v + ch

a + ch
g

(5.7)

where ch
a = 1/rah , ch

v = (
Ll ea f +Lstem

)
/rb and ch

g = 1/r ′
ah . Water vapor fluxes from the

vegetation and soil surface are calculated using:

Ev =−ρatm

(
qs −qTv

sat

)
rtot al

(5.8)

Eg =−ρatm

(
qs −qg

)
rg w

(5.9)

where qs is the specific humidity of the canopy air, qg is the specific humidity at the

ground surface, qTv
sat is the saturation water vapor specific humidity at the vegetation

temperature (kgkg−1), rtot al and rg w are the resistances of the vapor transfer from the
canopy and the ground surface to the canopy air, in ms−1. Similar to the sensible heat
flux, the water vapor flux is given by:

E =−ρatm

(
qatm −qs

)
raw

(5.10)

E = Eg +Ev (5.11)
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where qatm is the specific humidity of the atmosphere, and raw is the aerodynamic re-
sistance to vapor transfer in ms−1. Combining Eq.(5.8) to Eq.(5.11), the specific humidity
of the canopy air qs is solved as:

qs =
cw

a qatm + cw
v qTv

sat + cw
g qg

cw
a + cw

v + cw
g

(5.12)

where cw
a = 1/raw , cw

g = 1/rg w , and cw
v = 1/rtot al . All the resistance and conductance

terms were estimated using measured wind speed, relative humidity, air temperatures
and vegetation properties as outlined by [97]. The initial vegetation parameters (e.g.
vegetation optical and structural properties) were guessed to be the default values of
“C3 grass" as prescribed in [97].

To solve the energy fluxes (i.e. Hv , Hg , λEv , λEg and G), iterations between the sur-
face energy balance and the soil water, heat and vapor transport equation were required.
The iteration procedure will provide the estimated Tv , resistances and the energy fluxes
that satisfy the energy balance and the water balance at each time step. The details of
the numerical implementation of the algorithm are provided by Oleson et al. [95].

5.2.2. ONLINE ESTIMATION OF OBSERVATION DEPTH USING THE PBS
In previous chapters, it was assumed that the depths of the temperature measurements
were perfectly known. While this is a reasonable assumption for carefully installed point
sensors, cable depths in DTS installations can vary considerably due to ground rough-
ness, stones etc..

Here, a version of the PBS algorithm (denoted PBS-D) includes the observation depths
as free parameters. The observation depths are randomly sampled from a prior distribu-
tion for each particle.

The observation depths are updated jointly with other parameters. Once the obser-
vation depths are updated, the measurement operator (h in Eq.(3.1)) will be modified to
ensure that the simulated observations are at depths consistent with the estimated cable
depths.

5.2.3. DATA ASSIMILATION EXPERIMENTS
First, we quantified the improvement due to the inclusion of the canopy energy balance
scheme in the forward model using synthetic tests. Two open loop runs were performed,
i.e. the particles were run in parallel without any data assimilation. The open loop for
vegetated areas (OL-V) uses Hydrus-V, the version of Hydrus-1D that includes the new
canopy energy balance scheme. The open loop for bare soil (OL-B) uses the original
Hydrus-1D model. Results from both open loop runs will be compared to a truth gen-
erated using Hydrus-V with perturbed parameters and model forcing. Similarly, the PBS
scheme will be implemented using both versions of the forward model. PBS-V and PBS-
B denote the cases where Hydrus-V and Hydrus-1D are used. Both PBS schemes as-
similate synthetic soil temperature observations generated by adding white noise with a
standard deviation of 0.5 oC to the synthetic true temperatures at 5 and 10 cm. In both
PBS schemes the soil temperature and moisture profiles, soil hydraulic properties (θr ,
θs , α, n, Ks ) and soil thermal property (λsat ) are jointly updated. A priori soil hydraulic
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properties were generated using ROSETTA [65] with randomly sampled soil texture and
bulk density as described in Table 5.1. The randomly sampled soil texture and bulk den-
sity were also used to provide the initial guesses of the λsat [72] for each particle. In
PBS-V, LAI is also estimated. To test the robustness of the approach, this experiment will
be repeated 10 times, where each of the 10 synthetic truths is generated using randomly
sampled parameters covering a wide range of soil and vegetation properties. Hence, this
multiple truths tests will provide more comprehensive comparisons of the performances
of the PBS-V and PBS-B.

Table 5.1: Generation of perturbed inputs (soil and vegetation property and forcing) for each particle.

Variable Error Distribution Mean Std. Bound
Sand (%) Uniform - - 15, 75
Silt (%) Uniform - - 0, 100 - Sand
ρb(g /cm3) Uniform - - 1.1, 1.7
Air temperature (oC) Gaussian, Additive 0 + 0.5 -, -
Precipitation (mm) Gaussian, Multiplicative 1 × 0.2 -, -
Radiation (W /m2) Gaussian, Multiplicative 1 × 0.075 -, 1350
Relative humidity (%) Gaussian, Multiplicative 1 × 0.05 -, 100
Wind speed (K m/h) Gaussian, Multiplicative 1 × 0.2 -, -
Vegetation parameters Gaussian, Multiplicative 1 × 0.2 -, -

Next, we will consider the case where the observation depths are not perfectly known.
In DTS installations, cable depths can have an uncertainty of a few centimeters [38].
Hence, it is more realistic to assume that the true cable depth is unknown which means
that the a priori mean cable depth may be biased with respect to the truth. In other
words, we are interested in whether the PBS can draw the estimated cable depths closer
to the truth, even when the initial guesses are biased. In our synthetic experiment, the
“true" observation depths are known to be 5 and 10 cm. However, to simulate a scenario
where the actual depth is uncertain, the mean of the initial guess for the observation
depths was drawn from a uniform distribution between 3 and 7 cm, and 8 and 12 cm
respectively. The standard deviation of the initial guess is assumed to be 1 cm. This ex-
tension of the PBS-V, in which the observation depths are also estimated, will be denoted
“PBS-D". In synthetic tests, using the same 10 truths as before, the PBS-D algorithm will
be benchmarked against the PBS-V. Finally, the PBS-D algorithm will be tested using
real world data from four observed soil temperature and moisture profiles at the SMAP
MOISST site.

5.3. RESULTS AND DISCUSSION

5.3.1. THE CANOPY ENERGY BALANCE SCHEME
Figure 5.1 shows an illustrative case that compares the estimated soil moisture using the
OL-V, PBS-V and PBS-B. From 2.5 to 20 cm deep, the estimated soil moisture from the
PBS-B is (dry) biased compared to the truth. In the PBS-V estimates, the large errors in
initial conditions persist for a few days, but the PBS-V tracks the truth accurately from
July 1st to the end of the simulation period. The soil moisture at 50 cm from the PBS-V
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is significantly wetter than the truth, and is worse than both the OL-V and PBS-B. This is
because only surface soil temperatures (5 and 10 cm) were assimilated, and these tem-
peratures contain little information on soil moisture at 50 cm [98]. Furthermore, as the
soil moisture at depth has little response to meteorological forcing during this time pe-
riod (Figure 5.1 e), the soil moisture at depth is not correlated with shallow soil moisture.
Under these conditions, the primary impact of assimilating surface soil temperatures on
the soil moisture at depths is through model physics [98], i.e. by adding or extracting wa-
ter at surface layers the PBS will draw the deeper layers towards a wetter or drier condi-
tion. In this specific case, the true soil moisture is wetter than the OL-V at the surface and
drier than the OL-V at 50 cm. The PBS-V corrects the estimates from 2.5 to 20 cm towards
a wetter condition, which leads to a higher (incorrect) soil moisture at 50 cm. The bias
at depth (e.g. Figure 5.1 e) is largely an uncorrected bias in the prior initial condition. In
Figure 5.1 a to e, the OL-V, PBS-B and PBS-V all start with the same prior initial condition,
i.e. initial soil moisture and temperature are assumed to be homogeneous with depth,
and the values randomly sampled from U[0.15 m3/m3, 0.4 m3/m3] and U[20 oC, 40 oC]
for soil moisture and temperature respectively. It is clear from Figure 5.1 a that assim-
ilation of temperature observations, and the impact of precipitation in “re-initializing"
surface soil moisture are both effective in removing this initial bias at the surface. The
degree to which this occurs decreases with depth (see Figures 5.1 b to e). The root zone
soil moisture has little correlation to the surface soil moisture, and little response to me-
teorological forcing. Hence, as shown by Dong et al. [98] the error in the prior guessed
root zone soil moisture is difficult to correct using the soil temperatures from the shal-
low subsurface. As shown in Figure 5.1 d, the bias persists for approximately 4 to 5 weeks
at 20 cm, until the soil moisture is gradually drawn to the truth at the end of the simu-
lation. At 50cm, it persists beyond the simulation period. The estimated soil moisture,
particularly at depth, could be improved by employing bias correction methods analo-
gous to those employed by Ryu et al. [99], De Lannoy et al. [75], Dee and Da Silva [73],
Monsivais-Huertero et al. [100].

The soil hydraulic properties estimated using the PBS-B and PBS-V in this illustra-
tive case are shown in Figure 5.2. The θr , and α estimates in the PBS-B converge to the
truth during the simulation period. However, the PBS-B draws the estimated n and Ks

towards a wrong value, which is significantly worse than the prior guess. As a result, the
estimated soil water retention curve is significantly biased compared to the truth (Figure
5.2 h). The estimated soil hydraulic parameters from the PBS-V all converge to the true
values after a few updates. The estimates are nearly constant during the entire simula-
tion period, which means the estimates are accurate and robust. Because the parameters
are correct, the soil water retention curve from the PBS-V fits the truth accurately (Fig-
ure 5.2 h). In this specific case, the true LAI is quite close to the mean of the prior guess.
Hence, little improvement is shown in the mean of the PBS-V estimates compared to the
prior guess. For the thermal properties, the estimated λsat is shown in Figure 5.2 f. Sim-
ilar to the soil hydraulic properties, the PBS-B provides an even worse estimate than the
prior guess. The PBS-V quickly draws the initial guess closer to the truth, which results
in an improved soil thermal conductivity curve (Figure 5.2 i). Consistent with a previ-
ous study [101], the soil thermal conductivity curve is more difficult to estimate with this
approach than the water retention curve. This is because the soil hydraulic properties,
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Figure 5.1: Comparison of soil moisture estimated using different approaches at 5 depths.

through their impact on variations in soil moisture, are the dominant control on soil
temperature dynamics.

Box plots comparing the open loop and PBS soil moisture estimates for the 10 syn-
thetic truths are given in Figure 5.3. The median RMSE of soil moisture estimates using
OL-V constantly is smaller than that estimated using OL-B at all depths. In general, the
differences between OL-B and OL-V increases with depth. This is because the OL-B ig-
nores the root water uptake processes in the root zone. The increased interquartile range
(IQR) of the RMSE of the PBS-B estimated soil moisture indicates that the PBS-B can be
even worse than the OL-B for some cases.

When the canopy energy balance scheme is included in the forward model (PBS-V),
the soil moisture can be robustly estimated across the entire profile, with RMSE values
often < 0.02 m3m−3. It is shown that the performance of the PBS-B significantly de-
pends on the temporal mean of the truth. Figure 5.3 f shows the difference between the
RMSE of soil moisture estimated using PBS-B and PBS-V at 5 cm as a function of true soil
moisture. In general, when the temporal mean of the true soil moisture is low, the per-
formance of the PBS-B and PBS-V are comparable. However, when the temporal mean
of the truth is high, using PBS-B yields significantly degraded soil moisture estimates
compared to the PBS-V.

This can be explained by the fact that soil heat and water transfer processes are more
tightly coupled under dry soils. Soil heat transfer strongly depends on soil moisture
when soil moisture is low [38]. Hence, heat transfer processes between two depths (i.e.
5 cm and 10 cm) contain more information about soil moisture when the soil is dry.
Furthermore, the energy lost through evaporative cooling is primarily controlled by the
availability of soil moisture under dry soils. This means the cooling/heating rate of the
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Figure 5.2: The convergence of the estimated soil hydraulic properties (a to e), λsat (f), LAI (g) and the soil
water retention curve (h) and the thermal conductivity curve (i) using the estimated soil hydraulic and thermal
parameters

Figure 5.3: The RMSE of soil moisture estimates using 4 different approaches at 5 depths (a to e), and the
differences of the RMSE of the PBS-B and PBS-V estimated 5 cm soil moisture as a function of the temporal
mean of the true soil moisture at 5 cm. Each boxplot contains results derived from synthetic tests using 10
randomly selected truths.
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soil is a strong function of soil moisture. When the truth is dry, soil moisture can be rel-
atively well estimated using soil temperatures, even though the forward model has large
structural errors (e.g. PBS-B).

The estimated model parameters are compared to the synthetic “true" values in Fig-
ure 5.4 and Table 5.2. As expected, the estimated parameters from the PBS-V are closer
to the 1:1 line than those estimated using PBS-B. Several parameters estimated using the
PBS-B are even negatively correlated to the truth (Table 5.2). The large errors in esti-
mated θ33 (Figure 5.4 g) from the PBS-B imply a poor agreement between the estimated
and true soil water retention curves.

In the PBS-V,α and Ks are relatively poorly estimated. However, the other parameters
suffice to ensure that the θ33 is well-estimated (Figure 5.4 g and Table 5.2), and hence that
the estimated and true water retention curves are similar.

LAI determines canopy extinction of the net radiation, which influences the ampli-
tude of the simulated soil temperatures. Hence, LAI can be accurately inferred from the
soil temperature observations using PBS-V (Figure 5.4 h).

5.3.2. STATE - PARAMETER ESTIMATION WITH UNKNOWN OBSERVATION DEPTHS

The illustrative case is revisited in Figure 5.5 (a) and (b) which show the estimated sensor
(observation) depths using PBS-D. In this case, the prior guess for the depths are 4.3 and
10.7 cm. For the top sensor, the PBS-D converges to the true sensor depth after a few up-
dates. Though the estimated depth lower sensor is closer to the true value than the prior,
it is still 0.5 cm from of the true value by the final time step. Once the estimated depths
converge from the highly uncertain initial guess, the estimates of the depths remain con-
stant. The reduction of the uncertainties in the sensor depths is also quite noticeable.

Figure 5.5 c shows box plots of the errors in estimated cable depths for 10 different
truths. The median error of the estimated cable depth is approximately 0.3 cm for the top
sensor depth, and 0.5 cm for the lower sensor depth. The amplitude of the temperature
wave induced by the diurnal cycle of solar radiation is damped with increasing depth
[38, 77]. As a result, the error in the estimated lower sensor depth may reach up to 1.2
cm, which is significantly larger than that of the top cable. It is more challenging to
correct the initial errors of the lower cable (Figure 5.5 d). This is because the solar signals
decrease exponentially with depth. Hence, little information is available to estimate the
cable depth of the lower cable. As for the upper cable, the depth can be well estimated
regardless of whether the prior guess is positively or negatively biased with respect to the
truth.

The parameters estimated using PBS-D can be compared to those from PBS-V in
Figure 5.4 and Table 5.2. In general, the PBS-D provides very similar results to the PBS-V.
Consequently, the accuracy of the soil moisture estimates using the PBS-V and the PBS-
D are also quite similar (Table 5.3). At 2.5 to 20 cm, the maximum difference in RMSE is
just 0.03 m3/m3. The similar performance of PBS-D and PBS-V is remarkable given that
the sensor depths are perfectly known in PBS-V, and unknown but estimated in PBS-D.
This means that in DTS applications, the PBS-D can be used to estimate soil moisture
even when there is significant uncertainty in the cable depths.
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Figure 5.4: Comparison of the estimated soil hydraulic properties (a to e), λsat (f), θ33 (g), and LAI (h) using 3
different PBS strategies.
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Figure 5.5: The convergence of the two estimated observation depths in one illustrative example (a and b), the
error of the estimated observation depths tested by 10 randomly selected truths (c), and a comparison of the
PBS-D and the prior guessed cable depths error (d) . In a and b, each thin line represents one particle. The true
observation depth is shown at the final estimation step.

Table 5.2: Correlation coefficient of the estimated and the true parameters using three different data assimila-
tion approaches. The values are calculated using the estimates from 10 randomly selected truths

Par. PBS-B PBS-V PBS-D
θr 0.51 0.97 0.97
θs 0.77 0.86 0.96
α -0.01 0.61 0.55
n 0.39 0.91 0.88
Ks -0.09 0.42 0.82
λsat -0.38 0.63 0.57
θ33 0.49 0.95 0.90
LAI - 0.87 0.94

Table 5.3: The RMSE of soil moisture estimates (m3/m3) at 5 depths using the PBS-V and the PBS-D. The
RMSEs are averaged from 10 randomly selected truths

Depth 2.5 cm 5 cm 10 cm 20 cm 50 cm
PBS-V 0.013 0.015 0.016 0.018 0.025
PBS-D 0.016 0.017 0.018 0.021 0.031
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Table 5.4: The absolute error (cm) of the estimated sensor depths at the four sites

Prior Site A Site B Site C Site D
Depth 1 2.117 0.153 0.086 0.659 0.413
Depth 2 1.954 0.698 0.027 1.578 0.255

Figure 5.6: The convergence of the estimated sensor depths at Site A (a and b) and Site C (c and d). The
observed sensor depth are shown at the final time step of the simulation.

5.3.3. REAL DATA APPLICATION

The PBS-D algorithm was applied to four real, observed soil temperature profiles at the
SMAP MOISST site. First, the error of the estimated sensor depths for the four sites are
shown in Table 5.4, and the convergence of the estimated sensor depths at site A and C
are shown in Figure 5.6 . The initial/prior sensor depths at site A are approximately 2 cm
biased for both the upper and the lower sensors (Figure 5.6 a and b). The PBS-D draws
the estimates to the observed sensor depths, and the error of the final estimates are 0.15
and 0.69 cm for the upper and lower sensor, respectively. The uncertainties of the sensor
depths are considerably reduced. The same prior sensor depths were assumed for site
C, and again they are biased with respect to the measured values. It takes longer for
the PBS-D estimate of the top sensor depth to converge. When it does, the estimate
is closer to the truth but still has an error of 0.66 and 1.58 cm for the upper and lower
sensor (Table 5.4). Similar to the synthetic tests, estimates for the lower sensor are less
robust (Table 5.4). As discussed in the previous section, the signal from solar radiation
is damped exponentially with depth. In addition, the time lag in the propagated soil
temperature fluctuations also increases with depth. Hence, soil temperature contains
less information of the observation depths for the lower sensor.

Figure 5.7 illustrates the convergence of the estimated model parameters using site
A and C for illustration. The estimated θr , θs and α converged to similar values at the
two sites. However, the PBS-D estimates show that site C has a significantly larger n and
Ks . The sand content of site C is approximately 22% higher than that of site A on average
(Figure A.2). Saturated soil hydraulic conductivity and the van Genuchten parameter n
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Figure 5.7: The convergence of the soil hydraulic properties at Site A and Site C (a to e), LAI (d), a comparison
of the PBS-D estimated and the observed θ33 (f) and the soil thermal conductivity curve (i).

typically increases with sand content [102]. This suggests that the differences in esti-
mated Ks and n between the two sites are reasonable. The estimated θ33 based on the
estimated soil hydraulic properties at the two sites is shown in Figure 5.7 f. The PBS-D
draws the estimated θ33 closer to the observed value at site A. At site C, the θ33 seems to
be slightly overfitted, i.e. the value from PBS-D is further from the observed value than
the prior guess. Another parameter that clearly shows the difference between the two
sites is λsat . This leads to different estimated soil thermal conductivity curves at the two
sites, both of which are closer to the observations (Figure 5.7 i) than the prior. The evo-
lution of the estimated parameters is slightly more variable than in the synthetic tests
(Figure 5.2). This may be due to increased model structural errors in the real world ap-
plication. For example, the forward model assumes the soil property profile is uniform,
which is not true in reality (Figure A.2).

In Figures 5.8 and 5.9, results are compared from the OL-V and PBS-D to show the
benefit of assimilation in a real DTS application. The forward model is the same in both
OL-V and PBS-D. The PBS-V and PBS-B are not included here as they require that the
cable depths are perfectly known. The estimated soil moisture at site A is shown in Fig-
ure 5.8. Compared with the OL-V, the main benefit of assimilating soil temperatures is
between the surface and 10 cm deep, i.e. the depth of the deepest soil temperature ob-
servation. The reduction in RMSE at shallow depths is significant (Figure 5.8 a and b and
Table 5.5). By adjusting the shallow soil moisture to a wetter condition, the soil moisture
estimates at 20 and 50 cm were also improved through the model.

At site C, the OL-V provides reasonable estimates of soil moisture at all depths, de-
spite the large particle ranges (Figure 5.9). The PBS-D provides further improvement at



5

76
5. DETERMINING SOIL MOISTURE AND SOIL PROPERTIES IN VEGETATED AREAS BY

ASSIMILATING SOIL TEMPERATURES

Figure 5.8: Comparison of estimated soil moisture using PBS-D and OL-V at 5 depths at site A. The shaded area
represents the range of the particles.

depths from 5 to 40 cm. In general, the largest errors in PBS-D estimated soil moisture
occur in the first week of the simulation (i.e. before July 9). This is because soil temper-
ature and not soil moisture is assimilated, and so the PBS-D adjusts the soil moisture to
compensate for errors in the initial guessed model states and parameters.

In general, the largest RMSE of the soil moisture estimates at depths above 10 cm is
approximately 0.04 m3/m3 (Table 5.5). Improvements below 20 cm are primarily through
model physics. Improving soil moisture estimates at shallow depths will eventually lead
to improved root zone soil moisture estimates. However, this means errors in the ini-
tial deep soil moisture persist for a few months, since the correlation between the sur-
face and deep soil moisture is relatively low and there are limited dynamics below 20
cm. Table 5.5 shows the RMSE in the estimated soil moisture at all depths, at sites A
to D. From the surface to a depth of 10 cm, most RMSE values are around 0.02 to 0.04
m3/m3, which is comparable in magnitude to the measurement error associated with
the “ground truth" soil moisture probe. Consistent with the synthetic tests, the best as-
similation results are obtained in the top 10 cm, i.e. at and above the cable depths. At
depths greater than 20 cm, the impact of solar radiation is reduced so there is limited
variation in temperature and therefore little correlation with the temperatures observed
and simulated closer to the surface. Assimilation therefore leads to a limited improve-
ment at depth due to the persistence of bias from the initial condition. With the ex-
ception of Site C, the RMSE from PBS-V is lower than that from OL-V, confirming that
assimilation generally leads to an improvement over the open loop. At Site C, the OL-V
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Figure 5.9: Similar to Figure 5.8, but for site C

yields RMSE values that are comparable to the measurement error of the soil moisture
probe at Site C. Though assimilation appears to worsen the estimate, the magnitude of
these errors means that the estimates have essentially the same accuracies. The value
of including the vegetation scheme is clear from the reduction in RMSE when PBS-V is
used instead of PBS-B. The reduction of RMSE is typically around 20 to 30%. The most
important result, in the context of applying this approach to a real DTS application, is
that the PBS-D performance is very similar to that of PBS-V. Recall that PBS-V and PBS-
D are identical in terms of model physics. The only difference is that the cable depths
are unknown in PBS-D and are included with the parameters to be estimated. Though
the performance of the PBS-V is excellent, its value is limited by the need to know the
cable depths. The fact that the PBS can estimate these depths and yield comparable per-
formance when the cable depths are unknown removes the final barrier to applying the
PBS approach to real DTS data. Finally, it is noteworthy that the relative performance of
the PBS implementations is consistent with that observed in the synthetic experiments.

Figure 5.10 further demonstrates the potential of using soil temperature observa-
tions to detect the spatial variability of soil moisture and soil properties. The OL-V uses
the same a priori model parameters and forcing data, and hence it provides the same
estimates across all the four sites, i.e. no soil moisture or soil property difference can be
detected by the OL-V. The temporal mean soil moisture is most accurately estimated by
PBS-D at the depth of 2.5 cm. It correctly shows that site C is drier than the other three
sites. Also, sites A, B and D have similar temporal mean soil moisture. The accuracy of
the PBS-D estimates decreases with increasing depth, and is significantly biased at sites
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Table 5.5: The RMSE of soil moisture estimates (m3/m3) at 5 depths using the OL-V and the PBS-D at 4 sites.
The deepest measurement and estimated soil moisture depth being compared is 50 cm for Site A, B and D, and
40 cm for site C.

Sites Appro. 2.5 cm 5 cm 10 cm 20 cm 40/50 cm
A OL-V 0.053 0.060 0.039 0.074 0.037

PBS-V 0.034 0.040 0.040 0.057 0.030
PBS-D 0.027 0.026 0.034 0.057 0.030
PBS-B 0.046 0.051 0.058 0.106 0.092

B OL-V 0.055 0.026 0.056 0.115 0.159
PBS-V 0.041 0.035 0.036 0.095 0.127
PBS-D 0.041 0.030 0.041 0.114 0.140
PBS-B 0.050 0.050 0.046 0.093 0.138

C OL-V 0.023 0.031 0.027 0.032 0.035
PBS-V 0.028 0.034 0.029 0.040 0.038
PBS-D 0.030 0.027 0.025 0.025 0.023
PBS-B 0.041 0.024 0.024 0.026 0.027

D OL-V 0.056 0.058 0.066 0.092 0.153
PBS-V 0.026 0.029 0.030 0.044 0.093
PBS-D 0.032 0.031 0.034 0.061 0.111
PBS-B 0.047 0.046 0.045 0.081 0.184

A, B and D at 20 cm. The variability of the temporal mean soil moisture across the four
sites is still well captured. Similar to the soil moisture estimates, the PBS-D correctly
shows the variability of the θ33 across the 4 sites using soil temperature dynamics. The
estimated θ33 at site B to D are slightly biased (0.037 m3/m3 at sites B and D, and 0.044
m3/m3 for site C). However, given the accuracy of the field measured θ33, the PBS-D es-
timates are quite acceptable. PBS-V generally provides similar results to PBS-D, which
is consistent with the synthetic test. The PBS-B can also reasonably estimated the mean
soil moisture and the θ33 across the four sites. This may demonstrate the feasibility and
robustness of using soil temperatures from DTS for high resolution soil moisture map-
ping.

5.4. CONCLUSIONS

In this chapter, we solved the two key remaining barriers to the application of Passive
DTS for large-scale high-resolution soil moisture monitoring. First, the inclusion of a
new surface energy balance scheme in the Hydrus-1D model extends the applicability
of the PBS data assimilation approach to vegetated areas. This is an essential develop-
ment to enable the use of Passive DTS for soil hydrology research, and the validation of
remote sensing observations under agricultural and natural vegetation. Second, an algo-
rithm was proposed to estimate observation depths jointly with other model states and
parameters. This is particularly relevant for DTS applications, since measuring the cable
depths every meter along the DTS cable is logistically impractical. Requiring the cable
depths to be measured everywhere would render the data assimilation scheme proposed
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Figure 5.10: Comparison of the estimated and observed temporal mean soil moisture (a to d) and the θ33 (e) at
the four sites.

by [98, 101, 103] useless in DTS applications. Therefore, estimating the cable depths is
essential.

The new approach (PBS-D) was tested using both synthetic and real world data. The
synthetic experiments were necessary because in real DTS installations the cable depth
is difficult to measure and therefore often unknown. Synthetic tests, in which the cable
depth is perfectly known, were used to demonstrate that the proposed approach worked
and to illustrate the value of being able to estimate the observation depth. The “real"
data were from four observation profiles from traditional sensors rather than DTS obser-
vations. These profiles had very distinct soil texture profiles. Though the prior guesses
for sensor depths, soil moisture and properties were identical for all profiles, the PBS-D
approach was able to reproduce observed differences in soil properties and soil mois-
ture between the four sites. Hence, the results demonstrate that the PBS-D can be used
to assimilate in-situ soil temperature observations to simultaneously estimate soil mois-
ture dynamics along with soil hydraulic and thermal properties. It is worth nothing that
the cable depths could be calibrated off-line if they are time-invariant parameters. This
would reduce the degree of freedom of the estimation problem, potentially improving
the estimates of the remaining states and parameters. However, the ability to estimate
them is limited by the uncertainty and/or biases in the soil properties in the prior guess.
This would require an iterative procedure to allow both to converge. Furthermore, cable
depth is not necessarily time-invariant. The cables may shift in the soil due to soil com-
paction, animal or vehicle traffic or sedimentation processes. Estimating them in-line
provides the flexibility to handle these temporal variations.
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6.1. INTRODUCTION
Data assimilation methods were proposed and investigated for estimating soil moisture
and soil properties using soil temperatures in the previous chapters. All of the data as-
similation developments to date have been tested and developed using synthetic data
and observations from point in-situ temperature sensors. In this chapter, the Particle
Batch Smoother will be applied to real Distributed Temperature Sensing data from the
Soil Moisture Active Passive (SMAP) Marena Oklahoma MOISST site (refer to A.1).

As shown in the previous chapters, a tuning factor is necessary to avoid severe parti-
cle weight degeneracy and to provide accurate estimates, which is particularly true when
model parameters are jointly estimated with model states. Due to the limited scale of the
problem, it was possible to determine a temporally constant tuning factor by trial and er-
ror [101]. To apply the PBS to real DTS data, an objective, automatic procedure is needed
to determine an appropriate tuning factor.

This chapter first proposes an adaptive Particle Batch Smoother (APBS), in which
a tuning factor will be automatically determined to avoid severe weight degeneration.
Since the truth and the uncertainties are known by design, synthetic tests were then used
to test the accuracy and the robustness of this APBS algorithm. Finally, We applied this
APBS algorithm to real DTS data, which yields high spatial soil moisture and soil property
maps along this section of DTS cable. The estimated soil moisture and properties will be
evaluated using data collected at a nearby site.

6.2. METHOD AND MATERIALS

6.2.1. ADAPTIVE PARTICLE BATCH SMOOTHER
The adaptive particle batch smoother is essentially the same as the PBS algorithm de-
scribed above, except that the tuning factor for each batch window is determined by
maximizing the reliability of the soil temperature estimates. The probabilistic metric of
reliability is calculated using the Quantile - Quantile (Q-Q) plot, which indicates whether
the estimated uncertainty (particle range or ensemble spread) is appropriate. For each
batch window, the quantile of the predictive distribution is calculated at each time step
at each observation depth within the batch window [58]:

zt j , j = 1

N

N∑
i=1

ki (6.1)

where N is the number of the particles, zt j , j is the quantile of the predictive distribution
calculated at time t j depth j , ki = 1 when observed soil temperature is larger than the ith
particle simulated soil temperature at time t j , and ki = 0, otherwise [84]. In the perfect
case, the distribution of zt j , j should follow the uniform distribution (U [0,1]). If zt j , j are
clustered at the middle range, it indicates that the uncertainty is overestimated. The
uncertainty is underestimated when the zt j , j are clustered around the tails. In the case
where zt j , j is constantly lower/higher than U [0,1], it indicates the estimates are biased
[85]. The differences between the zt j , j and U [0,1] are measured by reliability (αr ):

αr = 1− 2

n0 ×nt

n0∑
j=1

nt∑
t j =1

∣∣∣zt j , j −U [0,1]
∣∣∣ (6.2)
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where nt denotes the total number of time steps within the batch window. For example,
when hourly soil temperatures were observed at two depths and a window length of 12
h was used, n0 was two and nt was 12. Consequently, the reliability of this batch window
will be estimated using 24 observations. Reliability (αr ) varies from 0 (zero reliability)
to 1 (perfect reliability). It was demonstrated that the PBS can provide robust estimates,
once this β value is within a reasonable range [101]. Hence, β is varied from 0 to 1 in in-
crements of 0.05 and the optimal β is that which yields the largest reliability in the APBS.
This adaptive approach may be particularly suitable for the cases when particle weight
degeneracy is severe, or the prior estimates have large errors. Under such circumstances,
the prior distribution may be less capable of encompassing the truth, which also means
little model parameter and state information can be inferred from the soil temperatures.
Hence, updating the particles using the original PBS (i.e. β = 1) will unavoidably lead
to overconfident estimates and reduced αr . Further, the parameter estimates will also
be over-fitted to model or observation errors. While in the APBS method, a small tuning
factor will be used to maximize the αr . Using a small tuning factor will allow the parti-
cle range to grow to encompass the observations in the following steps. Further, since a
small tuning factor is used, the model parameters are less likely to be overfitted.

6.2.2. DATA ASSIMILATION EXPERIMENTS

First, we will show the necessity of using the adaptive Particle Batch Smoother (APBS) to
avoid severe particle weight degeneracy and to improve the estimates. A single illustra-
tive synthetic test is used to compare the original Particle Batch Smoother (i.e. β = 1.0)
to the APBS. In this synthetic test, the truth was generated using the forward model with
perturbed forcing data (Table 5.1). Soil textures and soil bulk density drawn from the dis-
tributions described in Table 5.1 were used to generate the true parameters. To account
for uncertainties in the cable depths in real DTS applications, the observation depths
were randomly drawn from the uniform distributions U[3 cm, 7 cm] and U[8 cm, 12
cm] for the upper and lower cable, respectively. Synthetic DTS observations were gen-
erated by adding zero mean Gaussian distributed noise to the synthetic true soil tem-
peratures. As a conservative assumption, the observation error used in this study is 0.5
oC. An open-loop run (OL), in which the particles are run in parallel without performing
any data assimilation, was used to evaluate the improvement made by the different PBS
algorithms. For the OL run, the model parameters were generated using randomly sam-
pled soil properties as described in Table 5.1. In the PBS algorithms, the initial guessed
cable depths for each particle were drawn from a Gaussian distribution with standard
deviation of 1 cm, and mean of 5 cm for the upper cable, and 10 cm for the lower cable.
The cable depths were jointly estimated with soil temperature and moisture profiles, soil
hydraulic properties (θr , θs , α, n, Ks ), soil thermal property (λsat ) and LAI in both PBS
schemes.

Next, we will investigate the robustness of the APBS algorithm using a multiple truth
test. We repeated the experiment described above 15 times, where using 15 different
truths, generated using randomly sampled model parameters. Chapter 4 and 5 demon-
strated that setting β = 0.25 in the original PBS algorithm (note as PBSβ) yields signifi-
cantly improved estimates. A comparison of the PBSβ and the APBS may provide insight
into the benefits of using an adaptive tuning factor in the PBS, rather than simply assum-
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ing some arbitrary value. Hence, in this multiple truth test, three PBS schemes, i.e. PBS,
PBSβ and APBS, were compared.

Finally, the APBS algorithm was tested using the real DTS data from the SMAP MOISST.
The APBS estimated soil moisture and soil properties were evaluated using the data col-
lected from an observation site approximately 70 m away. First, we examined the vari-
ability in the estimated cable depths. Then, we validated the estimated thermal conduc-
tivity and field capacity against observed values, and compared estimated soil moisture
along the cable to that observed with in-situ Hydra probes at the nearest enclosure (Site
B). Finally, we used the estimated soil moisture to quantify spatial variability in moisture
along the cable and consider possible sources of this variability.

6.3. RESULTS AND DISCUSSION

6.3.1. AN ILLUSTRATIVE CASE

Figure 6.1 illustrates how the value of β influences the Q-Q plot, and hence how the Q-Q
plot can be used to determine β adaptively. In the top panel, β= 0.0, which means that
the state and parameters were not updated. This is equivalent to an open loop simula-
tion. Figure 6.1 a and b show that the posterior estimate is biased. As a result, Figure
6.1 c shows that the predicted quantile is constantly above the cumulative uniform dis-
tribution. At the other extreme, Figures 6.1 e to h show what happens when β = 1.0.
Because the observation error was so small with respect to the a priori estimate, only
a few particles were preserved after resampling (Figure 6.1 e and f). Consequently, the
Q-Q plot shows that the predicted quantiles are clustered in the middle range, which in-
dicates that the estimated posterior is overconfident (Figure 6.1 g). This also indicates
that the particle weights are significantly degenerated. As a result, the posterior of the
model parameter, e.g. θs , is concentrated on a few particles, and therefore cannot en-
compass the true value (Figure 6.1 h). Figure 6.1 i and j show the impact of selecting a
tuning factor that maximizes the reliability of the soil temperature estimates. More par-
ticles are accepted in the posterior distribution which also benefits the model parameter
estimation. Though the mode of the posterior is biased, the range of the posterior is still
wide enough to encompass the truth (Figure 6.1 l). In this case, the Q-Q plot shows that
predicted quantiles are almost perfectly aligned with those from a uniform distribution
(Figure 6.1 k).

Figure 6.2 compares the convergence of the model parameter estimates whenβ is set
to 1.0 (PBS) to the case when β is estimated using the APBS. In this specific illustrative
case, the PBS fails to converge to the true parameters (Figure 6.2 a to g). The evolution
of the parameter estimates is also quite unstable, even at the end of the experiment,
which suggests that the PBS overfits the model parameter to the model error. The APBS
provides significantly improved soil hydraulic properties, compared to the PBS approach
(Figure 6.2 a to e). This yields a nearly perfectly estimated soil water retention curve
(Figure 6.2 h). Among the five soil hydraulic properties, theα and Ks parameters provide
the poorest agreement with the true values. This is because these two parameters are less
sensitive to the soil temperature evolution than the other parameters [101]. The prior
guessed thermal conductivity, λsat , is very close to the truth in this specific case. Both
PBS and APBS provide degraded estimates of λsat and that thermal conductivity curve
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Figure 6.1: Soil temperature estimates at 5 (first column) and 10 cm (second column), the Q-Q plot (third
column), and the posterior distribution of the estimated model parameter using θs as an example (fourth
column) in one batch window. The top row is the case when β = 0, which is equivalent to open loop. The
second row shows the estimates using β = 1.0, i.e. no tuning is used. The last row uses an automatically
determined β, which is 0.3 in this specific window.

(Figure 6.2 f and i). Because the soil moisture drives dynamics in soil thermal properties,
the soil hydraulic properties are easier to estimate than the soil thermal properties [101].
The prior guessed LAI is already very close to the truth (Figure 6.2 g). Both the PBS and
the APBS have converged to the true LAI at the final time step. However, it is noticeable
that the estimate from the PBS varies considerably during the simulation period.

The estimated upper and lower cable depths using PBS and APBS for this synthetic,
illustrative case are shown in Figure 6.3. The prior guess for the cable depth of the upper
cable was biased by approximately 1.5 cm. Both the PBS and the APBS draw the prior
estimate closer to the truth, and result in an error of less than 0.5 cm for both methods.
The estimated lower cable depth is less accurate compared to the upper cable in this
specific case (Figure 6.3 b). The solar signal is damped exponentially with depth, and
hence it is more difficult to estimate the depth of the lower cable as shown in the previous
chapter.

Figure 6.4 shows the soil moisture estimates using the two PBS schemes. Because the
PBS yielded little improvement in the soil hydraulic properties compared with the prior
(Figure 6.2), the estimated soil moisture from the PBS is very similar to the OL estimates
at all depths. On the other hand, the APBS benefits from the near perfect soil property
estimates from approximately May 10 onward (Figure 6.2). Hence, it provides very ac-
curate surface soil moisture estimates. Soil moisture at depth has little response to the
climatic forcing at the upper boundary during the simulation period. Furthermore, only
5 and 10 cm soil temperatures were assimilated in this study, which has limited corre-
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Figure 6.2: The estimated soil hydraulic and thermal properties (a to f) and LAI (g). The soil water retention
curve and the soil thermal conductivity curve calculated using the estimated soil properties are shown in (h)
and (i). The true model parameters are shown at the final time step. The shaded area represents the range of
the particles.

Figure 6.3: Estimated upper (a) and lower (b) cable depths using the PBS and APBS. The true cable depths is
shown at the final time step.
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Figure 6.4: Comparison of the soil moisture estimated using PBS and APBS at 5 depths.

lation with the soil moisture in the deeper profiles. Thus, the APBS algorithm mainly
benefits the root zone soil moisture estimates through model physics, i.e. increasing
or decreasing soil water content at surface will eventually lead to a wetter or drier root
zone soil moisture. Hence, the impact of the errors in the initial condition increases with
depth (e.g. Figure 6.4 e). This may indicate longer term simulations are necessary for the
PBS algorithms to yield to improvements at depth. The estimated soil moisture at depth
might be improved by employing bias correction methods analogous to those employed
in the previous studies [e.g. 73, 75, 99, 100].

6.3.2. A MULTIPLE TRUTH COMPARISON OF DIFFERENT PBS SCHEMES

The previous section showed results from a single synthetic case. Figures 6.5 and 6.6,
and Table 6.1 summarize the results when this experiment was repeated 15 times for
different synthetic “truths". Figure 6.5 shows a comparison of the true and the estimated
cable depths when β is set to 1.0 (PBS), a fixed value of 0.25 (PBSβ) or determined using
the adaptive PBS (APBS). The PBSβ and APBS estimated cable depths and separation
distances with similar accuracies, which were better than that of PBS approach. Similar
to the illustrative case, the depth of the lower cable proved difficult to estimate.

The estimated model parameters and the correlations between the estimates and
the truths are shown in Figure 6.6 and Table 6.1. In general, the PBS estimated model pa-
rameters are the least correlated with the true parameters, compared with the PBSβ and
APBS. This is consistent with a previous study [101], which demonstrated that when no
tuning factor is used (i.e. PBS), the PBS algorithm will have severe weight degeneration
problems, which eventually lead to unreliable estimates. The PBSβ and APBS provide
similar results. In general, the correlations between the truth and the APBS estimated
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Figure 6.5: Comparison of the true and estimated cable depths (a and b), and cable distances (c) using 15
randomly sampled truths.

Table 6.1: The correlation of the estimated and the true model parameters using different PBS schemes

Par. PBS PBSβ APBS
θr 0.41 0.89 0.91
θs 0.44 0.88 0.91
α -0.15 0.52 0.62
n 0.46 0.93 0.95
Ks 0.54 0.69 0.88
λsat 0.13 0.74 0.55
θ33 0.37 0.92 0.90
LAI 0.71 0.94 0.96

model parameters are higher than that of PBSβ.
The optimal β values from a single truth in the APBS is presented in a histogram to

provide a more detailed comparison of the APBS and PBSβ method (Figure 6.7). The
optimal value of β is not a simple function of the state, forcing or parameter, but a com-
bination of those that may lead to particle degeneration. Also, the optimal value is that
which provides a particle range just wide enough to encompass the observation, so it will
depend on the difference between the particle model estimates and the observation. If
the observation is already within the prior range, a β value as high as 0.9 will encompass
the observation. Assuming a single value of 0.25 for β reduces the likelihood that the
observation is beyond the particle range, but does not ensure this to be the case. From
Figure 6.7, most of the optimal β values in the APBS method are between 0 and 0.1. Us-
ing such small β values, APBS prevents the particle spread from collapsing, and ensures
that the particle range is just wide enough to encompass the observations.

As a result of the similarity in the soil properties, the PBSβ and APBS also provide
very similar soil moisture estimates (Table 6.2). Using the PBS yields the poorest soil
moisture estimates, the RMSE of which is approximately twice as high as that of the PBSβ
and APBS. The necessity of using the tuning factor in the PBS is also shown in the soil
temperature estimates. The RMSE of PBS estimated soil temperature is above 0.5 oC for
depths ≤ 20cm, which is even larger than the observation error. Using a tuning factor of
0.25 (PBSβ) can significantly avoid the particle weight degeneration, and leads to a sharp
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Figure 6.6: Comparison of the true and the estimated model parameters (a to g) and the θ33 (h) calculated
using the estimated soil hydraulic properties.
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Figure 6.7: The distribution of the β values that used in the APBS method. The present values are from one
single truth for illustration.

decrease in the soil temperature RMSE. When the adaptive tuning factor is used (APBS),
the soil temperature RMSE were further reduced at depth above 10 cm.

Table 6.2: The RMSE of the estimated soil moisture and soil temperature using different PBS schemes at 5
depths. The values are averaged from 15 tests using randomly sampled truths

State App. 2.5cm 5cm 10cm 20cm 50cm
Moisture PBS 0.041 0.042 0.041 0.040 0.042

PBSβ 0.022 0.023 0.024 0.028 0.032
APBS 0.022 0.023 0.023 0.026 0.031

Temperature PBS 0.656 0.541 0.509 0.505 0.494
PBSβ 0.417 0.342 0.285 0.255 0.251
APBS 0.339 0.275 0.258 0.253 0.249

The results from the multiple truth tests presented in this section show several key
points in successfully implementing the PBS algorithm. The PBS algorithm updates the
model states and parameters by placing more weight on the particles that have a better
fit to the observations, and discarding the particles that have little weight. Hence, when
the range of the particle estimates is small, the prior distribution mapped by the PBS is
very unlikely to contain the global optimal parameter sets. As a result, the PBS estimates
can be unreliable, which is consistent with a previous study [101]. The PBSβ uses a tun-
ing factor of 0.25, which makes the particles more acceptable in the resampling process.
This will allow the prior distribution for the model states and parameters to have heavier
tails, which is more likely to encompass the observations. As a result, the estimates were
greatly improved compared to those from the PBS (Table 6.1 and 6.2). However, until
now, the tuning factors had been obtained by trial and error, and assumed to be con-
stant in time. In order to implement the PBS to real DTS data, it is essential that the tun-
ing factor can be determined objectively and automatically for each section of cable, and
“on-the-fly" to allow for seasonal effects related to model structural error. The APBS can
also be considered as a more statistically meaningful way of tuning the PBS algorithm.
For each batch window, the APBS finds a β value that gives the largest reliability of the
soil temperature estimates, i.e. aβ value that optimally addresses uncertainties of the es-
timates. For example, when the particle spread is small, small tuning factors should be
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Figure 6.8: Observed precipitation (a), solar radiation (b), and soil temperature using two fiber optic cables (c
and d) along a 71 m transect from April 19th and May 29th. The color represents the soil temperature (oC).

used to breed the particles. Conversely, when the particle spread is large, a large tuning
factor can be used to make full use of the soil temperature information. Thus, the APBS
is shown to be superior than PBSβ in most of the model state and parameter estimates.

6.3.3. IMPLEMENTING APBS IN A REAL DTS EXPERIMENT
Figure 6.8 shows the temperatures measured at approximately 5 cm and 10 cm using
DTS from April 19 2011 to May 29 2011. The diurnal cycles of the observed soil temper-
atures due to solar radiation (Figure 6.8 b) are clearly visible. The daily amplitude of soil
temperature is lower on days with precipitation and low radiation (e.g. April 24 to 29).
Some spatial variation is observed, e.g. lower temperatures between 30 m and 42 m, and
higher temperature between 50 to 60 m. These variations could be due to differences in
soil texture and/or vegetation cover, and variations in cable depths.

Figure 6.9 shows the estimated cable depths along the 71 m DTS transect at the SMAP
MOISST site. The average depths of the upper and lower cables are 5.28 cm and 9.35 cm
respectively. The average estimate of the separation distance between the two cables is
approximately 4 cm. These estimates are plausible given the plow configuration. The
spatial variability can be attributed to the impact of soil roughness on the cable installa-
tion.

Histograms of the estimated saturated soil thermal conductivity (λsat ) and θ33 along
this 71 m DTS transect are shown in Figure 6.10. These are the only two parameters for
which validation measurements were available at the nearby site B. The prior guessed
λsat is approximately 1.9 W/mK, which is significantly higher than the measured value.
The average of the APBS estimated λsat values was drawn closer to the reference value,
with an average of 1.77 W/mK along this 71 m transect.

The mean of the prior estimated θ33 is approximately 0.2 m3/m3, which is signifi-
cantly lower than the field measured reference value. When soil temperature observa-
tions from the DTS are assimilated, the mean of the estimated θ33 of this 71 m transect
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Figure 6.9: The estimated upper and lower cable depths along a 71m DTS transect (a), the distribution of the
estimated 71m cable depths (b), and the distribution of the estimated cable distances (c).

Figure 6.10: The distribution of the estimated soil thermal property (λsat , a) and soil hydraulic property (θ33,
b) along the 71m DTS transect.
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Figure 6.11: The estimated soil moisture along the 71m DTS transect at 5 depths. The black solid line is the soil
moisture measured at site B. Each thin blue line represents soil moisture estimates for one meter of cable, and
the mean estimated soil moisture of the 71m cable is shown as the blue solid line.

is 0.27 m3/m3.

The time series of the estimated soil moisture using the DTS observed soil tempera-
ture is shown in Figure 6.11, and compared to the observed soil moisture at the reference
site. Due to the significantly biased estimated soil hydraulic properties (Figure 6.10 b),
the OL is biased compared to the reference site. When soil temperature is assimilated,
the APBS removes the biases between the OL and the reference soil moisture at depths
above 20 cm. At 50 cm, the soil moisture estimates are dominated by the initial guess for
soil moisture. Therefore, no significant improvement is shown in the APBS estimates,
compared to the OL.

In Figure 6.12, the mean soil moisture in each meter of DTS cable is plotted against
key soil properties as well as the cable depths in order to rule out any relationship be-
tween the estimated soil moisture and the estimated cable depths. From Figure 6.12 a
and b it is clear that there is no correlation between the estimated cable depths and the
temporal mean of the soil moisture. This means the spatial pattern in soil moisture is
not merely an artefact of uncertainty in the cable depth estimation. On the other hand,
the temporal mean of the soil moisture along this 71 m transect has the strongest corre-
lation with θ33. This suggests that the spatial variability of the soil moisture across this
transect is primarily attributed to the spatial variability of the soil hydraulic properties.

Figure 6.13 shows the soil moisture at depths ≤ 20 cm across this transect. Soil mois-
ture along this 71 m of DTS cable at 2.5 cm shows a fast response to the climatic forcing.
The impact of the forcing dramatically decreases with depth. Hence, the rapid increases
in wetness following precipitation and the slow drying down are more evident in the soil
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Figure 6.12: The temporal mean (TM) of soil moisture at 2.5 cm as a function of estimated cable depths (a
and b), soil hydraulic (c) and thermal (d) properties. Each symbol represents the temporal mean of 2.5 cm soil
moisture estimated at one meter of the DTS cable.

moisture at 2.5 cm. The horizontal stripes apparent in the soil moisture estimates repre-
sent spatial variability, which is likely due to variations in soil texture. Below 20 cm, little
spatial or temporal soil moisture variability is observed. However, the variations due to
spatial patterns in soil texture are still visible.

Figure 6.14 a and b show the evolution of the statistics of the soil moisture spatial
variability along this transect, taking 2.5 cm soil moisture for illustration. No clear tem-
poral pattern is shown in the standard deviation of soil moisture, except that the spikes
after rainfall. In data assimilation, no perturbation for precipitation is used for days
with zero precipitation, while a large multiplicative error is used for large precipitation
events. Hence, the larger standard deviation of the soil moisture is likely to occur during
or shortly after rainfall events. The standard deviation of the soil moisture is not shown
to be a strong function of the areal mean soil moisture (Figure 6.14 c). It also seems the
soil moisture standard deviation slightly increases with increased mean soil moisture,
while several previous studies show soil moisture standard deviation reaches the peak
value when areal mean soil moisture is in the range of 0.17 to 0.23 m3/m3 [e.g. 104, 105].
However, various relationships between soil moisture and standard deviation at inter-
mediate scales were also found in previous studies, as summarized in [106]. This might
indicate the standard deviation - mean soil moisture relationship is sensitive to obser-
vation errors, soil properties, and climatic forcing of the study area. The validity of the
standard deviation - mean areal soil moisture relationship detected along this transect
may need to be validated in a further study.

The coefficient of variation (CV) of the soil moisture along this transect has a clear
temporal signature (Figure 6.14 b). In general, the CV of soil moisture at 2.5 cm is low
during rainfall events (e.g. May 1). The value of CV increases during the dry down period
(e.g. May 1 to 12). This makes sense as soil moisture is essentially reinitialized by pre-
cipitation events, with sharply increased soil water content and decreased CV. The CV of
the soil moisture will start to increase again in the subsequent dry down process. CV is
also shown to be a strong function of the areal mean soil moisture (Figure 6.14 d), which
is consistent with previous studies [e.g. 105, 107, 108]. This highlights the potential of
using DTS to observe and monitor the temporal and spatial soil moisture variability.
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Figure 6.13: Soil moisture estimates along a 71m DTS transect at four depths (b to e). The color denotes the
value of soil moisture (m3/m3).

Figure 6.14: The time series of the standard deviation (a) and coefficient of variation (b) of 2.5 cm soil moisture.
The standard deviation (c) and coefficient of variation (d) as a function of areal mean soil moisture.
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6.4. CONCLUSION
In this study, we demonstrated the potential of mapping meter resolution soil moisture
and soil properties along a 71 m DTS fiber optic cable using an adaptive Particle Batch
Smoother (APBS). The estimated soil moisture and properties were evaluated using field
measurements at a nearby site. Results show that the coefficient of variation and areal
mean soil moisture relationship are consistent with previous studies. This indicates that
the high resolution (spatial: 1 m, and temporal: 1 hour) soil moisture pattern mapped
using the DTS has the potential of providing insight into the spatial and temporal evolu-
tion of soil moisture.

Consistent with previous studies, and also with the synthetic tests presented in this
study, soil thermal properties are more difficult to be accurately estimated than the soil
hydraulic properties. Including additional observations (e.g. Active DTS) may further
constrain the estimated model parameters.

Due to the difficulties in installing the cable at this site with relatively uneven ter-
rain and dense vegetation, the present study used data collected by only part of the DTS
cables. The maturity of fiber optic cable installation techniques in recent years [109],
may be helpful in providing high quality DTS observed soil temperature for cables up to
kilometers in length. Using hourly measured DTS soil temperature data at two shallow
depths already yields quite promising results. This suggests that hourly DTS data is suffi-
cient, which will significantly reduce the data management and processing efforts in the
large scale DTS experiments.

In this study, an adaptive PBS approach (APBS) was presented that automatically
tunes the PBS to avoid severe weight degeneracy and improve parameter estimation.
This obviates the need to assume that the tuning factor is a constant, and allows the tun-
ing factor to be determined “on-the-fly" in a statistically meaningful way. The proposed
APBS approach should also be valuable in other smoother applications in which param-
eter estimation might be desirable e.g. streamflow prediction, snow water equivalent
estimation, and soil moisture reanalysis [e.g. 53, 57, 59, 110].
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7.1. KNOWLEDGE GENERATED AND ORIGINAL CONTRIBUTIONS

7.1.1. ON SOIL MOISTURE MAPPING AND SCALING
The necessity of monitoring high spatial resolution soil moisture over large areas is pre-
sented in the first chapter, in the context of understanding soil moisture spatial vari-
ability, soil moisture scaling and validating large scale soil moisture measurement tech-
niques. The key motivation of this thesis is to develop Passive DTS into a viable tool
for high resolution, continuous, long-term soil moisture monitoring up to the kilometer
scale.

Extracting soil moisture and soil property information using data assimilation meth-
ods was tested using both synthetic and real world data. The soil moisture spatial vari-
ability mapped using DTS also reflects a pattern consistent with previous studies de-
rived using traditional point scale sensors [105]. High resolution soil moisture mapping
with point sensors is logistically difficult and economically infeasible. Hence, it is diffi-
cult to explore the temporal evolution of soil moisture spatial patterns using traditional
point scale measurement tools. DTS can provide continuous fine resolution soil mois-
ture measurements at large scales. This means DTS will be a powerful tool for investi-
gating the factors that affect the soil moisture spatial variability, e.g. heterogeneity of
precipitation and seasonal vegetation changes.

7.1.2. ON SOIL MOISTURE ESTIMATION USING SOIL TEMPERATURES
Though the first attempt of estimating soil moisture using soil temperature observations
dates back to 1970s, great challenges were presented in these methods, as was discussed
in Chapter 1. Data assimilation methods outperform the typical traditional approaches,
e.g. approaches related to soil thermal inertia and optimizing analytical soil heat transfer
equations, in several aspects.

First, a forward model, which is the state of the art vadose zone model, is used for
providing prior guessed soil moisture in the data assimilation methods. This allows us to
incorporate meteorological forcing information into the estimation system, which yields
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more informative prior soil moisture estimates. Conversely, moisture/thermal proper-
ties are estimated as a free parameter in the traditional methods, which means the prior
guesses in the traditional methods are less informative.

Second, soil vapor transfer is taken as a key link between soil temperature and soil
moisture in the data assimilation method, which is ignored in the traditional methods.
Since the vapor transfer processes were neglected in the traditional approaches, the es-
timated soil thermal properties were usually biased. Hence, the soil moisture can not be
effectively estimated using soil temperatures in the traditional methods.

Third, data assimilation can better handle different types of uncertainties. Soil mois-
ture was solved in a deterministic way in the traditional methods. The relationship be-
tween soil moisture and soil thermal properties, the soil temperature observations, and
the analytical solutions of the heat conduction equation were all considered to be per-
fect, and hence all the errors (uncertainties) will be accumulated in the final soil mois-
ture estimates. This can often lead to physically unreasonable soil moisture estimates.
In data assimilation, all types of uncertainties were considered, and the prior distribu-
tion was updated according to the observations. It is essentially equivalent to adjusting
the weights of the prior guesses. Therefore, data assimilation methods are more capable
of handling the uncertainties, and the final soil moisture estimates are always physically
reasonable.

7.1.3. ON DATA ASSIMILATION ALGORITHMS

A Particle Batch Smoother (PBS) is presented to extract information of the variable of in-
terest from a sequence of observations. The PBS algorithm outperforms the sequential
particle filtering algorithm, as tested in this thesis. Development of the PBS for soil mois-
ture estimation based on DTS is the main scientific contribution of this thesis. The PBS
overcomes most problems associated with earlier methods. This is because a sequence
of observations contains more information than measurements at instantaneous points.
This thesis also demonstrated that joint/dual state-parameter estimation usually yields
significantly improved estimates compared to the cases in which only model states are
updated. This is because improved model parameters can significantly improve the per-
formance of the forward model, which allows the prior estimates to better encompass
the “truth". When model parameters are updated together with model states, a potential
concern is the weight degeneracy problem in the PBS. When the PBS overconfidently fits
the model parameters to the model errors, the model parameters may converge to incor-
rect values. As a consequence, the prior estimates will be less capable to encompass the
observations and lead to severe weight degeneracy problems, and the uncertainty of the
posterior estimates is underestimated. Reliability addresses whether the uncertainties
of the estimates are reasonable. Consequently, the weight degeneracy problem can be
avoided by maximizing the reliability of the estimates within each batch window. Based
on this new concept, an adaptive Particle Batch Smoother (APBS) is proposed, which can
automatically tune the PBS and yield robust estimates without weight degeneracy.
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7.2.1. VALIDATION DATA

As demonstrated in this thesis, assimilating DTS observed soil temperatures into a va-
dose zone model can yield high spatial resolution soil moisture, soil thermal and hy-
draulic properties, and soil surface energy fluxes. The data assimilation method devel-
oped in this thesis was primarily tested and validated using synthetic tests and data col-
lected from point sensors. To further utilize the DTS estimates, validation data along the
DTS cables should be independently measured.

Soil moisture point sensors should be used for monitoring DTS estimated soil mois-
ture at a few locations along the DTS cables. This is useful for validating the DTS soil
moisture estimates. Field campaigns are also needed to map the surface soil moisture
along the DTS cables. These soil moisture measurements can be used for evaluating
whether the soil moisture spatial variability detected by the DTS is appropriate. To use
the DTS as a general soil hydrology research tool, the soil hydraulic properties estimated
by the DTS also require further validation. Hence, soil hydraulic property measurements
at locations with distinctive soil textures are clearly needed. Soil energy fluxes can also
be estimated every meter along the DTS cables. Independent soil energy fluxes should
be measured at point scales (e.g. using heat pulse sensors [111]) to validate the DTS
estimated fluxes.

7.2.2. COMBINING ACTIVE AND PASSIVE DTS
Active DTS, in which heat pulses are applied to the DTS cables, is more directly linked
to soil moisture. As shown in Chapter 1, there are two categories of Active DTS meth-
ods. The first category of Active DTS methods relates soil heat pulses to soil moisture
measurements using empirical equations. The second category of Active DTS is more
physically based, which solves the soil thermal conductivity using the soil temperature
change after heating. The soil thermal conductivity is then used for solving soil moisture,
provided the soil thermal conductivity to soil moisture relationship is known.

When the Active DTS uses more physically based methods, soil thermal conductiv-
ity derived from the Active DTS can be directly assimilated. To optimally combine the
Active and Passive DTS methods, the error of the Active DTS estimate soil thermal con-
ductivity has to be accurately quantified. When soil moisture is inferred using empirical
equations in the Active DTS, the uncertainties of this empirical equation have to be con-
sidered. This empirical equation is essentially a measurement operator in data assimi-
lation, which links the model estimates (soil moisture) to the observations (heat pulses).
Quantifying the uncertainty of this empirical equation, particular the uncertainties as-
sociated to different soil textures and soil moisture contents, is necessary.

7.2.3. DATA ASSIMILATION ALGORITHM

The weight degeneracy problem in the PBS method was handled using a tuning factor in
Chapter 4 to 6. Using the concept of Gaussian mixture may further improve the PBS
method and avoid the weight degeneracy problem. The PBS approximates the prior
distribution using step functions, and describes the prior in a discrete form. Conse-
quently, the PBS is likely to have weight degeneracy problems, when observations are at
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the tails of the prior distribution. In Gaussian mixture approaches, the prior distribution
is mapped using a set of Gaussian distributions with small standard deviations (band-
width) [86, 92]. A Gaussian mixture batch smoother can be considered as a generalized
batch smoother, which is equivalent to the ES when bandwidth is 1, and equivalent to
the PBS when the bandwidth is 0. To successfully use the Gaussian mixture approach,
an optimal bandwidth that can approximate the prior with good accuracies and heavy
tails has to be investigated.

In sequential data assimilation, biases in the model forecasts should be removed. In
this thesis, particularly the synthetic tests, the biases in the model forecasts are mainly
attributed to the model parameters, which were implicitly handled when the parameters
are jointly updated with the model states (Chapter 4 to 6). Compared with using bias
correction techniques [e.g. 73, 74], a key benefit of using joint model state and param-
eter estimation is that model parameters can also be inferred from DTS observations.
Further, the biases can be removed in a more physically meaningful way [e.g. 73, 74].
However, when the biases are attributed to the model structures or the observations, a
bias correction algorithm should be implemented [75, 76, 112, 113]. We recognize that
inclusion of a bias correction scheme would alter the results in Chapter 2 and 3.

The fiber optic cables have a protection layer of a few millimeters. When the soil
temperature changes faster than the time required for reaching the thermal equilibrium
between the fiber optic cables and the soil, the soil temperature observations will have
temporally correlated errors. These and other autocorrelated observation errors are not
considered in this thesis for simplicity. Further, an observation error with a standard
deviation of 0.5 oC, which is significantly larger than the DTS instrument error (approxi-
mately 0.1 oC), was used to represent the observation error related to representativeness.
However, when observations are more frequently assimilated, e.g. every minute, the au-
tocorrelation of the observation errors may have significant impacts on the PBS. A data
assimilation scheme similar to that presented in [74], might be useful in handling the
autocorrelated errors.

7.2.4. INTERMEDIATE SCALE SOIL MOISTURE MEASUREMENTS VALIDATION

DTS will be useful in calibrating intermediate scale soil moisture measurement tech-
niques, e.g. Cosmic ray probe and GPS-R. As discussed in the first chapter, both tech-
niques are affected by the vegetation cover, soil surface roughness and soil moisture
conditions. Further, the penetration depths of the two techniques also vary with dif-
ferent soil moisture conditions.

As shown in this thesis, the Passive DTS estimated soil moisture is usually most accu-
rate at depths above 10 cm, with a vertical resolution of 1 cm. Since the GPS-R only has a
penetration depth of approximately 5 cm, DTS will be particularly suitable for calibrating
the GPS-R techniques.

To accurately calibrate the Cosmic ray probe, the accuracy of the DTS estimated soil
moisture at depths has to be guaranteed. Root zone soil moisture, particularly soil mois-
ture below 50 cm usually shows less responses to the meteorological forcing, the error
of which comes mainly from the initial conditions. Hence, a longer spin-up time for the
forward model is required to correct the errors in the initial conditions.
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7.2.5. RELEVANCE TO GENERAL DATA ASSIMILATION PROBLEMS

It is expected that the PBS/APBS algorithm will also be suitable for a wide range of hydro-
logical data assimilation studies. The PBS algorithm has already been applied to snow
water equivalent (SWE) estimation [110], which shows that the PBS outperforms the ES
algorithm. Lu et al. [114] also demonstrated that the PBS algorithm can provide accu-
rately estimated ground surface energy fluxes by assimilating land surface temperature.
In addition to SWE and land surface energy fluxes estimation, the PBS algorithm could
be applied to land surface soil moisture estimation by assimilating microwave remote
sensing observations. As shown in a previous study [59], assimilating a sequence of
observations is more suitable for soil moisture estimation. However, when the ES was
used, the soil moisture estimates prior to precipitation events were drawn to wetter val-
ues, which is physically unreasonable [59]. This is partly because the ES projects the
joint distribution of the estimated soil moisture within a batch window into a multivari-
ate Gaussian distribution, which is violated in reality. The PBS algorithm maps the en-
tire distribution using random sampling points, and adjusts weights of different particle
simulated soil moisture values. This guarantees all the posterior estimates are physically
reasonable. Hence, the PBS algorithm may provide superior estimates.

In streamflow data assimilation studies, the Particle Filter (PF) was frequently used
to assimilate streamflow observations to update the states and the parameters in the
hydrological model. However, a sequence of streamflow observations contains more
information of hydrological model parameters. Hence, the PBS should be more suitable
than the PF in hydrological model parameter estimation. Further, the filtering algorithm
cannot consider the time lag between the model states and discharge [115]. Since all
the observations within a batch window are used to update the model states within this
window, the time lag between the states and the discharge is implicitly considered in the
PBS.

When applying the PBS/APBS algorithm to other hydrological data assimilation prob-
lems the optimal window length should be investigated. When a short window length is
used, the correlation of different model states, and the correlation of model states and
parameters cannot be sufficiently considered. An extensively long window length will
significantly increase the dimension of the estimation problems, and lead to weight de-
generacy problems. The optimal window length should be determined by testing the
algorithm using multiple-truth synthetic tests, and checking the accuracy and the relia-
bility of the estimates in real world data.

7.2.6. RELEVANCE TO HYDROLOGY AND HYDROMETEOROLOGY

From the hydrology perspective, this thesis provided a tool for collecting model pa-
rameter information and calibration/validation data for distributed hydrological model-
ing. Distributed hydrological modeling may contain substantial uncertainties when the
model parameters are poorly known. The DTS method can provide spatially distributed
soil property and vegetation information over large areas, which may benefit the pa-
rameterization of distributed hydrological models. Further, the hydrological models are
commonly calibrated and validated using only streamflow data. The soil moisture data
derived from the DTS can also be used for calibrating and validating the hydrological
models. This may allow us to improve the performance of different hydrological model
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structures.
This thesis may also improve our understanding of groundwater recharge. Ground-

water recharge can be interpreted using tracers or simulated using Darcy’s law, provided
the soil hydraulic properties are known [116]. The groundwater recharge estimated at a
few points were usually used to represent the areal mean, which is partly caused by the
difficulty in intensively sampling the tracer data or the soil hydraulic properties over a
large area. This will ignore the spatial variability of the recharge rates and may result in
inaccurate ground water recharge estimates [116]. The DTS method, as shown in this
thesis, can provide information of soil hydraulic properties and the change of soil mois-
ture profiles at intermediate scales with sub-meter resolution. This information can be
helpful in investigating the spatial variability and the areal mean of the ground recharge
rates.

Applying the proposed methodology to the traditional point scale soil temperature
sensors globally could yield new ground based soil moisture and energy flux products
at large scales. For example, applying this methodology to the International Soil Mois-
ture Network (ISMN), and/or FLUXNET measured soil temperature data, we may derive
ground based soil moisture, soil property, and soil surface energy flux datasets over the
globe. The derived datasets are independent from the point sensor soil moisture values,
and also independent from flux tower measured fluxes. Hence, these datasets can be
used for quality control, and filling the temporal and spatial gaps of the ground based
soil moisture and/or energy fluxes measurements.
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A
DATA COLLECTION

A.1. MARENA OKLAHOMA MOISST SITE
All data used in this study were collected at the Soil Moisture Active Passive (SMAP)
Marena Oklahoma In-Situ Sensor Testbed (MOISST). This is a field site located at the
Oklahoma State University Range Research Station approximately 13 km southwest of
Stillwater, Oklahoma. The goal of the testbed is to facilitate the validation of remote sens-
ing measurements from SMAP with in-situ sensors distributed around the globe [117].
Figure A.1 shows the layout of the site. The predominant soil series is Grainola silty clay
loam (Fine, mixed, active, thermic Udertic Haplustalfs), which are moderately deep, well
drained soils formed in material weathered from shale. However, the soil texture varies
significantly with depth and landscape position, as shown at the four observation sites
(Figure A.2). Vegetation across much of the site is typical of tallgrass prairie with some
localized areas representative of cross timbers vegetation [118].

Five-minute meteorological data including precipitation, solar radiation, humidity,
air temperature, and wind speed were obtained from the Oklahoma Mesonet site at
Marena during the study period [119]. Hourly soil temperature and moisture data were
measured at 2.5, 5, 10, 20 and 50 cm at Site A, B and D using the Hydra probes (Hydra
Probe II, Stevens Water Inc., Portland, OR, USA). Site C has similar soil moisture and
temperature measurement depths, but the deepest sensor is located at 40 cm.

Soil hydraulic and thermal property data were also collected at the four sites to val-
idate the estimated soil properties. Field capacity (θ33), approximated by the soil water
content at a matric potential of -33 kPa, was considered as an indicator of the accuracy
of the estimated soil hydraulic properties. Soil thermal properties from 5 to 10 cm were
measured at different soil water contents using a dual-probe heat-pulse sensor (KD2Pro,
Decagon Devices, Pullman, WA) at site A, B and C. The measured soil thermal properties
will be used to evaluate the estimated soil thermal conductivity curve.

The DTS equipment, solar panels and two calibration baths were located at Site B.
Fiber-optic cables (50/125 µm multimode) were installed at approximately 5, 10 and 15
cm along the path (658m in total). Dong et al. [98] showed that soil temperatures at two
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Figure A.1: Field layout of DTS cable at Oklahoma MOISST site. Soil moisture and temperature point sensors
are installed at Sites A, B, C and D. The DTS equipment was housed at Site B.

Figure A.2: The measured soil texture (a and b) and soil bulk density (c) at different depths.

depths provide sufficient information to estimate soil moisture and properties. So, this
thesis only uses soil temperature observed by the upper two cables.

Cable temperatures were measured using an Oryx DTS (Sensornet, UK), with an in-
tegration time of five minutes, and calibrated using the approach outlined by [71]. The
relatively high bulk density and clay content of the subsoil, the terracing on the western
side of the loop, some rocks near the surface on the eastern side, and the thick vegetation
cover made cable installation difficult. Several sections of the cable had to be hand-dug
after the plow pass (crossing terrace berms and/or at tight turns). In these sections, the
cables depths are too irregular to be used. This thesis is limited to the DTS data collected
along a 71 m transect extending eastwards from site B (See Figure A.1). This is one of the
smoother sections because the surface was flat and the tractor and plow could follow a
straight line. Furthermore, the soil texture along this transect is comparable to that at
Site B, which also facilitates validation of the results. The DTS temperature data used
here were collected from 19 April to 31 May 2011.
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A.2. MICROWEX-2 EXPERIMENT
Data from the Microwex-2 experiment was conducted from 17 March to 3 June 2004, by
the Center for Remote Sensing, Agricultural and Biological Engineering Department, at
the Plant Science Research and Education Unit of the University of Florida, Gainesville.
A full description of this experiment is given by Judge et al. [120]. Soil temperature and
moisture data were collected at 5 depths (2, 4, 8, 32 and 64 cm), from 26 March. Mete-
orological data (e.g. precipitation, air temperature, relative humidity and wind speed)
were collected every 15 minutes. The sand, silt and clay content of 89.5%, 3.4% and 7.1%
mean the soil at the site is classed as sand in the USDA soil textural classification. The
corn was planted on 18 March. A period with negligible biomass (26 March to 10 April)
is used in Chapter 2.
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