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1 Introduction

For decades congestion levels around the worldriaieg. To properly incorporate the effects of
congestion into strategic transport models, a dhoitn static capacity restrained towards capacity
constrained and dynamic traffic assignment modaks ¢ccurred. In this paper we focus on quasi
dynamic assignment models (more specific: statpaciy and storage constrained models by the
definitions in Bliemer et al (2015)). These modekplicitly capture the flow metering and spillback
effects of congestion, but assume stationary dendamnithg a single time period (e.g. a whole peak
hour) and are therefore more scalable and mathesfigititractable, both important properties for
strategic transport models.

Although computational capabilities of current haade allow for large scale application of such
models, the incorporation of capacity constrailaisses route cost functions to be much more seasitiv
and to be inseparable over space (the latter oedues routes share bottleneck nodes). Furthermore,
the incorporation of storage constraints furthereases inseparability (which occurs when queu#s sp
back onto upstream links) and causes cost functihecome implicit. As such quasi dynamic models
do not fully contain the favorable mathematicalgandies that are exploited in many algorithms teeso
their capacity restrained counterparts and in dachot necessarily comply with the requirements for
existence and/or uniqueness of the user equilib(tbeorems 1.4 and 1.8 in Nagurney (1993)).
Although in reality these unfavorable propertiesgxa substantial body of research suggeststikat t
(spatial) occurrence is limited and as such *“...hawmimal practical temporal and spatial
consequences...” (Peeta and Zilliaskopoulos (20B1gyvever, several large scale applications using
the quasi dynamic assignment model STAQ (firstidieed in Brederode et al (2010)) have shown that
especially the addition of storage constraints eap®or or non-convergence in real world applicatio
Further investigations in this paper will show thégo the capacity constraints on their own carseau
serious convergence issues.

Contributions in this paper are (i) to give an e&w of methods in literature and logical extensitm
those methods that could improve convergence ddiglygmamic assignment models, (i) to reveal and
illustrate mechanisms that cause the convergesocessusing examples on theoretical networks and
(iii) to investigate to what extent enhancemensxisting algorithms can be used to (partly) getiad

the convergence issues encountered. Ultimately résearch should lead to a method that generically
solves quasi dynamic assignment models.

2  Methodology
The scope of the research is narrowed down by asguimat (i) a path based model is used and that

(ii) travelers have perception errors on route dtdimes, leading to the stochastic user equiliariu
(SUE). We choose to use the multinomial logit (MNhpdel to calculate route choice probabilities,
such that route demaifil is defined by:

f, =expCiyc, )/Z PR, eXPELoaCy Poa » (1)

wherec, is the route cost on route u,, is the scale parameter describing the degreeavélers’
perception errors on route travel times (wheregmtrknowledge is assumed whegy approaches
infinity) and D, is the travel demand for OD paitl. Here (and in most real world applicatiops)



a global scale parameteiis normalized over ODpairs Iy, ; = p/ mgn cz(,), wherec;,) is the free flow
PE€Poq

cost on route. This normalization ensures that the relativeatféd perception errors is the same on
all ODpairs (regardless of their average routeefréitne). As measure of convergence we use the gap
function derived in Bliemer et al (2013) that wilach zero upon convergence when using MNL:

G= Z(o,d)zrﬂpod fp(Cp +,Uo_;|n fp _wod)
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wherey,q = rggn [cp + Uoa In fp] represents the minimum stochastic path cost. thateby omitting
PE€Pod

) (2)

the summation over OD pairs in both enumeratorderminator, the gap value for a single OD can
be obtained, useful when investigating which ODgpaause convergence issues.

In order to enforce and speed up convergence,asticlioute based traffic assignment models tyyical
average route demands over iteratibnsing some ‘averaging scheme’ that applies it@naspecific
step sizew;. To ensure that the averaging scheme itself doesause divergence, the conditions
Y a; = o andY a? = o must hold (Blum (1954)) meaning that the stepssipeist decrease in every
iteration. The simplest averaging scheme testétkisnethod of successive averages (MSA) that uses
a; = 1/i. A well-known problem of MSA is that convergeneads to slow down as the number of
iterations increases. Tested variations on MSA gingg more emphasis on later iterations using pre-
determined step sizes include raisirtg some powek < 1, to reset every othen iterations while
maintaining current route costs (MSA-reset), to neastant step sizes or to use=i%/Y, ;i¢
(MwSA, Liu et al (2007)) wherd is a constant. More intelligent averaging schernested use
information of previous iteration(s) to determimeare the Self Regulating Average (SRA, Liu et al
(2007)) and SRA with dynamic step size (Taale agidZ015)).

21 Test Cases

For all test cases (an updated version of) thei glyasimic assignment model STAQ (Brederode et al
(2010)) was used. STAQ uses a static model witlad#p constraints to determine flow metering
effects and combines this with the dynamic linkngmission model (LTM) to determine average
spillback effects. Both submodels use the node indescribed in Tampere et al (2011). Its low
computational cost allows for quickly running a loft convergence schemes. Because the model
basically is a static version of the LTM, resulesdribed in the remainder of this paper are likelge
also applicable on fully dynamic path based assegrirmodels with stochastic route choice.

To investigate the mechanisms that cause convezdssiges a generic test network displayed in Figure
1 is constructed. In this network the effects onvesgence of adding capacity and storage constraint
can be isolated because the two aspects of in{sesitivity and extent of inseparability of theplicit

cost functions, see section 1) can be controlleddpysting link lengths. Assuming a demand of 2000
veh on both OD pairs and free flow link speeds @aqghcities defined on the right side of Figurénh, t
upstream nodes of links 5 and 7 form potentiall®otick locations. For both ODpairs two routes exist

a constrained route using a potential bottlenederamd an unconstrained (direct) route.



2 Link Length (l)  Free speed (v) Capacity (C)

# [km] [km/h] [veh/h]
1 5 100 2000
2 10 100 2000
3 I3 120 4000
4 la 120 2000
5 10-1z-14 120 1000
6 Le 120 2000
7 5-I5-l¢ 120 1500

Figure 1: generic network geometry (left) and link attributes (right)

The lengths of links 3, 4 and 6 are variable, wtiike definitions of link lengths 5 and 7 ensurd tha
all specific networks derived from this genericvagtk, the constrained routes have lower free flow
travel time than the constrained route, meaning ithall specific networks, both bottlenecks are
activated under SUE conditions. Three specific nete/are considered:
* The Independent network, in whick0, L>0 and ¢>0. In this network all routes are independent
* The Dependent network, in whict0, L,=0 and ¢=0. In this network link 3 is shared by two routes.
* The Spillback network, in which%0, L,>0 and ¢=0. In this networkiis chosen such that spillback
from link 4 onto its upstream link (3) occurs un@&¥E conditions.
The influence of inseparable route costs due ta@gpconstraints (routes sharing a bottleneck)bzn
examined by comparing assignment results on therdigmt with the independent network, whereas
the influence of spatial inseparability of the clstction due to storage capacity constraints l{sutk
on upstream links) can be examined by comparingrasent results on the spillback network with the
dependent network. It is expected that increassebarability worsens convergence and thus that the
independent network will converge best, the depetngetwork will converge worse and the dependent
network with spillback will converge worst.
The influence of sensitivity of the implicit costrfctions has been examined by scaling all linktlesg
thereby controlling the ratio between free flowvehatime and travel time in congestion, while
maintaining the same solution under free flow cbads. The extent to which results are transferable
into real size networks has already partly beeméxad by application on a network of the city ofrDe
Bosch (the Netherlands) consisting of 150 ceng@800 links, 7000 nodes and 25000 routes. Because
this is still work in progress and due to spacestraints, both analyses will not be discussed here.

3 Préiminary results and conclusions (existing methods)

All averaging schemes mentioned in section 2 wim@emented and tested using recommended
parameter values provided in literature. When rdrikethe number of iterations needed to achiee tru
SUE conditions (gap value to machine precision) $iRéved to be the best method on all networks.
Results are displayed on the left hand side ofréigty MSA results where added as a reference.
Considering the left part of figure 2, the gap eslishow oscillations in the first 9-22 iteratiomsille
value around 1E-02 is reached. Further investigattmwed that these oscillations are formed due to
iterations in which the averaging scheme overshegatssing the bottleneck on (one of) the constchine
routes to deactivate, and thus become inconsigtiéimthe state under SUE conditions. Only aftes thi
‘unstable phase’ the correct state is maintainetlcamvergence accelerates and smoothens. Because
MSA takes less iterations to stabilize into thereorr state, it outperforms SRA until about iteratit-

30, after which SRA clearly takes over. Apparen®RA suffers from using the information from
iterations in the unstable phase, causing the S#gs to be decreased too much. After reaching the
stable state, SRA maintains relatively large stegssvhereas MSA'’s continue to decline slowing down
convergence.



Comparing the different networks, both MSA and SfRAs show unexpected results: using MSA the
dependent network shows better convergence thaimdiependent network, whereas using SRA, the
dependent network with spillback shows better cogemce than the dependent network. Additional
runs in which demand was increased to ensure titiehecks are never deactivated (and thus no
unstable phase occurs) did show expected resudtsnaich better convergence for all networks and
averaging schemes, suggesting that the extentithuie unstable phase occurs determines the speed
of convergence in later iterations.

4  Preliminary Results and conclusions (enhanced methods)
Based on test results (partly) discussed in se@tiwvdp enhancements to SRA are proposed and tested.

Analysis of gap values per OD showed that the leasterging ODpair contributes the most to poor
gap values. Therefore we propose a new averaghegee called SRA-ODspecific, which determines
OD pair specific step sizes, giving SRA a highegrde of freedom during step size optimization.
Furthermore, realizing that the normalization of #tale parameter based on free flow instead of
congested cost yields too large scale parametdrghas too high sensitivity of the route choice elod
on congested ODpairs, we propose to normalize ¢hée parameter in each iteration based on the
current maximum route cost for the considered ODpale choose to use the maximum (not the
weighted average) route cost because this willil#althe most sensitive ODpairs the most, since
differences between minimum and maximum route caststhe largest on those ODpairs. After the
instable phase, differences between minimum andirmar route cost will decline and the
‘overcompensation’ of the normalized scale parameti¢omatically diminishes. Additional test runs
confirmed that using the maximum route cost clearyperforms using the (weighed) averaged or
minimum route cost for normalization of the scadegmeter.
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Figure 2: Convergence on test networks (left: MSA vs SRA, right: enhanced methods)

Results of the enhanced methods are displayedeorigiht hand side of figur Compared to SRA,
SRA-odspecific accelerates convergence on the erdlmt network after iteration 50, reaching
machine precision in just over 120 iterations. Tigs improvement makes sense when realizing that
on the independent network, routecost is sepa@i®@e both ODpairs, which is exactly what SRA-
ODspecific implicitly assumes. On the other netvgpnioutecost is inseparable over ODpairs, which
explains why SRA outperforms SRA-odspecific on ¢hestworks. Normalization qf,;in each
iteration in combination with SRA-ODspecific sharsethe stabilization phase on the Independent and
Spillback networks, thereby greatly improving comence. On the Dependent network, the negative
effect of SRA-odspecific apparently outweighs amteptial positive effect ofi,; normalization,
indicated by the slightly worse performance comgdceSRA-odspecific. Therefore, for this network
a run with normal SRA and normalizgg; was run (dotted blue line in right hand side gjaphich
shows that also for this network, normalizpgg, can indeed improve results (compare to SRA).



5 Overall conclusonsand further research directions

In this abstract methods in literature and logiesiensions to those methods that could improve
convergence of quasi dynamic assignment modelsenimestigated. Two important mechanisms
causing convergence issues where identified (exdstef an ‘instable phase’ and spatial insepatgbili
of route cost functions) using examples on thecaktihetworks and two enhancements to existing
methods where proposed and successfully demortstrate

Based on this research, novel methods that willelséed in the full study include SRA applied to
ODpairs clustered by usage of bottlenecks, twoilyiorms of MSA and SRA, diagonalization and/or
dampening of spillback effects, capping routecostdutes where the ratio between time in congestio
and total travel time is too high and discardingedjing iterations instead of only lowering thees
size (as SRA does).
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