
 
 

Delft University of Technology

Statistical Analysis in Cyberspace
Data veracity, completeness, and clustering
Roeling, M.P.

DOI
10.4233/uuid:f495fd3f-d131-40c9-a51e-e4a8bcc12c84
Publication date
2021
Document Version
Final published version
Citation (APA)
Roeling, M. P. (2021). Statistical Analysis in Cyberspace: Data veracity, completeness, and clustering.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:f495fd3f-d131-40c9-
a51e-e4a8bcc12c84

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:f495fd3f-d131-40c9-a51e-e4a8bcc12c84
https://doi.org/10.4233/uuid:f495fd3f-d131-40c9-a51e-e4a8bcc12c84
https://doi.org/10.4233/uuid:f495fd3f-d131-40c9-a51e-e4a8bcc12c84


S T A T I S T I C A L
A N A L Y S I S  I N
C Y B E R S P A C E

M A R K  P A T R I C K  R O E L I N G

D A T A  V E R A C I T Y ,  C O M P L E T E N E S S
A N D  C L U S T E R I N G



STATISTICAL ANALYSIS IN CYBERSPACE

DATA VERACITY, COMPLETENESS, AND CLUSTERING





STATISTICAL ANALYSIS IN CYBERSPACE

DATA VERACITY, COMPLETENESS, AND CLUSTERING

Dissertation

for the purpose of obtaining the degree of doctor
at the Delft University of Technology

by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Monday 7 June 2021 at 15:00 o’clock

by

Mark Patrick ROELING

Master of Science in Behavior Genetics, Vrije Universiteit Amsterdam, the Netherlands
Master of Science in Genetic Epidemiology, Erasmus University Rotterdam, the

Netherlands
born in Rhenen, the Netherlands



This dissertation has been approved by the promotors.

Composition of the Doctoral Committee:
Rector Magnificus chairperson
Prof.dr.ir. J. van den Berg Leiden University, and

Delft University of Technology, promotor
Prof.dr.ir. R.L. Lagendijk Delft University of Technology, promotor
Dr.ir. S.E. Verwer Delft University of Technology, promotor

Independent members:
Prof.dr. G.K. Nicholls University of Oxford
Prof.dr. S. van Buuren TNO Research / Utrecht University
Prof.dr.ir. G. Jongbloed Delft University of Technology
Prof.dr. M. Conti Delft University of Technology
Dr. P. Rubin-Delanchy University of Bristol

Prof.dr. G.K. Nicholls, Prof.dr.ir. J. van den Berg, and Dr.ir. S.E. Verwer contributed sub-
stantially to this thesis.

This thesis is partially supported by the Engineering and Physical Sciences Research
Council (EPSRC).

Keywords: Cybersecurity, Unsupervised Learning, Imputation, Data Veracity

Copyright © 2021 by M.P. Roeling
All rights reserved

ISBN 978-94-6423-299-8

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


CONTENTS

List of Figures 5

List of Supplementary Figures 7

List of Tables 9

1 Introduction 11
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 What this thesis addresses . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Incomplete data in networks. . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Network clustering. . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Data veracity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Amuse-bouche of statistical techniques applied 21
2.1 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Imputation of missing data . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Missing data mechanisms . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Single and Multiple imputation . . . . . . . . . . . . . . . . . . . 24
2.2.3 Multiple imputation model . . . . . . . . . . . . . . . . . . . . . 25
2.2.4 Multiple imputation on our example data . . . . . . . . . . . . . . 26
2.2.5 Relevance of multiple imputation to this thesis . . . . . . . . . . . 28

2.3 Bayesian statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Denominator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3 Posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Relevance of Bayes to this thesis . . . . . . . . . . . . . . . . . . . 31

2.5 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Network models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Stochastic BlockModels . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.1 History and definition of SBM . . . . . . . . . . . . . . . . . . . . 36
2.7.2 SBM parameter estimation. . . . . . . . . . . . . . . . . . . . . . 38
2.7.3 Relevance of mixture modeling and SBM to this thesis . . . . . . . . 39

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

I Network imputation and clustering 43

3 Imputation of attributes in networked data using Bayesian Autocorrelation
Regression Models 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1



0
2 CONTENTS

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Autocorrelation Regression Model . . . . . . . . . . . . . . . . . . 48
3.2.3 Bayesian inference for missing data . . . . . . . . . . . . . . . . . 49
3.2.4 Model-free network-based prediction method . . . . . . . . . . . . 56

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.1 MCMC output traces for selected parameters . . . . . . . . . . . . 65
3.5.2 Snowball sampling with edge conditioning . . . . . . . . . . . . . 66
3.5.3 Snowball sampling without matching missing-edge counts . . . . . 66
3.5.4 Replication outcomes . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Stochastic BlockModels as an unsupervised approach to detect botnet in-
fected clusters in networked data 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 University of Victoria dataset . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Descriptives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.3 Replication of features from previous studies . . . . . . . . . . . . 76
4.2.4 SBM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.5 Stochastic Blockmodels . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.6 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.7 Simulation study using SBM on simulated network data . . . . . . . 80

4.3 Results for ISOT / Zeus data . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.1 SBM outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Hybrid connection and host clustering for community detection in spatial-
temporal network data 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Connection features . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Host features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.3 Stochastic Block Model . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.4 other clustering methods . . . . . . . . . . . . . . . . . . . . . . 92
5.3.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.6 Replication sample. . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.1 Stratosphere data . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.2 Density-based and and Louvain clustering. . . . . . . . . . . . . . 97
5.4.3 ISOT data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.4 Scalability of the model fitting . . . . . . . . . . . . . . . . . . . . 99

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5.1 Scalable MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



CONTENTS
0

3

5.6 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6.1 Host clustering CTU-91 dataset . . . . . . . . . . . . . . . . . . . 104

II Data veracity 113

6 False data injection in Kalman Filters in an aerospace setting 115
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 OpenSky ADS-B data. . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.2 Linear unidimensional model . . . . . . . . . . . . . . . . . . . . 117
6.3.3 Non-linear multidimensional model . . . . . . . . . . . . . . . . . 120
6.3.4 Attack models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.5 State deviation under attack . . . . . . . . . . . . . . . . . . . . . 124
6.3.6 Evaluating KF performance . . . . . . . . . . . . . . . . . . . . . 125

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4.1 Linear model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4.2 Non-linear model . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.1 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.5.2 Attack models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Investigating residuals as a measure of surprise in 219.810 consumer credit
applications 135
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2.1 Australian data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.2 ING data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.3 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.4 Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.5 Penalized regression illustration . . . . . . . . . . . . . . . . . . . 140
7.2.6 Fraud model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3.1 Australian data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3.2 ING data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 143

8 Conclusion, reflection, and future work 147
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.1.1 Imputation of attributes in networks. . . . . . . . . . . . . . . . . 147
8.1.2 Clustering of spatio-temporal network data . . . . . . . . . . . . . 148
8.1.3 Data injection in state estimators . . . . . . . . . . . . . . . . . . 148
8.1.4 Residuals indicative for fraud status . . . . . . . . . . . . . . . . . 149

8.2 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.2.1 How this thesis dealt with common shortcomings . . . . . . . . . . 150



0
4 CONTENTS

8.3 Overarching contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.4.1 Imputation in networks . . . . . . . . . . . . . . . . . . . . . . . 151
8.4.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.4.3 Data veracity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Bibliography 155

Summary 179

Samenvatting 181

Acknowledgements 183

Curriculum Vitæ 185

List of Publications 189



LIST OF FIGURES

1.1 Network plots of a social network and a computer network . . . . . . . . . 14
1.2 Undirected graph with a symmetric adjacency matrix . . . . . . . . . . . . 15

2.1 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Example distribution of height in the population . . . . . . . . . . . . . . . 31
2.3 Example Expectation Maximization in Mixture Models . . . . . . . . . . . . 34
2.4 Example Expectation Maximization in Mixture Models extended . . . . . . 35
2.5 Example network of our sample . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Different types of relationships that can occur in a network . . . . . . . . . 37
2.7 Digraph with five nodes and nine bidirectional edges . . . . . . . . . . . . . 39

3.1 MCMC traces from random-missingness/MCAR sampling, cut model . . . 58
3.2 MCMC traces from random-missingness/MCAR sampling, full Bayes . . . 61
3.3 MCMC traces from snowball/MAR sampling, edge-conditioned, cut model 62
3.4 MCMC traces from snowball/MAR sampling, edge-conditioned, full Bayes 63

4.1 Network plots of SBM-recovery simulation study. . . . . . . . . . . . . . . . 81
4.2 Network plots of the non-malicious background data and the Zeus botnet

data with original and SBM labels . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Schematic illustration of the proposed MalPaCA + SBM pipeline . . . . . . 90
5.2 CTU-91 data: Explained variance of components from the Principal Com-

ponent Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Plots of the ICL fit evaluation statistic in the ISOT data . . . . . . . . . . . . 97
5.4 Network plots of a subset of the CTU-91 network with original- and recon-

structed labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5 Network plot of a part of the ISOT data with original and recovered labels. 100
5.6 Network plots of a subset of the ISOT network with mixed-membership

SBM colour coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

1 Flightpath of flight OHY925 based on the ADS-B GPS data . . . . . . . . . . 117
2 Subpart of the flightpath without a deviation in direction . . . . . . . . . . 118
3 Flightpath and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4 Zoomed-in part of the flightpath . . . . . . . . . . . . . . . . . . . . . . . . . 121
5 One GPS position (middle) with four 100 m deviations . . . . . . . . . . . . 121
6 Linear model noisy data, the predicted state and the current state . . . . . 126
7 Residuals of linear model on position and velocity . . . . . . . . . . . . . . 126
8 Scatterplots of the noisy, predicted, and Kalman state under different at-

tack models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5



0
6 LIST OF FIGURES

9 Plot of the performance parameter for the linear model. . . . . . . . . . . . 128
10 3d plot of the flight trajectory without data injection, showing the aircraft

in landing. Axes are longitude, latitude, and altitude. Colors are noisy (real)
state in green, predicted state in red, and Kalman estimates in blue. . . . . 129

11 Residuals of different parameters from the non-linear model. We can see
the effect of the data injection around 600 seconds after which the KF esti-
mate diverges and the residuals increase to fall outside the 95% Confidence
Intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

12 3d plots of the noisy, predicted, and Kalman state under different attack
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

13 Plot of the performance parameter for the nonlinear model . . . . . . . . . 132

1 Original variable with raw values. . . . . . . . . . . . . . . . . . . . . . . . . 138
2 Variable with log-transformed values. . . . . . . . . . . . . . . . . . . . . . . 138
3 Variable with log-transformed values and zero category set to missing. . . 138
4 Frequency of variables given the amount of missing observations. . . . . . 139
5 Percentage of missingness per person. . . . . . . . . . . . . . . . . . . . . . 139
6 Flowchart of the data cleaning, multiple imputation, and analyses . . . . . 141
7 Distribution of composite residual variable (blue = non-fraud, red = fraud) 144
8 Distribution of composite residual variable (blue = non-fraud, red = fraud) 144
9 ROC curve (black = baseline, red = baseline+residuals) . . . . . . . . . . . . 144



LIST OF SUPPLEMENTARY FIGURES

3.1 MCMC traces from snowball/MAR sampling, cut model . . . . . . . . . . . 65
3.2 MCMC traces from snowball/MAR sampling, full Bayes . . . . . . . . . . . 69
3.3 Informative edges under different sampling methods . . . . . . . . . . . . . 70

5.1 CTU-91 data: Plot of TSNE dimensions from MalPaCA results . . . . . . . . 104
5.2 CTU-91 data (threshold = 5): network plot with the nodes coloured accord-

ing to the labels from the optimal 4-class SBM solution . . . . . . . . . . . 105
5.3 CTU-91 data (threshold = 10): network plot with the nodes coloured ac-

cording to the labels from the optimal 4-class SBM solution . . . . . . . . . 106
5.4 CTU-91 data (threshold = 15): network plot with the nodes coloured ac-

cording to the labels from the optimal 4-class SBM solution . . . . . . . . . 107
5.5 CTU-91 data (threshold = 20): network plot with the nodes coloured ac-

cording to the labels from the optimal 4-class SBM solution . . . . . . . . . 108
5.6 ISOT data: Explained variance of components from the Principal Compo-

nent Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.7 [ISOT data: Plot of TSNE dimensions from MalPaCA results . . . . . . . . . 110

7





LIST OF TABLES

2.1 Example dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Summary of missing data mechanisms . . . . . . . . . . . . . . . . . . . . . 41
2.3 Adjacency (socio) matrix corresponding to the example network in Figure

2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Effective sample size of ρ in the snowball/MAR sampling scenario. . . . . 52
3.2 Covariates descriptives for Males (N = 1118) and Females (N = 781). . . . . 57
3.3 Comparison of posterior mean parameter estimates for Gender under a

cut- and full Bayes imputation model with random missingness/MCAR-
sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Comparison of posterior mean parameter estimates for Gender under a
cut- and full Bayes imputation model with snowball/MAR sampling based
missingness, conditioned on the number of missing edges. . . . . . . . . . 60

3.5 Amount of remaining edges between different sampling techniques. . . . 66
3.6 Comparison of parameter estimates for Gender under a cut- and full Bayes

imputation model with snowball/MAR sampling based missingness. . . . 68
3.7 Parameter estimates from replication with 10% random missingness. . . . 71
3.8 Parameter estimates from replication with different snowball/MAR sam-

pled subsets (10% missingness). . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Identified blocks of neutral traffic in the ISOT dataset. . . . . . . . . . . . . 76
4.2 Simulation study performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Distribution of malicious and non-malicious nodes across class member-

ship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Feature comparison between non-malicious and Zeus botnet data. . . . . 85

5.1 Examples of distance matrix, component matrix and covariate matrix . . . 92
5.2 Descriptives of the Stratosphere CTU-91 data with different behavioural

thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 MalPaCA clusters and infection status in the CTU-91 data. Connections

in -1 are unclustered. sr ci pp , sr ci pn , scr i pi are connections where the
source host was peripheral, neutral, or infected (respectively). The same
for destination ports d sti p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Performance comparison with other studies using ISOT data . . . . . . . . 95
5.5 Performance matrix of different clustering methods in the CTU-91 data . . 99
5.6 Performance matrix from the SBM node-based clustering in the ISOT repli-

cation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
S1 Correlation between distance matrices in the CTU-91 data . . . . . . . . . 106

9



0
10 LIST OF TABLES

S2 Performance matrix from the SBM node-based clustering when packet thresh-
old = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

S3 Performance matrix from the SBM node-based clustering when packet thresh-
old = 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

S4 Performance matrix from the SBM node-based clustering when packet thresh-
old = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

S5 MalPaCA clusters and infection status in the ISOT data . . . . . . . . . . . . 111

1 Parameter definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



1
INTRODUCTION

This is a thesis about statistical learning in the context of cyber security. Statistical learn-
ing is a large area of research with a long history, providing analytical techniques, meth-
ods, concerns, and tools for the estimation (learning) of parameters to either draw infer-
ence from, or predict patterns in, data [1]. Cyber security refers to the body of technolo-
gies, processes, and practices designed to protect networks, devices, programs, and data
from attack, damage, or unauthorized access [2]. There is also an import behavioural el-
ement to cyber security as it deals with the security of cyber activities, or: the security of
cyber behaviour [3]. Activities in cyberspace can be disentangled in a multidimensional
and multilayer organisation with a (1) technical (IT) layer, (2) socio-technical layer, and
(3) governance layer, each with their own security requirements and implications [4].

With the increasing digitization of society, there is an inherent need to understand
risks, weaknesses, and other security properties related to digital-infrastructures. For ex-
ample, online shopping websites usually have customer databases, but the implemen-
tation of how customer data are collected or stored is complex and often has security
weaknesses, which can be exploited so that private data can be accessed by unautho-
rized persons (hackers) and can be used for extortion [5] or identity theft [6]. Another
example concerns the (covert) installation of malicious software on a computer, so that
the behaviour of a (user on a) computer can be monitored or influenced [7]. Many fac-
tors influence the likelihood for these infections, such as the use of outdated software,
mistakes in the implementation of security measures, users not adequately protecting
their personal computers or personal information. Inadequate protection of personal
information can increase the risk for social engineering attacks (i.e., where somebody
uses personalized information to adopt a false identity and convince the user to allow /
support an operation) [8]. Critical infrastructures that are strongly automated are also
known to be vulnerable to cyber incidents, such as energy and water supply [9], trans-
port [10], health care [11], and SCADA systems [12]. There have been many efforts to pre-
vent occurrence or escalation of these kinds of unwanted events, such as government-
supported awareness and information campaigns [13, 14]. However, raising awareness
has (up till now) not been sufficient, as the damage due to phishing in online-banking
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increased from e1.05 million in 2017 to e3.81 million in 2018 [15], the average damage
of a malware attack on a company in 2019 is estimated at $2.6 million [16], data breaches
exposed 4.1 billion records in the first half of 2019 [17], ransomware damage costs have
risen to $11.5 billion in 2019 and one business is expected to fall victim to a ransomware
attack every 14 seconds in 2020 [18]. These examples underline the potential impact of
cyberincidents and have set off a clear interest to prevent occurrence or escalation of
cyber-events as well as attribute these to an entity. Important tools in understanding,
preventing and managing risks in cyber space are risk management models. One risk
management model that is applicable to the management of cyber risks is the bowtie
model [19, 4]. Stemming from the 1960s, bowtie became the a popular model for analyz-
ing and managing risks in the early 1990s. Central to bowtie thinking is the operational-
ization of a risk as the product of the likelihood of an incident and its impact. This allows
to model incidents and impact with fault trees, attack trees, event trees, and/or Bayesian
networks. The bowtie way of thinking allows sufficient flexibility to cope with the vari-
ation in cyber incidences: an intruder may use a large number of pathways to obtain
their objectives [20]. To understand these pathways, many different research paradigms
have been explored and applied to cyber security, ranging from studies focusing on psy-
chological factors to understand decision making, to abstract computational research.
Popular examples of psychological factors in cyber security are the privacy paradox;
where most people report favourable attitudes towards privacy but nevertheless share
their data freely [21] and the online disinhibition effect; which is the removal or reduc-
tion of the social and psychological restraints that individuals experience in everyday
face to face interaction [22]. Other examples of research in cyber security are vulnerabil-
ity / penetration testing of (SCADA) systems [12], mathematically proving the quality of
(the implementation of) protocols [23, 24], attribution and interpretation of cyber inci-
dents in the context of international relations [25, 26] and robustness of trusted platform
modules [27, 28]. Cyber security therefore has become a broad and interdisciplinary field
where insights from many fields (computer science, mathematics, social sciences, and
humanities) are used to understand certain phenomena, technical aspects, and the in-
teraction between the online environment and human behaviour.

1.1. RESEARCH MOTIVATION
One of the directions that has been powerful and efficient in describing attack scenario’s
and incident detection, in the cyber context, is the use of statistical analyses [29, 30,
31, 32, 33]. For 50 years, there has been a continuous interaction between mathematics
and computer science, flowing to (and allowing) developments in statistics and machine
learning. There has been remarkable progress in the past decade in the application of
anomaly detection methods to detect fraud [34, 35], malware [36], intrusion detection
[37], and infected devices in networks known as bots [38, 39, 40]. These early successes
kindled the enthusiasm to develop statistical methods tailored to cyber security prob-
lems and are currently shaping a new field of scientific inquiry: Statistical Cyber-Security
[41].

Previous studies experimenting with the application of existing algorithms to (large)
datasets obtained in various aforementioned cyber-scenario’s, manifested the need for
methods that can cope with the volume(s) and types of data typically available in the
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cyber setting. Many statistical algorithms and methods have been designed and con-
structed for applications in epidemiology [42, 43, 44], behavioural sciences [45], mar-
keting [46], operational research, etc., but are not necessarily appropriate for immedi-
ate application across contexts. Especially in parametric statistical models (where we
assume that the sample we study can be modeled by one or more probability distribu-
tion(s) with a fixed set of parameters), the statistical model may be specifically tuned to
a specific parameterization (e.g. capturing certain types of distributions). In other set-
tings the loss function to optimize (a set of) parameters may work in one setting but not
in another (examples below). Consequently, the misfit between the suitability of a given
method and the context in which it is applied can be a complexity, which is a potential
shortcoming in many cyber security studies, catalyzing inaccurate inferences.

One large area of the field where this is particularly apparent is the (quantitative)
analyses of networked data, which ranges from community detection in social networks
focused on cyber-bullying (e.g. [47]) to analyzing captures of packets send from one
computer to another to detect infected computers (e.g. [48]). As illustrated by Figure
1.1, the structure of a social network (described in Chapter 3) is markedly different from
the structure of a computer network (described in Chapter 5). The social network data is
more densely connected: there are more often highly connected subgroups (e.g. friends
or members of a club). In contrast, a computer network typically consist of nodes that
do not form highly connected clusters because devices / servers do not need to commu-
nicate to other devices to interact with the internet. Opposite to social networks; nodes
in the network that are similar in terms of their role in the network (behaviour / connec-
tivity) are often relatively unlikely to connect, a phenomenon known as disassortativity
[49]. There is also a difference in the amount of times a connection is endorsed over
time (the number of send messages in the social network is lower compared to computer
connections). Popular network clustering methods often aim to detect highly connected
clusters with more links / edges / connections within groups than between groups (e.g.
modularity based clustering; [50] or spectral clustering), but these can perform subopti-
mal in networks where nodes are loosely connected to each other but highly connected
to a specific group of hubs [51] such as in computer networks [49]. Finally, many stud-
ies that focus on classification of computers in networks require a labelled dataset, but
the cyber security setting often lacks the presence of a label (e.g. in botnets), limiting
operational usefulness. These examples of problems specific to a cyber security set-
ting commend the development of suitable statistical models to understand phenomena
captured by data, encountered in a setting where data are retrieved or analyzed online,
machine generated, or linked by specific modes of (inter)dependence.

1.2. WHAT THIS THESIS ADDRESSES
This thesis addresses several methodological complexities relevant to the analyses of
data in cyber-space, by illustrating the application of existing methods in a new con-
text, and by furthering existing methods. We selected three major topics because of the
growing relevance of analyzing networked data and the seriousness of the security threat
posed by for example malware and botnets. The three topics are: 1. Handling missing
data in social networks; 2. Network clustering: the detection of computers infected with
malware by using a method that works even in the absence of labels indicating infection
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(a) Illustration of a Social Network (b) Illustration of a Computer Network

(c) Distribution of edge weights between a social (blue) and
computer (red) network.

(d) Distribution of indegree+outdegree between a social (blue)
and computer (red) network.

Figure 1.1: Network plots of a social network (data used in Chapter 3) and a computer network (data used
in Chapter 5). We can see that the social network (a) is more densely connected compared to the computer
network and suggests assortativity (b), but in the computer network the central nodes have more endpoints,
and suggests disassortativity. This difference is visualised in (c) by plotting the distribution of total (receiving +
sending) connections per node, where blue = social network, and red = computer network. However, counting
how often a connection occurs between nodes in the network (edge frequency) as depicted in (d) results in
identical distributions between the two different networks.
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status (unsupervised). We used a combination of a node clustering method with a con-
nection clustering method, and; 3. Data veracity (conformity of observed data to facts)
in online application systems. These topics are introduced below.

1.2.1. INCOMPLETE DATA IN NETWORKS

The internet has moved part of our (social) interactions to an online environment, which
deals with identity and contacts differently to a purely physical environment. For exam-
ple, are we certain that the LinkedIn or Facebook profile we are connecting with is a
true person? There is some evidence that fake Facebook profiles often have missing data
in attributes [52]. With 982 Facebook profiles (781 real and 201 fake), there were miss-
ing values attributes of 61 (7.8%) real and 25 (12.4%) fake profiles. To keep the online
environment secure, we need statistical models that can cope with these missing data,
which is why this thesis focused on imputation of missing data in attributes from linked
observations. Missing and incomplete data is a common problem across research fields
and can result in more data loss (if data from incomplete cases are removed) or biased
parameter estimates. In networks, the consequences of missing data can be more se-
vere compared to independent cases [53, 54, 55, 56], for example when complete-case
analyses excludes a person with missing data and all the edges to his peers (and infor-
mation) are dropped. In extreme examples where missing data correlates with network
structure, entire segments of the network can drop-out. Networks (or graphs) are usu-
ally represented by edges and vertices. The weights on the edges can be denoted in a
adjacency matrix which values may indicate a (number of) connections (e.g. communi-
cation or friendship) between nodes, and no value may indicate the absence of a con-
nection. This representation has allowed the development of many clustering methods
to either cluster network nodes or ties. Given that network clustering methods rely on
the network matrix, previous research has focused on estimating unobserved or missing
ties [57]. We are interested in missingness in X , the matrix with node attributes where
covariate (the features) values of the nodes are stored. Figure 1.2 presents and example
where there is a missing value (indicated by ?) in the gender variable. In our setting the
network structure complements a collection of attribute data, such as gender, income,

1 2

34

C =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 X =

ID age gender
1 13 1
2 20 0
3 16 ?
4 19 1

Figure 1.2: Undirected graph with a symmetric adjacency matrix C , indicating all connections are bidirectional.
The diagonal of C is always zero implying the absence of self-loops. X is the covariate matrix with variables
age and gender. Since all four observations are part of a social network, the variables in X are node attributes.
In X , one observation (I D = 3) has with missing gender.
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age, etc. There are many ways to replace the ? with a value, such as taking the mean (or in
categorical data the mode) of the complete cases. In the observed data we observe one
male (g ender = 0) and two females (g ender = 1) so the mode = 1 and we could decide
to replace the missing value with a 1, indicating a female. However, mean imputation
can be a problem in statistical analyses, because we add observations, but do not add
variation. We can easily understand why mean imputation is a problem if we consider
the formula for the standard deviation in a sample;

s2 =
∑

(x − x̄)2

n −1
(1.1)

where s2 indicates the variance, n is the sample size, x is the sample value, and x̄ is
the sample mean. With mean imputation we increase n but for every observation that
is given the mean as a value the product

∑
(x − x̄)2 is zero, so s2 deceases. There are also

other options with their own advantages and disadvantages [58], but the general con-
sensus is that statistical modelling (via imputation methods) should provide an accurate
and unbiased way to estimate missing values [59].

The estimation of missing attribute data when observations are linked is more chal-
lenging (compared to independent observations) and not well understood. A large body
of research on imputation presents methods to estimate missing covariates in indepen-
dent observations [60], but none of these methods support networked data. We pro-
pose Bayesian Autocorrelation Regression Models (ARMs) as a sensible method for the
construction of a posterior distribution from which values can be inferred to replace
the missing data. ARMs are based on regular regression models and thereby provide a
straightforward and formally tractable framework for the analyses of attributes [61, 62].
We acquired data via dr. Tore Opsahl who collected data from a Facebook like messag-
ing app used by graduate students, so that the network represents who send or received
messages during a 6-month period. Every node also has attributes such as gender, age
or year of study, and we introduced missing data in gender to test our imputation perfor-
mance.

1.2.2. NETWORK CLUSTERING
Network data implies links or connections between nodes, captured in an adjacency or
connection matrix: C (see Figure 1.2). When C only indicates the presence or absence
of a connection a → b, then Cab = 1 if there is a connection between nodes a and b
and 0 otherwise. Sometimes C contains weights (e.g. amount of money transferred be-
tween clients), indicating that C in essence can take any value from any distribution.
Frequently, every node i ∈ N also has some attribute data, captured by X , holding p
covariates for the n nodes or observations.

One popular area where data always follow a network structure is the analyses of
computer networks that are infected with malware, so that infected internet-connected
computers become zombies or bots. Large networks of bots are known as botnets, and
are controlled by one or more botnet controllers [63] performing malicious tasks. The ac-
tivity on such a network can be captured with packet capture software (e.g. Wireshark),
and typically results in a long stream of data with variables such as source, destination,
port, packet length, and time. This spatio (which node in the network) - temporal (ac-
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tivity over time) structure has been proven a challenge for statistical analyses. In short
this entails; 1. loss of variation with studies collapsing the information captured over
time for every node into a simplified variable, or by removing streams of data that only
occur once; 2. many current classification methods applied to (streaming) data in cyber
security rely on preprocessing of the data, and 3. the requirement of a labelled dataset,
whereas the cyber security setting often lacks the presence of a label, such as in captures
of network activity.

The above-mentioned limitations directed the efforts in this thesis to present a ro-
bust, valid, and reliable procedure to detect botnet infected machines. Chapters 4 and 5
apply Stochastic BlockModels (SBMs) to botnet data with the aim of identifying infected
clusters without the need for a labelled dataset. At the start of this project (late 2015), the
overwhelming majority of studies focusing on the detection of computers that were / are
infected with malicious software, made use of supervised clustering. In supervised clus-
tering, a labelled dataset is used to allow the computer to learn patterns of behaviour (in
terms of variance, covariance, or interactions) between (statistical projections of) fea-
tures or covariates. In many operational settings, these labels are not readily available
when we create are statistical model, which in botnet detection is a rationale for using
statistical / machine learning models. Consequently, we rely on another group of learn-
ing methods called unsupervised learning, where patterns in the data are learned (by
the computer) without the availability of examples or labels. SBMs are attractive be-
cause they seek highly connected blocks in network connections while allowing the in-
clusion of covariates, in a statistically tractable way (variational Expectation Maximiza-
tion). Hence, there is no need to choose between analyzing the node structure or node
attributes as both are considered in the same model. To prevent collapse of covariates
and loss of temporal resolution, we experiment with the use of features derived from
Dynamic Time Warping techniques (distance measure of time sequences) and Ngrams
(distance measure for strings). This also reduces the required number of covariates since
all variation is (assumed to be) captured by these distance features. The method does
not require a priori (manual) host or sequence filtering, and we experiment with differ-
ent packet thresholds to show which data-specific settings are optimal. We first test the
principles on synthetic data, followed by captures from the wild. Finally, the main find-
ing is replicated in another (larger) capture of network activity, with different botnets.

1.2.3. DATA VERACITY

STATE ESTIMATION

Concerns regarding cyber security often apply to systems that process data or informa-
tion. Processing these data often involves the analyses of states of a system. For ex-
ample, supplying sufficient electricity to a city requires strict monitoring of supply and
demand, since power consumption changes constantly. Underproduction of energy re-
sults in power-loss, but overproduction of energy wastes resources. In another context,
we might want to govern how much water should run through a dam in order to maintain
proper flood (water) levels beyond the dam for residents in downstream area’s. For these
kinds of applications, state estimators have been developed. One of the most famous
state estimators is the Kalman Filter (KF; [64]), which was developed by NASA to predict
and guide the position of the 1977 Mariner Jupiter-Saturn mission. Kalman Filters (KF)
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are recursive state estimation algorithms capable of combining and weighting different
variables to estimate the state of a system [64]. Recursive reflects the property that ev-
ery iteration incorporates information from previous observations and predictions [65].
Many versions of the KF have been proposed and in the area of state estimation or par-
ticle filtering [66]. They work by comparing a state matrix against a change matrix of a
dynamical model to predict the real state of a system (correcting for measurement and
prediction error).

Since KFs are so widely implemented in all kinds of cyber-physical systems, there as
been growing interest to understand how vulnerable state-estimators are to attack mod-
els where the functioning of KFs is subjected to various scenario’s where it’s convergence
is compromised. Recent studies have shown that KFs are vulnerable to data-injection
attacks [67, 68, 69], where attackers inject data by supplying extra change matrices (as
fake measurements) to subvert the state estimate and control the behaviour of a system.
In chapter 6, we test the vulnerability of Kalman Filters to data injection in the context
of ADS-B (Automatic Dependent Surveillance-Broadcast) systems, used in airplanes for
navigation. This context is relevant as ADS-B is the communications protocol are part
of next generation air transportation systems and feed many modern air traffic control
systems, making it essential in the protection of two billion passengers per year. The
inherent lack of security measures in the ADS-B protocol has long been a topic in both
the aviation circles and in the academic community [70]. Usually ADS-B exists as an
on-board system that takes input from satellites to determine the position of a moving
(flying) object, and broadcasts that position to other (proximate) aircraft (and vice versa)
to create positional awareness. To understand the vulnerability in the ADS-B context, we
present a sensitivity study where different adversarial scenario’s are tested to investigate
the influence of false data injection in the Kalman Filter. Data-injection in KFs was suc-
cessfully applied in power system estimation [68] and we replicate that study by injecting
location data in ADS-B data to increase the prediction error in the location of an aircraft,
showing the potency of data-injection in changing the estimated location of an aircraft.

ONLINE DATA COLLECTION

In the field of epidemiology, medical studies usually make use of tests or questionnaires
administered to patients under (direct) supervision of an examiner. The direct interac-
tion and monitoring between the test-subject and the person who oversees or conducts
the analyses is time intensive but ensures correct interpretation of reported values and
test outcomes. A more efficient way of collecting data is through online questionnaires,
with many obvious benefits; the volume of potential respondents who can be reached
with relatively little resources, clients can have 24/7 access to services, and data do not
require to be digitized after collection. But this efficiency-increase comes at a price: less
control over data collection, which can lead to problems in data veracity (the conformity
to facts). These problems can be caused by misinterpretation or wrong interpretations
of the question, for example when the measurement instrument is badly constructed
[71]. Another well-known phenomenon with online data collection is a substantial non-
response or drop-out rate compared to interviews or live administration of a question-
naire, resulting in missing data.

One setting where online data collection is an integrated part of the operational pro-
cedure is in a financial context, when clients from a bank apply for a consumer credit.
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Consumer credits are a product common in financial organisations to provide a loan to
earn long-term interest. Client’s who require funds can apply for a loan via the website
of a bank [72] where they are required to fill in a set of questions assessing their per-
sonal (e.g. marital status and number of children) and financial situation (e.g. income
and years in job). Consumer credits belong to a group of products vulnerable to fraud
[73], which is a wrongful or criminal deception intended to result in financial or personal
gain (Oxford Dictionary). There is significant interest in the early detection of suspicious
behaviour indicative to fraud, and statistical analyses are known to have merit for fraud
detection [74, 34, 75]. These methods typically work by analyzing features (or variables)
that can be combined to create a fraud-indicator value.

The key problem with current statistical methods to detect fraud is that feature-data
are taken as valid, while potential fraudsters have an obvious interest in manipulating
the input data [76], by providing wrong or false answers in the application process to
prevent detection. This phenomenon has been studied in the context of identity theft
and/or credit-card application fraud [34], where fraudsters adopt the identity of another
(often familiar) person (e.g. family member) by using personal information (social Se-
curity number, address, health insurance information or job history). This information
is then (ab)used to apply for credit by taking out loans or opening new accounts in the
victim’s name. One identity theft prevalence study ranked new loans as third most fre-
quent, behind new telephone services and new credit card accounts [77]. There are many
settings where intensive checks (two-way verification) or personal security verification
questions by phone are performed to ensure valid authentication, but in online appli-
cation systems this remains challenging. Clearly, applicants can also report completely
false answers, without the use of personal details of a victim. In another context, using
personal details or a specifically tuned context of a victim to earn another person’s or
organisation’s trust is a common phenomenon in spear phishing [78].

In chapter 7 we present a collaborative project with ING bank which investigated
whether it was possible to identify surprising values on consumer credit applications,
and which surprising values were indicative for fraud status. These measures of surprise
not necessarily imply dishonest answers but present some measure of inconsistency be-
tween values from different variables. From ING, we used a large dataset from non-fraud
(controls) to train generalized linear models for predicting the feature values in a non-
fraud setting. The parameters from that model were used to calculate predicted feature
values in a test set including both fraud and non-fraud clients so that residuals could be
inferred (observed - expected), as a measure of surprise. Case-control comparison re-
vealed which feature-residuals were indicative for fraud, and we tested whether adding
that information to the canonical fraud detection model was sensible.

1.3. THESIS STRUCTURE
This thesis is structured as follows, we present an introduction in statistics relevant to
this thesis in chapter 2, and continue the thesis with two parts; network analysis and
data veracity. Part I, themed network analysis, consists of chapters 3, 4, and 5 where we
respectively present a model for the imputation of attributes in networked data, and an
unsupervised approach to cluster spatio-temporal data with mixture models. The main
contributions of part I are:
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• an extension of autocorrelation regression models to impute missing data in at-
tributes from linked observations with and without flow from imputed observa-
tions,

• an unsupervised model to detect computers infected with P2P malware, and

• an unsupervised model to analyse spatio-temporal data, in the context of botnets,
where nodes as well as connections are clustered.

In part II we present two chapters (6, 7) focused on data veracity where we inject false
data in state estimators (Kalman Filters), and show how to detect anomalies in the con-
text of credit fraud applications. The main contributions of part II are:

• the effects of (false) data injection on the convergence of Kalman Filter estimates
in the context of ADS-B systems used in aircraft navigation, and

• a proof of concept to quantify unexpected responses in “online” applications of
consumer credits, an the merit of this quantification to the detection of fraud.

Conclusions and a discussion of the results presented in this thesis are put forth in chap-
ter 8.



2
AMUSE-BOUCHE OF STATISTICAL

TECHNIQUES APPLIED

This chapter presents a short introduction and explanation of the statistical methods
used in this thesis, provided for the researcher who is less-familiar with the concepts of
imputation, mixture models and network clustering.

We will use the following dataset to illustrate our examples:

Person Gender Height Weight

Susan f 1.73 58
Luke m 1.82 83

Jasmin f 1.68 55
Mary f 1.78 72
Hank m 1.90 95
James m 1.85 86
Laura f 1.76 64
Kevin m 1.77 78
Mark m 1.83 86
Yara f 1.71 61

Table 2.1: An example dataset, as used in this chapter

2.1. DISTRIBUTIONS
This thesis makes use of the exponential family of probability distributions, mostly the
normal- and chi-squared distributions. Given a measure θ, we define an exponential
family of probability distributions as those distributions whose density (relative to θ)
have the following general form:
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p(x|θ) = h(x) exp(η(θ) T (x)− A(θ)) (2.1)

where θ is the canonical parameter, and T (x), h(x), η(θ), and A(θ) are known func-
tions ([79], p.312). A large part of the imputation and mixture models literature is written
around the normal distribution where the variable-to-impute or the distribution of the
mixture component is a Gaussian. We therefore discuss the normal distribution and
likelihood below. In the normal distribution, the data form a random sample from the
normal distribution; we treat the data y1, . . . , yn as the observed values of Y1, . . . ,Yn where
the Y j are independently taken from the normal density

f (y |µ,σ2) = 1

(2πσ2)1/2
exp(− (y −µ)2

2σ2 ), −∞< y <∞ (2.2)

with mean µ ∈ R and variance σ2 ∈ R+ [80]. We can standardize this distribution via
z = (y −µ)/σ so that the corresponding random variable Z = (Y −µ/σ) has density

φ(z) = (2π)−1/2exp(−1

2
z2), −∞< y <∞ (2.3)

which is the density of the standard normal random variable Z . The density is sym-
metric about z = 0, the expectation E(Z ) = 0 and var(Z ) = 1. The mean and variance
of Y = µ+σZ are respectively µ and σ2. The notation Y ∼N (µ,σ2) refers to variable Y
has the normal distribution with mean µ and variance σ2 [79]. The standard normal has
distribution function

Φ(z) = (2π)−1/2
∫ z

−∞
exp(−1

2
u2)du (2.4)

and has the useful property that z0.025 = −1.96 and z0.05 = −1.65 and is symmetric
around z = 0 (see Figure 2.1).

Figure 2.1: Normal distribution
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When Z1, . . . , Zk are independent standard normal random variables, W = Z 2
1 +·· ·+

Z 2
k has the chi-squared distribution on k degrees of freedom; W ∼χ2

v ([79], p. 63) defined
(in terms of the probability density function) as

f (x,k) =


x

k
2 −1e−

x
2

2
k
2 Γ( k

2 )
, if x > 0

0, otherwise

where Γ k
2 denotes the gamma function, which has closed-form values for integer k.

2.2. IMPUTATION OF MISSING DATA
Sometimes data are not completely observed because they contain one or more missing
value(s) and we need to decide what to do with these partly-observed cases; we need a
missing data strategy.

2.2.1. MISSING DATA MECHANISMS

To understand which missing data strategy is appropriate, we need to decide to which
of the typical missing data mechanisms (formalized by Rubin in 1976 [81]) we attribute
the missing values; missing data completely at random (MCAR), missing data not at ran-
dom (MNAR), and missing data at random (MAR). Missing completely at random occurs
if the probability of being missing is the same for all cases (e.g., all subjects are equally
likely to be missing). This implies there are no systematic differences between subjects
with observed and unobserved values meaning that the observed values can be treated
as a random sample of the population. For example, if we use a laptop to collect data
but some of the data are missing due to a empty battery [58, 82]. In missing at random,
the likelihood of a value to be missing depends on other, observed variables. Hence,
any systematic difference between missing and observed values can be attributed to ob-
served data. That is, the relationships observed in the data can be utilized to ‘recover’
the missing data. For example, a laptop to collect data may be malfunctioning more of-
ten in a moist environment [82]. However, if we correct for the environment, it may be
possible that within all measurements collected in a moist environment, the probability
of a missing value is identical and we have MAR. Missing not at random happens when
the probability of being missing varies for reasons that are unknown to the researcher.
For example when we use a laptop to collect data but the performance of the processor
declines over time presenting us with more missing data but we don’t recognize this pat-
tern. This means there is extra information associated with the missing data that cannot
be recovered by (the relationships observed in) the collected data [82].

According to Papageorgiou et al. [82], the missing data mechanism should be re-
garded as an assumption that either supports an analysis or not, rather than as an in-
herent and identifiable feature of a dataset (see Table 2.2). For example, complete-case
analyses can result in a loss of information if we drop data from partly observed cases,
while including missing values can complicate data analyses if statistical methods are
not able to cope with missing data. Also, missing data can potentially bias analyses due
to systemic differences between observed and missing values [83].
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With a missing data mechanism in mind, we can select one of the different strategies
to deal with partly observed / missing data [84, 82, 59, 85, 58, 86], mainly

• complete-case analyses; neglecting the observations that are not fully observed,

• apply weighting procedures in an attempt to adjust for nonresponse as if it were
part of the sample design,

• imputation; filling in one or multiple values for each missing value, and

• model based procedures where a model is defined for the observed data and the
inferences are based on the likelihood or posterior distributions under that model.

This thesis focuses on imputation, which refers to a process where missing values
are replaced with a (substituted) value [59, 82, 58, 86]. Imputation is a large field of sci-
entific research and many flavours exist, as presented in different reviews [58, 59, 86]. A
central problem in imputation is how to choose the substitute value to replace the ob-
served missing value. A plethora of imputation procedures has been developed which
can roughly be divided in single- (replace the missing value with one value) and multi-
ple imputation (replace the missing value with multiple values) [82].

2.2.2. SINGLE AND MULTIPLE IMPUTATION
Single imputation ranges from hot-deck imputation; where recorded units in the sample
are used as substitute values, and mean imputation; where the mean is calculated in sets
of recorded data to become the substitute values, to regression imputation; where the
missing values are estimated by predicted values from the regression on (usually) the
complete observations [59, 86]. Important limitations of single imputations include the
negligence of 1) sampling variability about the actual value and 2) additional uncertainty
when more than one model is being used [59]. These factors can influence (co)variance
estimates and thus bias parameters [87, 88, 89, 86, 90].

Multiple imputation revolves around the idea of choosing multiple values (m) for ev-
ery missing value. This means that every missing value is imputed m-times, resulting in
m complete datasets, which can be analysed with standard complete-data procedures
(that ignore whether an observation was imputed or observed). Rubin mentions three
important advantages to multiple imputation over single imputation [59]. First, when
substitute values are randomly drawn in an attempt to represent the distribution of the
data, multiple imputations increases the efficiency of estimation. Second, when multi-
ple imputations represent repeated random draws under a model for nonresponse, valid
inferences are obtained simply by combining complete-data inferences in a straightfor-
ward manner. Third, by generating repeated randomly drawn imputations under more
than one model, it allows the straightforward study of the sensitivity of inferences to var-
ious models for nonresponse (by using the complete-data methods repeatedly).

This all builds to a method that ensures the proper estimation of estimand Q, which
is a quantity of scientific interest that can be calculated in the population and does not
change its value depending on the data collection design used to measure it [91]. Exam-
ples of estimands are the population mean and (co)variance, regression coefficients and
factor loadings (not sample means, standard errors, and test statistics). What is proper
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was initially outlined by Newman [92] and mainly implies an unbiased and confidence
valid estimate [58, 91]. Unbiased means that the average estimates of Q̂ over all possible
samples Y from the population is equal to Q (the population parameter(s));

E(Q̂|Y ) =Q (2.5)

Confidence validity is achieved when the average of U ; the estimate variance-co-
variance matrix of Q̂, over all possible samples Y is equal or larger than the variance of
Q̂;

E(U |Y ) ≥V (Q̂|Y ) (2.6)

where V (Q̂|Y ) denotes the variance caused by the sampling process. A procedure is
confidence valid if a statistical test, with a stated nominal rejection rate of 5% should
reject the null hypothesis in at most 5% of the cases when in fact the null hypothesis
is true. Other important underlying conceptual documentation, explaining why certain
Bayesian approaches to repeated imputations are improper if misspecified (and solu-
tions to that problem [93]), which sources of variation occur in missing data, how we
can be confident that imputation produces valid and robust estimates, and alternatives
to multiple imputation, is provided elsewhere (e.g. [91, 94, 85, 58, 86]). Overall, the goal
of multiple imputation is to find an estimate Q̂ of Q with correct statistical properties
and if we have no missing data, the pair (Q̂,U ) holds all information we know about Q.

2.2.3. MULTIPLE IMPUTATION MODEL
We will continue by explaining the technical procedure (outlined in [58], p.57 and [59], p.
167) of multiple imputation by presenting some notation. Let X be a n ×p dimensional
matrix holding all the available data, including n0 observations with missing values and
n1 completely observed observations. From X we select Y , which is a n×q dimensional
matrix (q covariates with missing data) for imputation. In Y we have observed values
stored in vector Yobs (n1 × q) and (partly) missing values in Ymi s (n0 × q). From the re-
maining part of X we subset Xobs (n1×p) consisting of the predictor covariate data from
the complete observations, and Xmi s (n0 × p) containing the predictor covariate data
from observations for which Y is (partly) missing. Hence, Xobs and Xmi s contain no
missing values. For a univariate Y we write lowercase y . Predictor selection for imputa-
tion is discussed elsewhere [58].

Our modelling task is to draw m substitute values from a the posterior distribution
of Ymi s under the chosen model to create m imputations. We specify Pr (Ymi s |X ,Yobs ) to
indicate that the posterior distribution of Ymi s follows from X and Yobs . If our univariate
y is normally distributed and we create imputations under the normal linear model, we
can apply a Bayesian multiple imputation model as

ẏ = β̇0 +Xmi s β̇1 + ε̇ (2.7)

where ε̇∼ N (0, σ̇2) and β̇0, β̇1 and σ̇ are random draws from their posterior distri-
bution, given the data ([58], p. 57). The dot above a parameter indicates this is a drawn
value. For completeness; ε is the normally distributed error, β̇ is the intercept, and β̇1 the
regression coefficient(s). Under the normal linear model it is typical to use the standard
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non-informative priors for each of the parameters [59]. A posteriori, σ2 is σ̂2(n1 −q) di-
vided by a χ2

n1−q random variable, and β given σ2 is normal with mean β̂1 and variance-

covariance matrixσ2V . In all subsequent models the intercept and coefficients are com-
bined in one vector and we add a column of value 1 to Xobs for proper estimation. In line
with least squares statistics we have

V = [X t
obs Xobs ]−1, (2.8)

β̂=V X t
obs yobs , (2.9)

with X t
obs indicating the transpose of Xobs . Note that this notation skips the use of a

scalar to prevent singular matrices as defined in [58]. We draw ġ ∼χ2
v with v = n1 −q to

calculate

σ̇2 = (yobs −Xobs β̂)t (yobs −Xobs β̂)

ġ
. (2.10)

We continue with drawing q independent N (0,1) variates to create a q-component
vector ż1 and let

β̇= β̂+ σ̇ż1V 1/2 (2.11)

where V 1/2 is the square root of V such as the triangular square root obtained by
Cholesky factorization. We calculate the n0 values with

ẏ = Xmi s β̇+ ż2σ̇ (2.12)

where ż2 is a vector of n0 independent N (0,1) variates drawn independently. A new
imputed value for ymi s is initiated by drawing a new value of the parameter σ̇2, implying
that for m imputations the steps to calculate σ̇, β̇, and ẏ are repeated m times.

2.2.4. MULTIPLE IMPUTATION ON OUR EXAMPLE DATA
We use the example data presented in the start of this chapter, which was fully observed,
and introduce missingness into this data by removing the gender of James (person 6).
Gender is recoded to 0 and 1, so that m → 0 and f → 1. Hence, data → X so X is a n ×p
dimensional matrix (10 rows and 3 covariates):

X =



1 1.73 58
0 1.82 83
1 1.68 55
1 1.78 72
0 1.90 95
? 1.85 86
1 1.76 64
0 1.77 78
0 1.83 86
1 1.71 61


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Our goal is to impute the gender of observation 6 (James) so we extract the variable
gender from X to become y . The remaining part of X is used as predictors and becomes
Xobs for the cases with observed gender (n0 = 9) and Xmi s for James (n1 = 1). From our
newly created gender variable y we extract the observed values to yobs , and ymi s = [?].
We add a 1 to Xobs and Xmi s to estimate β with matrix multiplication.

Xobs =



1 1.73 58
1 1.82 83
1 1.68 55
1 1.78 72
1 1.90 95
1 1.76 64
1 1.77 78
1 1.83 86
1 1.71 61


Yobs =



1
0
1
1
0
1
0
0
1


Xmi s =

[
1 1.85 86

]

Because gender is a categorical variable with 2 levels (dichotomous) we cannot use a
normal linear model for imputation but use a generalized linear model, which is a gener-
alization of ordinary linear regression to allow response variables with error distribution
models other than a normal distribution [95]. The categorical imputation applied to our
data is different in three steps:

• Our 2-level variable gender (0 and 1) is reason to select an logit-link function, to
link our linear predictor to the mean of the (logistic) distribution function. Follow-
ing previous work [59] we calculate the probability of being a female;

ṗi = 1

1+e−(Xi β̇)
(2.13)

with i ∈ mi s.

• We calculate β̇ as defined in Equation 2.11 but here V 1/2 is the unscaled covariance
matrix (estimated with glm.fit)1.

• We draw n0 independent uniform (0, 1) random numbers, ui and if ui > logit−1Xiθ)
we impute ẏi = 0, otherwise ẏi = 1, where θ̇ refers to a draw from N (θ̂,V (θ̂)) with
θ̂ the maximum likelihood function for θ and V (θ̂) the posterior variance of θ. Pa-
rameter θ is a column vector with the same number of components as Xobs to
capture the logistic element in Equation 2.13 (see [59], p. 170).

For the first iteration of m this means that we obtain as parameter estimates

β̂= [−1706.75 1338.39 −9.07
]

V 1/2 =
 8992283.91 0 0
−6175643.15 323519.024 0

27587.58 −7459.884 542.9341


ż1 =

[
0.1449583 0.4383221 0.1531912

]
1Estimated in R using the mice.impute.logreg() function from MICE [96, 97] with set.seed(1121)
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so that

β̇= [
1301799.4995 −752066.8512 803.3239

]
and

ṗi ≈ 0

ui ≈ 0.86

to observe ui > ṗi so that ẏi = 0. If we continue this procedure with m = 50, we would
obtain ẏi = 0 for 39 times and ẏi = 1 for 11 times, suggesting that James is likely male.

2.2.5. RELEVANCE OF MULTIPLE IMPUTATION TO THIS THESIS
The above explanation is relevant to chapter 3, where we present a model to impute the
characteristics of observations when these are related. In the above example, the persons
we used for the imputation (Suzan, Luke etc.) were assumed to be independent and we
used statistical models that make assumptions about the behaviour of estimands in the
independent cases scenario. Now imagine they are somehow related (e.g. friends), then
we require statistical models that can accommodate the dependence, and we use au-
tocorrelation regression models with extra parameters to capture the dependence (au-
tocorrelation) between cases. Also, in this example we used a different model with a
logistic link function to allow the prediction of a dichotomous y . In chapter 3 we deal
with categorical variables in a different way; by considering them as latent continuous
variables, constructed by sampling from the left- (if yobs ) = 0 and (right yobs = 1) trun-
cated normal distributions [98]. Finally, we used a Bayesian statistics paradigm for our
imputation, supported with one clear rationale; accuracy of the estimation procedure.
This will be explained in the next section.

2.3. BAYESIAN STATISTICS
In Bayesian statistics we use sampling to acquire the posterior distribution, which (in
this thesis) is the (weighted) average of the likelihood and the prior. We have specifically
chosen the sampling (Bayesian) approach to estimate the parameters, as sampling opti-
mization is known to provide particularly accurate results [99, 100], which is opportune
in the imputation setting as inaccuracy in parameter estimation can influence follow-up
analyses. Bayesian statistics formulates probability distributions to express uncertainty
about unknown quantities. We use p(·|·) to denote a conditional probability density with
the arguments determined by the context, and p(·) to denote a marginal distribution.
The marginal distribution is the probability distribution of (the values of) the variable(s)
without reference to (the values of) the other variables. This contrasts with a conditional
distribution, which gives the probabilities contingent upon the values of the other vari-
ables.

The Bayes Theorem states

p(θ|y) = p(y |θ)p(θ)

p(y)
= p(data|θ)p(θ)

p(data)
(2.14)
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where we use θ to represent the unknown parameters we aim to estimate, and p(θ) holds
the prior information we have about these parameters. We also have p(y |θ) which is the
likelihood, and p(y) is the marginal probability density obtained by summing or inte-
grating out all dependence on θ [101].

Assume we have a data point (xi ) and we want to infer which component (z) it is
likely to belong to. This means we want to infer the posterior distribution p(z|x), we use
Bayes rule

p(z|x) ∝ p(z)p(x|z) (2.15)

where ∝ means proportional to (or: “equal up to a constant”). In other words, we can
evaluate p(z)p(x|z) for all values of z, and then normalize the values so that the values
sum to 1 [102]. We now explain the different parts of the Bayes rule formula, based on
[101].

2.4. LIKELIHOOD
Model fitting can be done by parameter estimation where we vary the parameter values
and hold the data constant. To this end, we select or design a likelihood function, de-
pending on assumptions about the data generating process. We call p(data|θ) the like-
lihood because we vary the parameters and keep our data fixed, to calculate the prob-
ability density for different values of θ. The likelihood in itself is not a valid probability
distribution, which is why we use a normalizing constant to obtain the posterior in Equa-
tion 2.14. A schematic overview of probability distributions used for likelihood functions
can be found in ([101], p. 145).

The density function of a normal random variable (with meanµ and varianceσ2) was
presented in Equation 2.2. The log-likelihood for a random sample y1, . . . , yn (adopted
from [79], p. 111) is

L (µ|σ) ≡−n

2
log σ2 − 1

2σ2

n∑
j=1

(y j −µ)2. (2.16)

where the summation indicates that we calculate the joint probability density for the
n individuals by taking the product of the individual densities and the likelihood is log()
transformed to allow easy comparison (it then follows a χ2 distribution).

If we would like to estimate the probability, θ, that a randomly chosen individual
from our example data is a male (0) or female (1) without prior information, we could es-
timate the probability Pr (X = 0|θ) = (1−θ) and Pr (X = 1|θ) = θ which can be expressed
as

Pr (X =α|θ) = θα(1−θ)1−α (2.17)

where α ∈ {0,1} indicates male of female status. If we would generalize this model to
apply for a new sample from the population, to calculate the probability of obtaining Z
females in a total sample size of N , we generalise the model so that the likelihood for a
sample size of N becomes

Pr (Z =β|θ) =
(

N

β

)
θβ(1−θ)N−β (2.18)
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known as the binomial probability distribution. Our example data included 5 males
and 5 females, suggesting θ = 50%. Suppose we collect a new sample of 100 individuals
and find that 40 persons are female. We use the above equation to calculate the proba-
bility of obtaining 40 or more females by

Pr (Z ≥ 40|θ = 0.5) =
100∑

Z=40

(
100

Z

)
0.5Z (1−0.5)100−Z = 0.98

indicating the probability of generating such a sample of 100 individuals with at least
40 females, using this likelihood model, is high.

2.4.1. PRIORS

The Bayesian rule prescribes to multiply the likelihood with the prior. The prior proba-
bility distribution (p(θ)) represents our a priori distribution for a parameter’s true value.
For example, if we study a group of children with mental problems, we use psychologi-
cal tests (the estimate the likelihood), but we can also ask clinical psychologists to give
a prior disease probability distribution based on their expertise. This prior is then used
to obtain a probability distribution which is multiplied with the likelihood. Hence, in
Bayesian statistics we combine our prior beliefs with data to get to new beliefs

p(θ|data) ∝ p(data|θ)︸ ︷︷ ︸
likelihood

×p(θ)︸︷︷︸
prior

.

This also implies that when we add more data, the relative importance of the likeli-
hood increases and the influence of the prior reduces [101].

2.4.2. DENOMINATOR

The denominator (p(data)) is a normalizing factor, to ensure that the product of the
Bayes rule (the posterior distribution) is a valid probability distribution. As can be seen
in the Bayes formula, we do not include any effect of θ in the denominator. This im-
plies that, in order to get the value of the denominator, we need to marginalise out all
parameter dependence in the numerator. However, this is complicated and often in-
tractable (due to the difficulty of integrating multidimensional probability distributions)
[100]. This is why this thesis uses sampling techniques to sample from the posterior.

2.4.3. POSTERIOR

We use the above Bayes rule to combine the prior and likelihood to produce the poste-
rior. The chosen likelihood model determines the influence of the data on the posterior,
which is a probability distribution that usually peaks between the peaks of the likeli-
hood and prior [101]. Point estimates are inferred from the posterior, most prominently
the mean, median, and mode of the posterior distribution, see chapter 3. Around these
points estimates lie credible intervals which describe the uncertainty in the parameter
values; a 95% credible region satisfies the condition that 95% of the posterior probability
lies in this parameter range.
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(a) Height in the population (b) Height for males and females

Figure 2.2: Example distribution of height in the population (a), and split for males and females (b). Both
subfigures are based on the same data. If we neglect gender we observe a normal distribution of height in
the population, but actually this normal distribution can be separated into a height-distribution for males and
a height-distribution for females. The population distribution is therefore a mixture of the male and female
distributions. In this example we are fortunate to have the information who is a male and who is a female.
Sometimes these labels are absent from the data, and we use statistical modeling to recover the gender-labels
from the population distribution. In other words: we decompose the population mixture distribution to obtain
a probability for every person to belong to a gender-class. Hence, the purpose of mixture models is to generate
or recover unobserved labels.

2.4.4. RELEVANCE OF BAYES TO THIS THESIS

Chapter 3 uses Bayesian statistics to estimate parameters in a statistical model where
we estimate missing data in attributes of network nodes. We use sampling techniques
to approximate the (posterior) distribution of different parameters. Specifically, we use
Gibbs sampling (a variant of Markov chain Monte Carlo methods). With Monte Carlo we
generate lots of (random) samples to make numerical estimations of unknown parame-
ters.

2.5. MIXTURE MODELS
Up to this point, all the variables in the data were observed; we knew gender, height,
weight, and friendship status for all individuals. This allowed to fit a range of statisti-
cal models where values are observed, or imputation methods when data are partially
observed. However, there are many scenario’s where we know or expect that there is a
variable which we did not observe in the data. In those cases we estimate entire variables
from the data by fitting mixture models [103, 104, 105].

Mixture models are statistical models with latent variables, who’s values are esti-
mated from the data. Figure 2.2 provides an example of a mixture model (from [106]); we
know that height is strongly linked to gender (in our sample most males are longer than
females). Because we observed gender, we can make a separate distribution of height for
females and one for females. However, if we would not have observed the gender label,
we would only have the distribution of height. With mixture models we can treat gender
as latent variable and use the distribution of height to recover gender status.

Because height is normally distributed we use a Gaussian mixture model, with den-
sity

f (x,ϑ) =
G∑

g=1
πgφp (x | µg ,Σg ) (2.19)
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with π> 0, such that
∑G

g=1πg = 1, is the gth mixing proportion,

φ(x | µg ,Σg ) = 1√
(2π)p |Σg |

exp
{− 1

2
(x −µg )′Σ−1

g (x −µg )
}

andϑ= (π1, . . . ,πG ,θ1, . . . ,θG ) is the vector of parameters. Hence,φ(x | µg ,Σg ) resembles
Equation 2.2 and is the density of a random variable X from a multivariate Gaussian
distribution with mean µg and covariance matrix Σg (φ is p−dimensional)[107]. The
component membership of every observation i is denoted by zi = (zi , . . . , ziG ), so that
zi g = 1 if observation i belongs to component g and zi g = 0 otherwise.

If we consider a clustering scenario with n p-dimensional data vectors x1, . . . , xn are
observed and all are unlabelled, the Gaussian model-based clustering likelihood is

L (ϑ) =
n∏

i=1

G∑
g=1

πgφ(xi | µg ,Σg ). (2.20)

Because we have a latent variable, we cannot simply maximize the likelihood directly,
but use Expectation Maximization [108]. This is a parameter estimation procedure that
consists of two steps, the Expectation step consists of calculating the expectation of the
component assignments for each data point (e.g. height of Luke) given the model pa-
rameters. The second step is the Maximization step consisting of maximizing the expec-
tations calculated in the expectation phase with respect to the model parameters. This
step consists of updating the values.

Applying EM to the Guassian mixture model is done as follows: We have as complete
data likelihood

Lc (ϑ) =
n∏

i=1

G∏
g=1

[πgφ(xi | µg ,Σg )]zi g (2.21)

and log-likelihood

lc (ϑ) =
n∑

i=1

G∑
g=1

zi g [log πg + log φ(xi | µg ,Σg )]. (2.22)

In the Expectation, the expected value is updated by replacing zi g by their expected
values

ẑi g = π̂gφ(xi | µ̂g , Σ̂g )∑G
h=1 π̂h f (xi | ûh , Σ̂h)

, (2.23)

for i = 1, . . . ,n and g = 1, . . . ,G . The expected value of the complete-data log-likelihood
is

Q(ϑ) =
G∑

g=1
ng log πg − np

2
log 2π−

G∑
g=1

ng

2
log |Σg |−

G∑
g=1

ng

2
tr {SgΣ

−1
g },

where ng =∑n
i=1 ẑi g and Sg = 1

ng

∑n
i=1 ẑi g (xi −µg )(xi −µg )′.

In the Maximization step the aim is to maximize Q(ϑ) with respect to πg , µg , and Σg ;
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π̂g = ng

n
, µ̂g = 1

ng

n∑
i=1

ẑi g xi , and Σ̂g = 1

ng

n∑
i=1

ẑi g (xi − µ̂g )(xi − µ̂g )′. (2.24)

The model fitting procedure alternates between the E and M steps until convergence,
which is when we obtain the EM-solution that has the best fit to the data given the num-
ber of mixture components (see an example in Figure 2.3).

One issue with mixture models is that the procedure cannot automatically infer from
the data how many mixtures (the number of groups) are optimal given the data. We
work around this problem by fitting mixture models for different groups (g ∈ {2, . . .4})
and we use a fit index (a parameter that expresses how good our model fits the data)
to choose which optimized model best describes our data. In example Figure 2.4 we fit
mixture models with 3 and 4 mixture components to the data and observe that the best
EM-solution captures different clusters of people. These clusters are valid outcomes as
they capture persons who are relatively similar in their height and weight. However,
the goal is to find the most parsimonious model; the model with least parameters that
best describes our data. In practice a fit index is used, such as the Bayesian Information
Criterium, to select the model with the least misfit.

2.6. NETWORK MODELS
Network analyses in the context of this thesis means that we have a covariate that cap-
tures some kind of spatial relationship. This can be a number that resembles the distance
between one observation and another one, so that all possible combinations of obser-
vations can be captured in a network, socio, or adjacency matrix. Below, we expand
our above-mentioned example data by adding a network matrix that resembles friend-
ship status. We illustrate the friendships in our sample in Figure 2.5. Using a statistical
modelling approach, we capture the friendship relations in a connection-, adjacency-,
or socio matrix:

C =


Susan Luke . . . Y ar a

Susan − 1 . . . 0
Luke 1 − . . . 0

. . . . . . . . . . . . . . .
Y ar a 0 0 . . . −


where a 1 indicates a friendship or a 0 otherwise. Dots indicate that we skip fields in
presenting the matrix, to be concise. The upper part of C is equal to the lower part,
meaning that we assume a friendship is always mutual. The network consists of nodes
(persons) and (connections).

There are many ways to analyze network data; we can count the number of incoming
(indegree) and outgoing (outdegree) friendships every person has, and calculate metrics
(e.g. density, centrality, or assortativity) that inform about the importance of every indi-
vidual in the group. For example, in our network we observe that Kevin, Mary, Jasmin,
and Yara have 4 connections, Laura has 3 connections, Mark and Hank only have 1 con-
nection. Hence, Kevin, Mary, Jasmin and Yara are well connected whereas Mark and
Hank are worst connected.
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(a) Start model fitting (b) Halfway model fitting

(c) Almost finished model fitting (d) Finished model fitting

Figure 2.3: How Expectation Maximization works in mixture models: in this example the points are colour
labelled to indicate gender, but we fit the mixture model to recover these labels to determine who is male and
who is female, just based on height and weight. We use the variables height and weight to fit a model with
2 mixtures. When the EM-algorithm starts (a), it departs from starting values which do not provide a good
fit to the data, as the algorithm continues (b) it starts capturing clusters in the height-weight space. When
almost finished (c) there is one misclassification (black dot in the blue cluster), and when it is finished, the two
mixtures have identified two clusters in the data, and it appears that males and females both end up on their
own mixture (perfect recovery). The mixtures have been visualised as blue and green circles and these circles
actually represent Gaussian distributions, which change in size and shape (mean and variance), this is typical
for mixture models.
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(a) Model with 3 mixtures (b) Model with 4 mixtures

Figure 2.4: Extending the example in 2.3, where we now fit the data with 3 mixtures (a) and four mixtures (b).
Both models capture subgroups of persons who are relatively similar in their height and weight.

Susan

Luke

Hank

Mary

Kevin

James

Laura

Jasmin

Yara

Mark

Figure 2.5: Example network of our sample. From left to right Luke and Susan are dating and both know Kevin.
Kevin is also friends with Hank and Mary. Mary is friends with Kevin, Laura, Jasmin and Yara. Jasmin is friends
with James. Laura and Jasmin are both friends with Yara. Mark is only friends with Yara.
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In our example, the network also contains features or covariates, as presented in Ta-
ble 1; for every node (person) we also have characteristics gender, height and weight. It is
possible that the network structure affects the relationship between gender, height and
weight. We know that most girls are shorter than boys and also see a cluster of girls (Mary,
Jasmin, Laura, and Yara are densily connected). It is possible that body length correlates
with network structure: persons who are shorter cluster together. In large networks these
patterns are difficult to observe which has led to the development of statistical models
for network analyses, such as Exponential Random Graph Models (explained below) and
Autocorrelation Regression Models (ARM). The standard ARM is

Y = ρW Y +Xβ+ε, ε∼N (0,1) (2.25)

where ρ is a network parameter (−1 ≤ ρ ≤ 1) and W is a row-stochastic (meaning the
rows sum to 1) version of our sociomatrix C . Equation 2.25 describes a normal linear
regression model (Y = Xβ+ε) to which we add a special part (ρW Y ) where we calculate
ρ to correct the model with the network effect. Since W and y are readily observed in the
data, ρ is a special parameter which must be estimated and indicates spatial dependence
in the observations y . If the scalar parameter ρ takes a value of zero there is no spatial
dependence and the model converges to a regular non-spatial regression model. How
we calculate ρ is explained in chapter 3.

2.7. STOCHASTIC BLOCKMODELS
Detecting communities in graphs is a difficult and challenging task because we are try-
ing to capture unobserved yet present structures in networks. These structures usually
exist as communities or subgroups in graphs, meaning that nodes cluster together be-
cause they have an equal role in the network or are strongly connected. There are many
different ways in which groups or clusters can exist in a network (see Figure 2.6), and
the introduction explained that computer networks often display a disassortative struc-
ture (where nodes with a similar role in the network are less likely to be connected [49]).
One approach that has been successful in capturing different types of relationships in
networks is the Stochastic BlockModel (SBM).

The idea behind SBM is to move over the that are observed between two nodes i → j ,
and j → i (if there is reciprocity), and find structurally equivalent nodes. If these struc-
tural equivalences exist, the network matrix can be partitioned into blocks of nodes with
a similar role in the network. However, structural equivalence is rare in real network data
so we estimate the stochastic equivalence (structurally equivalent nodes are stochasti-
cally equivalent but not vice versa) [109]. Here we describe how we estimate the stochas-
tic blockmodel.

2.7.1. HISTORY AND DEFINITION OF SBM
Fifty years ago there was a growing application of data with some kind of social structure,
but statistical models to analyse social network data were lacking. That gap resulted
in the development of stochastic models using a family of probability distributions to
analyze certain types of digraph data [110, 111, 112]. Those models allowed to estimate
parameters that measure both the amount of reciprocation of directed edges between
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Figure 2.6: This Figure shows different types of relationships that can occur in a network; a) assortative struc-
ture, b) disassortative structure, c) coreperiphery, d) hierarchy. On the right of every network is the correspond-
ing Stochastic BlockModel representation with probabilities in grey scale (from Funke & Becker, 2019).

nodes and the amount of differential attractiveness exhibited by each node. Today, SBMs
represent a family of community detection methods, where the original SBM evolved to
the degree corrected SBM [113] and SBMs where nodes are allowed to be members of
multiple blocks (mixed-membership; [114]).

A formal definition is presented in [115]2. We let G be a set of g nodes, and let R(1), . . . ,
R(m) be the m relations defined on the pairs of nodes. We write i R(k) j to indicate that
node i stands in relation R(k) to node j . The adjacency matrix for the digraph of the
single relation R(k) is given by

x(k) = xi j (k)), i , j = 1, . . . , g , (2.26)

where

xi j (k) =
{

1 if i R(k) j

0 otherwise

with a zero on all diagonals of x; xi i (k) = 0. With five nodes there are many possible con-
figurations of edges (relations) but one example network with bidirectional relationships
(called a digraph) is in Figure 2.7 and the corresponding adjacency matrix in Table 2.3.
If X is a random adjacency matrix for g nodes and m relationships then the probability
distribution of X denoted by p(x) = Pr (X = x) is a stochastic multigraph. The latter is a
graph where the nodes (vertices) are allowed to have multiple relationships (edges), for
example; X1 may refer to the amount of money send from node 1 to node 2, and X2 may
refer to the geographical distance between node 1 and node 2.

2The original definition [115] is based on a multigraph where there are many relationships, while I present a
situation where there is a single relationship (m = 1) and xi j is not a vector of all m relationships but a vector
of a single relationship.
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A SBM is a special case of a stochastic multigraph, where we partition the nodes into
mutually exclusive and exhaustive subsets called blocks {B1, . . . ,Bt }. We identify p(x) as a
stochastic blockmodel with respect to the partition {B1, . . . ,Bt } if and only if:

1) the random vectors X are statistically independent; and
2) for any nodes i 6= j and i ′ 6= j ′, if i and i ′ are in the same node-block and j and j ′ are

in the same node block, then the random vectors Xi j and Xi ′ j ′ are identically distributed.
Point 2 implies that nodes in the same node block are stochastically equivalent, so

if we have a node j in a given block B then the likelihood of any given pattern of edges
with node j is the same for all nodes in the block B . Hence, node i and i ′ are stochas-
tically equivalent if and only if the probability of any event about X is unchanged by
interchanging nodes i and i ′. Nodes are structurally equivalent if they have identical re-
lational edges to and from all other nodes in a network [109]. For example, in Figure 2.6
part (a), all nodes that are coloured blue are in the same block, and therefore stochasti-
cally equivalent.

The pair of nodes i , j belongs to the pair block Br ×Bs if and only if i is in the node-
block Br and j is in the node-block Bs . If p(x) is the probability function for a SBM, X ,
then the pair-distribution for pair-block Br ×Bs is given by

pr s = Pr (Xi j = z), for any i ∈ Br , j ∈ Bs , i 6= j (2.27)

and

z = z(z(1), . . . , z(m)), z(k) = 0 or 1. (2.28)

Equation (2.27) indicates pr s (z) is the probability that z describes the pattern of rela-
tionships in the observed edges from a node in Br to a node in Bs . This requires that the
distribution of relationships between any pair of nodes in a given pair-block is the same
as that of any other pair of nodes in the same pair-block, and is independent of edges
between any other pairs of nodes.

There are different ways to calculate stochastic equivalence [116]. SBMs consist of
a probability distribution for data and a function that maps stochastically equivalent
nodes to positions. One problem is that we do not know the amount of Blocks that is
optimal to map the stochastically equivalent nodes to, so [111, 117] extended the model
presented in [110] for different amounts of blocks. Because the optimal amount of blocks
is unobserved and has to be estimated from the data, the model has been redefined as
a mixture model [118]. Now, the SBM procedure consists of; assignment of nodes to
groups, estimation of the model parameters, and selection of the best fitting model to
determine the optimal amount of blocks [51].

2.7.2. SBM PARAMETER ESTIMATION
We already explained the rationale behind MCMC sampling in the context of imputation.
For SBM parameter fitting we use a different estimation paradigm. There is a clear divi-
sion in the parameter estimation literature between sampling approximation or deter-
ministic approximation [100]. When this thesis was written, different studies suggested
that estimating parameters via sampling resulted in more accurate estimates; MCMC
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Figure 2.7: Digraph with five nodes and nine bidirectional edges (from Holland & Leinhardt [110]).

can generate exact results (given infinite computational resources) but sampling meth-
ods can be computationally demanding, often limiting their use to small-scale problems,
limiting the scalability [119, 51]. Deterministic approximation is based on analytical ap-
proximations to the posterior distribution but can never generate exact results, opposing
some of the characteristics of sampling methods. However, recent work shows the scal-
ability of MCMC in SBM up to millions of [99] without the loss of accuracy, and that
sampling can be faster than optimization [120].

In this thesis we use approximation via sampling for the imputation procedure, as we
prefer accuracy in the imputation(s) over speed. In contrast, this thesis uses variational
inference to allow approximation of the posterior distribution in highly dimensional and
large datasets. Variational inference works by comparing candidate distributions against
the data, where the parameters to create those distributions are varied (the variational
parameters) [100]. We calculate the difference between the observed data distribution
and the proposal distribution, and select the distribution that best approximates the
data. A formulation of this procedure is given in chapter 4.

2.7.3. RELEVANCE OF MIXTURE MODELING AND SBM TO THIS THESIS

In chapters 4 and 5 we apply mixture models to detect communities of computers with
converging behaviour in the context of malware detection. In our scenario, the comput-
ers are controlled by a botnet controller (botnets are computer networks with malware-
infected machines) with the intent to use these computers for nefarious actions. Know-
ing which computers are infected in a computer network, based on their activity in a
network, requires a statistical model to cluster this computer-activity in clusters. To as-
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sign a cluster label to these similar computers we use mixture models on (versions of)
the connection matrix. Stochastic blockmodels are used to retrieve the unobserved clus-
ters on the networked data combined with different covariates.

2.8. CONCLUSION
This chapter presented a short overview of statistical methods developed and applied in
this thesis. Normal distributions and likelihood models are used in all chapters. Regres-
sion modeling is applied in chapter 7, and Bayesian statistics is used in chapter 3. Varia-
tional inference and mixture modelling are used in chapters 4 and 5. Network modelling
is used in chapters 3, 4, and 5.
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1 2 3 4 5 Xi+
1 0 1 0 0 1 2
2 0 0 1 0 0 1
3 0 0 0 1 0 1
4 0 1 1 0 0 2
5 0 1 1 0 0 3

X+ j 1 3 3 1 1 9 = X++

Table 2.3: Adjacency (socio) matrix corresponding to the example network in Figure 2.7.
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3
IMPUTATION OF ATTRIBUTES IN

NETWORKED DATA USING BAYESIAN

AUTOCORRELATION REGRESSION

MODELS

Misspecification in network autocorrelation models poses a challenge for parameter esti-
mation, which is amplified by missing data. Model misspecification has been a focus of
recent work in the statistics literature and new robust procedures have been developed,
in particular cutting feedback. This paper shows how this helps in a misspecified net-
work autocorrelation model. Where model misspecification is mild and the traits are fully
observed, Bayesian imputation is routine. In settings with high missingness, Bayesian in-
ference can fail, but a closely related cut model is robust. We illustrate this on a data set of
graduate students using a Facebook-like messaging app.

3.1. INTRODUCTION
In the cyber domain, large volumes of networked data are being collected, where links
(or: edges) can indicate friendship (e.g. Facebook), following status (e.g. Twitter), sent
and received emails, IP-traffic (e.g. botnets), financial transactions, and geolocation
variables such as zip-code or country codes. Understanding network structure and topol-
ogy has received considerable attention and is informative for statistical procedures such
as clustering [121, 115]. Equally important is the analyses of network attributes (ie. node
covariates), to understand node characteristics and the coordinating role of network
topology.

Missing data is a feature in much automated or online data collection which can lead
to biased estimates [86, 122]. Outside the network setting, imputation methods predom-

Published as Roeling, M.P., & Nicholls, G.K. (2020). Social Networks (62), 24-32.
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inantly focus on the prediction of missing values in relational datasets consisting of data
from randomly selected individuals (e.g. [123, 124]). This has fed method-development
for imputation of missing data from conditionally independent cases [58]. In a network
setting, with observations linked through a network structure, complete-case analysis
can exacerbate the problem since it is based on a fraction of the information available
in the network. When well connected individuals are removed, entire clusters drop out
with dramatic loss of information [125, 126]. In this setting, we may do better to recon-
nect the clusters by imputation of the missing values.

A previous meta-analysis of network effects [127] provided convincing evidence for
homophily, the preference for associating with individuals/actors with similar attributes.
If network structure is linked to actor covariate values, this may help in estimating the
attribute of a node surrounded by nodes possessing data informing that attribute. On
the other hand, if attribute values can be predicted from network edges, it is likely that
the pattern of missing data is also affected by tie structure. The problem of incomplete
tie structures has been described as part of the boundary specification problem, arising
when the researcher has to decide which actors are relevant to include and which edges
do not contribute (reviewed in [56]). Other factors are non-response effects in the data
collection procedure (resulting in unobserved parts of the network) and fixed-choice ef-
fects (occurring when network actors are asked to nominate a fixed number of friends).
Because missingness in networks is often reflected in tie structure, previous studies fo-
cusing on missing data have, for the most part, presented methods for predicting miss-
ing edges between actors [128, 57] and different strategies for (sub)network sampling
[129, 130].

We are motivated by problems in which the network is observable, and there is im-
portant missing (or misleading) data in node attributes. Compared to edge-imputation,
the computational work involved in imputation of node attributes is less demanding.
From the perspective of parametric Bayesian inference, uncertainty in edges resembles
model uncertainty, as interactions must be imputed. This leads to challenging prob-
lems resembling model averaging. Imputation of missing node attributes, conditioned
on the network, is uncertainty in auxiliary variables and this leads to parameter estima-
tion, typically more straightforward. There is also joint analysis, using parametric mod-
els for joint network and node attributes [131]. For Exponential Random Graph mod-
els (ERGMs; [132, 133, 134]) studies have proposed adaptive sampling mechanisms to
acquire accurate posterior distributions [135, 128, 126, 136] under missing data. From
these models, missing node attributes can be imputed. However, measuring the im-
pact of misspecification, and treating it, is challenging due to the formal intractability of
these models. Autocorrelation Regression Models (ARMs; [137, 138, 139]) provide a more
straightforward setting for new statistical methods. In addition, for the probit ARM mod-
els (to accomodate categorical node attributes which we consider below), there must al-
ways be fields of missing latent continuous variables. Given these considerations, and
the popularity of ARMs, we choose to illustrate misspecification-robust imputation us-
ing ARMs.

In a Bayesian setting, where missing data are treated as a latent variable, to be es-
timated or integrated in a joint posterior distribution along with other parameters of
the model, the presence of missing data does not usually impose additional modelling.
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The conditional distribution of the missing data is determined by the same observation
model, model parameters and priors needed for the full-data analysis. We refer to im-
putation based on the joint posterior of the missing data and model parameters as a
(standard) “full Bayes” analysis. In this paper we make two main points: where there
is model misspecification, it may be the case that a two stage impute-and-fit approach
may be preferred to full Bayes. Our second point is that the effect of model misspecifica-
tion is reinforced where we have large network “fields” of coupled missing data. In this
case the benefit of a two stage approach can be dramatic.

The methods we apply come from the recent literature on Bayesian theory and meth-
ods for inference from misspecified models. We demonstrate the usefulness of “cut mod-
els” [140, 141, 142]. Cut models are useful when the model is misspecified and we do not
know the correct model, so we cannot immediately fix the problem by model elaboration
[143]. Instead, we try to control the impact of the misspecification by cutting feedback
from misspecified model elements. The designation “cut-model” is standard but mis-
leading. Cut-model inference is a change in the inference procedure, not the model.

In the following, we define imputation with ARMs and explain how to carry out in-
ference with a cut model. We compare the cut model approach to full Bayes in a mis-
specified setting, illustrating the differences. We use a publicly available social network
dataset that is fully observed, and in which we introduce missing data according to dif-
ferent scenario’s (snowball/MAR and random/MCAR sampling). Finally, in order to give
a simple benchmark for comparison, and underline the robustness of our methods for
network data, we compare with a simple “model-free” K-nearest-neighbour imputation
procedure.

3.2. METHODS

3.2.1. DATA

Data were obtained via Dr. Tore Opsahl [https://toreopsahl.com/datasets/#o
nline_social_network], who collected data from a Facebook-like messaging service
from students at the University of California, Irvine, and was kind enough to share at-
tribute data (gender and year of study) with us for this project. Data were available from
1899 persons (1118 females) who used the messenger application during 196 days cov-
ering the period from April to October 2004. The data included all users that sent or re-
ceived at least one message during that period. These longitudinal data were collapsed
into covariates; popularity (indegree + outdegree), the day somebody became an active
user of the application, and the day a person reached 75% of the friends in his/her total
network. 549 persons received a message but did not respond, and 37 send a message
but did not receive a response. A full description of the data is presented in [144].

All data were fully observed, so we introduced missingness by removing values from
the binary gender data y ∈ {0,1}n . The data were a n × (p +1) matrix X with n rows cor-
responding to the n = 1899 people in the study, a column for the intercept, and p = 7
columns corresponding to covariates (indegree, five year of study levels, and day active)
chosen to inform gender. A relationship network matrix C was constructed in the fol-
lowing way: for i , j ∈ {1, ...,n} let ai , j denote the number of messages sent from i to j and
let Ci , j = max(ai , j , a j ,i ) be the overall network weight for edge 〈i , j 〉.

https://toreopsahl.com/datasets/#online_social_network
https://toreopsahl.com/datasets/#online_social_network
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In the model below, gender y will be the response, with some missing values. We use
an ARM to model the relationship between y and the node covariates X in the context of
network structure evidenced by C .

3.2.2. AUTOCORRELATION REGRESSION MODEL
In the Bayesian ARM for completely observed data [127, 62, 145, 146, 147], we let C
be a general n × n matrix of network weights. Let Wi , j = Ci , j /

∑n
k=1 Ci ,k so that W =

[Wi , j ] j=1,...,n
i=1,...,n is a row-stochastic version of C . Let X be an n × (p + 1) design matrix of

covariates with first column corresponding to the intercept, let β ∈ Rp+1 be a vector of
regression coefficients, In the n ×n identity matrix, and ε ∈ Rn be a vector of n indepen-
dent network variation differences ε∼N (0, Inσ

2), withσ= 1 as variance parameter which
can be set equal to 1 in the probit setting of interest. Finally, ρ ∈ R is the network autocor-
relation parameter measuring the network influence. This is positive if attribute values
of connected actors tend to converge and negative if those values diverge [127, 147].

The canonical spatial autoregressive model for a real response z ∈ Rn is

z = ρW z +Xβ+ε (3.1)

or equivalently
z = (In −ρW )−1Xβ+ (In −ρW )−1ε (3.2)

Let Aρ = In −ρW and |Aρ | = det(Aρ). The likelihood for β and ρ given fully observed z is

p(z|β,ρ) ∝|Aρ | exp
(− 1

2
(Aρz −Xβ)T (Aρz −Xβ)

)
. (3.3)

The log-determinant log(|Aρ |) must be evaluated in order to infer ρ. This is non-trivial
and we found some schemes were not numerically stable, albeit in rather extreme miss-
ingness cases. Of the three log(|Aρ |)-estimators implemented with [148] (the grid method
of Pace and Barry [149], spline approximation using grid points, and a Chebyshev ap-
proximation [150]), the grid method proved most reliable, though we had agreement in
all but the most extreme cases. The grid method, although robust, can be slow, and
would not be used if other faster methods give adequate estimates.

BAYESIAN PROBIT ARMS FOR BINARY DATA

The probit-ARM models introduced below are parameter rich. In fact, the number of
latent parameters is proportional to the number of response observations. In addi-
tion, we have missing data. In this setting some form of parameter regularisation is
needed. Bayesian network model inference [61, 62] is a coherent regularisation frame-
work. Bayesian implementations of ARM’s (e.g. [145]) use Markov Chain Monte Carlo
(MCMC) to summarise posterior distributions. In our setting maximum likelihood es-
timation can result in a downward bias of the network effect parameter ρ when cases
are strongly connected [151, 152]. A number of factors contribute to this bias [153]; for
example, a network effect can reduce the amount of information gained from each node.

In our data, the response variable yi , i = 1, ...,n is binary. Several studies have ap-
plied logit or probit Bayesian ARMs to discrete covariate data with, respectively, a di-
chotomous or multinomial/ordinal outcome [154, 146, 148]. In a probit ARM the binary



3.2. METHODS

3

49

response y is modeled as a discretisation of an underlying continuous latent field z [98],
itself following an ARM as above. The variance is fixed to unity so that the regression
parameters β are identifiable [145]. For i = 1, ...,n we model yi = Izi>0, leaving us with
parameters z,β and ρ, data y and a posterior distribution

π(z,ρ,β|y) ∝π(ρ,β)p(z|ρ,β)Iz∈Zy , (3.4)

where

Zy = {z ∈ Rn : yi = Izi > 0 for each i = 1, ...,n}

and p(z|ρ,β) is given in Equation 3.3. The prior for z ∈ Rn is the ARM defined in Equa-
tion 3.3. This can alternatively be thought of as the observation model for the missing
data z. We assume independent prior(s) for ρ and β with π(ρ,β) = πρ(ρ)πβ(β). For the
prior on ρ ∈ [−1,1] we take a meta-analytic value based on 183 estimates of ρ [127] en-
countered in a wide variety of independent data sets. We summarise those data for ρ via
a normal distribution with mean µρ = 0.36 and standard deviation σρ = 0.19 truncated
to the interval [−1,1]. Our priors for β are independent near flat normal priors with large
variance (σβ = 1012), πβ(β) = N (β;0,σ2

β
Ip+1).

For completely observed data, functions fitting models of this kind are incorporated
in the Spatial Econometrics Toolbox for Matlab. There are some associated R packages
(listed by [155]) such as sarprobit [148].

3.2.3. BAYESIAN INFERENCE FOR MISSING DATA

POSTERIOR PREDICTIVE DISTRIBUTION FOR MISSING DATA

We now consider imputation of missing data in the vector of responses, y . In our case y
is a binary vector recording gender. In a Bayesian setting imputation of missing values is
formally straightforward. The missing y-entries are unknown, and treated as parameters
alongside z,β and ρ. We outline this “full Bayes” approach in this section. Our point
below will be that the full Bayes approach fails where there is model misspecification
combined with large amounts of missing data. However, recent developments in Bayes
methods for misspecified models, and in particular the use of “cut models” [140], are
robust tools for network model parameter inference and offer a way forward.

We assume the following setting: suppose we are given original data collectively X̃ =
[y, X ] which contains one column y with some missing entries. Let y = (yobs , ymi s )T

with yobs = (y1, ..., yn−q )T observed and ymi s = (yn−q+1, ..., yn)T missing, so that there are
q ∈ {1, ...,n} missing entries in all. It is convenient to sort data in rows so that the missing
data are in the last q rows. In order to impute ymi s we treat the full observed matrix X as
a matrix of covariates and model the relation between y and X using the ARM given in
Equation 3.1.

The posterior distribution conditions on the observed data only,

π(z,ρ,β|yobs ) ∝π(ρ,β)p(z|ρ,β)Iz∈Zyobs
, (3.5)

where

Zyobs = {z ∈ Rn : yi = Izi>0 for each i = 1, ...,n −q},
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so that the sign condition on z = (z1, ..., zn) applies only to those zi matched with a
yi that is actually observed. The z-values matched with unobserved y-values are in-
formed through their neighbours in the ARM. The posterior predictive distribution for
ymi s is simulated by simulating z|yobs from the distribution above and setting zmi s =
(zn−q+1, ..., zn) and ymi s,i = Izmi s,i>0 for i = 1, ..., q . In terms of the posterior in Equa-
tion 3.5, the posterior predictive is

P (Ymi s,i = 1|yobs ) = P (Zmi s,i > 0|yobs ) (3.6)

with

P (Zmi s,i > 0|yobs ) =
∫

z:zmi s,i>0
π(z,ρ,β|yobs )d zdβdρ.

We generate realisations from the marginal distribution ymi s |yobs by sampling the joint
distribution z,ρ,β∼π(z,ρ,β|yobs ) and setting ymi s = Izmi s>0.

In Bayesian inference for an ARM without missing data, parameter estimates are in-
formed by the whole dataset. When there is missing data the investigator has the op-
portunity to control the flow of information from the imputed data back to parameters,
and this leads to cut models, where parameters are estimated without feedback from im-
puted missing data. In a full Bayes analysis with missing data, parameters and missing
data are coupled, and modelling decisions for missing data impact parameter estimates.
If there is no or little model misspecification, the full Bayes approach is likely more ef-
fective compared to cut models as all the information available is reliable. Where there
is model misspecification, cut models may be far more reliable.

POSTERIOR SIMULATION AND ESTIMATION FOR MISSING DATA

The full Bayes posterior (z,β,ρ) ∼π(z,ρ,β|yobs ) is simulated using MCMC as outlined in
Algorithm 1. We run Algorithm 1 to generate (z(t ),β(t ),ρ(t ))t=1,...,T distributed asymptot-
ically in T according to π(z,β,ρ|yobs ). For i ∈ {q +1, ...,n} let

y (t )
i = Iz(t )

i >0. (3.7)

We estimate the missing data using the marginal posterior mode,

ŷi = mode({y (t )
i , t = 1, ...T }). (3.8)

To ensure an accurate posterior for ρ, a burn-in period of 1000 plus T = 25000 sweeps
(where a sweep is one pass over all variables, equal to one loop of Algorithm 1) are used
to simulate posterior distributions. The required number of sweeps was determined by
targeting an effective sample size (see Table 3.1) in the thousands. We give the effec-
tive sample size (ESS) for the slowest mixing parameter, ρ, in the worst missing-data
process (Snowball, with no edge matching). The ESS values of the β-parameters were
similar or better. To ensure robustness of parameter estimation, we used MultiESS from
the mcmcse package to estimate the effective sample and observed (see Table 3.1) that
the number of missing observations influenced the effective sample size of our Markov
Chain [156].

We use a mixture of Metropolis Hastings (ρ) and Gibbs (z and β) sampling [127, 62].
This is straightforward, but some details of the z-simulation in Algorithm 1 play a role in
defining the cut model and it is helpful to be clear that ymi s plays no role in the MCMC
itself.
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Algorithm 1 Bayesian ARM parameter estimation.

MCMC targeting π(z,ρ,β|yobs ) in Equation 3.5.

Suppose at step t ∈ {0,1, ...,T −1} the current state of the Markov chain is z(t ) = z,β(t ) =β
and ρ(t ) = ρ. The state at step t +1 is determined in the following way. One update will
be one cycle through each element of z,β and ρ.

1. Update z|β,ρ, yobs : For i = 1, ...,n let Wi ,: denote the i ’th row of W ; (A) simulate a
new z-value using

z ′
i ∼ N (Wi ,:z +Xi ,:β,1|yi = Iz ′i>0)

if i ≤ n −q (note that Wi ,i = 0 so the mean does not depend on zi ) and

z ′
i ∼ N (Wi ,:z +Xi ,:β,1)

if i > n −q and then (B) set zi ← z ′
i (ie, before moving onto the next i ). Denote by

z ′ the updated z-vector.

2. Update β|z ′,ρ, yobs : the conditional probability density of β is normal, so simulate

β′ ∼ N (µ∗
β,Σ∗

β)

µ∗
β = (X T X +Σ−1

β )(X T Aρz ′+Σ−1
β µβ)

Σ∗
β = (X T X +Σ−1

β )−1

Aρ = (In −ρW )

In our case µβ = 0 and Σβ = σ2
β

Ip+1 with large σ2
β

, so these distributions simplify.

Notice that µ∗
β

is calculated using the new z ′-values inherited from the z-update

above. Denote by β′ the updated β-vector.

3. Update ρ|z ′,β′, yobs : the conditional density of ρ depends on ρ through |Aρ |, so
Gibbs sampling is infeasible. We use Metropolis Hastings with a simple random
walk proposal

ρ̃ = ρ+uR, R ∼N (0,1) (3.9)

where u is the tuning parameter, chosen by monitoring the acceptance rates for
this step, and acceptance probability

α(ρ̃|ρ) = min
{

1,
πρ (ρ̃)p(z ′|β′,ρ̃)
πρ (ρ)p(z ′|β′,ρ)

}
.

With probability α set ρ′ = ρ and otherwise set ρ′ = ρ̃.

The new state is z(t+1) = z ′,β(t+1) =β′ and ρ(t+1) = ρ′.
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Table 3.1: Effective sample size of ρ in the snowball/MAR sampling scenario.

%missing Cut model full Bayes
10% 21352.32 23008.53
25% 18658.36 24926.45
50% 26007.73 21691.17
75% 20346.38 24804.03

This Table presents the effective sample size estimates of network parameter ρ, where
the ρ estimates from the fully observed model are compared with the ρ estimates from
the missing data.

CUT MODEL

Cut models treat model misspecification by replacing full Bayesian inference (previous
sections) with a form of multiple imputation. Suppose the entire ARM network model
is misspecified (e.g. when important covariates are omitted, so that conditional inde-
pendence does not hold). Estimates for parameters such as zobs , which are tightly con-
strained by their data, may be relatively robust to model misspecification. However,
zmi s -values are not tied to data and will settle at values consistent with each other, and
the misspecified model. In a full Bayesian setting, these poorly located latent variables
feedback to distort zobs , β and ρ estimates. In a cut model, we cut interactions between
poorly informed variables zmi s and the core parameters zobs , β and ρ. We determine an
imputation posterior distribution for the core parameters alone using otherwise stan-
dard Bayesian methods. We then use this imputation posterior distribution as “data” to
estimate zmi s , again, using standard Bayesian methods. This means zmi s are informed
by more reliable zobs ,β and ρ values.

Denote by πcut (z,ρ,β|yobs ) the full distribution determined by the cut model. This
will have the form

πcut (z,ρ,β|yobs ) = pcut ,mi s (zmi s |zobs ,β,ρ)πcut ,obs (zobs ,ρ,β|yobs ), z ∈Zyobs , (3.10)

where z = (zobs , zmi s ) as above, and the distributions on the right hand side are defined
below. In cut model MCMC, Algorithm 2, we use MCMC to simulate

(z(t )
obs ,β(t ),ρ(t )) ∼πcut ,obs (zobs ,ρ,β|yobs )

and then simulate a conditionally independent realisation of zmi s ,

z(t )
mi s ∼ pcut ,mi s (z(t )

mi s |z(t )
obs ,β(t ),ρ(t )),

setting z(t ) = (z(t )
obs , z(t )

mi s ), for t = 1, ...,T . Estimation of ŷmi s,i and further analysis is then
unchanged from the full Bayes case in Section 3.2.3.

We now give details for pcut ,mi s (zmi s |zobs ,β,ρ) and πcut ,obs (zobs ,ρ,β|yobs ). Group
the model elements according to the way they are linked to observed or missing data, di-
viding the ARM equations into blocks corresponding to connections between observed
pairs of nodes, missing pairs of nodes, and missing and observed pairs of nodes. The
n ×n network weight matrix W is given in terms of its blocks as

W =
[

W[obs,obs] W[obs,mi s]

W[mi s,obs] W[mi s,mi s]

]
(3.11)



3.2. METHODS

3

53

where the blocks have dimension

dimW =
[

(n −q)× (n −q) (n −q)×q
q × (n −q) q ×q

]
.

Let O be an (n −q)×q matrix of zeros. Define a new cut matrix Wcut by removing feed-
back from missing to observed,

W cut =
[

W[obs,obs] O

W[mi s,obs] W[mi s,mi s]

]
(3.12)

We block covariates similarly. Let

X =

[
Xobs

Xmi s

]
with dimensions

[
(n −q)×p

q ×p

]
, (3.13)

Substituting W cut for W in Equation 3.1 gives a new cut ARM,

zobs = ρW[obs,obs]zobs +Xobsβ+εobs (3.14)

zmi s = ρW[mi s,obs]zobs +ρW[mi s,mi s]zmi s +Xmi sβ+εmi s (3.15)

where β= (β1, ...,βp )T , εobs ∼N (0,σ2In−q ) and εmi s ∼N (0,σ2Iq ). The cut distribution for
the missing data is determined from Equation 3.4. Let V = [Xmi s ,ρW[mi s,obs]] (so V is
a q × (n +1+p − q) matrix) and let θ = (βT , zT

obs )T (θ is a (n +1+p − q)×1 vector). Let

A(mi s)
ρ = Iq −ρW[mi s,mi s]. The cut prediction distribution pcut ,mi s in Equation 3.10 is

pcut ,mi s (zmi s |zobs ,β,ρ) ∝|Ami s
ρ | exp

(− 1

2
(Ami s

ρ zobs −V θ)T (Ami s
ρ zobs −V θ)

)
.

The cut posterior distribution πcut ,obs on the RHS of Equation 3.10 is

πcut (zobs ,ρ,β|yobs ) ∝π(ρ,β)pcut ,obs (zobs |ρ,β)Izobs∈Zyobs ,obs ,

where
Zyobs ,obs = {zobs ∈ Rn−q : yi = Izi>0 for each i = 1, ...,n −q},

and likelihood from Equation 3.14,

pcut ,obs (zobs |ρ,β) ∝|Aobs
ρ | exp

(− 1

2
(Aobs

ρ zobs −Xobsβ)T (Aobs
ρ zobs −Xobsβ)

)
,

where now Aobs
ρ = In−q −ρW[obs,obs].

Cut models may be helpful with high missingness as even slight model misspecifi-
cation can bias full Bayes estimates badly. Cut models can be characterised as Bayesian
multiple imputation. Multiple imputation has two stages; an imputation stage, in which
multiple copies of the missing data are imputed, followed by an analysis stage, in which
a model is fit to the imputed and observed data and parameters estimated. In our setting
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Algorithm 2 Cut model ARM parameter estimation.

MCMC targeting πcut (z,ρ,β|yobs ) in Equation 3.10.

Suppose at step t ∈ {0,1, ...,T − 1} the current state of the Markov chain is z(t )
obs =

zobs , z(t )
mi s = zmi s ,β(t ) = β and ρ(t ) = ρ. The state at step t + 1 is determined in the fol-

lowing way. One update will be one cycle through each element of z,β and ρ.

1. Update zobs |β,ρ, yobs : For i = 1, ...,n −q let W cut
i ,: denote the i ’th row of W cut ; (A)

simulate a new z-value using

z ′
obs,i ∼ N (W cut

i ,: zobs +Xobs,i ,:β,1|yobs,i = Iz ′obs,i>0).

and then (B) set zobs,i ← z ′
obs,i (ie, before moving onto the next i ). Denote by z ′

obs
the updated z-vector.

2. Update β|z ′
obs ,ρ, yobs : simulate

β′ ∼ N (µ∗
β,Σ∗

β)

µ∗
β = (X T

obs Xobs +Σ−1
β )(X T

obs Aobs
ρ z ′

obs +Σ−1
β µβ)

Σ∗
β = (X T

obs Xobs +Σ−1
β )−1

Aρ = (In−q −ρW[obs,obs])

Denote by β′ the updated β-vector.

3. Update ρ|z ′,β′, yobs : We use Metropolis Hastings with a simple random walk pro-
posal

ρ̃ = ρ+uR, R ∼N (0,1) (3.16)

where u is the tuning parameter, chosen by monitoring the acceptance rates for
this step, and acceptance probability

α(ρ̃|ρ) = min
{

1,
πρ (ρ̃)pcut (z ′obs |β′,ρ̃)

πρ (ρ)pcut (z ′obs |β′,ρ)

}
.

With probability α set ρ′ = ρ and otherwise set ρ′ = ρ̃.

The new state is z(t+1)
obs = z ′

obs ,β(t+1) =β′ and ρ(t+1) = ρ′.

4. Update zmi s |z(t+1)
obs β(t+1),ρ(t+1): Simulate ε(t+1)

mi s ∼N (0,σ2Iq ) and set

z(t+1)
mi s = ρW[mi s,obs]z(t+1)

obs +ρ(t+1)W[mi s,mi s]z(t )
mi s +Xmi sβ

(t+1) +ε(t+1)
mi s

Note that since Steps 1-3 do not depend on z(t )
mi s , step 4 can be implemented in

post-processing on the MCMC-output chain.
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there is some flexibility in what we identify as missing data, and what we call a parame-
ter. We use this flexibility to get robustness to model misspecification. Recall that yobs is
the observed data and β,ρ, zobs , and zmi s and ymi s , are all unknown. Algorithm 2 does
multiple imputation of “missing data” β,ρ, zobs followed by estimation of the parame-
ters zmi s and ymi s . When there is no model misspecification this cut model is consistent
for β and ρ estimation, like full Bayes. However, in that (well-specified) case, cut models
tend to give estimates with less precision, as (desirable) information spread through the
network via missing data is lost.

EXPERIMENTS

From the original fully observed attribute data we created two types of missing data
scenario’s: Missing Completely at Random (MCAR) and Missing at Random (MAR). In
MCAR, the missingness property is unrelated to the missing value itself or other attribute
data. In the MAR data, the probability of being missing is the same only within groups
defined by the observed data. In a network, missingness may be correlated by the net-
work in the same way as any other node attribute. If there is a network effect on gender,
there may well be a network effect on gender missingness.

In our experiments, four scenarios with 10%, 25%, 50% and 75% missing gender val-
ues (this is q = 190,475,950,1424 missing node gender values out of n = 1899 in all) were
created and compared with a baseline analysis of the fully observed data. For the MCAR
setting, the individuals selected for imputation were selected uniformly at random. To
mimic MAR, snowball sampling was used. We chose the percentage of missing node val-
ues in the snowball-sampling so that the number of “informative edges” in the snowball
sampling matched the number of informative edges in the corresponding random/M-
CAR sampling. An edge was counted as “informative” if both the two gender node-values
adjacent the edge were not missing. We refer to non-informative edges as “missing”. We
used the number of missing edges as a rough measure of the amount of network infor-
mation in the data. Operationally, we selected m seed nodes and their direct neighbours
(using LSMI from the snowball R-package) and removed their gender data. The number
of nodes q removed in our MAR setup was determined by removing data at seed nodes
and their neighbours until the target number of missing edges was reached. A smaller
number of snowball-sampled nodes gives the same number of missing edges as a larger
number of random/MCAR nodes (see Table 3.5). For example, removing data on 75%
of nodes chosen completely at random gave the same number of missing edges as re-
moving data on 37.8% of nodes chosen by snowball sampling (in one realisation of the
missing-data snowball process). For further discussion of the snowball/MAR missing-
data process see Section 3.5.2.

We analysed each of the four MCAR missing-data sets and each of the four MAR
data sets twice, first using the (standard) full Bayes machinery of Section 3.2.3 and sec-
ond using the cut model setup of Section 3.2.3. This led to four data/inference pairs of
MCAR analyses and four pairs of MAR analyses. For reference, there is a single base-
line Bayesian analysis made with no missing data and the same observation model and
priors common to all analyses.
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PERFORMANCE EVALUATION

Parameter estimates (always posterior mean unless indicated) obtained using a full Bayes
analysis on the complete data can, for our purpose, be treated as the truth, since we are
interested in methods which continue to recover the full-data parameter values and pre-
dict missing data well as the percentage of missing data increases. Different fitting pro-
cedures were evaluated by comparing parameter estimates and standard deviations. A
method is successful (on this first criterion) if parameter estimates do not change sig-
nificantly as we increase the proportion of missing data. We will see that the full Bayes
analysis fails very badly on this score (due to model misspecification) but a cut model
approach is much more reliable, out to even very large proportions of missing data.

Our second criterion is predictive performance on withheld data. Since we gener-
ated missing data by withholding completely random- and snowball- sampled data, the
withheld data for performance evaluation was the missing data for the original analysis.
We ran MCMC for each data/inference pair and used the sampled parameters to esti-
mate parameters using the posterior mean for β̂ and ρ̂ and the posterior mode for ŷmi s

(ie, Equations 3.7 and 3.8). We report the percentage of misclassified missing observa-
tions,

∑
i I(ŷmi s,i 6= ytr ue,i )/q not equal to its true withheld value, ytr ue,i say, for each

data/inference pair.
A good inference method should be well calibrated, that is E(Ymi s,i |p̂mi s,i ) = p̂mi s,i ,

so predictions have the correct level of confidence. The Brier score is sensitive to cali-
bration (and other things, see [157, 158]). The Brier Score B is given by

B = 1

q

q∑
i=1

(p̂mi s,i − ytr ue,i )2,

where p̂mi s,i = ∑T
t=1 y (t )

mi s,i /T is our Monte Carlo estimate of P (Ymi s,i = 1|yobs ) in Equa-
tion 3.6, and ytr ue,i is the true value of the missing (in fact withheld) data. Smaller values
of B indicate better-calibrated prediction. The misclassification rate and Brier score take
values between 0 and 1. For reference, the ratio of males to females is approximately 6 : 4
in these data, so ignoring network data, taking p̂mi s,i ' 0.6 and simply assigning values
to missing data independently at random in these proportions gives (approximately) a
misclassification rate of 0.48 and a Brier score of 0.24. This procedure is actually per-
fectly calibrated (but lacking in resolution) so 0.24 should be thought of as a reasonable
score.

3.2.4. MODEL-FREE NETWORK-BASED PREDICTION METHOD
Given that model-misspecification is at the root of the difference between our cut model
and full Bayes analysis, it is of interest to see how a straightforward model-free method
performs. We tried a number of methods which we do not report as they gave poor
performance. We report a K-nearest-neighbour scheme which is competitive.

For each node i = n−q+1, ...,n with missing gender, we have covariates Xi . For each
j = 1, ...n − q corresponding to an observed node, let Di , j = |Xi − X j | be the Euclidean
covariate distance. We took the K -nearest neighbours of i in this covariate distance and
predicted the value of ymi s,i using the majority gender in this K-nearest-neighbour set.
The value of K was chosen by applying the method to the fully observed part of the data
and choosing K to minimise the misclassification rate on that data.
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3.3. RESULTS
We illustrate our methods by recovering missing gender data (recall yi is the binary gen-
der variable). We begin with a brief summary of gender marked imbalance in the data.
Table 3.2 describes covariates across gender. Females and males are equally popular, but
females have a significantly higher in-degree (Mean = 12.47, SD = 16.15), indicating they
receive more messages then males (Mean = 9.45, SD = 14.54). Males were more likely
in a higher study year (Mean = 2.5, SD = 1.37) compared to females (Mean = 2.24, SD =
1.19). We selected the significant variables (indegree, year of study, and day active) as
predictors for the imputation.

Table 3.2: Covariates descriptives for Males (N = 1118) and Females (N = 781).

Covariate meanM (sd) meanF (sd) t (d f ) p
Outdegree 10.92 (23.79) 10.36 (18.80) .571 (1868.3) .568
Indegree 9.45 (14.54) 12.47 (16.15) -4.178 (1563.2) <.001
Popularity 20.36 (37.01) 22.82 (33.47) -1.509 (1776.4) .131
Year of study 2.50 (1.37) 2.24 (1.19) 4.36 (1805.8) <.001
Average characters 68.09 (88.16) 63.50 (75.72) 1.215 (1818.1) .224
Day user became active 30.43 (29.22) 37.54 (35.99) -4.568 (1449) <.001
Day user contacted 75% 42.67 (33.74) 48.66 (38.21) -3.526 (1541.7) <.001
of his/her friends

Descriptives for the data used in this study, where the mean values are compared
between males and females. Columns are independent-sample T-test statistics (t )
comparing means with p value < .05 indicating a significant effect, given a standard
deviation (sd) and significance threshold depending on the stated degrees of freedom
(d f ).

In Tables 3.3 and 3.4 we present the main results of our fitting data with random/M-
CAR and snowball/MAR missingness respectively. MCMC convergence was checked and
specimen traces, presented in the Supplement in Section 3.5.1, showed negligible burn-
in and very good mixing. Effective sample sizes, reported in Section 3.2.3, are all over
10000. We replicated the parameter estimation results in two different missing-data sub-
sets of the same size (see Supplementary Material Tables 3.7, 3.8) so we can be confident
the results we present are representative, and not an artifact of one specific realisation of
the missing data process.

To sum up the results briefly, parameter estimates in Tables 3.3 and 3.4 were far more
stable (that is, they matched parameter values in the complete-data analysis) when we
used the cut model. Parameter estimates remained approximately constant across rows
of the cut model analysis (top half of each table) while they shrunk towards zero as we
scanned across columns in the full Bayes analysis (bottom half of each table). This is
what we would expect in a misspecified setting. The cut model protects parameter es-
timates from distortion due to model misspecification in the missing data. These im-
proved parameter estimates then give better prediction when applied to the missing
data. Interestingly, the key network parameter, ρ, was negative and significant: the resid-
ual network effect on gender, after accounting for our covariates, was anti-correlated.
The significance of this effect was lost in the full Bayes analysis at high levels of missing-
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ness, but detected by the cut model.
Turning to our other criteria, the cut model had significantly smaller misclassifica-

tion rate when the missingness was MCAR (Table 3.3) but only roughly equal misclas-
sification rate when missingness was MAR (Table 3.4). The Brier scores were similar.
Further investigation showed that at the highest levels of missingness, full Bayes was es-
sentially predicting the missing binary gender data using the constant gender ratio, as
there was little other information left in the data.

We repeated the analysis using snowball-sampling without edge-correction, which
led to data with almost no informative edges. The levels of missingness are extreme, and
we think network analysis is no-longer sensible. We present these results in Section 3.5.3
for completeness.

(a) 10% Missingness (b) 25% Missingness

(c) 50% Missingness (d) 75% Missingness

Figure 3.1: Network parameter MCMC traces from the random-missingness/MCAR sampling procedure in the
cut model; burn-in of 1000 draws followed by 25000 draws.

Model-free K-nearest-neighbour analysis gave an optimal value of K = 21, so we as-
sign each missing gender value by taking the modal gender of the 21 nearest gendered
individuals. We tried this approach on the random/MCAR data with 10% missingness.
The misclassification rate was 0.39, to be compared with the values 0.38 (cut) and 0.42
(Bayes) taken from Table 3.3.
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(a) 10% Missingness (b) 25% Missingness

(c) 50% Missingness (d) 75% Missingness

Figure 3.2: Network parameter MCMC traces from the random-missingness/MCAR sampling procedure in the
full Bayes model; burn-in of 1000 draws followed by 25000 draws.

Our KNN method could be improved, for example by weighting covariates in the
distance measure. However, our parametric models provide parameter estimates which
are useful for interpretation, but absent in a model free approach. Our purpose here is
to show that although the network based parametric model is misspecified, inference
outcomes can be improved by changing the inference procedure, and not necessarily by
improving the model.

3.4. DISCUSSION
This paper gives a misspecification-robust imputation procedure for attributes in net-
worked data via autocorrelation regression models. We used a cut model [140], where
there is no feedback from the imputed data to parameter estimation, and a full Bayes
approach, where feedback exists. These models were applied in different scenarios with
increasing missingness.

Model parameters were diversely impacted by different types of missingness. Net-
work structure exacerbates the consequences of missing data, especially when entire
clusters drop out. Most importantly, the combination of increased missing data and
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(a) 10% Missingness (b) 25% Missingness

(c) 50% Missingness (d) 75% Missingness

Figure 3.3: Network parameter draws from the sampling procedure on the snowball/MAR sampled missing-
ness, matching the number of missing edges, in the cut model; burn-in of 1000 draws followed by 25000 draws.

model misspecification deteriorated imputation performance. Both methods (i.e. cut
model and full Bayes) fail at prediction when the missingness falls in clusters, as in the
snowball-sampled case. However, cut model parameter estimates remain reliable even
in this case, where full Bayes estimates shrink to zero and loose significance. Recent new
methods similar in spirit to cut models, which employ “learning rates” [159] to control
the contribution of misspecified model elements, seem to require more computational
work than a cut model, but should improve on cut model performance.

If there is no model misspecification (for example, if we carried out this analysis on
synthetic data, with parameters sampled from the prior, and data from the observation
model) then straightforward Bayesian inference will be effective (in fact optimal). More-
over, because the cut model is discarding information by cutting feedback from miss-
ing data, it returns parameter estimates with greater associated variance. In this well-
specified setting, straightforward Bayesian inference will give correctly calibrated esti-
mates with greater precision. This lower-variance aspect is already visible in Tables 3.3
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(a) 10% Missingness (b) 25% Missingness

(c) 50% Missingness (d) 75% Missingness

Figure 3.4: Network parameter draws from the sampling procedure on the snowball/MAR sampled missing-
ness, matching the number of missing edges, in full Bayes; burn-in of 1000 draws followed by 25000 draws.

and 3.4, in the misspecified case, where we see the Bayes estimates have associated er-
rors which are slightly, but uniformly, smaller than the corresponding cut model errors.

We briefly discussed a naive model-free alternative with a misclassification rate be-
tween the presented models. Given the quality of the spectral clustering literature, the
outcome of our experiment suggests that machine learning methods may be competitive
here. In some settings, recent work [160] shows dimensionality reduction and clustering
methods outperform multiple imputation. This may be useful for networked data. One
open problem in network based predictive mean matching is proper donor selection.
More work is required to test different matching schemes in different scenarios, with dif-
ferent covariate types and network structure dependence, especially if small clusters are
present.

This study assumed fully observed tie-structure in the network. Edge weights de-
pended on collapsing data from 196 days, which seemed a solid solution to provide an
indication whether a relationship existed (compared to cross-sectional designs) but does
not completely rule out that other edges may come to existence (or break) in the future.
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A potential misrepresentation of the network by missing edges could result in an over-or
underestimation of ρ, depending on whether covariates diverse or converge with edges.
Several studies have suggested imputation-like models to complete tie structure in net-
works (e.g. [57]), and one strategy in future studies could be to first complete the tie-
structure, towards optimal estimation of ρ.

Another issue in Bayesian imputation of categorical y is imbalance in proportions in
which categories are present in the observed and missing data. The gender variable used
in this study was not severely imbalanced. Imbalance changes the shape of the distribu-
tion of the latent proxy z, as its distribution across the network depends on the distribu-
tion of y . When there is severe imblance, the infrequent outcome might be thought of
as a kind of outlier. Our linear ARM cannot be expected to capture this variation. Cut-
models are unlikely to help here and model elaboration may be needed. A non-linear
Bayesian regression might help, but this is yet uncharted in the context of imputation
with ARMs.

The main conclusion from our method comparison is as follows: researchers faced
with missing data in Bayesian inference for network autocorrelation models are advised
to try the cut model. If parameter estimates differ substantially from those estimated
under full Bayesian inference then cut-model estimates are likely to be more reliable, es-
pecially when the pattern of missingness correlates with network edges and with high
proportions of missing data > 25%. The conclusion that cut models outperform full
Bayes in a misspecified setting leads back to familiar inference schemes: inference with
a cut-model is just a form of multiple imputation [96]. Data completeness and veracity
are a major issue for any analyst, especially in the cyber domain. There are numerous
cases where online identities are copied, faked, or profiles use false information to mis-
guide other users (e.g. online grooming). By applying ARM imputation, attribute data
from observations in a network can be completed.
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3.5. SUPPLEMENTARY MATERIAL

3.5.1. MCMC OUTPUT TRACES FOR SELECTED PARAMETERS

(a) 10% Missingness (b) 25% Missingness

(c) 50% Missingness (d) 75% Missingness

Supplementary Figure 3.1: Network parameter draws from the sampling procedure on the snowball/MAR sam-
pled missingness, in the cut model; burn-in of 1000 draws followed by 25000 draws.
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Table 3.5: Amount of remaining edges between different sampling techniques.

%nodes missing random snowball edge matched snowball (%nodes)
10% 22220 13708 23072 (1.80)
25% 15002 4640 15296 (8.60)
50% 6946 590 6944 (19.2)
75% 1814 74 1802 (37.8)

This

Table presents the number of remaining edges under different sampling methods. W
starts complete with 27676 edges and we introduce 10, 25, 50, and 75% missingness by
removing nodes. The last column presents the amount of remaining edges if matched
on edges-amount, and the percentage of missing nodes that scenario corresponds to.
For example, in the 50% nodes missing scenario, random sampling left 6946 edges,
while if we use snowball sampling to prune a similar amount of edges, this results in
19.2% missing nodes (instead of 50%).

3.5.2. SNOWBALL SAMPLING WITH EDGE CONDITIONING

We give some further details of the Snowball/MAR sampling scheme, and in particu-
lar the edge-matching. The use of different sampling techniques to select nodes for
the imputation analyses influenced model estimation. Snowball sampling tends to re-
move data from well-connected actors. This leads to large numbers of missing (ie non-
informative) edges. When data are missing completely at random over the network, net-
work information is retained even at very high levels of missingness, as much as 75%. A
straightforward application of snowball sampling (next section of supplement) at a fixed
percentage missing node values leads to extreme low levels of informative edges, so that
little network information remains and there is little point in making a network analy-
sis. The correspondence is shown in Table 3.5 and in Figure 3.3. In our Snowball/MAR
missing data process we therefore match a fixed percentage missing edges. The data are
missing in clusters in contrast to the random scatter generated by the random/MCAR
missing-data process.

3.5.3. SNOWBALL SAMPLING WITHOUT MATCHING MISSING-EDGE COUNTS

In snowball sampling without matching missing-edges, we matched missingness levels
of gender values in the MCAR setup approximately. We adjusted the number of seeds
(m = 20,44,159,457) to create four datasets with q = 196,401,952,1424 persons with a
missing value in y . This roughly matched the percentage missing nodes (10, 25, 50, 75) in
the MCAR analysis. However, since data on better-connected individuals are more likely
to be removed by snowball sampling than data on individuals with fewer connections,
this quickly leads to a scenario with insufficient data for interesting or meaningful anal-
ysis, so in the main paper we report results for scenarios where we matched the number
of edges with missing node data at both ends in MAR and MCAR.

For the unmatched snowball sampling procedure, model estimates are provided in
Table 3.6. This Table can be thought of as an extension of the informative-edge-matched
Table 3.4 adding columns on the right side of the Table at higher levels of missingness.
Both methods are predicting very poorly as network based inference becomes irrele-
vant. The cut model picks up the significant negative network parameter ρ < 0 out to the
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greatest levels of missingness.

3.5.4. REPLICATION OUTCOMES
For random/MCAR missingness and snowball/MAR sampling we replicated the parame-
ter estimation results by using different seeds as input for the sampling methods to select
which nodes had their data removed (which nodes selected for imputation).
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(a) 10% Missingness (b) 25% Missingness

(c) 50% Missingness (d) 75% Missingness

Supplementary Figure 3.2: Network parameter draws from the sampling procedure on the snowball/MAR sam-
pled missingness, in the full Bayes; burn-in of 1000 draws followed by 25000 draws.
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Supplementary Figure 3.3: This Figure shows the number of informative edges when using different sampling
methods to select nodes to remove attribute data. When selecting nodes randomly, the number of edges lost
drops relatively gently, while snowball sampling drops more rapidly. Beyond about 60% node-missingness, the
number of informative edges in snowball sampling is very small as only isolated nodes remain.
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Table 3.7: Parameter estimates from replication with 10% random missingness.

re
pl

ic
at

io
n

1

re
pl

ic
at

io
n

2

Parameters CM CM
Intercept -.642(.074) -.567(.074)
Indegree .013(.002) .009(.002)

Year of study 2 -.019(.084) -.050(.082)
Year of study 3 -.039(.091) -.024(.091)
Year of study 4 -.095(.104) -.054(.101)
Year of study 5 -.178(.162) -.192(.164)
Year of study 6 -.732(.264) -.743(.267)

Day active .006(.001) .005(.001)
ρ -.533(.050) -.515(.051)

N missing 185 185
Parameters FBM FBM

Intercept -.564(.071) -.537(.070)
Indegree .012(.002) .010(.002)

Year of study 2 .008(.077) -.029(.078)
Year of study 3 -.001(.086) -.030(.086)
Year of study 4 -.125(.097) -.038(.096)
Year of study 5 -.228(.155) -.151(.153)
Year of study 6 -.872(.265) -.679(.247)

Day active .005(.001) .005(.001)
ρ -.439(.045) -.450(.046)

N missing 185 185
This Table presents the parameter estimates from the two replication studies where
gender of 10% of the observations was set to missing. Observations were selected via
snowball/MAR sampling with a different seed. Estimates are based on 10000 draws with
a burn-in of 500. The number of missing observations fluctuates due to the initial
number of seed persons for the snowball/MAR sampling.
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Table 3.8: Parameter estimates from replication with different snowball/MAR sampled subsets (10% missing-
ness).
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Parameters CM CM
Intercept -.593(.074) -.483(.074)
Indegree .011(.003) .017(.003)

Year of study 2 -.038(.083) -.052(.082)
Year of study 3 -.056(.091) -.160(.089)
Year of study 4 -.092(.101) -.174(.101)
Year of study 5 -.277(.161) -.297(.161)
Year of study 6 -.985(.301) -.886(.276)

Day active .005(.001) .005(.001)
ρ -.452(.058) -.483(.054)

N missing 234 178
Parameters FBM FBM

Intercept -.505(.069) -.390(.070)
Indegree .007(.002) .011(.002)

Year of study 2 .008(.077) -.102(.077)
Year of study 3 -.005(.085) -.220(.087)
Year of study 4 -.074(.096) -.216(.097)
Year of study 5 -.223(.150) -.318(.153)
Year of study 6 -.698(.236) -.624(.231)

Day active .004(.001) .005(.001)
ρ -.298(.061) -.357(.054)

N missing 234 178
This Table presents the parameter estimates from the two replication studies where
gender of 10% of the observations was set to missing. Observations were selected via
snowball/MAR sampling with a different seed. Estimates are based on 10000 draws with
a burn-in of 500. The number of missing observations fluctuates due to the initial
number of seed persons for the snowball sampling (N = 14 for set.seed(3030) and N = 20
for set.seed(6060)).
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STOCHASTIC BLOCKMODELS AS AN

UNSUPERVISED APPROACH TO

DETECT BOTNET INFECTED

CLUSTERS IN NETWORKED DATA

Botnets consist of devices connected to the internet, supervised by a botnet owner, perform-
ing malicious tasks. The significant impact of botnets on corporate, governmental and
civilian operations has resulted in a lot of attention from the machine learning commu-
nity. However, most studies to date do not respect the linked structure of network data and
rely heavily on the availability of a labelled dataset. This study applies Stochastic Block-
Models (SBM) to botnet data with the aim of identifying infected clusters without the need
for a labelled dataset. After providing a short review, replication, and simulation study, we
apply SBMs to a publicly available dataset from the University of Victoria, including both
neutral background data as well as a capture of the Zeus botnet. Our findings show that,
although SBMs can be of merit in data that includes clusters of infected and uninfected
traffic (and users), real world application is challenging due to the heterogeneity of the
data, and the way currently available botnet samples have been collected and mapped.
We discuss our findings in light of publicly available datasets and put forth suggestions
for future research.

4.1. INTRODUCTION
Botnets usually consist of devices connected to the internet, supervised by a botnet
owner, performing malicious tasks. Studies focusing on the taxonomy of botnets dis-

Parts of this chapter have been published as Roeling, M.P., & Nichols, G.K. (2018). Stochastic BlockModels as
an unsupervised approach to detect botnet infected clusters in networked data. In N. Heard, N. Adams, P.
Rubin-Delanchy, M. Turcotte (Eds.). Data Science for Cyber-Security. Security Science and Technology, (3).
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tinguish Command and Control (C&C) and Peer to Peer (P2P) types[40, 161]. C&C bot-
nets consist of infected computers (zombies or bots) that communicate with, and are
controlled by, one centralized control centre or server. This follows the classical client-
server network model. In contrast, P2P botnets rely on the infected bots to communicate
commands to other infected bots. Botnets usually propagate through malware-based in-
fection of computers, and the versatility and scalability (33% of worldwide Internet ma-
chines are infected by malware according to Panda Security) has made botnets attractive
and useful tools for criminal purposes. Examples of attacks are Distributed Denial of Ser-
vice (DDoS) and spam as well as fraud and theft of data or computational resources[162],
illustrating the potential for botnet attacks to have a major impact on infrastructure and
users in cyberspace.

Given the threat of botnets, a lot of work has focused on the detection of infected
machines. Most of the detection methods rely either on malware analysis of infected
machines or on differentiating normal versus malicious traffic with machine learning
algorithms (reviewed elsewhere[38, 163, 39, 164, 165]). The latter approach relies on
the availability of informative features (or covariates) which are generally created by
researchers based on expert knowledge and data available in captured network flows.
Features can be split into host-based (e.g. number of connections, ratio of source to
destination ports) or flow-based (e.g. packet length, number of bytes). Features which
are commonly reported to be informative are average payload packet length, average
bits per second, the ratio between the number of incoming packets over the number of
outgoing packets, and duration[166]. In the machine learning detection methods pre-
sented so far, it is convention to create and compare features from captures of network
activity between bots and uninfected users using several techniques. These include de-
cision trees [167, 166, 168, 169, 170, 171, 172, 173, 174, 175], distance based clustering
[176, 168, 177, 174], support vector machines [169, 178, 179, 171, 174], perceptrons [168,
171], neural networks [164, 174, 180], bayesian methods [167, 170, 171, 181, 172, 174],
and clustering based on local shrinking [182, 183]. Although (P2P) botnets are resilient
[184], machine learning approaches have been markedly successful with reported detec-
tion rates ≥75% and occasionally ≥90%. However, a technical limitation to the currently
used machine learning methods is the need for a labelled training set. Although nu-
merous studies report an excellent performance of detection mechanisms on validation
/ test datasets, these validation sets often include the same botnets (only split in half
randomly to create a training and test set) resulting in the evaluation against a model
that is specifically tuned to the connections of the botnet in the training data. Arguably,
this provides limited validity to the detection of abnormal network behaviour or other
malicious traffic.

Another more relevant and immediate problem with most parametric machine learn-
ing methods is that they neglect the linked or networked structure of the data and as-
sume conditional independence of the botnet / non-botnet status given node-based
traffic summary statistics. To allow analyses, network data are typically collapsed into
summary statistics for every node, indicating the node’s position and properties. This
assumption is clearly erroneous, as networked data are inherently dependent [185], due
to unobserved latent factors acting locally on the network. Neglecting dependence im-
plies throwing away important data and interesting interactions a priori, possibly biasing
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the results of detection methods. For example, if a clustering technique identifies a small
distance between two nodes in a network based on their covariates this could be (par-
tially) explained by the distance of those nodes in the network, especially if calculation of
covariate values (e.g. bytes transferred) between nodes directly depends on communi-
cation between those nodes. Another reason why neglecting the linked structure of the
data may be a bad idea is that botnets are becoming increasingly advanced in mimicking
normal traffic, decreasing the effectiveness of machine learning detection.

Some papers have already shown that analyses of the networked structure can be
of added value by applying methods from graph theory. One study [186] calculated the
degree distribution (number of connections in a given time window) to detect visited
domains and found that C&C-domains receive an unexpectedly high amount of traffic.
Other studies [187, 178] present clustering and connectivity techniques to provide more
insight in converging patterns of communication, but do not present technical details.
Clearly, network properties can influence classification accuracy, which makes the appli-
cation and development of methods able to model networked data, and its covariates,
particularly opportune.

This study aims to extend the application of Stochastic BlockModels (SBMs) to a cy-
bersecurity setting, by fitting SBMs to a capture of network data including botnet in-
fected machines. We think SBMs may assist in the detection of botnets, in a manner
that is statistically sensible, without the requirement for a labelled dataset. SBMs are ex-
tensions of regular latent variable models to networked data, allowing the partitioning
of vertices (nodes or addresses on the internet) of a graph into clusters that are more
densely connected, and the cluster membership is inferred from the edge pattern [188].
The rationale behind using this approach is to apply an unsupervised method to discover
blocks of nodes in the network given the connectivity pattern, with the aim to discover a
latent class or multiple classes of malicious traffic as a subset of all classes that also in-
clude normal traffic (since some nodes in the network will likely display normal as well
as abnormal behaviour).

4.2. METHODS

4.2.1. UNIVERSITY OF VICTORIA DATASET
Data were downloaded from the University of Victoria (https://www.uvic.ca/engi
neering/ece/isot/datasets/index.php) as made available by Saad and colleagues
[189], and consisted of a collection of neutral / background data and 4 samples of botnet
data.

NEUTRAL DATA

The neutral background data without infected machines were collected from the Traf-
fic Lab at Ericsson Research in Hungary and from the Lawrence Berkeley National Lab
(LBNL). The Ericsson Lab dataset contained a large number of general traffic from a
variety of applications, including HTTP web browsing behaviour, gaming streams, and
packets from popular bit-torrent clients such as Vuze (formerly Azureus). The LBNL is a
research institute with a medium-sized enterprise network. The neutral data were col-
lected over a three month period, from October 2004 to January 2005, include 22 subnets
[189].

https://www.uvic.ca/engineering/ece/isot/datasets/index.php
https://www.uvic.ca/engineering/ece/isot/datasets/index.php
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BOTNET DATA

A relatively small capture of Zeus botnet traffic was included, with C&C as well as P2P
type traffic. Zeus is one of the biggest and most well known botnets running on Microsoft
Windows, spreads through drive-by-downloads and phishing, and is estimated to have
infected 3.6 million computers in the United States in 2009. It is able to secretly steal in-
formation from the infected machine, allowing the compromise of bank accounts, email
and other personal files.

4.2.2. DESCRIPTIVES
Because the data were collected in separate environments the addresses of the botnet
data have been mapped to match the addresses of the neutral data so that the connec-
tions seem to occur within the same network. The neutral data can be split into 6 blocks
based on the time-stamp of the capture (see Table 4.1). Only one of the six captures (Ta-
ble 4.1; Block 1) included IP addresses that overlapped with the Zeus botnet and that
capture was used in subsequent analyses because otherwise, the botnet would form an
isolated subnetwork, which is trivially identifiable. The used neutral were collected in
a capture from 8/10/2007 to 10/10/2007 and included 2300385 connections. The com-
bined Zeus botnet data included 2847 connections. First, we selected all unique pairs
of connections (13609 in neutral data and 28 botnet data), and counted the number of
unique nodes (9274 and 18 in neutral and botnet data, respectively) after which these
matrices were merged (some nodes overlapped, e.g. IP address 172.16.2.12 was involved
in both non-malicious and malicious activity). Second, these matrices were transformed
into an adjacency matrix using igraph in R. The combined data with labels was visualized
in Gephi (see Figure 4.2).

Table 4.1: Identified blocks of neutral traffic in the ISOT dataset.

Block Date Start time End time # Connections # Addresses
1 08-10/10/2007 15:21 2:26 2300385 9274
2 04-05/10/2004 22:03 0:19 17694358 12035
3 15-16/12/2004 09:08 7:46 65255086 19560
4 16-17/12/2004 17:15 4:10 5023778 5122
5 06-07/01/2005 20:22 7:28 20511992 10501
6 07-08/01/2005 11:55 6:28 26394390 11198

Zeus C&C 17/01/2010 02:02 02.07 1632 14
Zeus P2P 26/02/2010 04:12 14.59 1215 3

Addresses = Unique Addresses; Block 1 = Traffic Lab at Ericsson Research in Hungary;
Block 2-5 = Lawrence Berkeley National Lab.

4.2.3. REPLICATION OF FEATURES FROM PREVIOUS STUDIES
Previous studies have mentioned a number of features identified as valid predictors of
botnet traffic. In an attempt to replicate previous studies and understand the validity
of previously reported features in the current dataset we first present a naive analysis
of basic data. We extracted previously reported features and statistically compared these
features between non-malicious and malicious data. This is done by collapsing the infor-
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mation available in the network for every node to covariates that are analysed, in repli-
cation of previous works, without considering any form of network structure.

EXTRACTION OF PREVIOUSLY REPORTED FEATURES

From the dataset, fourteen features could be extracted. These include: number of in-
coming and outgoing connections, length of the first packet, average packet length, the
standard deviation (variability) of packet length, total number of packets exchanged, the
ratio of the number of incoming and outgoing connections, the average number of pack-
ets per second, and the average duration of a connection (see Table 4.4). In most fea-
tures, a distinction was made between incoming and outgoing connections. All features
were analysed as continuous covariates and, in order to avoid distributional assump-
tions for non-malicious and malicious data, analyses were based on the non-parametric
Wilcoxon rank test. This test was used to detect differences between non-malicious and
botnet data.

REPLICATION OUTCOMES

The distributions of fourteen features were compared between the neutral and botnet
data. Eleven of the 14 features significantly differed between the two groups (see Table
2). In neutral data, the average number of incoming packets was equal to the number of
outgoing packets whereas in botnet data, these variables are unbalanced. Interestingly,
the length of the first packets (incoming and outgoing) was also significantly smaller
in botnet data, which is in line with earlier observations that botnets usually start with
short connections followed by longer connections after establishing a solid connection
[166]. Although the average length of the outgoing packets is higher in the botnet data
(313.07 bytes) compared to non-malicious data (241.70), incoming connections tend to
last longer (5.23 seconds in Zeus versus 1.29 seconds in non-malicious data). Standard
deviations of incoming (neutral = 25.17, Zeus = 65.23) and outgoing connections (neutral
= 136.9, Zeus = 150.42) do not significantly differ, suggesting that there is no increased
variability in botnet data. Finally, incoming connections in non-malicious data tend to
last significantly longer (134.83 seconds) compared to the botnet data (2.76 seconds),
which could be the result of activity such as downloading torrents or gaming.

4.2.4. SBM MODEL

4.2.5. STOCHASTIC BLOCKMODELS
SBM stems from the merging of blockmodels and stochastic models [115]. Detailed defi-
nitions and derivations have been published elsewhere for directed [190] and undirected
[191] graphs. Below follows a short outline of the model based on the work presented in
Refs. [[115, 192]].

The botnet dataset consists of IP and DNS addresses (vertices) that exist on the in-
ternet, which are typically a person manning a computer or a server (hosting a website)
connected (edges) in a pairwise manner. These connections can be represented by a di-
rected binary digraph consisting of a set of g nodes. For a single relation between two
addresses, the adjacency matrix is given by Yi j .

The adjacency matrix was obtained (using igraph) after merging the edge-lists of the
neutral data and Zeus data. Regardless of how many times identical pairs (e.g. a con-
nection between IP1 and IP2) occurred over time, every i j pair (where i 6= j ) was 1 if,



4

78
4. STOCHASTIC BLOCKMODELS AS AN UNSUPERVISED APPROACH TO DETECT BOTNET

INFECTED CLUSTERS IN NETWORKED DATA

during the entire capture, at least one connection occurred between address i and ad-
dress j , and 0 otherwise. The directed nature of the data made Y asymmetric as some
addresses pairs had a connection in only 1 direction. The lower triangle of Y contains
outgoing connection i → j , and the upper triangle contains incoming connection i ← j .
Addresses never connected to themselves so, in line with convention, Yi j = 0, when i
equals j .

This thesis considers the SBM as a general mixture model that describes the con-
nections between nodes spread among a certain number of classes, and uses variational
inference to estimate parameters. We used the model from [193] based on [51].

Consider the SBM taking as input a graph G = (N ,E ), where N is the node set of
size N ∈ {1, ...,n}, distributed over a set of Q ∈ {1, ..., q} latent variables capturing the
communities of G . The unknown membership labels for every node are captured by a

latent variable Z ; {Zi }i
i i d∼ M (1 : α) with α = (αi , ...,αQ) and

∑
q αq = 1, indicating the

Zi are independent and identically distributed observations from a multinomial distri-
bution. Conditionally on block membership, the edges are assumed independent, so
the probability of an edge between any pair of nodes only depends on the block the two
nodes belong to.

Every edge from node i to node j is associated to a random variable Yi j that captures
the strength of the relationship (the N ×N adjacency matrix). SBMs are flexible enough
to support different types of relationships (binary, count, continuous) by allowing differ-
ent distributions Yi j may take. In this thesis, Yi j always takes 0 or 1 as values, where 1
indicates a connection and 0 otherwise. So that block q of node i and block l of node j ,
Yi j has a probability distribution of Yi j following a Bernoulli distribution:

Yi j |Zi , Z j
i nd∼ B(θZi Z j ), ∀i , j ∈N 2, (4.1)

with B indicating the Bernoulli distribution, θ = (θql )(q,l )∈Q2 is the Q×Q matrix with
block connectivity probabilities, and (Zi q )i∈N ,q∈Q is the N ×Q membership matrix with
the posterior probability that observation i belongs to block Q. q indicates the group /
class of node i , and l indicates the group of node j . In our model we aim to estimate
γ= (α,θ). In the undirected scenario Yi j = Y j i and πql = πl q for all (q, l ) ∈ Q×Q, α are
the mixture parameters.

We use Variational Inference (VI) to estimate model parameters. VI is classically pre-
sented as a fast parameter estimation procedure where the parameter estimates are ob-
tained via optimization [100]. In short, a family of distributions over the hidden variables
is compared (the selected functions have to come from the same distributional family as
the data) and the candidate function’s parameters are varied (the variational part). The
model is split in global (mixture proportions, and means and variances of mixture pro-
portions) and local (hidden cluster variable). The distance between the candidate distri-
bution and the data distribution is quantified via the Kullback-Leibler (KL) divergence.
In variational inference, the KL-divergence cannot be calculated so the method works by
maximizing the Evidence Lower Bound (ELBo; [194]); a lower bound on the logarithm of
the marginal probability of the observations log p(x). The ELBO is optimized with co-
ordinate ascent using the natural gradients of the ELBO. A disadvantage of Variational
Inference is the requirement for multiple runs of the procedure with different starting
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values, which in the SBM setting is usually done by first fitting k-means or hierarchical
clustering [195, 192].

4.2.6. LIKELIHOOD
As explained, Y is the set of all edges and Z is the set of all indicator variables for nodes.
The conditional independence of the edges knowing Z entails the decomposition of
logP(Z,Y) = logP(Z) + logP(Y|Z), with log-likelihood

logP(Z,Y) =∑
i

∑
q

Zi q logαq + ∑
i 6= j

∑
q,l

Zi q Z j l log fql (Yi j ), (4.2)

obtained by summing over all possible Z’s. Snijders and Nowicki [191] argue that
models with Q > 2 have a complexity that does not allow Maximum Likelihood estima-
tion. Therefore SBM typically use some implementation of Expectation Maximization
(EM). However, in the case of networked data we are faced with dependency between
edges which make the EM procedure intractable. Therefore, a variational approach was
proposed where a lower bound of the log-likelihood is maximized

J (RY ,γ) = logP(Y ;γ)−K L(RY (·),P(·|Y ;γ)) (4.3)

with KL refering to the Kullback-Leibler divergence and RY referring to some chosen
distribution (in practice often from the exponential family) on Z. This can be rewritten
to

J (RY ,γ) =H (RY )+∑
Z

RY (Z )logP(Y , Z ;γ) (4.4)

where H is the entropy of a distribution and the second part equals

∑
Z

RY (Z )logP(Y , Z ;γ) =∑
i

∑
q
ERY (Zi q )logαq + ∑

i 6= j

∑
q,l
ERY (Zi q Z j l )log fql (Yi j ) (4.5)

where ERY denotes the expectation with respect to distribution RY , and requires the
knowledge of ERY (Zi q ) and ERY (Zi q Z j l ) for all i , j , q, l . In the Blockmodels package [192]
this is implemented as a series of for loops:

{
for ( unsigned i n t i =0; i <lZ . n_rows ; i ++)

for ( unsigned i n t j =0; j <lZ . n_rows ; j ++)
i f ( i ! = j )

for ( unsigned i n t q=0; q<lZ . n_cols ; q++)
for ( unsigned i n t l =0; l <lZ . n_cols ; l ++ )

lZ ( i , q) += membership . Z( j , l ) * (
l o g f (model , net , i , j , q , l )

+
l o g f (model , net , j , i , l , q)

) ;
} .
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To maximize J (RY ,γ) some restrictions apply to RY , which means limiting the search
to the class of completely factorized distributions

RY (Z ) =∏
i

h(Zi ,τi ) (4.6)

where h denotes the multinomial distribution and τi is a vector of probabilities, τi =
(τi 1, . . . ,τiQ ) summing to 1. Specifically, ERY (Zi q ) = τi q and ERY (Zi q Z j l ) = τi qτ j l . Finally
the entropy is additove over the coordinates for the factorized (multinomial) distribu-
tions, so that equation 4.5 computationally boils down to

J (RY ,γ) =−∑
i

∑
q
τi q logτi q +∑

i

∑
q
τi q logαq+∑

i 6= j

∑
q,l
τi qτ j l log fql (Yi j ),

(4.7)

with τ being the variational parameters of the functions that have to be optimized by
minimizing the difference between RY (Z ) and P(Y , Z ;γ).

There are different models that allow edge-weights (i , j ) ∈ {1, ..., g } but in this study
edge weights are either 0 or 1, resulting in a Bernoulli model with [0 ≤ πql ≤ 1] and
q, l ∈ {1, ...,Q}2. We test models with Q ∈ {2, . . . ,10} and determine the fit of each model
with the Integrated Classification Likelihood [196]. The latter study showed that, in this
setting, the ICL can be more robust than the Bayesian Information Criterion and per-
forms well in partitioning mixture models. These algorithms have been recently imple-
mented in the R library Blockmodels. [192]

4.2.7. SIMULATION STUDY USING SBM ON SIMULATED NETWORK DATA
To illustrate the potential of SBMs in identifying clusters of network data in a botnet
setting we first conducted a small simulation study. We simulated a network dataset with
five users from which four are infected with a P2P botnet (see Figure 4.1a). The botnet
controller directly connects only to user 1, who connects to user 2, who connects to user
3, who connects to user 4. All users visit between 14 and 30 non-malicious websites
including 5 identical domains (e.g. www.google.com) and 25 unique domains. The
four infected users also visit malicious domains as part of the botnet activity (9 visited
by at least 2 users and 3 visited by only 1 user). Ultimately this dataset consisted of 121
non-malicious nodes (120 domains and 1 uninfected user), and 19 malicious nodes (1
connector, 14 malicious domains and 4 infected users)1.

SIMULATION STUDY OUTCOMES

SBM model fitting on the simulated data revealed that a five class model (Q = 5) was op-
timal with the highest ICL estimate (see Figure 4.1b). This five class model was able to
distinguish normal traffic, malicious traffic, and infected users (see Table 4.2 for the class
assignment matrix). The first class captures 99 (81.8%) of the 121 non-malicious nodes
and also includes 8 malicious nodes (7 domains and the botnet manager / connector).
The second- and third class respectively capture the uninfected and infected users and

1All scripts, data and output from the simulation study can be downloaded from https://github.com/mpr
oeling/SBM

www.google.com
https://github.com/mproeling/SBM
https://github.com/mproeling/SBM
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(a) Simulated network with non-malicious activity from 4
infected users (orange, brown, light- and dark blue nodes)
and one uninfected user (yellow) to non-malicious addresses
(green nodes), and malicious activity to malicious addresses
(red nodes). Nodes in the centre represent addresses visited
by multiple users, both non-malicious (green) and malicious
(red). The black dot in the left upper corner is the botnet con-
troller communicating to infected user 1 (orange).

(b) Simulated network with SBM generated labels. Five classes
capture non-malicious behaviour (green), predominantly ma-
licious behaviour (red), infected users (dark blue), and the
uninfected user (yellow) who also connects to unique non-
malicious addresses (pink).

Figure 4.1: Network plots of SBM-recovery simulation study.

have perfect assignment. The fourth class captures the non-malicious domains only vis-
ited by the uninfected user. The fifth class includes the malicious and non-malicious
domains visited by multiple users. If we consider classes 1, 2 and 4 as neutral and classes
3 and 5 as malicious, then we have 11 True Positives, 8 False Negatives, 5 False positives
and 116 True Negatives. Hence, the accuracy of the simulation SBM is 90.7%, the sensi-
tivity is 68.8% and the specificity is 93.5%.

Table 4.2: Simulation study performance.

Node type class #1 class #2 class #3 class #4 class #5
infected users 0 0 4 0 0

uninfected users 0 1 0 0 0
non-malicious 99 0 0 16 5

malicious 7 0 0 0 7
connector 1 0 0 0 0

This Table presents the frequencies of nodes as distributed over the different classes
based on the SBM on the simulation data. Class 1 mostly captures non-malicious nodes
and the botnet connector / controller, class 2 includes one uninfected user, class 3
captures all four infected users, class 4 includes non-malicious nodes and class 5
captures a subset of malicious and non-malicious nodes.



4

82
4. STOCHASTIC BLOCKMODELS AS AN UNSUPERVISED APPROACH TO DETECT BOTNET

INFECTED CLUSTERS IN NETWORKED DATA

(a) Colour labels are based on the labels from the original dataset with non-malicious data (green)
and the Zeus botnet infected nodes (red). Infections are all situated in the highly connected cluster
in the top.

Colour labels are based on the SBM output with of the best fitting 9 class model, showing three highly
connected clusters (purple, green, blue), one class moderately connected sub-networks (black), one
class with nodes that connect different clusters (orange), and the remaining 4 classes capture the
nodes that are typically in the centre of the clusters (light blue, yellow, dark green, and pink).

Figure 4.2: Network plots of the non-malicious background data and the Zeus botnet data with original and
SBM labels
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4.3. RESULTS FOR ISOT / ZEUS DATA

4.3.1. SBM OUTCOMES
The SBM model fitting procedure on the University of Victoria data yielded the high-
est ICL value in a model with Q = 9. From the membership matrix Z , we obtained,
for every node g and for every class q ∈ {1, ...,9}, a posterior probability, and estimate
p̂i ,q = E(Zi ,q |X ), which is an estimate of the posterior probability that node i is in group
q . Table 4.3 shows the distribution of g over q . The infected nodes are distributed over
two classes (3 and 5). In class 3, most of the connection (5150 / 5166 = 99.7%) is non-
malicious. Yet, this class includes 94.1% of all botnet data. Class 5 is a separate class cap-
turing only one node (IP = 172.16.2.12) involved in both non-malicious and malicious
activity. Classes 1 and 7 both capture clusters with neutral data. Class 8 contains nodes
that act as a hub and lie between clusters. Class 9 captures several small sub-networks.
The other classes contain of a small number of central nodes from the neutral data.

Table 4.3: Distribution of malicious and non-malicious nodes across class membership.

class #nodes #neutral nodes #Zeus nodes %botnet nodes Fig.1 class colour
1 1144 1144 0 - blue
2 1 1 0 - light blue
3 5166 5150 16 94.1% purple
4 6 6 0 - pink
5 2 1 1 5.9% dark green
6 1 1 0 - yellow
7 2425 2425 0 - green
8 81 81 0 - orange
9 465 465 0 - black

This Table presents the frequencies of nodes as distributed over the different classes of
the best fitting model, after assigning class membership to the class with the highest
posterior probability.

4.4. DISCUSSION
This paper presents a first look at the use of the SBM framework for botnet discovery. The
simulation study showed that SBMs can be of merit in networks with multiple infected
users visiting the same (malicious and non-malicious) addresses. Interestingly, nodes
that were wrongly assigned were all visited by multiple users, and botnet nodes that were
wrongly identified as non-malicious were all visited by only subgroups of users (e.g. only
user 1 and 2). Since botnets usually force a larger number of visitors to the same domains
(e.g. DDoS attack), this could strongly increase the detection accuracy. In real world
applications, SBM model performance was significantly lower: if the entire cluster that
included botnet data would be treated as infected this would result in a very high false
positive rate.

These outcomes should be interpreted in light of some limitations. First, the cur-
rent model fitting procedure did not include covariates. Given aforementioned suc-
cesses with machine learning features, the performance of our best fitting model could
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increase if these features (e.g. bytes transferred or packets received) were included in
the SBM. Second, modelling the temporal structure of the network data could signifi-
cantly contribute to an improved detection rate [197], although such analysis would be
artificial with current datasets since data are collected in separate environments, at dif-
ferent moments in time. Third, it is possible that the data used here does not provide
an adequate capture of real botnet network activity. For example, botnet infections oc-
curred only in one cluster, whereas in P2P botnet activity one would expect multiple
clusters (or nodes across clusters) to be infected. Also, connections between clusters
were unusually weak and almost always indirect, whereas in P2P traffic one would ex-
pect some form of direct link between infected nodes. Unlike the simulation data, where
the simultaneous visiting of malicious websites (or the absence of visits) by different
users in different clusters was a key marker for botnet detection, those patterns seemed
absent in the real-world data analysed here. Finally, these data were collected in sepa-
rate environments. The botnet data were collected with Virtual Machines (VM) and IP
mapping was used to create one network. Most studies analyse botnet data collected
in a VM [176, 166, 168, 177, 181, 170, 175] but this can be problematic, since there can
be many (unobserved) factors that contribute to differences between botnet and back-
ground data. The SBM outcomes of this study do not show a strong bias of such differ-
ence as there was no immediate distinction between botnet and neutral data. Yet, merg-
ing data from different sources can be problematic and ideally one would ask a number
of users to work on an infected VM during their normal internet / browsing activity, and
then manually classify genuine from malicious traffic afterwards for comparison so that
all activity is collected within the same setting. Another benefit of such a design would be
that the neutral background data really is uninfected, which improves on current studies
that assume that background data, from e.g. a University Campus, is completely free of
malicious activity.
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5
HYBRID CONNECTION AND HOST

CLUSTERING FOR COMMUNITY

DETECTION IN SPATIAL-TEMPORAL

NETWORK DATA

This study investigates a novel combination of two sequential similarity methods (Dy-
namic Time Warping and N-grams with Cosine distances), with two state-of-the-art un-
supervised network clustering algorithms (Hierarchical Density-based Clustering and Sto-
chastic Block Models). A popular way to combine such methods is to first cluster the se-
quential network data, resulting in connection types. The hosts in the network can then be
clustered conditioned on these types. In contrast, our approach clusters nodes and edges in
one go, i.e., without giving the output of a first clustering step as input for a second step. We
achieve this by implementing sequential distances as covariates for host clustering. While
being fully unsupervised, our method outperforms many existing approaches. To the best
of our knowledge, the only approaches with comparable performance require manual fil-
tering of connections and feature engineering steps. In contrast, our method is applied to
raw network traffic. We apply our pipeline to the problem of detecting infected hosts (net-
work nodes) from logs of unlabelled network traffic (sequential data). We show that our
method perfectly detects peripheral, benign, and malicious hosts in different clusters, and
replicate our results in another botnet dataset with comparable performance: conjointly,
99.97% of nodes were categorized correctly.

Roeling, M.P., & Nadeem, A., Verwer, S. (in press). Proceedings of the Workshop on Machine Learning for Cyber-
security (x), xx-xx.
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5.1. INTRODUCTION
Spatial-temporal network data have a spatial structure, where observations are linked
via single or multiple features, and a temporal structure, meaning multiple time-points
are (partly) available. The analyses of the spatial element is usually performed via net-
work clustering, which is a large field of research where a graph (G ), consisting of nodes
(V ) and edges (E ), is represented by one or more pairwise distance matrices subject to an
algorithm to group observations with, relatively speaking, small distances [198, 199, 200,
201, 202]. There are roughly two kinds of clustering methods: those that cluster edges
(e.g. spectral-, density-, or centroid based clustering methods [203, 204]) and those that
cluster nodes (e.g. community detection algorithms like Louvain clustering [121] or mix-
ture clustering like the Stochastic Block Model [188]).

The analyses of the temporal aspect is equally complex. Apart from collapsing time-
points by analyzing the mean of multiple events [171], some methods allow to analyse
time-series as discrete windows. Examples of these methods are 1) creating windows and
train models for each window so that state-changes over time can be identified [205];
2) treating time as a latent variable in latent variable growth models [206]; 3) creating
temporal graphs so that every pairwise interaction over time becomes a link [207]; 4)
the analyses of network evolution with Stochastic Actor Based Models [208]; 5) Tempo-
ral Exponential Random Graph Models [209]; and 6) Time-contrastive learning [210].
Even more complex is the analyses of streaming data, where time cannot be treated as a
strictly discrete variable either due to an arbitrary sequence in time where cutting win-
dows is difficult, or a negative balance between the volume of time windows and the
specificity (larger time windows equals lower specificity). Two common directions in-
volve multilevel methods [211] and online-Expectation Maximization [212].

This paper focuses on unsupervised clustering of streaming spatial-temporal net-
work data by combining node and edge clustering. We aim to present a reliable proce-
dure to communities of nodes with converging behaviour, without the need for a labelled
dataset and not requiring manual feature engineering or filtering steps. Our method
computes pairwise edge distances based on the sequential behaviour of network con-
nections using Dynamic Time Warping (distance measure for continuous sequences)
and N-grams with Cosine distances (for nominal sequences), as implemented in the
MalPaCA tool [213]. In order to include these distances in node clustering, the pair-
wise distances are aggregated via Principal Component Analysis into a small set of fea-
tures. These features are added as co-variates to a node clustering algorithm based on
Stochastic Block Models (SBMs), which is a well-known generative model for random
graphs that produces graphs containing communities. Here, those subgroups represent
hosts characterized by being connected with one another with particular edge densities
[214]. Our SBM-definition is based on a recent review [215].

SBMs are attractive because they seek highly connected blocks in network connec-
tions while allowing the inclusion of features, in a statistically tractable way. This re-
moves the need to first cluster the sequential data before analyzing the network struc-
ture or attributes as both are considered in one single node clustering algorithm. Our ap-
proach is complementary to earlier work [216] where hosts and connections were clas-
sified sequentially by first filtering P2P hosts and then categorizing P2P traffic. Using
sequential features is beneficial since it reduces the required number of features as all



5.2. RELATED WORK

5

89

variation is (assumed to be) captured by the pairwise sequential distance [217, 213]. Our
approach (shown graphically in Figure 5.1) does not require a priori (manual) host or
sequence filtering and uses as input raw packet capture (.pcap) files.

We test our method in the setting of botnet-infected computers. Botnets are net-
works of computers that are infected with malware and are under the control of a botnet
controller, able to use the computers for nefarious activities. Infection status is usually
unknown to users or controllers and incomplete, meaning that in a large network not all
computers are infected but only a relatively small number of machines can be part of
a botnet. This motivates an unsupervised approach to cluster the hosts in a computer
network, thereby uncovering yet unknown (latent) groups of similarly behaving hosts.
The idea is that all infected hosts show different behaviour from the neutral hosts in a
network and can thus be singled out, preferably in one or more dedicated clusters. We
experiment with different packet thresholds to show which data-specific cutoffs are op-
timal (i.e. short but still informative). The reliability of our method is investigated by
replicating the main result with another dataset containing different botnet captures.

Earlier in this dissertation we advocated the flexibility of the SBM allowing to capture
different types of structure or clustering in networks. A recent review [195] illustrated
how four types of clustering (assortative, disassortative, coreperiphery, and hierarchy)
may be represented as a block structure (see Figure 2.6). This flexibility is important be-
cause not all clustering approaches work in these four types. Certainly in computer net-
work data, as analysed in this chapter, it is suggested that nodes with similar behaviour
are not necessarily linked directly, resulting in a disassortative structure [49]. As men-
tioned in the introduction of this thesis, two large fields of clustering-methods are spec-
tral clustering and modularity based clustering. To test how our approach performed
against one spectral clustering method (density-based clustering) and one modularity
based clustering method (Louvain clustering) we applied these two clustering methods
to the data and compare the results.

This paper presents the following contributions:

• We present a clustering method of network data that does not require manual fil-
tering of observations.

• Clustering of nodes as well as edges in spatial-temporal network data is conducted
in one procedure.

• We present a competitive performance in the setting of detecting malware infected
computers (bots) and replicate our main result in different types of botnets.

5.2. RELATED WORK
To date, a common strategy is to collapse temporal data into aggregate values and ne-
glect spatial structure [170, 218, 219, 220, 221, 222, 223, 224, 189, 225, 226, 227, 228, 229,
171, 181, 230, 172, 231]. This causes a loss of information as researchers remove streams
of data that only occur once (e.g. because these connections are uninformative when
calculating the variance of inter arrival time between packets in a sequence of connec-
tions) [167].
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Figure 5.1: Schematic illustration of the proposed MalPaCA + SBM pipeline

Common methodological shortcomings in existing studies are (partly) neglecting the
spatial-temporal nature of the (network) data [232, 170, 218, 219, 220, 221, 233, 222, 223,
224, 189, 225, 226, 227, 228, 229, 167, 171, 181, 230, 172, 164, 231, 216]. The temporal
structure is usually lost through the analyses of features such as total bytes transferred
with largest packets, variance of inter arrival time between packets, total bytes trans-
ferred, size of the largest packet in a flow, average size of packets in a flow, and ratio of
largest packets in a flow. The main problem with these approaches is the loss of infor-
mation and the gap between how the data are observed and how that situation is cap-
tured by the fitted model. Some researchers [167] remove streams of data that only occur
once (e.g. a connection between computers that send only one packet), because these
connections are uninformative when calculating the variance of inter arrival time be-
tween packets in a flow (sequence of connections). Apart from some studies using time-
windows [234], collapsing or removing temporal information by collapsing streaming
data can, at least in an unsupervised clustering setting, complicate botnet classification
[235].

Apart from some studies using time-windows [234], removing temporal information
by collapsing streaming data complicates botnet classification [235]. Neglecting spatial
structure in botnet detection is equally problematic because this structure is informa-
tive for infection status [236]: the members of a botnet are more likely to have mutual
contacts with each other than with benign hosts.

Another issue is that many studies apply some kind of manual filtering prior to anal-
ysis (e.g. removing approved DNS addresses via white-listing based on Alexa [172, 231]
or other rule based exclusion criteria (e.g. [237, 238, 216]). It is unclear whether the ob-
tained results are due to the analysis or filtering steps. Manual feature engineering may
also bias the results of these experiments [239], especially when combined with sparsely
reported procedures and outcomes (e.g. [228, 240]). Finally, only a few studies apply
methods that do not require a labelled dataset (unsupervised learning: [224, 219]). Espe-
cially in the botnet setting where computers are zombies per definition, the dependence
on a labelled dataset is an important shortcoming for operational usefulness.

5.3. METHODS

5.3.1. CONNECTION FEATURES

We build on a sequential feature paradigm presented recently in MalPaCA [213]: a be-
haviour discovery framework for network traffic which uses Hierarchical Density-Based
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Spatial Clustering of Applications with Noise (HDBScan) [241], providing clusters of con-
nection sequences.

From the original packet capture (.pcap file), we define dataframe C which is a ma-
trix with t × p dimensions, with t rows (one row for every packet) and p features on
the columns. C was made to include unidirectional connections, defined as an unin-
terrupted list of all packets sent from a source IP to destination IP. MalPaCA proposed
to include four sequential features: packet size (bytes), time interval (gaps), source port
(sport), and destination port (dport).

From every column of C we created the symmetric distance matrices Dby tes , Dg aps ,
Dspor t , and Dd por t . All distance matrices had nc ×nc dimensions, with nc unique uni-
directional connections, and zero diagonals. For Dby tes and Dg aps the pairwise distance
over time (t ) was calculated via Dynamic Time Warping (DTW). For each pair of hosts we
had time series X ∈ {1, ..., N } and Y ∈ {1, ..., M } and the average accumulated difference
between X and Y is

dφ(X ,Y ) =
T∑

k=1

d(φx (k),φy (k))mφ(k)

Mφ
(5.1)

with warping functions: φ(k) = (φx (k),φy (k)), φx (k) ∈ {1...N }, φy (k) ∈ {1...M }, which
shape the warping curveφ(k);k ∈ {1, ...,T }. mφ(k) is a weighting coefficient and Mφ is the
corresponding normalization constant, which ensures that the accumulated differences
in time series are comparable along different paths [242]. DTW optimises by finding
the minimum the difference: dtw(X,Y) = argminφdφ(X ,Y ) and we normalized the DTW
estimates to range [0-1] with

x̂i = xi −mi n(x)

max(x)−mi n(x)
(5.2)

where x = [d t w(X1,Y1), d t w(X1,Y2), ..., d t w(Xnc ,Ync )].
For source and destination port, the pairwise distances were calculated with the co-

sine similarity

cos(X ,Y ) =
∑T

k=1(Xk ∗Yk )
p

(
∑T

k=1(X 2
k ))

p
(
∑T

k=1(Y 2
k ))

(5.3)

which were normalized as described to form Dspor t and Dd por t .

5.3.2. HOST FEATURES
The Stochastic Block Model (SBM) required to transform the connection distance matri-
ces (Dby tes , Dg aps , Dspor t and Dd por t ) to host distance matrices, which was achieved via
Principal Component Analyses (PCA). The PCA works by calculating the singular value
decomposition of the distance matrices so that by maximizing the variation captured
per component a small number of components (ideally) captures a major proportion of
the variation. We input the distance matrices so the aim was to acquire a number of di-
mensions less than the number of unique connections, accomplished by selecting the m
components explaining at least 40% cumulative variation. For each of the 4 features, the
PCA thus resulted in a matrix W with nc rows and m columns, so that for each unique
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D ab ac bc ca
ab 0 689 1262 512
ac 689 0 1169 680
bc 1262 1169 0 1062
ca 512 680 1062 0

W m1
ab -3.18
ac -2.96
bc -4.60
ca -2.92

Ym1 a b c
a 0 -3.18 -2.96
b 0 0 -4.60
c -2.92 0 0

Table 5.1: A fictional example of a distance matrix Dby tes , PCA component weights matrix Wby tes , and corre-
sponding SBM covariate matrix Yby tes,m1

.

a → b connection m, component weights were available. We used W to create m host-
host SBM covariates. Since every row of W referred to a unique a → b connection, the
connection source (a) and destination (b) are used to indicate the rows and columns for
each SBM covariate matrix Ym with dimensions nh ×nh where nh is the unique number
of hosts. Hence, the values in Yby tes,m1 , the SBM covariate matrix for the first component
of bytes, were inherited from m1 of Wby tes (see Table 5.1).

5.3.3. STOCHASTIC BLOCK MODEL
The SBM model is explained in 4.2.4 and this paragraph only provides a short description
for completeness. The SBM took as input a graph G = (V ,E ), where V was the node set
of size nh := |V |, and E was the edge list of size M := |E |. The corresponding nh ×nh ad-
jacency matrix was denoted by Y , where Yab = 1 if there was a connection between hosts
a and b and 0 otherwise. The main input graph was an undirected binary node matrix
Ycl ass which held a 1 if there was any connection between nodes a and b;Ycl ass,ab = 1 or
zero otherwise. The generated SBM covariate matrices are added to the model as covari-
ates

SB M(Ycl ass,ab ,Li st (YpacketSi ze,m ,Yg apsDi st ,m ,Ysour cePor t ,m ,YdestPor t ,m))

Since group (g ) membership is unknown, the membership labels for every host are
captured by a latent variable Za , which elements are all 0, except exactly one that takes
the value 1 and represents the group host a belongs to. This Za is assumed to be inde-
pendent of Zb for a 6= b. Finally, SBM outputs a n × g matrix Z := (Z1, ..., Zn)T , such that
Za,i is the i th element of Za . Graph generation and likelihood are explained elsewhere
[215]. The lower and upper bound of fitted SBM models were 2 and 10. Model fit was
evaluated with the Integrated Classification Likelihood (ICL), via a variational expecta-
tion maximization approach implemented in R [192].

5.3.4. OTHER CLUSTERING METHODS
As spectral clustering method we chose density based clustering (dbscan), which calcu-
lates for every point in a given space a neighbourhood through a radius [204]. Depend-
ing on how many points fall in this neighbourhood, observations are identified as core
points, reachable points, outliers, or noise. This allows to group points that are closely
packed together (points with many nearby neighbors), marking as outliers points that lie
alone in low-density regions (whose nearest neighbors are too far away). As modularity-
based clustering method we applied Louvain clustering [121]. Modularity is a scaled
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value that lies between -0.5 and 1 measuring the relative density of edges inside commu-
nities with respect to edges outside communities. Every node starts as his own commu-
nity and these communities are merged if they survive a loss function. Both clustering
methods were applied directly (and only) to the [0-1] network matrix.

5.3.5. EXPERIMENTAL SETUP
This study used data from the Malware Capture Facility Project, which is a sister project
of the Stratosphere IPS Project: an initiative to obtain malware and neutral data. From
all the published samples, a dataset was selected which included both neutral (Nb = 12)
and infected (Ni = 10) hosts and included the entire network. The malicious hosts were
infected with the Conficker botnet. The data were downloaded from https://mcfp.f
elk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-91/ as a .pcap
file consisting of 198818 lines (packets), capturing 1011 unique (a → b) connections.
There were 3 isolated clusters which were removed, leaving 917 unique connections. The
correlation between covariates was low (see S1) so instead of combining the distance
matrices they were included in the SBM as individual predictors.

Not all observed connections are necessarily informative, so we experimented with
a minimum number of packets-threshold (Pt ) to ensure that the remaining connec-
tions represented sufficient information for effective behavioural modeling. The thresh-
olds tested were Pt ∈ {5,10,15,20}, respectively pruning to 631 (62.4%), 565 (55.9%), 523
(51.7%), and 483 (47.8%) connections (see Table 5.2). From analyses we determined that
for this dataset a packet threshold of 10 is desirable, balancing the number of connec-
tions, nodes, MalPaCA and SBM clusters (see Supplementary Material). Higher thresh-
olds resulted in too much pruning of the network structure, hindering accurate classifi-
cation in this dataset.

Table 5.2: Descriptives of the Stratosphere CTU-91 data with different behavioural thresholds

Covariate Nseq Ni p QM al PaC A outl i er s QSB M

5 packets 631 205 10 120 4
10 packets 565 182 9 154 4
15 packets 523 165 7 40 4
20 packets 483 148 6 38 5

This Table presents the number of unique a → b sequences (Nseq ), unique hosts (Ni p ),
the optimal number of clusters (QM al PaC A) and outl i er s determined by MalPaCA, and
optimal SBM-cluster solution (QSB M ).

5.3.6. REPLICATION SAMPLE
For replication of our main finding we used the ISOT dataset from the University of Vic-
toria (https://www.uvic.ca/engineering/ece/isot/datasets) as presented
in [189], which included of a collection of neutral / background data and 4 samples
(Waledac, Storm, Zeus) of botnet data. Storm, Waledac, and Zeus are Windows targeting
botnets predominantly used in spamming campaigns which peaked in 2007-2008. They
can all be managed via a Command and Control as well as Peer to Peer communication.
From the neutral data we selected the data from the Traffic Lab at Ericsson Research in

https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-91/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-91/
https://www.uvic.ca/engineering/ece/isot/datasets
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Hungary [243]. The latter contained a large number of general traffic from a variety of
applications, including HTTP web browsing behaviour, World of Warcraft gaming pack-
ets, and packets from popular bittorrent clients. ISOT documentation states IP addresses
of infected machines were mapped to the background traffic and all trace file were re-
placed to homogenize network behaviour. The infected data contained 747264 pack-
ets with 25308 unique connections and the Ericsson lab data included 2300385 packets
from 12778 unique connections. These two sets were combined so that MalPaCA fea-
tures could be extracted.

Table 5.3: MalPaCA clusters and infection status in the CTU-91 data. Connections in -1 are unclustered.
sr ci pp , sr ci pn , scr i pi are connections where the source host was peripheral, neutral, or infected (respec-
tively). The same for destination ports d sti p.

Cluster sr ci pp sr ci pn sr ci pi d sti pp d sti pn d sti pi

-1 8 6 23 17 10 10
1 0 0 14 14 0 0
2 10 0 0 0 0 10
3 119 0 0 0 0 119
4 62 0 0 0 0 62
5 0 0 125 125 0 0
6 0 12 78 73 10 7
7 0 4 4 0 0 8
8 0 0 8 0 8 0
9 0 10 0 0 0 10

5.4. RESULTS

5.4.1. STRATOSPHERE DATA

MALPACA DIRECTLY

Applying MalPaCA directly to the data assigned the connections to 9 dense clusters (see
Table 5.3). Visual inspection of the nodes belonging to the connections classified as out-
liers revealed that these were mostly peripheral, supporting the notion that nodes on the
edges of the network, with negligible activity, are more likely to fall outside a MalPaCA
cluster.

Different subsets of connections were identified. Cluster 1 captured all traffic from
192.168.0.118 to peripheral hosts. Cluster 3 included bidirectional traffic between neu-
tral and infected hosts as well as connections from neutral to neutral, infected, and pe-
ripheral hosts. Clusters 4 and 5 included connections from neutral and infected to pe-
ripheral hosts (opposite to cluster 2: peripheral to infected and neutral), but apparently
specific clusters were required to capture specific connections from peripheral to in-
fected (clusters 6 and 7) and infected to peripheral hosts (clusters 8 and 9), illustrating
the heterogeneity in connections from and to infected nodes. Relating the connections
to their respective nodes, we identified 11 true negatives (cluster 1), 11 false positives
(clusters 2:5), and 389 true positives, yielding an accuracy of 97.32%, sensitivity of 100%
and specificity of 50%.
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SBM DIRECTLY

Fitting the SBM directly on the network matrix, ignoring the MalPaCA features, resulted
in a 6-class solution. This solution was incapable of distinguishing neutral and periph-
eral nodes (as described earlier in [235]). Class 1 and 3 captured 11 peripheral and 2
neutral hosts, class 2 and 5 respectively captured 2 and 3 infected hosts, class 4 included
3 neutral and 5 infected hosts, and class 6 only included 148 peripheral hosts. Hence,
there are 10 true positives, 3 false positives (class 4), and 312 true negatives, resulting in
a performance of: accuracy = 99.08%, sensitivity = 100% and specificity = 99.05%

OUR APPROACH

Applying MalPaCA to obtain the distance matrices, representing the distances between
connections for the four features, resulted in 565 surviving connections. The average
connection length was 348.48, with a minimum of 10 packets (Pt = 10) and a maximum
of 5333.The PCA solution on the MalPaCA distance matrices commended a 1 (bytesDist),
3 (destPort), 1 (gapsDist), and 3 (sourcePort) component solution that cumulatively ex-
plained > 40% of the variation (see Figure 5.2). This result was Pt invariant; including
more packets per connection does not change the amount of variation explained by the
components.

Fitting the SBM on the PCA derived covariates favoured a 4-class solution (see Fig-
ure 5.3). The network with original- and cluster labels is visualized in Figure 5.4 and the
performance matrix for the 10 threshold solution is provided in Table 5.5. After obtain-
ing the cluster solution we used straightforward descriptive analyses and visualization
to interpret the clusters (see Supplementary Material and [213]). We found that all ma-
licious hosts were assigned to one cluster with a posterior probability of > .998. Most
of the peripheral hosts were captured by one cluster, indicating behavioural similarity,
with a class assignment posterior probability of .9982. The non-infected / neutral hosts
were divided over two clusters, that also included peripheral hosts. Only one neutral host
had a posterior probability < .95, which was host 192.168.1.6 with .82, with the remain-
ing probability belonging to the other neutral/mixed class. If we consider all peripheral
hosts (136+9+1) and neutral hosts (4+3) to be true negatives, and the correctly clustered
infected hosts as true positives, the classification is perfect. These findings are consistent
for all four tested packet thresholds (Pt ).

Table 5.4: Performance comparison with other studies using ISOT data

method accur ac y sensi t i vi t y speci f i ci t y stud y
BClus .5 .4 .5 [244]
CAMNEP .5 0 .9 [244]
BotHunter .4 .01 .9 [244]
BotGM .91 .83 n.p. [217]
Decision tree .99 .98 n.p. [225]
Decision tree .75 .99 n.p. [166]
n.p. = not provided
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(a) Bytes distance (b) Gaps distance

(c) Destination port distance (d) Source port distance

Figure 5.2: CTU-91 data: Explained variance of components from the Principal Component Analysis on the
four distance matrices, where the packet threshold was 10 packets. The connection distances in the bytes
and gaps matrices were captured by one component approximately explaining 90% of the variance, whereas 3
components were required to capture > 40% of the variance in the destination and source port distances.
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(a) ICL fit in the CTU-91 data.
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(b) ICL fit in the ISOT data.

Figure 5.3: Plots of the ICL fit evaluation statistic in the ISOT data. The subtle peak at Q = 4 (ICL) and Q = 5
(ISOT) indicates that the optimal SBM clustering solution is reached at a 4- and 5-cluster solution, and model
fit decays when Q increases.

5.4.2. DENSITY-BASED AND AND LOUVAIN CLUSTERING

We applied dbscan and Louvain clustering to the CTU-91 data. The network plots with
node colours are in Figure 5.4 and the node-classification versus ground truth in Table
5.5. Dbscan produced comparable results to our approach (MalPaCa and SBM), with the
first and third cluster including one peripheral, one neutral, and half (5) of the infected
nodes, the second cluster mostly peripheral nodes and neutral nodes. The fourth clus-
ter with half (5) of the infected nodes and the fifth cluster with only peripheral nodes.
Classification performance is lower but near to the MalPaCa + SBM procedure. Louvain
clustering produced 6 clusters: all but one clusters have at least 1 infected node and only
cluster 1, 4 and 6 have neutral nodes. The community structure looks very different from
the other two clustering solutions, as we visibly identify clusters with highly connected
nodes at the different hubs of the network and one cluster in the center.

5.4.3. ISOT DATA

Previous studies have used the ISOT data for botnet identification purposes and Table 5.4
presents a selection of the performance reported in related works. As mentioned before,
most of these methods require manual feature engineering and connection filtering to
be applied, while others operate in a supervised setting. We compare our unsupervised
clustering method to these results.

Creating the distance matrices with MalPaCA pruned the network (see Figure 5.5a)
to 7683 surviving connections with Pt = 20. Average connection length was 365.95, with
a minimum of 20 and a maximum of 525256. This amounted to 3847 nodes. There was
one isolated sub-network of hosts connected to 172.16.2.3, of which only the connection
between 172.16.2.3 and 193.88.8.59 survived the packet threshold of 20. Isolation sup-
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(a) Original labels (b) Our method; MalPaCa + SBM

(c) Density-based clustering (dbscan) (d) Louvain (modularity based) clustering

Figure 5.4: Network plots of a subset of the CTU-91 network (including hosts with a packet threshold Pt = 10)
with nodes colour based on labels from different clustering methods. The subfigures show the network with
the (a) original host labels, used in this analyses as ground truth (blue = peripheral, red = infected, green =
neutral); (b) MalPaCA connection label colours and SBM host labels (blue = peripheral, red = infected, green &
turquoise = neutral & peripheral); (c) labels from density based clustering resulting showing a 5 cluster solution
(blue & black = peripheral & neutral, red & purple = mostly infected, turquoise = peripheral); (d) labels from
Louvain clustering, which identified 6 highly-connected clusters. Clustering with (c) and (d) is only based on
the network matrix, without covariates.
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Table 5.5: Performance matrix of different clustering methods in the CTU-91 data

Cluster per i pher al neutr al i n f ected
MalPaCa + SBM 1 - - 10

2 136 4 -
3 9 - -
4 1 3 -

DBscan 1 1 1 5
2 134 5 -
3 9 1 -
4 0 - 5
5 2 - -

Louvain 1 17 7 5
2 47 - 1
3 57 - 1
4 145 1 2
5 34 - 1
6 5 2 -

ported their removal from subsequent clustering analyses, leaving 3845 nodes (running
the analyses with these two nodes included yielded similar results in the optimal SBM
solution; both were allocated to the cluster with infected nodes).

Identical to the Stratosphere data, a PCA fitting resulted 1, 1, 3, 3 components for re-
spectively bytes, gaps, dport and sport to explain > 40% of the variation. The SBM model
fitted on the binary adjacency matrix, with the PCA features resulted in an optimal 5
class solution (see Figure 5.5b and Table 5.6). Of these 5 clusters, clusters 1 and 2 cap-
tured the peripheral nodes, where the peripheral nodes in cluster 1 were all linked to host
172.16.2.11 (Storm + non-malicious) which was the only host allocated to cluster 3. Clus-
ter 4 consisted of the Waledac and Storm hosts, confirming the comparability of Waledac
and Storm activity. Cluster 5 captures eight hosts, of which seven are non-malicious:
172.16.2.2, 172.16.2.13-14, 172.16.2.111-114, and one host in cluster 5 (172.16.2.12) had
combined (non-malicious & malicious) traffic. If we consider 1734 and 2100 periph-
eral nodes (cluster 1 and 2) and 7 non-malicious nodes (cluster 5) as true negatives, the
Waledac and Storm nodes in cluster 3 and 4 as true positives, and the combined traffic
node in cluster 5 as a false negative, the accuracy and sensitivity = 99.97 % and the speci-
ficity = 100%. This performance is similar to other work on supervised learning using
decision trees [217, 225] and nearest neighbours [227] on manually curated collapsed
data. We outperform the methods listed in [244].

5.4.4. SCALABILITY OF THE MODEL FITTING
In the previous section we fitted MalPaCa and SBM on the ISOT dataset with Pt = 20,
resulting in 7683 surviving connections and 3847 nodes. Selecting a packet threshold of
20 was also a practical decision, because a major limitation of the model fitting proce-
dure so far is the speed of Variational Inference when fitting a SBM with covariates to
large datasets (> 2500 nodes). The runtime of our discovery (CTU-91) sample was about
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(a) Network plots of a subset of the ISOT network for Pt = 20. Network with
original host labels, used here as ground truth (blue = peripheral, red = ma-
licious, orange = malicious + non-malicious, green = non-malicious.

(b) Network with labels assigned by our method: Turquoise (cluster 1) &
blue (cluster 4) = peripheral, red (cluster 2) = malicious + missclasification,
orange (cluster 3) and purple (cluster 5) = Waledac, and green (cluster 6) =
non-malicious.

Figure 5.5: Network plot of a part of the ISOT data with original and recovered labels.



5.4. RESULTS

5

101

Table 5.6: Performance matrix from the SBM node-based clustering in the ISOT replication data

Cluster per i pher al neutr al neutr al + i n f ected i n f ected
1 1734 - - -
2 2100 - - -
3 - - 1 -
4 - - - 2
5 - 7 1 -

2.5 hours on a Windows 10 (i7-7700K CPU, 4.2 GHZ, 8-core, 16GB ram) machine. The
much larger replication sample required the use of the High Performance Cluster from
the TU Delft, with a runtime of approximately 5 days (multithreading with 8 cores on one
node). We therefore sought a more scalable implementation of SBM, which we found in
Stochastic Variational Inference (SVI).

Variational Inference has evolved from coordinate ascent Variational Inference (VI)
to faster and more flexible versions such as Stochastic Variational Inference [245] and
Black-Box Variational Inference [246, 247]. Since VI has local and global parameters, the
estimation of local parameters does not require the full dataset. SVI makes use of this
characteristic by allowing local parameter estimation for each individual observation,
after which the estimates are combined via a weighted mean. This divide-and-update
approach thus allows to split the data into mini-batches. SVI initially required using
noisy estimates of the natural gradient of the ELBO [245], which are optimized via a
Robbins-Monro algorithm. The use of noisy natural gradients has been surpassed by
the less biased and computationally less demanding; smoothed gradients [248].

SBMs have benefited from these developments, recently presented as Stochastic Vari-
ational Inference in Mixed-Membership SBMs ([249]) on data from 3.7 million US patents,
575000 physics articles, and 875000 Web pages. This model has been implemented in an
open source tool (SVINET: https://github.com/premgopalan/svinet) written in
c++. We applied SVINET to our data, fitting a mixed membership SBM to the ISOT data.
The speed of SVINET allowed to use the same packet threshold in the ISOT data as used
in the CTU-91 discovery set (namely Pt = 10). With this less stringent threshold, the Mal-
PaCa procedure filtered out 18325 connections between 9249 nodes. Applying SVINET
in a Ubuntu linux virtual machine required a runtime of < 20 seconds to obtain a con-
verging model, with only 16 iterations covering 92 mini batches. Model fitting resulting
in a 12-cluster solution, this is higher compared to the single membership SBM, where
nodes are not allowed to be part of multiple clusters. Most nodes (n = 8742;95%) were
part of 1 cluster, 105 nodes were placed in two clusters, 9 nodes in 3 clusters, 4 nodes
part of 4 clusters, 1 node was involved in 6 clusters, and 388 nodes were excluded. It
is unclear whether the nodes in multiple clusters (the mixed members) are the infected
machines; interpretation of the output is difficult since SVINET recodes the node labels
which hinders merging and comparison, and changing SVINET is challenging as its code
is uncommented and there is no documentation how to interpret output. SVINET does
generate an .gml object which was used to plot the network in Gephi (see Figure 5.6).

https://github.com/premgopalan/svinet
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Figure 5.6: Network plots of a subset of the ISOT network for Pt = 10 (9249 nodes and 18325 connections)
with labels from the mixed-membership SBM fitted in SVINET. The analyses removed 388 nodes as outliers,
the colours indicate the different clusters for the remaining nodes. 8742 nodes (95%) are member of a single
cluster, the remaining 119 (1.29%) nodes are in multiple clusters.

5.5. DISCUSSION

Here, we combined two unsupervised methods to solve the problem of analysing spatio-
temporal data so that botnet infected computers can be identified via connection- and
host clustering. In our discovery sample (CTU-91) we identified all infected machines
and classification was perfect. The infected machines were all allocated to one cluster,
indicating marked similarities between infected machines infected with the Conficker
botnet. In the replication sample (ISOT), one host with malicious and non-malicious
traffic was allocated to a cluster of non-malicious nodes, yielding one false negative with
an overall accuracy of 99.97%. This procedure outperforms other botnet detection stud-
ies using the ISOT dataset [166, 217, 250, 189, 251] and has comparable performance to
[227, 216]. Compared to the studies that report similar classification performance, our
method does not require any type of filtering [216] or manual feature selection [227], and
is therefore less sensitive to external factors. In the discovery sample, the neutral and
peripheral hosts were allocated together in a cluster, whereas in the replication data, the
peripheral hosts formed a separate cluster. This may be due to the mapping procedure
used in the ISOT dataset, where botnet data were collected in a VM and mapped a poste-
riori, so that the differences in the ISOT data may be captured by our model, underlining



5.5. DISCUSSION

5

103

the sensitivity of our approach. Furthermore, although not explicitly illustrated, the out-
put of MalPaCA has been found to be informative to identify malware families or other
specifically tuned categories of traffic [213], and other similar connection profile based
approaches exist [216].

A potential limitation of this study is the relatively short time window in which the
data were collected. Ideally one would capture the temporal structure of the network
traffic in more specific analyses. A prominent example of such analyses is creating snap-
shots [252], which facilitates network clustering within snapshots, so that state changes
(nodes hopping to another cluster) between snapshots can be analysed [205]. However,
given the length of the CTU-91 capture (roughly 20 minutes, compared to for example
one year of data from mobile devices in [205]) we argue there is little sense in making
5-minute snapshots, since this would result in many, difficult to compare, local network
clusters. Again, these packet thresholds are data specific, and shorter or other snapshots
may be applicable in other types of network data (e.g. social network data where snap-
shots represent school-years). Although our approach does not require manual curation,
understanding the effects of sample specific factors is a focus of future research.

5.5.1. SCALABLE MCMC
One year after the above-mentioned comparative study from Harenberg and colleagues
the development of stochastic gradients MCMC (sg-MCMC), originating from Langevin
Monte Carlo, outperformed Stochastic Variational Inference in Mixed-Membership SBMs
[253] on 5 datasets (ranging from 75-5200 nodes). This was subsequently improved in
2016 with a more optimized parallel version of sg-MCMC [254]. Speeding up MCMC
while retaining accuracy is topic of ongoing research and has reached the point where,
in the SBM setting, the analyses of 100 million edges (equivalent to a complete adjacency
matrix of 10000 nodes) is now achievable [99, 255].
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5.6. SUPPLEMENTARY MATERIAL

Supplementary Figure 5.1: This Figure shows the connections clustered with MalPaCA on the CTU-91 data.
The grey dots indicate connections labeled as outliers by HDBScan. For this plot, the multidimensional sample
space was reduced to two axes by TSNE, resulting in the ability to visually identify 7 clusters, of which the
top cluster belongs to the middle cluster (letter 4), the right cluster decomposes into 3 sub-clusters (blue, red,
brown) and outliers, and the bottom cluster consist of 2 sub-clusters (magenta, darkgreen) and outliers. Hence,
9 clusters are displayed.

5.6.1. HOST CLUSTERING CTU-91 DATASET
Node assignment to a cluster does not immediately inform which cluster(s) contain the
infected nodes. Descriptive analyses are typically used to interpret the cluster output.
For example, when comparing cluster 1 (10 hosts) with cluster 2 (140 hosts), we observed
an almost 3-fold increase of packets send (93100 versus 33917), a higher occurrence of
bigger packets send (Meanc1 = 138.22(SD = 180.51), Meanc2 = 118.97(SD = 135.63), t =
1.9547, p = .051) and received (Meanc1 = 167.26(SD = 226.31), Meanc2 = 142.92(SD =
194.23), t = 1.6614, p = .09703), and higher frequencies of HTTPS, UDP, and SMTP/IMF
protocol traffic, whereas SMTP, TCP, NBNS, and BROWSER protocol traffic was signifi-
cantly higher in cluster 2. This behaviour of nodes (more connections via specific pro-
tocols) is coherent for botnets. Further visualisation (not provided) resulted in the iden-
tification of cluster 1 as likely malicious (and verified with the original labels). All of the
malicious hosts (192.168.1.238, 192.168.1.239, 192.168.1.236, 192.168.1.91, 192.168.1.71,
192.168.1.9, 192.168.1.243, 192.168.1.242, 192.168.1.247, 192.168.1.245) were assigned to
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Supplementary Figure 5.2: This Figure shows the full network with the nodes coloured according to the labels
from the optimal 4-class SBM solution. This plot is based on the analyses of 631 connections and 205 hosts
(nodes) with packet threshold = 5. Nodes are coloured blue (neutral), green (neutral), turquoise (neutral), red
(infected), or white (outliers).

one cluster with a posterior probability of > .998.
Our observation that mean differences between clusters (as exampled above) show

a trend but are not significant, illustrates that just comparing mean differences to detect
groups, with a straightforward anomaly detection approach, would be less successful in
this particular setting.

Most of the peripheral hosts were captured by one cluster, indicating behavioural
similarity, with a class assignment posterior probability of .9982. The non-infected /
neutral hosts (192.168.1.155, 192.168.1.52, 192.168.1.157, 192.168.1.36, 192.168.1.6, 192.168.1.53,
192.168.1.64) were divided over two clusters, that also included peripheral hosts. Only
one neutral host had a posterior probability < .95, which was host 192.168.1.6 with .82,
with the remaining probability belonging to the other neutral/mixed class.
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Supplementary Figure 5.3: This Figure shows the full network with the nodes coloured according to the labels
from the optimal 4-class SBM solution. This plot is based on the analyses of 565 connections and 182 hosts
(nodes) with packet threshold = 10. Nodes are coloured blue (neutral), green (neutral), turquoise (neutral), red
(infected), or white (outliers).

Table S1: Correlation between distance matrices in the CTU-91 data

bytes gaps dport sport
bytes -
gaps .04 -
dport .13 .09 -
sport .05 -.03 -.04 -

Table S2: Performance matrix from the SBM node-based clustering when packet threshold = 5

Cluster per i pher al neutr al i n f ected
1 9 0 0
2 0 0 10
3 1 4 0
4 158 3 0
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Supplementary Figure 5.4: This Figure shows the full network with the nodes coloured according to the labels
from the optimal 4-class SBM solution. This plot is based on the analyses of 523 connections and 165 hosts
(nodes) with packet threshold = 15. Nodes are coloured blue (neutral), green (neutral), turquoise (neutral), red
(infected), or white (outliers).

Table S3: Performance matrix from the SBM node-based clustering when packet threshold = 15

Cluster per i pher al neutr al i n f ected
1 133 4 0
2 3 1 10
3 0 1 0

Table S4: Performance matrix from the SBM node-based clustering when packet threshold = 20

Cluster per i pher al neutr al i n f ected
1 123 5 0
2 0 0 6
3 0 0 4
4 2 1 0
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Supplementary Figure 5.5: This Figure shows the full network with the nodes coloured according to the labels
from the optimal 4-class SBM solution. This plot is based on the analyses of 483 connections and 148 hosts
(nodes) with packet threshold = 20. Nodes are coloured blue (neutral), green (neutral), turquoise (neutral), red
(infected), or white (outliers).
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(a) Bytes distance (b) Gaps distance

(c) Destination port distance (d) Source port distance

Supplementary Figure 5.6: ISOT data: Explained variance of components from the Principal Component Anal-
ysis on the four distance matrices, where the packet threshold was 5 packets. The connection distances in
the bytes and gaps matrices were captured by one component approximately explaining 90% of the variance,
whereas 3 components were required to capture > 40% of the variance in the destination and source port dis-
tances.
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Supplementary Figure 5.7: This Figure shows the connections clustered with MalPaCA on the ISOT data. The
green dots indicate connections labeled as outliers by HDBScan. For this plot, the multidimensional sample
space was reduced to two axes by TSNE. By colour we different clusters (e.g. orange and purple). Compared
to the CTU-91 dataset we see the connections occupy a larger sample space, indicating more variance in the
ISOT replication data.
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Table S5: MalPaCA clusters and infection status in the ISOT data

Cluster sr ci pn sr ci pi d sti pn d sti pi

-1 1948 3415 1703 3216
1 0 0 9 10
2 12 12 0 0
3 21 0 0 0
4 0 0 24 0
5 22 0 0 0
6 0 0 20 6
7 0 0 90 17
8 92 10 0 0
9 0 0 0 10
10 0 16 0 0
11 0 9 0 0
12 0 43 0 0
13 0 48 0 0
14 0 38 0 0
15, 20 & 22 0 0 0 10
16 0 0 0 11
17 0 0 0 22
18 & 19 0 0 0 8
21 0 0 0 49
23 0 0 0 27
24 0 0 0 7
25 0 0 0 40
26 & 27 0 7 0 0
28 0 11 0 0
29 0 7 0 0
30 0 4 0 4
31 0 27 0 0
32 11 11 0 0
33, 34 8 8 0 0
35 & 36 11 11 0 0
37 8 8 0 0
38 15 15 0 0

Interpretation of rows and columns equal to Table 5.3. Clusters 1, 6, and 7 contain
connections from peripheral hosts to neutral and infected hosts. Clusters 2, 8, 32-38
contain connections from both infected and neutral host to peripheral nodes. Clusters
3 and 5 both include connections from a neutral source ip to a peripheral nodes.
Cluster 9 includes connections from peripheral nodes to infected destination hosts.
Clusters 10-14, 26-29, and 31 comprise of connections from infected source hosts to
peripheral hosts. Cluster 30 includes connections from infected source IPs to infected
destination IPs.
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6
FALSE DATA INJECTION IN KALMAN

FILTERS IN AN AEROSPACE SETTING

6.1. INTRODUCTION
Kalman Filters (KF) are recursive state estimation algorithms capable of combining and
weighting different variables to estimate the real latent state of a system [64]. In this
context, recursive reflects the property that not all previous data has to be kept in stor-
age but every iteration incorporates information from previous observations and pre-
dictions [65]. This made the KF widely applicable resulting in its implementation across
various settings, including aerospace, submarines, and the estimation of missile trajec-
tories [256]. Given the importance and KFs across settings and systems there is growing
interest from security researchers to understand the robustness of KFs under different
adversarial models.

6.2. RELATED WORK
In the broader context of machine learning, taxonomies have been proposed to cate-
gorize attacks on learning algorithms [257]. According to those taxonomies, false data
injection can be classified as a causative attack where the attackers aim to influence the
learning process by affecting the training data. Several studies have addressed the effects
of false data injection, mainly in the context of cyber physical systems such as power
systems (see [67, 68]), network coordinate systems [258], and spam filters [259, 260]. Al-
though estimating effective attack vectors for the measurement * state matrix is com-
putationally intensive, brute force attacks are still feasible. However, one option is to
increase the resilience of the system by relaxing the constraints on brute force attacks,
and installing redundant measurement sensors [261]. Also, if the attacker knows the
input data and the system, this could allow him to add a vector to the original measure-
ment za = z+x instead of true measurement z. Resulting in the attack vector to become
a linear combination of the vectors of the (column vectors of the) measurement * state
matrix, letting the L2 norm of the measurement residual of za equal z, passing the detec-
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tion [262]. Other suggestions that help preventing false data injection including schemes
to protect measurements [263] and detect the attack [264, 265], as well as algorithms to
select the optimal subset of measurements to protect (e.g. through encryption [266]).

A typical method to investigate the robustness of state estimation systems and the
capacity of detection methods is the Frog Boiling method. This method words by grad-
ually and episodically injecting data to attack the system, in order not to be detected. A
study by Chan-Tin and colleagues [258] showed that in network coordinate systems, the
frog boiling attack was just as effective as a random attack, leading to the assumption
that KFs will not be effective outlier detectors. This assumption was tested by Mo and Si-
nopoli in 2010 [261] to provide proof that the KF estimates could indeed be destabilized
with false data injection, despite several failure detectors.

False data injection in KFs has been studied in the context of SCADA systems [67]
and secure estimation methods on simulated UAV data [69]. Yang and colleagues [67]
investigated the robustness of state estimates by evaluating an innovation factor in five
attack models; maximum magnitude-based, wave-based, positive deviation, negative
deviation, and mixed. In the maximum magnitude-based attack the adversary tries to
achieve the maximum deviation of original measurements that equals to the maximum
magnitude of the attack vector. In the wave-based attack, the malicious measurements
are the reverse direction of injected attack data. In the positive and negative deviation
attack, the adversary tends to achieve the maximum deviation of original measurements
along with the direction of increase. Finally, the mixed attack can be a combination of
the latter four attack models in consecutive time points (e.g. positive deviation at t +1,
wave-based at t + 2). Chang et al. [69] combined the KF with secure estimation and
showed that applying the KF after data were run through a secure estimation algorithm
yielded more secure output than applying the algorithm or filter alone. Finally, one of the
reasons why the KF itself was not robust against attacks was that the manipulated data
violated the KF assumption of Gaussian distributed noise. This observation adds to the
overall impression that KFs are inherently insecure and vulnerable to data manipulation,
since KF produces reasonable estimates even when assumptions are violated making it
difficult to detect malicious input.

Aircraft position estimation has historically relied on the availability and interpre-
tation of radar data. Recently, a new system has been developed called Original Auto-
matic Dependent Surveillance - Broadcast (ADS-B) that replaced primary and secondary
surveillance radar technologies in 2017. ADS-B is based on the Global Navigation Satel-
lite System (GNSS) and relies on on-board navigation systems that retrieve GPS data,
determine the aircraft position, and forward these data to ground stations1. Researchers
[70] and hackers [267] have already identified several vulnerabilities in the ADS-B in-
frastructure. The main problem is the absence of encryption of ADS-B message con-
tent, resulting in the possibility that adversaries can eavesdrop on messages sent out by
aircraft. Other vulnerabilities include the injection of ADS-B messages to create ghost
aircraft, jam the signal to make aircraft disappear, or replace aircraft by replacing the
identifier of the ADS-B message with modified data. While the technical details of the
on-board aircraft position estimation in the ADS-B infrastructure are difficult to come
by, integration and combination of raw satellite data to derive an accurate GPS position

1https://en.wikipedia.org/wiki/Automatic_dependent_surveillance_-_broadcast

https://en.wikipedia.org/wiki/Automatic_dependent_surveillance_-_broadcast
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is likely based on the Kalman Filter. Also Kalman Filters can be used for the combination
of ADS-B with radar data [268]. Given the outlined vulnerabilities of both the Kalman
Filter algorithm and the ADS-B infrastructure, this study aims to investigate the sensi-
tivity of the Kalman Filter to the effects of false data injection under different adversarial
scenario’s, by replicating the study of [67] in the ADS-B context.

6.3. METHODS

6.3.1. OPENSKY ADS-B DATA

Original Automatic Dependent Surveillance - Broadcast (ADS-B) data were obtained through
the OpenSky platform [269]. In short, OpenSky consists of various off-the-shelf sensors
distributed over Europe capturing more than 40% of Europe’s commercial air traffic. Air-
craft use on-board satellite navigation systems (e.g. GPS) to retrieve their own position
and velocity, which is broadcasted twice per second to ATC stations on the ground and
other aircraft. Exploration of the data from a subset of flights revealed that the data
were already filtered upon collection as most commercial GPS systems have built in
Kalman Filtering [270]. Filtering ADS-B output again is unlikely to be beneficial, because
it violates the time-independence assumption of KFs: GPS data are time dependent as
the filter bases its current estimate on the recursive estimates of all previous measure-
ments. For this project, a representative subset of data from flight OHY925 from Antalya
(Turkey) to Amsterdam (The Netherlands; see Figure 1) were used.

Figure 1: Flightpath of flight OHY925 based on the ADS-B GPS data

6.3.2. LINEAR UNIDIMENSIONAL MODEL
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TRANSFORMATION OF ADS-B TO RADAR DATA

Latitude and longitude were included in the ADS-D data. Latitude of a point on the
Earth’s surface is the angle between the equatorial plane and the straight line that passes
through that point and through (or close to) the centre of the Earth. Longitude of a point
on the Earth’s surface is the angle east or west from a reference meridian to another
meridian that passes through that point2. For the linear model, I decided to transform
the GPS data to position data, allowing simulation of radar distance signals. For every
timestep in the ADS-B data, I calculated the great-circle distance, which is the shortest
distance between two points on the surface of a sphere, with the Vincenty method [271]
as implemented in the R package Geopshere [272]. Because the flight occurred above
central Europe, reference measures were used from the European Terrestrial Reference
System 1989 (ETRS89). ETRS89 is an earth-centered, earth-fixed geodetic Cartesian ref-
erence frame, in which the Eurasian Plate as a whole is static. The equatorial axis of el-
lipsoid is 6378137, the polar axis of ellipsoid is 6356752.31414, and the inverse flattening
of ellipsoid = 298.257222101.

(a) Linear plot mimicking typical radar distance estimates (b) Linear distance × time relationship

Figure 2: Subpart of the flightpath without a deviation in direction

The standard Kalman Filter can only be applied to linear states. To simulate a lin-
ear radar system, a subset of the first 500 ADS-B coordinates was selected that consisted
of the flightpath between east Aue (Germany) and Flinsberg (Germany; Figure 2a). The
last point of the ADS-B flight data was set as radar station (longitude = 10.24911, latitude
= 51.31821). With the Vincenty method, the metric distance was calculated for every
ABS-B data point and the virtual radar station. The largest distance (beginning of the
flightpath) to the radar station was 184092.35 meters (m), the smallest distance (end of
the flightpath) to the radar station was 0.28 m. Normally, ADS-B is forwarded twice a
second, but the distance between forwards revealed that, assuming a constant veloc-
ity in flight, the forwarding occurred with large instability. Also, 46.8% of the forwards
contained identical GPS information to the previous forward. Given that ADS-B data is

2Wikipedia, Geographic Coordinate System https://en.wikipedia.org/wiki/Geographic_coordinat
e_system

https://en.wikipedia.org/wiki/Geographic_coordinate_system
https://en.wikipedia.org/wiki/Geographic_coordinate_system
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Table 1: Parameter definition

ūt = Predicted state estimation
At = Matrix of n*n that describes how the state evolves from t-1 to t
Bt = Matrix of n*l that describes how the control ut changes the state
Σt = Predicted process covariance matrix
Qt = Process noise covariance matrix
Kt = Kalman gain
Ct = m-dimensional measurement matrix
Rt = Measurement noise
ut = Current state estimation
yt = real noisy measurement
ynoi se = observation errors in mechanism (eg. electronic delays)
zt = Imported measurement
Σt = Updated process covariance matrix
I = Identity Matrix
w = Gaussian white noise

forwarded from the aircraft, filtering of the raw satellite data has already been conducted
and ADS-B data is very smooth. This supports the decision to simulate additional error.
Noise in radar systems can vary from 5 to 300 m. Given the speed of the aircraft in flight
(250 m/s at 900 km per hour) noise was simulated by creating a random normal distribu-
tion (N = 100.000) with mean zero and a standard deviation of 250 m. At every iteration
of the model, one sample was independently drawn from this distribution and added to
the raw radar distance..

If the aircraft has a constant velocity (which is to be expected in this part of the flight),
the variance around the distances between updates should be minimal. To verify this, I
calculated how much steps were identical between every step in GPS coordinates and di-
vided the metric distance between GPS coordinates by the amount of identical steps. As
a result, the differences will average out and every update includes a distance that is stan-
dardized for time (one second), yielding a linear model in which the aircraft approached
the virtual radar every timestep (Figure 2b). Verification showed substantial variability
of the distance between updates, following a normal distribution with mean -213.56 m/s
and standard deviation (SD) 101.47 m. These distances were used as the velocity of me-
ters/second to model acceleration in the dynamical model. The noise simulation was
identical to the linear model.

KALMAN FILTER MODEL

The Kalman Filter for the linear model followed the structure as outlined in Welch &
Bischop (2006) with parameter definition in Table 1, with the prediction step defined as

ūt = At ūt−1 +Bt ut−1 +wt (6.1a)

zt =Ct yt + ynoi se (6.1b)

Σ= AtΣt−1 AT
t +Qt (6.2)
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And the filtering step defined as:

Kt =Σt C T
t (CtΣt C T

t + (Rt )−1 (6.3)

ut = ūt +Kt [zt −Ct ūt ] (6.4)

Σt = (I −Kt Ct )Σt (6.5)

The dynamical model, or state transition function, followed a standard radar-aircraft
model with the innovation function

(
1 4T
0 1

)
with 4T being the timestep (1 second) and

the state change estimator
(

1
2 4T 2

4T

)
[acceler ati on] [273]. Labbe [270] presents the ex-

planation for the innovation function, with state space matrix
(

0 1
0 0

)( x
ẋ

)
where x is the

position and ẋ is the velocity. The F matrix is
(

0 1
0 0

)
and the following Taylor series expan-

sion linearises the equation at t :

Φ(t ) = eFt = I +Ft + (Ft )2

2!
+ (Ft )3

3!
+ ...+ (Ft )n

n!
(6.6)

resulting in F 2 = (
0 0
0 0

)
, so with all higher powers of F equal 0: Φ(t ) = I +Ft +0 = (

1 0
0 1

)+(
0 0
1 0

)
t = (

1 t
1 0

)
. Acceleration was defined as the velocity for every 4T , which could in-

crease and decrease and the value in the model was updated with the velocity. Starting
values of the model were taken from the data, position equal to the largest distance from
the aircraft to radar (184092.35 m) and velocity equal to the mean of the velocity in the
data (-213.56 m/s). Other starting parameters were uncertainty in measurement (500
m), process covariance matrix (position 1km, velocity 300 m/s), and observation error
(position 1km, velocity 250 m/s).

There are different methods to formulate the process covariance matrix [274] vary-
ing from a face value definition to the Autocovariance Least-Squares technique [275]. I
decided to use a process noise covariance model that assumes that the acceleration is
constant for the duration of each time period (in line with the standardization), but dif-
fers for each time period (in line with the variance in distance), and each of these are
uncorrelated between time periods (time independence), outlined in [270], shortly de-

fined as Qt =
( 4T 4

4
4T 3

2
4T 3

2 4T 2

)
[σ2

v ] where [σ2
v ] is the variance of the velocity.

6.3.3. NON-LINEAR MULTIDIMENSIONAL MODEL

ADDING NOISE TO ADS-B DATA

For the non-linear model, a subset of the ADS-B GPS data with altitude was selected that
consisted of the flightpath between east Flinsberg (Germany) and Schiphol (the Nether-
lands, Figure 3). Given that ADS-B data are already filtered, noise was added to the data
(Figure 4). First, for every GPS coordinate, the longitude estimate was incremented with
0.000001, while keeping latitude identical. The Vincenty Method was used to calculate
the pairwise distance on every iteration, which stopped if the distance reached 100 me-
ters. Typically, satellite estimates are accurate, especially within Europe where continen-
tal drift effects are minimal. Given the speed of the aircraft (900 km/h = 250 m/s) and the
observation that ADS-B normally forwards twice a second, I used 100 meters as noise
threshold. Then, the same procedure was repeated, decreasing the longitude until the
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distance again reached 100 m. Finally, this iterative process was repeated for latitudes
in both directions, while keeping the longitude identical. This resulted in a range for
longitude and a range for latitude (Figure 5), that was used to create a list of all possi-
ble intermediate GPS values (resolution = 0.00001 ≈ 1.9 km) from which a random GPS
coordinate was sampled. This noisy data was used for all subsequent analyses.

Figure 3: Flightpath (black) and
noise (red) starting at the upper
right corner. Axes are Longitude,
Latitude, and Altitude.

Figure 4: Zoomed-in part of the
flightpath, raw data in black, sim-
ulated noise in red.

Figure 5: One GPS position (mid-
dle) with four 100 m deviations (up,
down, left, right) and the yellow
noise window.

Figure 3 shows the flightpath following a non-linear model. As the aircraft slowed
down in the descent towards the airport, the mean of the velocity (-122.424 m/s) and
with a larger variability (SD = 371.073 m) than the linear flightpath (SD = 101.47 m).
These distances were used as the velocity of meters per second.

EXTENDED KALMAN FILTER MODEL

The Extended Kalman Filter (EKF) is the most commonly used state estimation algo-
rithm for non-linear processes [276]. Following [67] I used the computation method
described from [277], which is largely identical to the non linear KF as it still is defined as
a linear model but uses local linearisation to approximate the slope at the point of mea-
surement. This local linearisation occurs in the estimation of the dynamical model, so
that the estimated state is system function ( f ) that takes three parameters ūt = f (ūt−1,ut−1, wt )
with output function zt = h(ūt , vk ), where ūt and zk are the state variable vector and
measurable output at time t , respectively. Parameter ut is the measurable input, wt is
the process noise (White Gaussian), and vk is the measurement noise (White Gaussian).
Calculation of the Jacobians was conducted with the package numDeriv [278].

The dynamical model that has to be linearised was identical to the model used in the
linear model but extended to six variables.

Giving the following innovation function

1 0 0 4T 0 0
0 1 0 0 4T 0
0 0 1 0 0 4T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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.
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The EKF formulation is as follows:
The prediction step:

ūt = f (ūt−1,ut−1, wt ) (6.7a)

zt = h(yt ,ut−1, ynoi se ) (6.7b)

Σ= AtΣt−1 AT
t +Lt−1Qt LT

t−1 (6.8)

Where At = and Lt−1 = and the filtering step is defined as:

Kt =Σt C T
t (CtΣt C T

t +Mt Rt M T
t )−1 (6.9)

ut = ūt +Kt [zt −h(ūt ,0)] (6.10)

Σt = (I −Kt Ct )Σt (6.11)

Where Ct = ∂h
∂x (ūt ,0) and Mt = ∂h

∂v (ūt ,0).
Starting parameters were uncertainty in measurement (1 km, equal to a bidirectional

deviation of 0.0015 longitude and 0.0010 latitude), process covariance matrix (500 m
with start error of 300 m/s), and observation error (position 1 km, velocity 250 m/s).

6.3.4. ATTACK MODELS

ANOMALY DETECTION IN KALMAN FILTER

This method follows [67]. After each prediction step the innovation factor (vt ) is calcu-
lated, which is equal to the difference between the prediction and the actual measure-
ment:

vt = zt −Ct ūt (6.12)

With zt being the original measurement and Ct ūt being the predicted state. The innova-
tion factor can be approximated by a white Gaussian process. To enhance interpretation
of the innovation factor, it is standardized:

λt = vt /ρt (6.13)

ρt =
√

(CtΣt C T
t +Rt ) (6.14)

Where Ct is a m-dimensional measurement matrix,Σt is the updated process covariance
matrix, and Rt is the measurement noise. A detailed description of the steps involved in
anomaly detection is published elsewhere [67]. In short, anomalies are detected by com-
paring the absolute value of the standardized innovation factor |λt | against a predefined
threshold λmax . Given the two tailed distribution of the standardized innovation factor.

Sophisticated data attacks use an effective non-zero attack vector ct , in the anomaly
detection algorithm: zt−Ct ūt

ρt
≤λmax so that the range of zt van be obtained by

Ct ūt +λmaxρt ≥ zt ≥Ct ūt −λmaxρt (6.15)

In other words, the malicious measurement zt should be a value that is derived from the
boundaries depending on the measured state, the predicted state, and the (standard-
ized) innovation factor threshold, in order not to be detected by the anomaly detection
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threshold. The attack vector ct can be obtained by subtracting yt (observed noisy es-
timate) from zt (predicted measurement). I assume the attacker knows the anomaly
detection algorithm and the predefined threshold λmax . Other parameters ρt and Ct ūt

can be derived between t −1 and t . Since the state prediction is conducted at the very
beginning of the KF procedure, and adopts the value of the previous state estimation af-
ter the first iteration, zt can be derived as soon as the previous iteration is completed,
which is before t .

MAXIMUM MAGNITUDE-BASED ATTACK

In this attack, the adversary tries to achieve the maximum deviation of the original mea-
sure. That is, the maximum deviation that is allowed within the anomaly detection
threshold, by estimating the maximum attack vector |ct | that achieves the maximum
manipulation of the received measurement zt from the original measurement yt by in-
serting false data. The adversary acquires the parameters at time t − 1, computes the
predicted measurement hi , λmax , and ρt . For the next timestep (t + 1), the original
measurement yt is retrieved and the innovation vector vt is calculated. Depending on
the evaluation of the innovation vector, λmaxρt is added to (vt < 0) or subtracted from
(vt ≥ 0) hi . This attack can be expressed as follows:

if vt ≥ 0 : h(ūt ,0)−λmaxρt (6.16a)

if vt < 0 : h(ūt ,0)+λmaxρt (6.16b)

With attack vector ct :

if vt ≥ 0 : ct = zt − yt =−vt −λmaxρt (6.17a)

if vt < 0 : ct = zt − yt =−vt +λmaxρt (6.17b)

Giving:
|ct | = |zt − yt | = |vt |+λmaxρt (6.18)

WAVE-BASED ATTACK

This attack is computationally identical to the maximum magnitude-based attack, but
the injected attack data will be in the opposite direction of the estimated state. This
translated into the formulas below, with opposite conditions on vt :

if vt < 0 : h(ūt ,0)−λmaxρt (6.19a)

if vt ≥ 0 : h(ūt ,0)+λmaxρt (6.19b)

With attack vector ct :

if vt < 0 : ct = zt − yt =−vt −λmaxρt (6.20a)

if vt ≥ 0 : ct = zt − yt =−vt +λmaxρt (6.20b)

Giving:
|ct | = |zt − yt | =λmaxρt −|vt | (6.21)
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POSITIVE DEVIATION ATTACK

In aim of this attack is to achieve the maximum deviation (maximum value of zk ) of
original measurements along with the direction of increase, independent of the direction
of the innovation factor. This attack can be formulated as:

zk = h(ūt ,0)+λmaxρt (6.22)

With attack vector ct :
ct = zt − yt =−vt +λmaxρt (6.23)

Giving:
|ct | = |zt − yt | =λmaxρt − vt (6.24)

NEGATIVE DEVIATION ATTACK

The negative deviation attack is identical to the positive deviation attack, but here, zt is
always the minimum of the range of its possible value:

zk = h(ūt ,0)−λmaxρt (6.25)

With attack vector ct :
ct = zt − yt =−vt −λmaxρt (6.26)

Giving:
|ct | = |zt − yt | =λmaxρt + vt (6.27)

6.3.5. STATE DEVIATION UNDER ATTACK

LINEAR MODEL

This section explains how and where in the KF procedure, data are injected. This study
assumed that attacks had full knowledge about the system, the incoming data, the anomaly
detection algorithm, and the implementation of the state estimation algorithm(s). The
KF is defined below:

The linear model:
ūt = At ūt−1 +Bt ut−1 +wt (6.28)

Σ= AtΣt−1 AT
t +Qt (6.29)

And the filtering step defined as:

Kt =Σt C T
t (CtΣt C T

t + (Rt )−1 (6.30)

ut = ūt +Kt [zt −Ct ūt ] (6.31)

Σt = (I −Kt Ct )Σt (6.32)

The attack vector was defined previously as ct = zt − yt , and the attack vector errors are
obtained by multiplying them with the Kalman Gain:

at = Kt ct (6.33)

Typically, the attack vector and its errors are matrices m ∗1 matrices, with m being the
number of variables or dimensions in the model, necessitating the definition of an attack
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parameter ct for every dimension (the errors at can be derived from the Kalman gain
and attack vector). These attack parameters are added to the state estimation model
parameter ūt . Hence, both the observed measurement yt and the predicted state ūt are
respectively manipulated by the attack vector ct and at :

zt+1 = yt+1 + ct+1 (6.34a)

ū+
t = ūt +at (6.34b)

The attack vectors ct and at are injected in the state estimation formula, resulting in a
manipulated state estimation:

u+
t+1 = [At (ūt−1 +at )+Bt ut−1 +wt ]+Kt+1[(yt+1 + ct )−Ct [At (ūt−1 +at )+Bt ut−1 +wt ]]

(6.35)
Equal to:

u+
t+1 = ū+

t Kt+1[zt+1 −Ct ū+
t ] (6.36)

Where u+
t is the state estimation after the attack. Since the state estimation is defined or

acknowledged to be the moment t , the attack occurs between t −1 and t .

NON-LINEAR MODEL

Data injection is largely identical in the non-linear model, with at identical to formula
33. Consequently, the state estimation model is as follows:

u+
t+1 = f (ū+

t ,0)+Kt+1[zt+1 −h( f (u+
t ,0),0)] (6.37)

Where zt+1 is the received measure at t +1 and zt+1 = yt+1 + ct+1.

6.3.6. EVALUATING KF PERFORMANCE
There are numerous ways to investigate the performance of the KF. In general, relying
on visual inspection of the plotted KF estimation can be intuitive but is not always valid.
Labbe [270] describes how to use check the KF residuals and compare these residuals
against 95% confidence intervals. To understand the accuracy of the parameters in the
KF model, there is a widely used performance index (Jt [67] that evaluates the ratio of
[estimated measurement - true vector of measurements] versus [real (noisy) measure-
ment - true vector of measurement]. Ideally, the ratio approaches unity, as an indication
of optimal performance:

Jt = Σ|ut − ūt |
Σ|yt − ūt |

(6.38)

6.4. RESULTS

6.4.1. LINEAR MODEL
The normal (not attacked) linear model is visually presented in Figure 6, which shows a
very good fit of the KF to the data.

Evidence for good fit of the data can also be inferred from the residuals, where 94.76%
of the position estimates (Figure 7a) and 94.64% of the velocity estimates (Figure 7b) fall
within the 95% confidence interval.
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Figure 6: Linear model noisy data (red), the predicted state (green) and the current state Kalman Filter (blue).

(a) Residuals of the position. (b) Residuals of the velocity.

Figure 7: Residuals of linear model on position and velocity
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Figure 8 presents (a part of) the trajectory plots for the four attack models. The max-
imum magnitude based attack shows considerable deviation from the trajectory, espe-
cially when compared to the wave based (opposite direction of the prediction), where
deviation of the predicted state and current state (Kalman) look consistently smaller,
owing to the fact that they are in the opposite direction, and therefore could level out
strong deviations in the real (noisy) state. The positive and negative deviation attacks
show similar patterns, with the positive deviation yielding a uniform deviation to lower
positions; pulling the Kalman estimate of position closer to the radar. In contrast, the
negative deviation attack provides a persistent overestimation of the position of the air-
craft.

(a) Residuals of the position. (b) Residuals of the velocity.

(c) Residuals of the position. (d) Residuals of the velocity.

Figure 8: Scatterplots of the noisy data (red), predicted state (green) and Kalman state estimate (blue) under
different attack models. The four images represent the maximum magnitude (upper left), wave-based (upper
right), positive deviation (lower left) and negative deviation (lower right) attacks.

Figure 9 displays the performance estimates of the different models and reveals, al-
though the effect is small, that the positive deviation attack and maximum magnitude
data injection provide the worst performance from the KF in a linear model. Whereas
the negative deviation and wave based attack model have less impact on model perfor-
mance.
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Figure 9: Plot of the performance index J for all timepoints, for the model without attack (black), maximum
magnitude attack (orange), wave based attack (blue), positive deviation (red), and negative deviation (green)
attack.

6.4.2. NON-LINEAR MODEL
The baseline (not attacked) non-linear multidimensional model is visually presented
in Figure 10, which shows the trajectory of the aircraft, coming in at an altitude of 10
km, slowly decreasing in altitude for landing. During it’s descent, there are several ma-
noeuvres, mainly to the left (please note that the ADS-B data used here is not forwarded
twice a second resulting in a pattern that is not really time-scaled). We can clearly see
that in stable flight, there is a very good convergence of the predicted state and current
(Kalman) estimates. When the aircraft decreases in altitude (and velocity; not in model)
the predicted estimates slightly diverge, but the Kalman state estimation remains rela-
tively close to the measured position. Especially during sudden manoeuvres, the resid-
uals (Figure 11) show slight model divergence, which is resolved after a 20-50 seconds,
illustrating typical KF behaviour. In normal flight, the residuals remain well within the
95% Confidence Interval boundaries, but the signal crosses the boundaries during fast
and unpredicted changes of longitude, latitude, and altitude of the aircraft. These kinds
of deviations in multidimensional systems are well known [270].

The trajectory plots for the flight under data injection are presented in Figure 12.
Again, the maximum magnitude based attack (Figure 12a) showed considerable devia-
tion from the trajectory, exceeding the deviation of the wave based attack (Figure 12b).

The performance indices for the different attack models are presented in Figures 13a
and 13b. Which both show strong differences between the different attack models. In
short, the positive deviation attack and maximum magnitude data injection result in the
worst deviation from the baseline (no attack) model. The negative deviation and wave
based attack model have less impact on model performance.

6.5. DISCUSSION
The overarching aim of this study was to test the effects of false data injection on state
estimation with Kalman Filters in an aerospace setting. I replicated earlier findings [67],
confirming that the wave-based attack had the least impact. This finding may be influ-
enced by the variability in the data, as the wave based attack is an injection of signal in
the opposite direction of the innovation factor. Although the innovation factor follows
a normal distribution with zero mean, strong deviations from the expected result could
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Figure 10: 3d plot of the flight trajectory without data injection, showing the aircraft in landing. Axes are
longitude, latitude, and altitude. Colors are noisy (real) state in green, predicted state in red, and Kalman
estimates in blue.
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(a) Residuals of longitude.

(b) Residuals of latitude.

(c) Residuals of altitude.

Figure 11: Residuals of different parameters from the non-linear model. We can see the effect of the data
injection around 600 seconds after which the KF estimate diverges and the residuals increase to fall outside
the 95% Confidence Intervals.
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(a) Residuals of the position. (b) Residuals of the velocity.

(c) Residuals of the position. (d) Residuals of the velocity.

Figure 12: 3d plots of the noisy data (green), predicted state (red) and Kalman state estimate (blue) under
different attack models. The four images represent the maximum magnitude (upper left), wave-based (upper
right), positive deviation (lower left) and negative deviation (lower right) attacks. Axes are longitude, latitude,
and altitude.
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(a) Residuals of the position. (b) Residuals of the velocity.

Figure 13: Plot of the performance parameter J for longitude and latitude under the various attack models
(normal = black, maximum magnitude = orange, wave based = blue, positive deviation = red, and negative
deviation = green.

be counterbalanced by data injection in the wave based attack. In contrast, attacks that
manipulate the signal to the furthest possible (within the anomaly detection threshold
λmax ) extremes have more impact on state estimation, especially when the injection is
in the same direction as the predicted state. Kalman filter behaviour was in line with de-
scriptions and reports from others [279, 273, 280, 270]. Arguably, one of the reasons why
the KF and EKF models fitted provided a good fit to the data was that the data, even in
the non linear model, did not contain very large non-linear patterns. The fit of the mul-
tidimensional model could be improved by weighting the individual velocity estimates
in the dynamical model for the speed estimate forwarded from the aircraft, which was
not done in this study because of the apparent complexity of modelling speed in miles
per hour and longitude/latitude estimates. Indeed, in sudden manoeuvres the EKF di-
verged, only to return to normal after a few seconds. This EKF divergence problem could
intensify if data would be highly non-linear [281, 282]. I am aware of the advantages for
model convergence and computational stability of other filters like the unscented KF
or the enhanced EKF, but current evidence does not show that these versions of the KF
algorithm are more stable or secure when attacked with false data [67].

The addition of noise to the ADS-B GPS coordinates may have provided an overesti-
mation of the variation in ADS-B data, causing the innovation factor distribution to be
too wide. In data with small variability, the anomaly detection threshold could be more
stringent because large deviations are not expected, allowing early detection of devia-
tions (indicating attacks). However, even without noise added to the data, the anomaly
detection window will likely to be large because it has to allow manoeuvres from the
aircraft. Although velocity and altitude are major predictors for the probability that an
aircraft makes a rapid manoeuvre. The anomaly detection threshold is assumed to be
static, meaning it does not depend on these variables. Therefore, λmax has to present an
equilibrium that allows manoeuvring of the aircraft within its flight envelope, but strin-
gent enough to detect anomalies. Consequently, it is likely that the frog boiling attack
would still have been successful, even without simulated noise, because λmax allows
significant deviation from the predicted signal.

This work also confirms that the frog boiling method can be successfully used to at-
tack state estimation systems, even with anomaly detection. It is unclear whether state
estimation systems are currently equipped with anomaly detection algorithms. How-
ever, the severity of the attack (as modelled here) is limited by the innovation factor vt
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calculated from the measured state zt and the predicted state ūt . As the measured state
is updated on every iteration of the model and is not infinite in its error (given the re-
quirement of Gaussian noise), the effect of the frog boiling attack could be smaller than
observed by others [258], since its impact is bounded by the anomaly detection system.
This could also explain why our model deviated from its original state, but did not di-
verge as a result of the attack, which contrast other results [261]. Moreover, the inno-
vation vector vt is estimated for every variable that contributes to the state estimation.
This study used the same standardized innovation vector threshold λmax across vari-
ables, but variable-specific thresholds could easily be implemented to make the system
more robust against attacks. Nevertheless, frog boiling remains successful, even with an
anomaly detection system implemented.

6.5.1. COUNTERMEASURES

Following the apparent vulnerabilities of the KF, studies have proposed several counter-
measures to mitigate or reduce the impact of false data attacks. Yang, Chang, and Yu [67]
proposed to multiply the measurement noise with an exponential, which leads to a de-
crease of the Kalman Gain so that it favours prediction over measurement. They also pro-
posed temporal-based detection, using the nonparametric cumulative sum (CUSUM)
algorithms to detect change in the observations as early as possible. Another proposed
countermeasure resembles more general machine learning anomaly detection and in-
volves comparing state estimates to distributions based on historical data [68].

6.5.2. ATTACK MODELS

One of the limitations of the models used in this project (and others) could be the as-
sumptions made about the attacker. This study assumed that attackers had full knowl-
edge about the system, the incoming data, the anomaly detection algorithm, and the
implementation of the state estimation algorithm(s). It is unclear to what extend these
assumptions are valid. Maybe these assumptions stem from cryptography, a field where
it is common practice to assume the attacker has knowledge about the technical and
computational details of the crypto protocols [283]. It is difficult to prove these assump-
tions are wrong, but it could be a good idea to formulate general rules and best practice
guidelines that can be used to formulate attack model assumptions. This could aid gen-
eralization of theoretical problems. Also, however worrisome the effects of false data
injection are, the exact implications of false data injection attacks are unknown. In in-
dustrial systems, training data are often not available to attackers and the data-driven
thresholds used in detection system (e.g., weights of words in spam filters) are not con-
tinuously updated with every new email (observation) but based on large amounts of
historical data that have been screened intensively. Also, most learning processes are
inherently robust against direct data injection attacks. Given the amount of data that is
typically used in industrial data driven detection algorithms it is almost impossible for
a single attacker to immediately change the underlying distribution of a detection al-
gorithm. To prevent rejection of the injection as an outlier, one has to model the data
injection careful to allow subtle deviation of the original signal. Hence, the outcomes of
this project favour the use of data-driven security thresholds in state estimation systems.
With data-driven thresholds, the best achievable scenario could be one where the vari-
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ation of the distribution increases, broadening the boundaries for attack messages that
will ultimately fall within the distribution.

6.6. CONCLUSION
This study reports the effects of false data injection on ADS-B derived position estimates
of aircraft position. Data were injected in a linear model (Kalman Filter), investigating
the change of radar-distance position, and in a non-linear model (Extended Kalman Fil-
ter) with the ADS-B GPS coordinates with simulated noise. For both models, the positive
deviation attack and maximum magnitude data injection provide the worst performance
of the filtered state estimation model. Whereas the negative deviation and wave based
attack model have less impact on model performance.
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INVESTIGATING RESIDUALS AS A

MEASURE OF SURPRISE IN 219.810
CONSUMER CREDIT APPLICATIONS

This paper presents a proof of concept where we explored the usefulness of residuals to
create a measure of surprise, as an indicator for unexpected credit-application responses,
in the context of fraud detection. In a non-fraud training set we fitted generalized linear
models to a subset of variables, to obtain coefficients from which predicted values could
be estimated in the test set. The distributions of these residuals were then tested for sig-
nificance against the fraud label. The significant residuals were combined to form a mea-
sure of surprise, which was experimentally added to the fraud detection model. We illus-
trate the potency of this approach on a classic open source Australian dataset from credit
card applications, and then field test this procedure on a large representative database
including 219810 consumer credit applications from a large financial institution (ING
bank Netherlands). Both datasets included a subsantial number of covariates with a
residual-distribution that was fraud-variant, and adding residuals to the ING fraud de-
tection model increased explained variance but did not improve classification, implying
the same classification is conducted with more certainty. The outcomes evidence that in
fraud cases the reported responses in credit applications more often deviate from expected
values and evaluation of residuals in application data can be an important step in under-
standing the trustworthiness of provided information and the detection of fraud.

Parts of this chapter have been presented at the Data Leaders Summit Europe Conference in Barcelona (2016).
Title: Introducing Machine Learning at the foundation of your data sets: Ascertaining the validity of consumer
data to increase the accuracy of fraud detection.
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7.1. INTRODUCTION

Fraud is a crime that is often well-considered, organized, concealed, time-evolving and
can take many forms [284]. Despite the low frequency of fraud events, the large num-
ber of transactions, financial products and the variety in which fraud can be perpetrated
makes it a major problem to financial institutions (annual losses predicted to be 73 bil-
lion pounds in the UK alone). Fraud detection has benefited greatly from the statisti-
cal analyses of suspicious behaviour captured in data [75, 34, 35, 285]. Typical machine
learning methods reported useful in fraud detection are regression analyses, neural net-
works, Bayesian networks, decision trees, and clustering via distance measuring.

A major complexity in fraud detection is that fraudsters are inherently dishonest
about their intention. Especially when client-input is required, it is not unusual for
fraudsters to purposely provide false or manipulated data to "blend in", mislead or cor-
rupt the detection pipeline by presenting false, incomplete, or inaccurate data [76]. In
banking, one obvious fraud context is credit applications, where clients apply for a credit
online and provide information on different topics spanning income, marital status, pur-
pose of the credit, etc. In our experience, there are two types of fraudulent clients in
credit applications; those who provide falsified information, such as using a non-existent
identity, or stolen information with the purpose of getting money quickly without paying
back (hit and run), and those who provide falsified information with the purpose of get-
ting (a higher) loan, but with the idea of paying it back (forgery). An example of the first
group is a client who lies about marital status to prevent a partner with a bad credit his-
tory from being evaluated in the application. An example of the second type is a student
who applies for a student-loan and lies about the year of study (credit height depends on
student seniority). Both types are an obvious problem to any financial organization.

Although fraud detection algorithms aim to identify general trends of suspicious ap-
plications and transactions [35], the validity and integrity of the data underlying these
models, apart from cleaning, has received little attention. Models merely trained on a
fraud / not-fraud label can be useful, but when the features depend information given by
the clients themselves the feature-weights may underestimate the risk posed by clients
who provide false-information. Here, we explore a procedure based on the combination
of residuals to detect abnormal responses in individuals who apply for credit a finan-
cial setting. On data from non-fraud cases, we use the covariance between features to
train generalized linear models for each feature, where we use a significant subset of the
other features as predictors. The remaining data (fraud + non fraud) are used as a test set
in which we calculate the predicted value and residuals for each observation on every
feature. We then investigate which features have residuals with a significantly different
distribution in fraud vs. non fraud cases (ie. are informative for fraud status). We com-
bine the significant studentized residuals as a measure of surprise. By training only on
non-fraud cases we circumvent the complexity of unbalanced fraud / non-fraud cate-
gories. We first test the principle on a classic open source Australian dataset from credit
card applications, and then field test this procedure on a large representative database
including 219810 consumer credit applications from a large financial institution (ING
bank Netherlands) and investigate the merits for the detection of fraud.



7.2. METHODS

7

137

7.2. METHODS

7.2.1. AUSTRALIAN DATA

We used the Australian Credit Approval data as provided by dr. Ross Quinlan and re-
trieved online via http://archive.ics.uci.edu/ml/datasets/Statlog+(Aust
ralian+Credit+Approval), and includes data from 690 observations why apply for a
credit card. Although the attribute names are not provided and values have been recoded
to be meaningless, the data are useful since they hold a combination of categorical and
continuous variables with a realistic covariance structure. There were 14 covariates and
1 dichotomous class label. Eight covariates were categorical, but item A5 and A6 were
analysed as continuous (given the number of categories). Variables A4 and A12 had 3
categories and were analyzed as dummy variables (if independent) or multinomial (de-
pendent). Variables 13 was log-transformed to a normal distribution. Variable 14 did not
correlate with other covariates and was excluded from further analyses.

7.2.2. ING DATA

Data from January 2013 to July 2016 were extracted from two sources; an existing cus-
tomer database (number of individuals (N ) = 568341, number of variables (Np ) = 707)
and application information (N = 3.887.625, Np = 74). Customer database data included
variables as age, income, address, customer group (e.g. young potentials), owning insur-
ances, amount of credit and debit cards owned, etc. This information is usually available
from the moment the client starts an account in the bank. From several clients, multi-
ple records were available because they updated their data (e.g. because they moved
to another geographical location) and we selected only the most recent information per
client, resulting in data from 332435 clients with 707 variables. Identical information was
available for 486 (474 unique) clients who committed credit fraud.

Application data were provided by the client at the moment of application and are
typically product specific. This involves variables as current income, marital status (and
legal construction), lending purpose, children, and whether one’s income stems from a
permanent or temporary contract. From the application dataset we selected 22 informa-
tive variables (eg, marital status, income, source of income, number of children). From
the customer dataset, 28 variables were selected (number of applications, student or
not, financial capital). As part of the non disclosure agreement, we do not report specific
variable names. A flowchart of the data processing is included in Figure 6.

7.2.3. DATA CLEANING

CUSTOMER DATABASE

First, duplicate variables were removed (#p = 14) along with variables with zero varia-
tion (#p = 160), complete missingness (#p = 34). Dates were split into year and month
which replaced the original date variables. This resulted in 332435 participants and 467
variables, including 247 continuous and 220 categorical variables.

For continuous variables, we observed considerable skewness (see Figure 1). For ev-
ery variable, the skewness was calculated and compared against the skewness of it’s log
transformed values (for negative variables we added a constant mi ni mumval ue + 1,
see 3). In 194 of 220 variables the log transformation improved the distribution by low-

http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
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ering the skewness (see Figure 2). For several variables we observed a large number of
0 responses (e.g. clients who never deposited money on a savings account had a zero
on that indicator variable). Zero was recoded to missing and we verified whether a zero
(indicating never using that product or service or using it somewhere else) was related
to fraud (see Figure 3).

Algorithm 3 Clean continuous variables

for i in 1:Nconti nuous do
if min(var i abl ei < 0) then

constant = |min(var i abl ei )| + 1
if |skewness(log(var i abl ei + constant))| < |skewness(var i abl ei )| then

var i abl ei = log(var i abl ei + constant)
end if

else
if |skewness(log(var i abl ei ))| < |skewness(var i abl ei )| then

var i abl ei = log(var i abl ei )
end if

end if
end for

Figure 1: Original variable with raw
values.

Figure 2: Variable with log-
transformed values.

Figure 3: Variable with log-
transformed values and zero
category set to missing.

For categorical variables, we calculated the skewness by evaluating the number of
individuals in 1 category. If one category included 95% of the observations the variable
was dichotomized (collapsing all the other categories). All categorical variables were
recoded to have 0 as lowest category.

Variable missingness was calculated by taking the proportion of missing values per
variable (see Figure 4) removing 182 variables with ≥ 75% missing values. Uninformative
variables prone to produce biased estimates were also removed (e.g. given the relatively
small number of fraud cases, the range of House Numbers is smaller in the fraud sample
because large numbers are decreasingly likely and only occur in large samples, resulting
in a (spurious) mean difference between fraud and non-fraud). Individual missingness
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was calculated by counting the number of missing values for all items for every indi-
vidual (see Figure 5). Only individuals with ≥ 90% (N = 279702) observed data were in-
cluded. The removed group included 74 fraud cases (0.14% of 474) which was an equal
proportion of the fraud cases in the included group (400 of 279702), indicating no bias
in individual missingness. Hence, data cleaning of the customer database resulted in a
sample of 279702 individuals and 309 variables, including 55 variables with missingness
< 25%.

Figure 4: Frequency of variables given the amount
of missing observations.

Figure 5: Percentage of missingness per person.

APPLICATION DATA

During the inclusion period, 3887625 credit applications were received from N = 332251
unique clients. The application data included #p = 74 variables and 2178 applications
labelled as fraudulent from 298 unique clients. This dataset included many duplicate
applications from clients who applied for the same credit product on multiple occasions
(e.g. through internet) or clients who reapplied to increase their credit. For analyses,
one value was selected per person. First, the accepted (N = 207990) applications (if mul-
tiple existed only the most recent was selected) were included, followed by rejected ap-
plications (N = 123944). Data cleaning of the application data resulted in a sample of
219595 individuals and 56 variables. Merging these data resulted in a combined sample
of 219810 individuals and 337 variables.

7.2.4. MULTIPLE IMPUTATION
Imputation of missingness was only conducted for variables from the customer database
because these data are not directly derived or influenced by the customer, and often
rely on multiple checks (e.g. home address can be checked regularly through municipal
services). The data were partitioned into fraud (N = 400) and non-fraud (N = 219367).
The non-fraud cases were randomly split into a training N = 50000 and test N = 169302
sample. Splitting the non-fraud cases into a training and test dataset was important to
prevent over-fitting and to lower the computational burden. Because we partitioned the
data, the number of missing values per variable also decreased resulting in 10 variables
becoming completely observed. Highly correlating variables (#p = 4) and the fraud label
of the application data table (#p = 1) were removed. For 2 variables, one or more levels
were collapsed because partitioning the data in training and test samples resulted in zero
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endorsement of 1 or more levels. Thus, the final dataset for imputation included 50.000
individuals and 332 variables, of which 39 variables were imputed (39 continuous and 1
multinomial).

Missing data were imputed with Multiple Imputation (MI) using mice in the R pro-
gramming language. MI is known to be very robust as it prevents crude manipulations
of the distribution of data (e.g. in mean imputation) or underestimation of the variation
(e.g. in regression imputation). The MI procedure consists of three steps: imputation,
analysis, and pooling [286]. From the training sample, five m = 5 complete datasets were
created with imputed values. The missing values are replaced by plausible values that are
drawn from a distribution specifically modeled for each missing entry (see below). The
imputed data remain identical for the already observed values but differ in the imputed
values. After imputation, analyses are conducted on the different imputed datasets and
results are pooled. For every variable we specified the imputation method, which was a
Bayesian linear regression for numeric continuous scales (#p = 100), a multinomial logit
model for nominal scale variables (#p = 47), and a logistic regression for binary scale
variables (#p = 168) and an ordered logit model for ordinal data (#p = 17).

TYPE OF MISSINGNESS

Because subsequent analyses will involve all variables related to all other variables, we
assumed Missingness At Random (MAR). Defining the type of missingness related to
fraud is difficult because prima facie evidence may suggest MCAR (e.g. missingness in
‘amount of children’ or ‘having an insurance product’) but later analyses could show that
fraudsters are men who do not seek strong affiliation with a company (typically not con-
suming many products). In that context, the missingness does become informative, so
that the probability of being missing depends on some parameters ψ and the observed
information Pr (R = 0|Yobs ,Ymi s ,ψ) = Pr (R = 0|Yobs ,ψ) as presented in [286], page 31.

PREDICTION

Ideally, MI uses as much information in the dataset as possible to reduce bias and reach
maximal certainty [96]. However, given the number of variables in this dataset, it was
(computationally) unfeasible to include all variables as predictors and only the best 25
predictors were selected based on correlations. Variables that did not contribute (e.g.
house number, being deceased, postal code, relation number, birth year (we already had
age), etc.) were excluded as predictors from the prediction matrix. Evaluation of MI
performance showed that imputation was not successful in 1 variable since imputed
values did not follow the observed data distribution. This variable was not included as
predictor or covariate in subsequent analyses.

7.2.5. PENALIZED REGRESSION ILLUSTRATION
There was a risk for perfect separation if zero observations in one field of the 2×2 table,
as possible in the analyses of two dichotomous items. An example was the variable de-
ceased / not deceased. None of the clients who committed fraud had died, whereas in
the non-fraud group 29 clients had. This problem addressed by using a bias-reduction
method based on Firth (1993), implemented in the brglm package [287] that calculates β
with a Newton-Raphson algorithm. For practical reasons one polytomous variable (level
of education) which was dichotomized into low and high education (see 7.2.5).
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Figure 6: Flowchart of the data cleaning, multiple imputation, and analyses

As an example of the substantial bias that can occur in regression coefficients from
a logistic regression, this illustration shows the difference between βs from a standard
GLM logistic model with one random dichotomous dependent variable and the inter-
cept + 30 random independent variables (IV). In total, this sub analysis included 8 con-
tinuous and 22 categorical variables. For most IVs, the regression coefficients are fairly
similar between both methods with the difference ranging between 0 and 1. For 11 (cat-
egorical) variables + the intercept, the difference was larger than 1. In 4 of these 11 cate-
gorical variables, one group or category had all the observations (that is, the proportion
of observation in 1 category was equal to 1). in the other 7 variables, this problem was
less extreme as there was at least 1 observation in all categories and the differences be-
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came smaller as the amount of observations in the rarest category increased.

MODELING

We start with a dataset X , with N observations on the rows and p covariates on the
columns. The Australian data were randomly split in a train- (X tr : N = 150) and test
(X te : N = 538(C1 = 302,C2 = 236)) set. In the ING data, data cleaning (see 7.2.3) and
merging resulted in an overall sample of 219767 individuals including 400 fraud cases
and 332 variables. In X is a class variable (credit approved / fraud) which we define as
Y . We randomly split X into a train- (X tr ) and test (X te ) set, where X tr consisted of
50000 non-fraud cases and X te included 169367 non-fraud and 400 fraud cases. Before
analyses, missing data in 39 variables in X tr was imputed via multiple imputation as im-
plemented in mice (see 7.2.4). From the 332 covariates in X tr : j ∈ {1, ..., p} we selected
50 variables to become dependent variables (sequentially) in a generalized linear model
(glm);

X tr j =β0 +X tr− jβtr− j +ε (7.1)

where X tr j is the credit application variable selected to be the dependent variable,
X tr− j are the other variables that significantly predict X j , βtr− j are the regression coeffi-
cients (with β0 as intercept) and ε is the model error. If X tr j was continuous this would
amount to fitting a standard linear model, if X tr j was categorical the link function of
the g l m would be Logit in a binomial or generalized Logit in a multinomial response.
Poisson regression models were applied to count variables. Covariates that were polyto-
mous (i = 5) were analyzed with multinomial logistic regression using R package nnet.
In short, this procedure requires to specify a baseline group and the analysis consists of
(g −1) distinct logistic regression functions with the same p explanatory variables which
are computed for the g categories. Then, the logistic regression functions are combined
into one multinomial equation that includes the intercepts from the g −1 logistic regres-
sion functions plus the regression coefficients for the p predictors in each regression
function.

Modelling involved evaluating multicollinearity, dimensionality reduction with Prin-
cipal Component Analyses to remove highly correlating covariates and removing covari-
ates with high missingness in the test-sample.

We used βtr− j from X tr to calculate ŷte j (the predicted value for X te j ) based on the
predictors in X te (as determined in Equation 1) so that for every observation in the test
set we could calculate the residual. For continuous and poisson variables, residuals were
calculated as ete j = Yte j − ŷte j . Studentized residuals were calculated by dividing ete j by
the standard deviation of the residuals of non-fraud (n f ) samples in the test dataset:

rte j =
Yte j −ŷte j

sd(Y
n f

te j
−ŷ

n f
te j

)
.

For logistic responses, the output represents the probability of a 1 for every individual
given the data: ŷte j (1|X te j ) = 1 so as residual we defined

rte j =
{

ŷte j , if Yte j = 0

1− ŷte j , otherwise
(7.2)
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To investigate differences in residuals between fraud and non fraud samples the cu-
mulative density function of residuals was evaluated with the Kolgomorov-Smirnov test
for all 50 variables. This ultimately results in a subset of residuals that have a distribution
that is significantly different between fraud and non-fraud cases, which can be summed
to create one composite measure of surprise: Xsur .

7.2.6. FRAUD MODEL

We created one fraud detection model to predict fraud status in each dataset by fitting a
glm to the class label (Australian data) or fraud status (ING data). The model was trained
on 60% of all the data (including the fraud label) and tested on the remaining obser-
vations. We investigated the merit of the residuals to the fraud status by comparing the
percentage of fraud cases in different percentiles of X te,sur . We also added the composite
variable to the null model (regressing fraud status on the original variable) to investigate
explained variance.

7.3. RESULTS

7.3.1. AUSTRALIAN DATA

For each of the 13 covariates, residuals were calculated in the test dataset based on the
coefficients from the glms on the training data. Variables 3, 4, 5, 6, 7, 8, 9, 10, and 13 had
residuals that were significantly different (p < .05) between fraud and non-fraud cases,
which were summed to create X te,sur (see Figure 7). Adding X te,sur to the fraud detection
model did not result in a significant increase in explained variance: McFadden’s R2 = .56
in both models. Notably, βte,sur was not significant due to multicollinearity with other
predictors.

7.3.2. ING DATA

In total, 50 variables from the application data were investigated and 18 variables had
residuals that were significantly different (p < .05) between fraud and non-fraud cases
and were summed to create one X te,sur (see Figure 8). Adding X te,sur to the fraud de-
tection model significantly increased explained variance: McFadden’s m0 : R2 = .41 and
m0 : R2 = .59. Classification performance was quantified with the Area Under the Curve
(AUC: see Figure 9, which was .89 in the baseline model and .84 in the baseline + resid-
uals model, which is not significantly different and indicates excellent accuracy. Finally,
checking the percentage of fraud in the 90th percentile of X te,sur resulted in P90 = 0.15%
which was almost twice the global percentage in the fraud-detection model testset of
.08%, indicating that on and beyond the 90th percentile, the saturation of fraud cases
was twice as high compared to the overall sample.

7.4. DISCUSSION AND CONCLUSION
This paper presented a proof of concept where we explored the usefulness of residuals
to create a measure of surprise, as an indicator for unexpected credit-application re-
sponses, in the context of fraud detection. By building a model on a non-fraud training-
set we circumvented the complexity of unbalanced data classification due to low fre-
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Figure 7: Distribution of com-
posite residual variable (blue =
non-fraud, red = fraud)

Figure 8: Distribution of com-
posite residual variable (blue =
non-fraud, red = fraud)

Figure 9: ROC curve (black
= baseline, red = base-
line+residuals)

quency fraud status. In both datasets we calculated residuals and detected a significant
number of covariates with a residual-distribution that was fraud-variant. We observed
that creating a composite residual variable could increase the explained variance but did
not improve classification, which implies that the fraud-classification is only made with
more certainty. This could be expected since the residual distribution indirectly stems
from (parts of) the raw data, and when a covariate is only predicted by one or two in-
dependent variables this increases the correlation between the composite residual and
the original data (although this problem was less pronounced in the ING data, given the
heterogeneity of the sample and the amount of predictors per model).

The major shortcoming of this paper is that we were unable to validate the measure
of surprise by checking whether the top-observations had indeed falsified their input
data or responses. Apart from validation being a tedious case-by-case process there was
limited access to the data or INGs infrastructure. The findings do show that in a real-life
setting there is evidence that in fraud cases the reported responses in credit applications
more often deviate from expected values and evaluation of residuals in application data
can be an important step in understanding the trustworthiness of provided informa-
tion and the detection of fraud. Although significant, most differences were subtle and
bidirectional, suggesting the existence of substantial heterogeneity in fraudulent appli-
cations compared to legitimate applications across the full range of the distribution. For
example, the amount of years in a job is likely to be lied about since it is easy to deduce
that longer and more stable job status enhances credit worthiness. However, the data
did not support the idea that fraudsters exaggerate their job-years. Instead, the reported
amount of years in a job was observed to be lower in fraudulent cases compared to le-
gitimate applications (which is normal from a risk perspective but somewhat counter-
intuitive if one assumes exaggeration by fraudsters). The observed heterogeneity argues
in favour of a matched design where fraudulent applications or persons are matched
based on a small sample of descriptive covariates, or partitioning the data into subsets
with a desired distribution [288].

Current studies have been criticized for being too focused on complex methods (neu-
ral networks, fuzzy logic, support vector machines) while easier and straightforward
methods can often produced similar results [35]. In other fields there is evidence that
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models allowing non-linear discriminants outperform linear models (e.g. k-nearest neigh-
bour [289, 290, 74]), but for fraud analyses there is a strong necessity to understand per-
formance of different models with different types of data. Residuals evaluated in this
study stem from straightforward regression analyses which seemed sensitive enough to
find new and informative features. Despite the volume of complex techniques, many
studies are not very explicit about data cleaning and processing (likely due to the sensi-
tivity of the provided data). Especially in large companies, where data is often collected
from different products in different databases with varying architectures and formats,
good description of data cleaning procedures could clearly improve the generalizability
of proposed methods.





8
CONCLUSION, REFLECTION, AND

FUTURE WORK

This chapter presents the main contributions of this thesis and lessons learned. A num-
ber of limitations are discussed and suggestions for future work are put forth.

8.1. CONCLUSION
This thesis addressed a number of statistical problems that occur when one is faced with
data collected in the cyber-domain, such as in cyber physical systems, large numbers of
credit applications, social network data (typically collected online), and captures of com-
puter network traffic. There is no reason to assume raw data collected in settings where
humans are involved are immediately suitable for statistical analyses, which is why we
systematically investigated the values people reported with the values we expected, in a
context where the respondents can directly benefit financially from the outcome (will I
receive money or not?). Nor is there any reason to assume collected data are complete. In
fact, missing data is a common problem in many settings and this thesis addressed that
issue by furthering the work on imputation of attributes in a setting where observations
are linked. Once data veracity and completeness are safeguarded, one may start analyz-
ing the data. We illustrated how the combination of clustering of edges and nodes can
help in understanding hidden subgroups in data with a spatial (network) and temporal
(collected over time) structure.

8.1.1. IMPUTATION OF ATTRIBUTES IN NETWORKS
Imputation of attributes (or covariates) has traditionally focused on contexts where cases
were independent samples from the population [291, 292]. This follows most method-
ological research in behavioural sciences where statistical tests often assume indepen-
dent draws from the population for robust (co)variance calculations [293, 294]. The
problem of missing data in networks had already received attention in the framework
of generative graph models [126, 128] and link prediction [295], but in chapter 3 we
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extended Autocorrelation Regression Models (ARMs) to deal with missing data in at-
tributes. We showed that ARMs are a straightforward and tractable platform to impute
attribute values of persons in a social network, who connected through a messaging app.
In an experimental setting where we gradually introduced different sorts of missing data,
the best performance was achieved with a model where there was no feedback from the
imputed data to estimated parameters. We specifically chose the sampling (Bayesian)
approach to estimate the parameters, as sampling optimization is known to provide par-
ticularly accurate results [99, 100], and our imputation results supported that decision.

8.1.2. CLUSTERING OF SPATIO-TEMPORAL NETWORK DATA

Chapters 4 and 5 dealt with the problem of detecting infected computers in capture(s)
of network data, when no labels are available. When this PhD project started (late 2015)
all botnet (networks with infected computers) detection studies make use of a labelled
dataset where the computer can use these labels (botnet / no botnet) to learn what an in-
fected machine looks like. We showed the usefulness and applicability of unsupervised
learning to separate infected machines from non-infected machines. In the first attempt
this was only successful in a simulation study (chapter 4), followed-up with an approach
where the temporal structure of the raw data was captured in features from an innova-
tive spectral clustering approach to connection clustering called MalPaCA (chapter 5),
resulting in excellent classification results.

8.1.3. DATA INJECTION IN STATE ESTIMATORS

Chapter 6 reported the effects of false data injection on ADS-B derived position estimates
of an aircraft’s position. Data were injected in a linear model (Kalman Filter), investigat-
ing the change of radar-distance position, and in a non-linear model (Extended Kalman
Filter) with the ADS-B GPS coordinates with simulated noise. For both models, the pos-
itive deviation attack and maximum magnitude data injection provided the worst per-
formance of the filtered state estimation model. In contrast, the negative deviation and
wave based attack model had less impact. One of the limitations of the models used in
this project (and others) is the assumption that attackers had full knowledge about the
system, the incoming data, the anomaly detection algorithm, and the implementation
of the state estimation algorithm(s). This broad assumption is often found in cryptogra-
phy, a field where it is common practice to assume the attacker has knowledge about the
technical and computational details of the crypto protocols [283]. Future research could
benefit from general rules and best practice guidelines that can be used to formulate
attack model assumptions. Also, however worrisome the effects of false data injection
are, the exact implications of false data injection attacks are unknown. In industrial sys-
tems, training data are often not available to attackers and the data-driven thresholds
used in detection system (e.g. weights of words in spam filters) are not continuously up-
dated with every new email (observation) but based on large amounts of historical data
that have been screened intensively. Also, most learning processes are inherently robust
against direct data injection attacks. Given the amount of data that are typically used
in industrial data driven detection methods it seems unlikely that a single attacker can
immediately change the underlying distribution of a detection algorithm. Recent de-
velopments in adversarial learning [296] describe how an adversary can poison a system
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where the training data or trained model are manipulated to cause specific misclassifica-
tions. Although mostly theoretical, the infection process is gradual and always involved
multiple datapoints.

8.1.4. RESIDUALS INDICATIVE FOR FRAUD STATUS
Chapter 7 analysed data from ING bank, collected when clients who applied for a con-
sumer credit also answered a number of questions regarding their personal and finan-
cial situation. Generalized linear models showed that some of these questions are pro-
vided with answers that are unlikely given the response to other questions. We showed
that residuals (= observed - expected), for a selection of questions, correlated with fraud
status. This suggests that people who commit consumer credit fraud are more likely
to respond with surprising (unexpected) answers to some of the application questions.
The definition of fraud includes the element well-considered, and there is some litera-
ture suggesting that fraudsters are more likely to be dishonest [76]. This prompts the
question whether our observation is evidence that people who committed fraud with
consumer credits are more likely to lie on their applications, or provide false / deceiving
responses. We were the first to show, in this setting, the merit of a measure of surprise,
based on residuals, to predicting fraud status.

8.2. REFLECTION
Cyber security is a relatively young field, and the birth of the (sub-)field cyber statistics
was only a few years before the start of this project. As a result, there are many area’s
where the field can be improved and progress can be made. This thesis provides a small
and selected illustration where those improvements can be made, but there is good rea-
son to assume some of our research findings are limited by the immaturity of the cyber
security research field. A general impression of possible (study-design) limitations has
been presented in a famous essay from John Ioannidis [239], outlining several factors
contributing to incorrect conclusions. A selection of these factors applies to the botnet
literature:

1. No null findings reported: there are no botnet detection papers presenting an
analyses where the attempt to detect infected computers was unsuccessful, for
example because of heterogeneity in computer "behaviour", noise in the data, or
insufficient sample sizes.

2. Important results have never been replicated (e.g. by testing the exact procedure
on another dataset). There are some studies that use cross-validation [216] or di-
vide the data in a train and test-sample [167, 171] to prevent over-fitting [297],
which makes the analyses more robust. However, the botnet captures are often
(very) small relative to the background data to which they are compared, intro-
ducing the problem of analyzing unbalanced categories. When the classification
method becomes specifically tuned towards predicting the highest category (unin-
fected cases) we know accuracy decreases to be a valid performance metric [298].

3. Isolated studies: there has now been 15 years of literature on botnet detection and
although most studies refer to previous literature, there are only a few contribu-
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tions that actually build on previous insights. Most reported findings are presented
in isolated studies by single teams, and this arguably results in limited coherence
in the literature. Many different algorithms have been applied to the same prob-
lem, but lack a clear rationale that explains why those methods are selected or why
one method outperforms the other.

4. Bias: as mentioned many studies apply some kind of manual filtering prior to sta-
tistical analyses and do not present the outcomes without filtering (e.g. removing
approved DNS addresses via whitelisting based on Alexa [172, 231] or other rule
based exclusion criteria [220, 234, 299, 222, 237, 238, 230]), nor test the appro-
priateness of thresholds by comparing output under different settings. Another
example is the investigation of only synthetic data [300] without any extension to
captures obtained in the wild.

5. Sparsely reported results: a minority of studies [228, 301, 181, 240] present (very)
limited information regarding methods and results, leaving several important pro-
cedural (e.g. data cleaning and interpretation) and design questions unanswered.

These limitations are inherent to a young scientific field where small steps can rep-
resent significant advances. For example, in the field of genetic epidemiology, genome-
wide-association studies became available in 2005. This allowed to scan large numbers
of places in the (human) genome where variation is known to occur. Acknowledging the
burden of early-day false-positives, that field has adopted standards to correct for mul-
tiple testing and replicate important findings [302]. Ideally cyber statistics will slowly
evolve so that the quality of reported findings increases.

8.2.1. HOW THIS THESIS DEALT WITH COMMON SHORTCOMINGS
The studies in this thesis attempted to overcome and avoid some of the aforementioned
pitfalls. First, we reported an unsuccessful clustering attempt in chapter 4 where the
simulation study suggested that the SBM approach as sensible but fitting the model to
the real data appeared more challenging. Second, we replicated the main finding ei-
ther by using different sampling seeds (chapter 3), or by applying the same procedure
on a different dataset (chapter 5). In line with the winner’s-curse phenomenon [303],
the replication outcomes were not as pronounced as those in the discovery sample, but
still confirmed the main result. Third, we provided a clear rationale for the analytical
approaches presented in our work, instead of pumping the data with an unmotivated
selection of classification methods. Fourth, we aimed to limit the bias by removing the
need for prior information (e.g. flat priors in chapter 3.1) and filtering (chapter 5). Fi-
nally, we also openly discussed our methods and results in all papers, for example by
publishing Supplementary Material and making the code publicly available.

8.3. OVERARCHING CONTRIBUTION
The overarching contribution of this thesis is the presentation of new ways to gain a
better understanding of data in the cyber-context. This is important as more and more
systems process or generate data, sometimes with increasing complexity due to volume,
data quality issues, or unobserved structures. Especially the (social) network literature
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is filled with examples where observations are, to some extend, linked through a physi-
cal (geo), social (cultural, economical), or direct (communication) structure. This link-
age bounds the estimation of parameters under the burden of missing data to more re-
strictions and complexities, and in chapter 3 we have shown how to deal with missing
data in an accurate and efficient way. This hopefully allows better estimation of statis-
tical models on network attributes so that different phenomena may be better under-
stood. Now that online social networks are becoming a structural part of our lives there
is also increased mixture between the online and offline environment. Common exam-
ples unions, clubs, or other peer-groups who have some kind of online presence where
people can meet each other or share content. Therefore, we deemed the development of
the ARM-based imputation models particularly opportune.

Another complexity in the cyber context is the processing of spatio-temporal data,
due to the dependence in the observations and volume (real-time streams of packets or
large networks), and accurate methods to describe and summarize these data by cluster-
ing, labelling or classification are scarce. With chapters 4 and 5 we add to the field how
mixture models can provide a scalable and (very) accurate way to help in that process,
removing the need to manually curate the data (e.g. filter domains, ports or hosts) while
respecting the sequential structure of the data and the dependence between observa-
tions. This helps in allowing the analyses of streaming data with less interference (and
potential bias) from users or analysts, hopefully increasing the overall quality.

Finally, we showed why it is important to consider data veracity when data are (partly)
processed or collected automatically. Given that fraud is a conscious act, previous stud-
ies already suggested that people who aim to commit fraud actively try to conceal their
activities by being dishonest [76]. We quantified these patterns of behaviour by inves-
tigating which residuals were predictive for fraud status, and the main messages of our
proof of concept study with ING bank Netherlands (chapter 7) is that the responses from
clients in online (credit) application systems should not be taken for granted, as there
is clear evidence that people who committed fraud with these products more often re-
port strange and unexpected responses. Using a substantial dataset our contribution is
a plain showcase why straightforward application of fraud-detection models on client
responses without the proper handling of data veracity issues is credulous.

Along these lines, chapter 6 showed how (input) data can be manipulated or influ-
enced (e.g. by suspicious reporting) and how problematic this can be for state opti-
mization or fraud detection. As mentioned, there have been several examples of data-
injection attacks to cyber infrastructure and the popularity of Kalman Filters requires
some understanding of how these state estimators can be maliciously influenced, so that
these can be implemented with more (in)sensitivity to attacks and the security of state
estimation can be increased.

8.4. FUTURE RESEARCH

8.4.1. IMPUTATION IN NETWORKS

Simultaneous with the publication of chapter 3, volume 62 of Social Networks also in-
cluded a review on imputation strategies in networked data [304] where actor non- re-
sponse occurred if all outgoing tie variables of an actor are missing. That study ob-
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served a performance difference in link reconstruction between small and large datasets.
In small datasets, simple ERGM performed well, while missing data was more accu-
rately imputed in larger data sets with multiple imputation by complex Bayesian ERGMs
(BERGMs). For the imputation analyses, this thesis did not simulate data, but used real-
world data, which explains why we did not change with sample size. It is likely that
BERGMs can also be used to impute node attributes [128]. It is unclear whether identical
effects will be observed when we impute attributes with ARM, since ARM is not a gen-
erative network model. However, it would be interesting to investigate the imputation
accuracy of cutting feedback and full Bayes, as with very large sample sizes, the effect of
multiple draws diminishes and perhaps there is a plateau where sufficient observations
and variation is reached so that any model will perform with high accuracy. Other ap-
plications where this model may be useful is in data with some (geo)spatial structure;
e.g. recovery of the region of New Orleans in the aftermath of hurricane Katrina [305] or
disease patterns in Soutch Korea [305].

Furthermore, our observation that a cut model outperforms full Bayes is convenient
since most imputation impede feedback from imputed observations to parameters [94].
In full Bayes, the missing data are replaced with a starting value which is updated at the
end of every MCMC step, meaning these values can flow to the estimated parameters.
There is hesitance in the imputation literature to this feedback principle: in the context
of multivariate imputation, feedback loops where imputed values in Y1 are used to im-
pute Y2 are warranted (see [58], paragraph 4.5.4), especially if these distributions are not
compatible [306] (even if Gibbs provides seemingly reasonable estimates). Testing or
proving compatibility between (bivariate) distributions is not trivial; recently presented
examples [307] are not readily applicable to real-world data. I have emailed Dr. Indranil
Ghosh to inquire the latest developments in compatibility testing and the availability of
source code, to which he responded: "... the concept I had invoked is very new and in fact
we are still working on the development of associated results to the multivariate case. Af-
ter this we will focus on developing some code in R/Matlab/Python or so. To the best of my
knowledge, I have not seen any available programming in any of the environment such
as R/Matlab/Python or so.". Understanding compatibility can important in multivariate
imputation models that implement feedback loops and developing the capability to per-
form such analyses would be a welcome contribution.

8.4.2. CLUSTERING

There is a large body of research on analysing social networks [131], and we confirmed
(chapter 5) that different clustering methods applied to the same data do not necessarily
identify/restore the same clusters. This could depend on the type of network structure
[195, 49], but comparison between the computer network data and the social network
data in this thesis also revealed differences in the frequency and amount of connections.
If the (repeated) occurrence of a connection is used as a weight in the network matrix,
the type of network (computer versus social) determines the shape of the distribution
of the network matrix, which likely influences the suitability of different network clus-
tering methods, since their optimization often relies on the distribution of edge-weights
between nodes in the network (e.g. [308, 188]). When these edges are sparse (because
links have a low frequency), the model may not converge or become very sensitive to
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starting values (especially with Variational Inference). These effects are not yet suffi-
ciently described in the literature. Finally, chapter 1 mentioned the problem of volume
and scalability of the analyses. Developments like stochastic- and black-box variational
inference [245, 249], and efficient MCMC [99] aid the deployment of complex network
clustering methods at scale [309]. The availability of open-source tools (e.g. SVINET)
helps to apply these models, especially if they would include the option to include co-
variates and come with proper documentation.

8.4.3. DATA VERACITY
Despite major efforts in statistical fraud-detection and risk modelling, there is insuffi-
cient attention for the problem where persons can provide deceiving responses, to avoid
detection by feeding false answers to a detection system. Perhaps this problem can be
addressed in the context of adversarial machine learning [296], where adversarial input
perturbations can subvert the predictions of a system. Perhaps, the popularity of adver-
sarial machine learning will eventually absorb veracity-challenges as presented in this
thesis.
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SUMMARY

This thesis presents several methodological and statistical solutions to problems en-
countered in cyber security. We investigated the effects of compromised data veracity
in state estimators and fraud detection systems, a model to impute missing data in at-
tributes of linked observations, and an unsupervised approach to detect infected ma-
chines in a computer network.

The first part of this thesis deals with imputation of missing data and the cluster-
ing of nodes in a computer network. Chapter 3 considers the handling of incomplete
data in the case where the observations are linked, such as in a network. We applied
the framework of autocorrelation regression models to estimates missing values in co-
variates in data from a messaging app, where graduate students were able to send each
other messages. Parameter estimation used Bayesian statistics, combining Gibbs sam-
pling (regression coefficients) and Metropolis Hasting (network parameters) sampling.
We compared a model where feedback from imputed observations was allowed against
a model where this feedback was cut, to observe a higher imputation accuracy in the cut
model.

Also, this thesis addressed the problem of unsupervised clustering of streaming data
in chapters 4 and 5, represented by a capture of network activity from computer net-
works including a number of machines that were infected with malware. By modelling
the time sequence with features that were able to capture the temporal element of the
data (via dynamic time warping) and the distance between ports used in the connection
were were able to recover the infection status of machines with excellent classification
performance. The pipeline we proposed did not rely on filtering or manually manipu-
lating the data prior to analyses.

Part two investigates the influence of data injection and the veracity of provided data.
State estimation is important in many (cyber) physical system to control parameters that
often direct mechanical processes. One prominent example is the Kalman Filter that
predicts the real state of a dynamical model given a measurement, such as the position
of an airplane in flight. In chapter 6 we showed how the prediction of a Kalman Filter can
be manipulated by inserting fake data, under different scenario’s. Even with boundaries
that govern the amount of variation allowed in the measurements, we can still influence
the filter with manipulated updates to diverge location estimates.

In chapter 7 we investigated unexpected responses given by bank-clients on a con-
sumer credit application, and observed that in a selection of covariates (to which a re-
sponse was given) the residual (distance between observed and expected responses) was
informative to fraud status. This indicated there are some questions in the online appli-
cation form that are more likely to receive an unexpected value, and that a combination
of these unexpected values (residuals) can predict fraud status.

Hence, this thesis applied and developed techniques to understand fundamental
problems often encountered when analysing data in the cyber security setting, and ex-
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tend to many other scenario’s. They have been implemented, evaluated, and applied to
several real-world cases to demonstrate the effectiveness and applicability.



SAMENVATTING

Dit proefschrift presenteert verschillende methodologische en statistische oplossingen
voor problemen die zich voordoen in het context van cyber veiligheid. Het onderzoek
heeft zich gericht op het schatten van ontbrekende gegevens in attributen / variabelen
in observaties die op een manier samenhangen (zoals in een netwerk), een model om
zonder de aanwezigheid van labels geïnfecteerde machines in een computernetwerk te
detecteren, en de gevolgen van het injecteren van verkeerde data in Kalman Filters en
fraudedetectie systemen.

Het eerste deel van dit proefschrift gaat over imputatie van missing data en clus-
tering van nodes in een computer netwerk. Hoofdstuk 3 betreft het omgaan met mis-
sende gegevens in het geval dat de waarnemingen aan elkaar zijn gekoppeld, zoals in
een netwerk. Statistische methoden voor het schatten van missende gegevens zijn voor-
namelijk gericht op data waarin de observaties (bijvoorbeeld personen die een vragen-
lijst invullen) niet met elkaar samenhangen; een random steekproef zijn. In ons onder-
zoek hebben we regressiemodellen toegepast die om kunnen gaan met autocorrelatie,
om ontbrekende waarden in variabelen te schatten, met data uit een berichten-app waar
studenten elkaar berichten konden sturen. Voor het schatten van parameters werd ge-
bruik gemaakt van Bayesiaanse statistiek; een combinatie van Gibbs-sampling (voor re-
gressiecoëfficiënten) en Metropolis-Hasting (voor netwerkparameters). We vergeleken
een model waarin feedback van geïmputeerde data was toegestaan met een model waarin
deze feedback werd afgebroken, en observeerden een hogere nauwkeurigheid in het
model zonder feedback.

Daarnaast behandelde dit proefschrift het probleem van het clusteren van streaming
data zonder de aanwezigheid van een label wat door de computer kan worden gebruikt
ter voorbeeld (hoofdstukken 4 en 5). Dit onderzoek werd uitgevoerd met een aantal cap-
tures van netwerkactiviteit van computernetwerken, met daarin een aantal machines
die waren geïnfecteerd met malware. Het model transformeert de stream in een afs-
tandsschatting (via dynamische time-warping) en de afstand tussen de poorten die in
de verbinding werden gebruikt. De features die hierdoor ontstaan, in combinatie met de
netwerk structuur, kunnen worden gebruikt om de infectiestatus van machines te voor-
spellen met uitstekende classificatieprestaties. De door ons voorgestelde pijplijn is niet
afhankelijk van het filteren of handmatig manipuleren van de data voorafgaand aan de
analyse.

Deel twee onderzoekt de gevolgen van data injectie en de waarheidsgetrouwheid van
aangeleverde data. Kalman filters worden gebruik om de toestand / staat te schatten aan
de hand van een aantal parameters die worden gemeten. Deze toestand-schatting is in
veel (cyber) fysieke systemen belangrijk om veranderende mechanische processen aan
te sturen. Zoals bijvoorbeeld het schatten van de locatie van een vliegtuig aan de hand
van richting, snelheid, hoogte, en radar afstand, waarbij rekening wordt gehouden met
de meetfout van de meet-instrumenten. In hoofdstuk 6 hebben we laten zien hoe de
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voorspelling van een Kalman-filter kan worden gemanipuleerd door verkeerde data te
injecteren tijdens en tussen meetmomenten, onder verschillende scenario’s. Zelfs als
er grenzen worden gebruikt die bepalen hoeveel variatie er in de metingen mag optre-
den, kunnen we het filter beïnvloeden gemanipuleerde updates om locatieschattingen
te laten afwijken.

In hoofdstuk 7 onderzochten we onverwachte antwoorden van cliënten van een grote
bank op een aanvraagformulier voor een consumptief krediet, en stelden vast dat in een
selectie van variabelen (waarop een antwoord werd gegeven) het residu (afstand tussen
het gegeven antwoord en het verwachte antwoord) informatief was voor de fraudestatus.
Dit betekent dat er enkele vragen in het aanvraagformulier zijn waarbij er een grotere
kans is op een onverwachte antwoord, en dat een combinatie van deze onverwachte
antwoorden (residuen) kan worden gebruikt in het bepalen welke aanvragen waarschi-
jnlijk frauduleus zijn.

Dit proefschrift heeft technieken toegepast en ontwikkeld om fundamentele prob-
lemen te begrijpen die vaak voorkomen bij het analyseren van data in de cybersecurity
context. Ze zijn geïmplementeerd, geëvalueerd en toegepast op verschillende scenario’s
uit de praktijk om de effectiviteit en toepasbaarheid aan te tonen.
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