
 
 

Delft University of Technology

Approximately Optimal Resource Management for Multi-Function Radar
Algorithmic Solutions Using a Generic Framework
Schöpe, M.I.

DOI
10.4233/uuid:2ba49af1-fa17-476c-88f4-97783ca4e39a
Publication date
2021
Document Version
Final published version
Citation (APA)
Schöpe, M. I. (2021). Approximately Optimal Resource Management for Multi-Function Radar: Algorithmic
Solutions Using a Generic Framework. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:2ba49af1-fa17-476c-88f4-97783ca4e39a

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:2ba49af1-fa17-476c-88f4-97783ca4e39a
https://doi.org/10.4233/uuid:2ba49af1-fa17-476c-88f4-97783ca4e39a


Approximately Optimal Resource
Management for Multi-Function Radar

Algorithmic Solutions Using a Generic Framework

Max Ian Schöpe





Approximately Optimal Resource
Management for Multi-Function Radar
Algorithmic Solutions Using a Generic Framework





Approximately Optimal Resource
Management for Multi-Function Radar
Algorithmic Solutions Using a Generic Framework

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, Prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Friday 12 November 2021 at 10:00 o’clock

by

Max Ian SCHÖPE

Master of Science in Electrical Engineering,
Delft University of Technology, The Netherlands

born in Kassel, Germany



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. A. Yarovoy Delft University of Technology, promotor
Dr. ir. J.N. Driessen Delft University of Technology, copromotor

Independent members:
Prof. dr. ir. G.J.T. Leus Delft University of Technology
Prof. dr. ir. H.A.P. Blom Delft University of Technology
Prof. dr. ir. F.M.J. Willems Eindhoven University of Technology
Dr. M.T.J. Spaan Delft University of Technology
Dr. A. Charlish Fraunhofer FKIE, Germany

This work is part of the research programme “Integrated Cooperative Automated Vehicles”
(i-CAVE), subproject “Communication” (P4), with project number 14895, which is partly
financed by the Netherlands Organisation for Scientific Research (NWO).

Keywords: Radar Resource Management, Lagrangian Relaxation, Partially Observ-
able Markov Decision Process, Policy Rollout.

Printed by: Ipskamp Drukkers B.V., Enschede, The Netherlands.

Front & Back: Design by Kalliopi Papangelopoulou.

Copyright © 2021 by M.I. Schöpe

All rights reserved. No parts of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without permission in writing from the author.

ISBN 978-94-6384-263-1

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

Author e-mail: max.schope@protonmail.com

http://repository.tudelft.nl/


To my family and friends, for their support and encouragement





Contents

List of Acronyms xi

Summary xiii

Samenvatting xv

Preface xvii

1 Introduction 1
1.1 Why Radar Resource Management?. . . . . . . . . . . . . . . . . 2
1.2 What is Radar Resource Management? . . . . . . . . . . . . . . . 3
1.3 High-Level Overview of Existing Approaches. . . . . . . . . . . . 6
1.4 Research Objectives and Approach . . . . . . . . . . . . . . . . . 7
1.5 Novelties and Main Results . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Outline of the Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Balancing of Radar Resources for Multi-Target Tracking 11
2.1 Optimal Multi-Task Radar Resource Management . . . . . . . . 12
2.2 General Radar Resource Management Problem Definition . . . 13

2.2.1 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Measurement Model . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Tracking Algorithm. . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Budget Optimization Problem . . . . . . . . . . . . . . . . 13

2.3 The Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Radar Resource Management Tracking Problem Definition . . . 15
2.5 Proposed Solution of the RRM Tracking Problem . . . . . . . . . 16
2.6 One-Dimensional Tracking Scenario . . . . . . . . . . . . . . . . 17

2.6.1 Steady-State of the Tracking Filter Error-Covariance . . 17
2.6.2 Time-Invariant Problem . . . . . . . . . . . . . . . . . . . . 19
2.6.3 Time-Variant Problem . . . . . . . . . . . . . . . . . . . . . 20
2.6.4 Comparison of Time-Variant Solution with Other Ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 A Generic Framework for Radar Resource Management in Multi-
Target Tracking 27
3.1 Stochastic Optimization for Radar Resource Management . . . 28
3.2 Markov Decision Processes in Radar Resource Management . . 28
3.3 High-Level Description of the Proposed Approach . . . . . . . . 31

3.3.1 The Cost Function . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Proposed Approach. . . . . . . . . . . . . . . . . . . . . . . 32

vii



viii Contents

3.4 Definition of a POMDP. . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Solution Methods for POMDPs . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Policy Rollout for POMDPs . . . . . . . . . . . . . . . . . . 34
3.6 Assumed Radar Scenario . . . . . . . . . . . . . . . . . . . . . . . 35

3.6.1 Assumed Radar Systems . . . . . . . . . . . . . . . . . . . 36
3.6.2 Velocity Model. . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.3 SNR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.4 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.5 Optimization Problem: . . . . . . . . . . . . . . . . . . . . . 39

3.7 Linear Time-Invariant Example . . . . . . . . . . . . . . . . . . . 39
3.7.1 General Simulation Parameters . . . . . . . . . . . . . . . 39
3.7.2 Comparison OSB and AODB . . . . . . . . . . . . . . . . . 40

3.8 Dynamic Radar Example . . . . . . . . . . . . . . . . . . . . . . . 40
3.8.1 General Simulation Parameters . . . . . . . . . . . . . . . 42
3.8.2 Dynamic Radar Scenario for 𝑃𝐷 = 1 . . . . . . . . . . . . . 42
3.8.3 Dynamic Radar Scenario for 𝑃𝐷 < 1 . . . . . . . . . . . . . 44
3.8.4 Analysis of the Impact of the Chosen Cost Function . . . 44

3.9 Analysis of Performance . . . . . . . . . . . . . . . . . . . . . . . . 46
3.10Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Investigating the Computational Load of the AODB Algorithm 49
4.1 Computational Efficiency of POMDP Solution Methods . . . . . 50
4.2 Analysis of Computational Load . . . . . . . . . . . . . . . . . . . 50

4.2.1 Influence of Number of Tasks on AODB . . . . . . . . . . 51
4.2.2 Influence of LR Step Size on AODB . . . . . . . . . . . . . 51
4.2.3 Influence of LR Precision on AODB . . . . . . . . . . . . . 52
4.2.4 Influence of Initial Lagrange Multiplier Value on AODB . 52
4.2.5 Influence of Rollout Horizon Lengths on AODB . . . . . . 52
4.2.6 Conclusions on Computational Load . . . . . . . . . . . . 52

4.3 An Alternative AODB Algorithm . . . . . . . . . . . . . . . . . . . 54
4.3.1 Model Predictive Control . . . . . . . . . . . . . . . . . . . 55
4.3.2 Optimization Problem and Simulation Scenario. . . . . . 55
4.3.3 Simulation Scenario A . . . . . . . . . . . . . . . . . . . . . 56
4.3.4 Simulation Scenario B. . . . . . . . . . . . . . . . . . . . . 59
4.3.5 Simulation Scenario C. . . . . . . . . . . . . . . . . . . . . 59

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Radar Resource Management for Multi-Target Joint Tracking
and Classification 65
5.1 Radar Resource Management for Classification . . . . . . . . . . 66
5.2 General Problem Definition and Radar Scenario . . . . . . . . . 67
5.3 Joint Tracking and Classification . . . . . . . . . . . . . . . . . . 67
5.4 Formulation of Cost Function . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Unscented Transform . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Combination of Threat PDFs . . . . . . . . . . . . . . . . . 71
5.4.3 Variance of Threat . . . . . . . . . . . . . . . . . . . . . . . 72



Contents ix

5.5 Assumed Radar Scenario . . . . . . . . . . . . . . . . . . . . . . . 72
5.5.1 Target Classes . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . . 73
5.5.3 Threat Definition . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Simulation Scenario A . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.7 Simulation Scenario B. . . . . . . . . . . . . . . . . . . . . . . . . 75
5.8 Simulation Scenario C. . . . . . . . . . . . . . . . . . . . . . . . . 77
5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Radar Resource Management for Multi-Sensor Multi-Target Track-
ing 83
6.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Measurement Model . . . . . . . . . . . . . . . . . . . . . . 85
6.2.2 Tracking Algorithm. . . . . . . . . . . . . . . . . . . . . . . 85
6.2.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . 86

6.3 AODB for Multi-Sensor Scenarios . . . . . . . . . . . . . . . . . . 86
6.3.1 Approximately Optimal Approach . . . . . . . . . . . . . . 86
6.3.2 Distributed Implementation . . . . . . . . . . . . . . . . . 87
6.3.3 General Simulation Assumptions . . . . . . . . . . . . . . 87
6.3.4 Observation Model . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.5 Cost Function and Constraint . . . . . . . . . . . . . . . . 89
6.3.6 Simulation Parameters . . . . . . . . . . . . . . . . . . . . 89
6.3.7 Simulation A: Dynamic Tracking Scenario . . . . . . . . . 90
6.3.8 Simulation B: Comparison of Implementations . . . . . . 91

6.4 AODB for Multi-Sensor Automotive Applications . . . . . . . . . 94
6.4.1 Automotive Radar Systems . . . . . . . . . . . . . . . . . . 94
6.4.2 Radar-to-Radar Interference . . . . . . . . . . . . . . . . . 95
6.4.3 Joint Sensing and Communication . . . . . . . . . . . . . 96
6.4.4 Time and Frequency Optimization Approach . . . . . . . 96
6.4.5 Communication Selection Optimization Approach . . . . 97
6.4.6 Simulation A: Time and Frequency Allocation . . . . . . . 98
6.4.7 Simulation B: Time and Frequency Allocation with Com-

munication Selection. . . . . . . . . . . . . . . . . . . . . . 98
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Conclusions 103
7.1 Major Results and Novelties . . . . . . . . . . . . . . . . . . . . . 104
7.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . 105

A Lagrangian Relaxation for RRM 107
A.1 Lagrangian relaxation principle . . . . . . . . . . . . . . . . . . . 107
A.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.3 Subgradient method . . . . . . . . . . . . . . . . . . . . . . . . . . 109



x Contents

B Golden Section Search 111

Bibliography 113

Acknowledgements 123

About the Author 125

List of Publications 127



List of Acronyms

AODB Approximately Optimal Dynamic Budget Balancing
BP Base Policy
CPA Closest Point of Approach
CR Cognitive Radar
DBF Digital Beamforming
EKF Extended Kalman Filter
FMCW Frequency-Modulated Continuous-Wave
GPS Global Positioning System
GSS Golden Section Search
JDL Joint Directors of Laboratories
KF Kalman Filter
LD Lagrangian Dual
LDP Lagrangian Dual Problem
LR Lagrangian Relaxation
LTI Linear Time-Invariant
MDP Markov Decision Process
MFR Multi-Function Radar
ML Machine Learning
MPC Model Predictive Control
OODA Observe-Orient-Decide-Act
OSB Optimal Steady-State Budget Balancing
PBVI Point-Based Value Iteration
PDF Probability Density Function
POMDP Partially Observable Markov Decision Process
PP Primal Problem
PR Policy Rollout
Q-RAM Quality of Service Resource Allocation Method
RCS Radar Cross Section
RL Reinforcement Learning
RRM Radar Resource Management
SNR Signal-to-Noise Ratio
VI Value Iteration

xi





Summary

Recent advances in Multi-Function Radar (MFR) systems led to an increase in their degrees
of freedom. As a result, modern MFR systems are capable of adjusting many parameters
during runtime. An automatic adaptation of the radar system to changing situations, like
weather conditions, interference, or target maneuvers, is often mentioned in the context of
MFR and is usually called Radar Resource Management (RRM). This thesis aims at de-
veloping a generic framework and approximately optimal algorithmic solutions for solving
RRM problems. This is achieved by formulating the sensor tasks as Partially Observable
Markov Decision Processes (POMDPs). Although the focus is on MFR, the approach is not
limited to such sensor systems and has broader applicability.

In Chapter 2, a first step is taken by investigating Lagrangian Relaxation (LR) and the
subgradient method for optimally distributing the sensor resources to the different tasks in
a multi-target tracking scenario. A constrained optimization problem is formulated. Using
LR, the constraints can be included in the cost function. In a time-invariant scenario, it
is shown that the proposed Optimal Steady-State Budget Balancing (OSB) algorithm will
lead to balanced budgets based on track parameters like maneuverability and measurement
uncertainty. The time-invariant scenario is a special case of general tracking scenarios,
and the presented solution can be seen as the optimal POMDP solution in that case. Since
real-world applications quickly lead to time-varying scenarios, it is demonstrated how the
approach can be extended to such cases. Finally, the proposed method is compared with
other budget assignment strategies.

Subsequently, the tracking tasks are explicitly formulated as POMDPs, and the novel
ApproximatelyOptimal DynamicBudget Balancing (AODB) algorithm is proposed in Chap-
ter 3. The algorithm applies a combination of LR and Policy Rollout (PR). PR is a Monte
Carlo sampling method for POMDPs to find the expected future cost. Due to its generic
architecture, the framework can be applied to different radar or sensor systems and cost
functions. In a time-invariant scenario, the algorithm calculates a solution close to the op-
timal steady-state solution, as presented in Chapter 2. This is shown through simulations
of a two-dimensional tracking scenario. Moreover, it is demonstrated how the algorithm
dynamically allocates the sensor time budgets to the tasks in a changing environment us-
ing a non-myopic fashion. Finally, the algorithm’s performance is compared with different
resource allocation techniques.

Based on the previous results, Chapter 4 conducts a detailed investigation of the compu-
tational load of the AODB algorithm. It is shown how the choice of several input parame-
ters influences computational performance. Additionally, Model Predictive Control (MPC)
is applied in the same framework as an alternative POMDP solution method. Compared to
stochastic optimization methods such as PR, the computational load is dramatically reduced
while the resource allocation results are similar. This is shown through simulations of dy-
namic multi-target tracking scenarios in which the cost and computational load of different
approaches are compared.

xiii



xiv Summary

So far, this thesis has used tracking scenarios to demonstrate the validity of the pro-
posed algorithms. Chapter 5 shows how to apply the proposed framework and algorithmic
solution to a multi-target joint tracking and classification scenario. It is shown that tracking
and classification can be considered in a single task type. Furthermore, it is shown how
the task resource allocations can be jointly optimized using a single carefully formulated
cost function based on the task threat variance. Multiple two-dimensional radar scenarios
demonstrate how sensor resources are allocated depending on the current knowledge of the
target position and class.

Chapter 6 extends the single-sensor approach shown in the previous chapters to multiple
sensors and demonstrates the usefulness of the proposed algorithm in two different multi-
sensor multi-target tracking scenarios. The first scenario considers a generic surveillance
situation. An approximately optimal approach based on the previously proposed algorithm
is formulated assuming a central processor. Subsequently, a distributed implementation is
introduced that converges to the same results as the centralized implementation and requires
less computational resources. The performance of the proposed approach for both central-
ized and distributed implementation is demonstrated through dynamic tracking scenarios.
The second scenario focuses explicitly on an automotive application. The proposed generic
framework and algorithmic solution are used to allocate scarce resources across multiple
mobile sensor nodes. A central system manages the nodes’ transmission and shares sens-
ing data with other sensor nodes if this improves the overall track accuracy. The proposed
method allocates time and frequency resources. Through simulation of a typical traffic sit-
uation, the validity of the approach is demonstrated.

This thesis shows that the application of the proposed novel generic framework and
algorithmic solution increases the performance w.r.t. heuristic solutions. Furthermore, it is
demonstrated that the proposed framework allows the user to exchange elements such as cost
function or POMDP solutionmethod to adjust it to specific needs. The proposedmethod can
be applied in many different areas involving different types of sensors. Possible applications
include automotive scenarios, such as autonomous driving or traffic monitoring, (maritime)
surveillance, and air traffic control.



Samenvatting

Recente ontwikkelingen in Multi-Function Radar (MFR)-systemen hebben geleid tot een
toename van hun vrijheidsgraden. Als gevolg hiervan zijn moderne MFR-systemen in staat
om tijdens de uitvoeringstijd veel parameters aan te passen. Een automatische aanpassing
van het radarsysteem aan veranderende situaties, zoals weersomstandigheden, interferentie
of targetmanoeuvres, wordt vaak gebruikt in de context van MFR en wordt meestal Radar
Resource Management (RRM) genoemd. Dit proefschrift heeft tot doel het opstellen van
een generiek raamwerk alsmede nagenoeg optimale algoritmische oplossingen ten behoeve
van het oplossen van RRM-problemen. Dit wordt bereikt door de sensortaken te formuleren
als Partially Observable Markov Decision Processes (POMDP’s). Hoewel de focus ligt op
MFR, is de aanpak niet beperkt tot dergelijke sensorsystemen en heeft deze een bredere
toepasbaarheid.

In Hoofdstuk 2 wordt een eerste stap gezet door Lagrangian Relaxation (LR) en de sub-
gradiëntmethode te onderzoeken om de sensorresources optimaal te verdelen over de ver-
schillende taken in een multi-targets trackingscenario. Er wordt een optimalisatieprobleem
met randvoorwaarden geformuleerd. Met behulp van LR kunnen de randvoorwaarden wor-
den opgenomen in de kostenfunctie. In een tijdsinvariant scenario wordt aangetoond dat het
voorgestelde Optimal Steady-State Budget Balancing (OSB)-algoritme zal leiden tot even-
wichtige budgetten op basis van trackparameters zoals manoeuvreerbaarheid en meetonze-
kerheid. Het tijdsinvariante scenario is een speciaal geval van algemene trackingscenario’s
en de gepresenteerde oplossing kan in dat geval worden gezien als de optimale POMDP-
oplossing. Aangezien toepassingen in de echte wereld snel leiden tot in de tijd variërende
scenario’s, wordt gedemonstreerd hoe de aanpak kan worden uitgebreid naar dergelijke ge-
vallen. Ten slotte wordt de voorgesteldemethode vergelekenmet andere budgettoewijzings-
strategieën.

Vervolgens worden de trackingtaken expliciet geformuleerd als POMDP’s en wordt het
nieuwe Approximately Optimal Dynamic Budget Balancing (AODB)-algoritme voorge-
steld in Hoofdstuk 3. Het algoritme past een combinatie van LR en Policy Rollout (PR)
toe. PR is een Monte Carlo-steekproefmethode voor POMDP’s om de verwachte toekom-
stige kosten te vinden. Door de generieke architectuur kan het raamwerk worden toegepast
op verschillende radar- of sensorsystemen en kostenfuncties. In een tijdsinvariant scenario
berekent het algoritme een oplossing die dicht bij de optimale stationaire oplossing ligt, zo-
als gepresenteerd in Hoofdstuk 2. Dit wordt aangetoond met behulp van simulaties van een
tweedimensionaal trackingscenario. Bovendien wordt gedemonstreerd hoe het algoritme
de sensortijdbudgetten dynamisch toewijst aan de taken in een veranderende omgeving op
een niet-bijziende manier. Ten slotte worden de prestaties van het algoritme vergeleken met
verschillende technieken voor het toewijzen van sensorresources.

Gebaseerd op de eerdere resultaten, voert Hoofdstuk 4 een gedetailleerd onderzoek uit
naar de rekenbelasting van het AODB-algoritme. Er wordt getoond hoe de keuze van ver-
schillende invoerparameters de rekenprestaties beïnvloedt. Bovendien wordt Model Pre-
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xvi Samenvatting

dictive Control (MPC) toegepast in hetzelfde raamwerk als een alternatieve POMDP-op-
lossingsmethode. Vergeleken met stochastische optimalisatiemethoden zoals PR, wordt de
rekenbelasting drastisch verminderd, terwijl de resultaten van de resourcetoewijzing ver-
gelijkbaar zijn. Dit wordt aangetoond door simulaties van dynamische multi-target trac-
kingscenario’s waarin de kosten en rekenbelasting van verschillende benaderingen worden
vergeleken.

Tot nu toe heeft dit proefschrift trackingscenario’s gebruikt om de validiteit van de voor-
gestelde algoritmen aan te tonen. Hoofdstuk 5 laat zien hoe het voorgestelde raamwerk en de
algoritmische oplossing kunnen worden toegepast op een scenario voor gezamenlijke trac-
king en classificatie van meerdere targets. Aangetoond wordt dat tracking en classificatie
in één taaktype kunnen worden beschouwd. Verder wordt getoond hoe de toewijzingen van
resourcen aan de taken gezamenlijk kunnen worden geoptimaliseerd met behulp van een
enkele zorgvuldig geformuleerde kostenfunctie op basis van de variantie van taakbedrei-
gingen. Meerdere tweedimensionale radarscenario’s laten zien hoe sensorresources worden
toegewezen, afhankelijk van de huidige kennis van de targetpositie en -klasse.

Hoofdstuk 6 breidt de benadering met één sensor uit de vorige hoofdstukken uit naar
meerdere sensoren en demonstreert het nut van het voorgestelde algoritme in twee verschil-
lende multi-target tracking scenario’s met meerdere sensoren. Het eerste scenario gaat uit
van een generieke surveillancesituatie. Een nagenoeg optimale benadering op basis van
het eerder voorgestelde algoritme wordt geformuleerd, uitgaande van een centrale proces-
sor. Vervolgens wordt een gedistribueerde implementatie geïntroduceerd die convergeert
naar dezelfde resultaten als de gecentraliseerde implementatie en die minder rekenkracht
vereist. De prestaties van de voorgestelde aanpak voor zowel de gecentraliseerde als de
gedistribueerde implementatie worden aangetoond door middel van dynamische tracking-
scenario’s. Het tweede scenario richt zich expliciet op een toepassing in de automobielindu-
strie. Het voorgestelde generieke raamwerk en de algoritmische oplossing worden gebruikt
om de schaarse sensorenresources toe te wijzen aan meerdere mobiele sensorknooppunten.
Een centraal systeem beheert de transmissie van de knooppunten en deelt detectiegegevens
met andere sensorknooppunten als dit de algehele tracknauwkeurigheid verbetert. De voor-
gestelde methode wijst tijd- en frequentieresources toe. Door simulatie van een typische
verkeerssituatie wordt de validiteit van de aanpak aangetoond.

Dit proefschrift laat zien dat de toepassing van het voorgestelde nieuwe generieke raam-
werk en de algoritmische oplossing de prestaties verhoogt met betrekking tot heuristische
oplossingen. Verder wordt aangetoond dat het voorgestelde raamwerk de gebruiker in staat
stelt om elementen zoals de kostenfunctie of de POMDP-oplossingsmethode uit te wisse-
len om het aan specifieke behoeften aan te passen. De voorgestelde methode kan op veel
verschillende gebieden worden toegepast met verschillende soorten sensoren. Mogelijke
toepassingen zijn automotive scenario’s, zoals autonoom rijden of verkeersmonitoring, (ma-
ritieme) surveillance en luchtverkeersleiding.
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Introduction

“There is a theory which states that if ever anyone discovers exactly what
the Universe is for and why it is here, it will instantly disappear and be

replaced by something even more bizarre and inexplicable. There is another
theory which states that this has already happened.”

Douglas Adams in The Restaurant at the End of the Universe
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2 1. Introduction

1.1. Why Radar Resource Management?
Although the usage of electromagnetic waves for object detection has been studied at least
since the beginning of the 20th century, the first fully operational radar systems were only
developed before and during the Second World War, [1]. For example, the British Royal
Air Force used the Chain Home radar system from 1938 to detect and track potentially
threatening aircraft approaching the British coast. Using this radar, only the range and the
angle of an object could be determined with limited accuracy. It was up to the experience
of the operator to determine the exact amount of objects, their headings, as well as the
amount of threat that they posed [2]. After the Second World War, radar systems became
more and more complex and were applied in many other fields than military scenarios, e.g.,
for meteorology, air traffic control, ground and material inspections, and, most recently, in
the automotive industry. Many of these advances have been made possible by improved
transceivers and antennas, but also by the use of computers and advanced signal and data
processing that took over an increasing amount of the operator’s tasks [3].

Due to various technological improvements, the degrees of freedom of radar systems
have increased significantly in recent decades [4]. The most notable examples of such im-
provements are the rise of phased-array antennas, Digital Beamforming (DBF) on transmit
and receive, as well as digital waveform generation. This has led to a shift in radar systems
from highly specialized systems that focus mostly on a single application towards so-called
Multi-Function Radar (MFR) systems that are able to execute multiple functions jointly [5].
Among those functions are surveillance-related functions, such as object detection, tracking
and classification. As a result, modern MFR systems are capable of adjusting many param-
eters during run-time. An automatic adaptation of the radar system to changing situations,
like weather conditions, interference, or target maneuvers, is often mentioned in the con-
text of MFR and is usually called Radar Resource Management (RRM). An illustration of
such an MFR system for which RRM could be beneficial is shown in Figure 1.1. RRM is
frequently considered within the broader context of so-called Cognitive Radar (CR) [6–10].

Figure 1.1: Artist depiction of an MFR system [11].

To clarify the usefulness of RRM in modern radar systems, some general assumptions
about a possible MFR system are given below:
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• The radar system has a phased array antenna and is able to move its beam into another
direction within a matter of milliseconds.

• The system is supposed to handle multiple tasks such as detection, tracking and clas-
sification for various objects and (weather) phenomena.

• There are limited sensing resources available. The constraints affect the choice of
sensing time, center frequency, and bandwidth or energy usage per task. If the re-
source allocations are decided independently per task, the MFR system often ends
up in an overload situation, where more resources are requested than the sensor has
available.

• Decisions about the current situation need to be made quickly, which only allows a
high-level influence of a human operator.

MFR systems can be controlled on different levels taking into account different kinds
of data. This has often been represented using the Joint Directors of Laboratories (JDL)
data fusion model. Figure 1.2 shows such a model as block scheme from [6]. Similar
representations are used in [12, 13]. On Level 0, the signal of the radar system is directly
controlled by adjusting the waveform. This is a very low level of control that changes in
relatively small time intervals (smaller 10ms). Level 1 is related to the measurements,
which can consist of multiple signals. Those signals have to be scheduled in the available
time frame. Typically, the updating interval is in the order of a few 100ms. The next level,
Level 2, is related to the different objects. This part includes tracking and classification
actions. On this level, the control is updated in the order of seconds. Level 3 deals with the
management of the current overall situation. This means that the underlying tasks are given
priorities based on the current circumstances, and the resources are allocated accordingly.
The updates based on the situation are taking place in intervals of tens of seconds. The final
Level 4 is related to the radar mission. Here, the general actions are defined which need to
be taken to achieve the desired mission goals. This management stage is updated in intervals
of 100 s or more.

The RRM methods developed in this thesis primarily deal with management tasks re-
lated to Levels 2 and 3. They assign resources to the different object-related tasks based
on uncertainty and threat. However, the considered framework can also be used to extend
the approach to include optimizing measurement- and waveform-related parameters. The
benefit of applying RRM to optimize the waveform selection of radar systems has been dis-
cussed in the literature, e.g., in [14]. On a high level, the considered RRM algorithms in
this thesis can be represented as a feedback loop as shown in Figure 1.3. This is sometimes
referred to as an Observe–Orient–Decide–Act (OODA) loop [15]. Based on the predicted
future situation, the priorities of the different tasks are determined using a cost function,
and resources are allocated accordingly. Using the allocated resources, measurements of
the environment are taken, leading to new estimations of the situation and corresponding
covariances. From those estimations, new predictions can be made.

1.2. What is Radar Resource Management?
There are many ways of how to define RRM. Therefore, a couple of assumptions are sum-
marized here to understand what is considered as RRM in this thesis and to understand the
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Figure 1.2: JDL data fusion model for MFR system [6].

Measurements

Prediction of future 
situation

Determine task 
priorities

Allocate resourcesEnvironment

Figure 1.3: High-level feedback loop of an RRM algorithm.
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goals of this research:

• Generally, RRM is supposed to maximize the performance of the sensor system from
the user perspective. Therefore the idea is to find the optimal resource allocation.

• RRM techniques could be applied:

– offline as a benchmark solution to test the performance of other RRMapproaches
or for designing radar systems. The computational effort can be high in this case,
as there is no need for quick results.

– online in a real system. This means that the resource allocations must be calcu-
lated fast and in real-time, while the implementation cost should stay affordable.

• An RRM algorithm needs to deliver a valid solution considering:

– various sensor types with different characteristics.

– sensor systems consisting of multiple sensors.

– multiple, possibly very different sensor tasks.

– various scenarios and user wishes.

• RRMshould be able to take the expected future scenario into account when optimizing
the sensor resources.

Accordingly, this thesis aims to develop a flexible and generic framework that can adapt to
all the mentioned problem characteristics and find an objectively optimal formulation and
solution of the problem. The goal is to find potential solutions for real radar applications, and
the focus will thus be on an approximately optimal approach to allow amore straightforward
future implementation in a real system with limited computational resources.

The advantages of a truly generic optimal approach would be the following:

• Applicability: the solution could be applied in a variety of fields that use different
types of sensors. Additionally, different task types could be optimized jointly.

• Optimality: The results would be (approximately) optimal w.r.t. the chosen cost
function.

• User-friendliness: The user would have to define the cost function only. Since this
is no easy task, additional guidelines or tools might be necessary to help the user with
this choice.

• Simplicity: The formulation of the problem and solution would be simple, which
would make it easy for the user to judge the output.

• Adaptivity: Part of the solution (such as the optimization algorithm) could be re-
placed with other ones to suit the need of each application.
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Compared to already available solutions, a generic optimal solution could tremendously
decrease the development cost of new sensor systems since it could be reused for differ-
ent applications and sensors. In addition to that, it could be applied in any scenario and
environment with the appropriate user-chosen cost function.

Although this thesis focuses on MFR, the approach is not limited to such sensor systems
and has broader applicability. One could think about, e.g., sonar or lidar applications, as well
as video surveillance. Situations, where these types of sensors are applied include automo-
tive scenarios, such as autonomous driving or traffic monitoring, (maritime) surveillance,
and air traffic control. Even for applications without sensors, the proposed management
framework could potentially be applied. Examples are the management of energy networks
in cities, the management of resources in communication networks or even applications in
finance or economy, where the assignment of specific resources leads to different perfor-
mances. Many applications that can be formulated as a feedback loop could be solved with
a similar framework.

1.3. High-Level Overview of Existing Approaches
Much of the research on RRM (see, e.g., the overview byHero and Cochran in [4] or byMoo
and Ding in [5]) focuses on a single task, e.g., keeping a constant track quality even under
target maneuvers. This usually means managing the time budget spent on a particular task.
However, MFR systems are commonly operating at their sensor time and energy budget
limit. In such cases, increasing the budget for one task means simultaneously decreasing
the budget of the others, inevitably deteriorating their performance. In this thesis, part of
the RRM problem is therefore seen as a budget or resource balancing act over multiple
individual tasks.

Heuristic solutions have been presented in the past (see, for instance, the overview in
[16]), some relying on assigning task priorities and priority-based scheduling. Applying
heuristics too early in the design leads to complicated solutions, e.g., nested if-then-else
rules. It is not easy to understand what problem is solved within those approaches and
whether or not and in what sense the solution is optimal. This usually does not lead to a
reusable generic algorithm. In addition, a priority-based scheduler usually does not balance
the budget over all tasks but simply schedules the jobs in order of priority (as, e.g., applied
in [17] and [18]). When the timeline is fully occupied, it often leaves a set of tasks with
the lowest priorities that together do not fit anymore. These approaches do not consider
decreasing the time budgets of individual tasks. Furthermore, the determination of the levels
of priorities and the rules for assigning them is often not easy and prone to heuristics.

Additionally, most heuristic approaches are myopic, which means that they optimize
the sensor resources for the subsequent timestep only. While this might be sufficient for
many applications, a generic approach would benefit from making decisions based on the
expected future situation. Suppose enough knowledge is available to predict how the ob-
served environment will develop. In that case, the RRM algorithm could consider that in an
earlier stage and avoid sudden resource allocation changes due to “unexpected” situations.
Such an approach is called non-myopic (see, e.g., [19]).

Another aspect of multi-task RRM is the difficulty of allocating resources to different
kinds of tasks, such as detection, tracking, and classification. Many available approaches
combine searching for new targets and tracking known targets. Commonly, tracking and
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searching are defined in separate problems that are rather heuristically combined into a sin-
gle measure (see, e.g., [20–23]). Other methods try to develop RRM algorithms for tracking
and classification by defining a risk or threat measure that directly depends on track and
class parameters (see, e.g., [16, 24, 25]). Kreucher and Hero have presented a very general
approach in [26] where they use the uncertainty in the joint multitarget probability density
as the objective function for assigning resources. It is stated that this can theoretically be
done with detection, tracking, and classification tasks at once, but it is only demonstrated
for detection and tracking tasks. Defining a relevant threat or risk measure directly related
to the underlying task uncertainties seems to be the most useful and straightforward solution
and is also investigated in this thesis. Similarly, Charlish et al. also present high-level RRM
approaches that theoretically include many aspects that this research focuses on. Neverthe-
less, a detailed practical implementation of an algorithm that solves the RRM problem for
different task types using these general frameworks has not been demonstrated so far. The
available solutions usually do not explicitly mention the assumed simulation parameters,
making it difficult to correctly comprehend and interpret the results.

To conclude, different available problem formulations and proposed solutions vary w.r.t.
the specifications of the models, actions, and task states involved and the cost function.
While the concept of general optimal approaches already exists in literature, it has never
been fully developed and presented. The descriptions of such an RRM solution stayed on a
very high level. For the first time, a practical and detailed implementation of an algorithmic
solution using such a generic framework is presented in this thesis, with many examples
containing a variety of different explicit parameter values.

1.4. Research Objectives and Approach
The research objectives can be summarized in the following six main parts:

1. The development of methods to trade-off multiple tracking tasks. The assumption is
that the sensor is operating at its resource limit, and the available resources need to
be balanced. Contrarily to simple scheduling approaches where the resource need is
calculated independently per task, the resource limit for all tasks needs to be included
in the resource allocation procedure.

2. Addressing the uncertainty in the measurements and object movements using stochas-
tic control methods to implement non-myopic optimization.

3. Solving the problem non-myopically by taking into account the expected future.

4. The development of basic cost functions that serve as an example.

5. Showing that the RRM solution works jointly for tracking and classification.

6. Extending the developed algorithm for multiple sensors.

In this thesis, the problem is treated as an optimal stochastic control problem which
relies on an explicit formulation of

• the inference problem that the radar has to solve in terms of dynamic andmeasurement
models,
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• the control actions that the sensor has available, which reflect the degrees-of-freedom
of the MFR mentioned earlier,

• a cost function that reflects the system performance that the user would like to opti-
mize.

To the author’s best knowledge, an overall solution to the RRM problem using this
approach has not been presented so far. It has been suggested that a truly optimal solution
could possibly lead to a significant improvement of the performance of adaptive sensors
[27], but that still needs to be illustrated. However, even if the performance would not
improvemuch over heuristic solutions that are carefully tuned to each application, a reusable
generic framework will reduce the design effort of RRM solutions. Consequently, such a
framework would reduce the development cost and time and aid in understanding the system
behavior.

In this thesis, the RRM problem is considered a multi-task time budget-constrained con-
trol problem, where the individual tasks are different tracking tasks. Our chosen problem
formulation directly leads to the assumption of a constrained Partially Observable Markov
Decision Process (POMDP). The presented examples explicitly deal with tracking and clas-
sification scenarios, while other tasks such as searching, for instance, are not covered. How-
ever, the chosen POMDP framework is suitable for other sensor tasks as well.

1.5. Novelties and Main Results
• In this thesis, the Optimal Steady-State Budget Balancing (OSB) algorithm is intro-
duced. It is shown how using it led to the optimal balancing of sensor budgets in a
Linear Time-Invariant (LTI) setting. It applied LR to distribute the resources over the
different tasks.

• Subsequently, generic dynamical problems by utilizing the POMDP framework are
considered. This thesis introduces the Approximately Optimal Dynamic Budget Bal-
ancing (AODB) algorithm derived from the OSB algorithm to solve dynamical prob-
lems. This novel algorithm uses a cost function based on the predicted error-covariance
of the Extended Kalman Filter (EKF). It was shown that the results of this generic
approach are approximately optimal w.r.t. the steady-state error-covariance of a one-
dimensional Kalman Filter (KF). The RRM problem was solved non-myopically us-
ing an online Monte Carlo technique called Policy Rollout (PR), which stochastically
predicts the future. The AODB algorithm was applied to a dynamic radar tracking
scenario to emphasize its practical value in variable problem settings. Such a practi-
cal analysis of a comparable RRM algorithm has never been presented before.

• In addition to that, a comparison of the performance of the AODB algorithm to several
other resource allocation techniques was conducted. It was shown that applying the
AODB always led to the lowest cost.

• Furthermore, the computational load of the AODB algorithm was investigated in de-
tail in a practical setting, and a computationally more efficient implementation was
presented. This is the first time that such a detailed analysis of a comparable RRM
algorithm has been published.
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• Additionally, it was shown that the proposed method could be used for multiple task
types, such as tracking and classification. Although these different tasks might re-
quire different measurement actions if considered separately, the proposed solution
achieves a novel solution that suits both task types.

• Finally, the framework was also extended to deal with sensor networks. For the first
time, it was shown in a practical setting how sensor actions can be optimized for mul-
tiple tasks in a non-myopic fashion while balancing the resources rather than applying
a sensor selection.

1.6. Outline of the Thesis
The remainder of this thesis is structured as follows:

Chapter 2 presents the first step towards a generic RRM framework. It introduces
the fundamental problem formulation that is used throughout the thesis. It then presents a
novel myopic RRM approach that allocates the sensor resources by applying LR and the
subgradient method, called OSB algorithm. It is shown that the proposed algorithm can
balance the resources in a simple LTI tracking scenario using a cost function based on the
tracking accuracy.

Chapter 3 expands the balancing approach of Chapter 2 by assuming an underlying
POMDP framework for the target states. This chapter introduces the so-called AODB al-
gorithm that solves the POMDPs non-myopically by applying PR. The algorithm’s per-
formance is shown through two-dimensional tracking scenarios assuming different sensor
parameters and a more complete radar scenario.

Chapter 4 investigates the computational load of the algorithm proposed in Chapter
4 and gives recommendations of which input parameters to use in practice. Furthermore,
it introduces an alternative implementation of the algorithm, which uses Model Predictive
Control (MPC) instead of PR. It is shown that this approach significantly reduces computa-
tional load.

Chapter 5 demonstrates that the proposed framework can be used for joint tracking
and classification of multiple targets. It is shown that proper modeling and a suitable cost
function formulation allow it to consider both tracking and classification through a single
sensor task type and a single cost function. This is shown through multiple two-dimensional
simulation scenarios.

Chapter 6 extends the previously proposed single sensor approach to a sensor network
withmultiple sensors. It demonstrates that the proposed framework alsoworks in such a case
and demonstrates it through multiple two-dimensional simulation scenarios. Additionally,
it is shown how the implementation of the algorithm can be adjusted to allow the problem
to be solved in a distributed fashion for independent sensor nodes at different locations.

Chapter 7 contains the conclusions and gives recommendations for possible future re-
search.





2
Balancing of Radar Resources

for Multi-Target Tracking

Based on the findings from the literature review, this chapter is the first step towards a
generic solution of the RRM problem and introduces the basic problem formulation that
is used throughout this thesis. It presents a non-myopic RRM solution method for an LTI
scenario using LR and the subgradient method. Through simple one-dimensional track-
ing scenarios, it is demonstrated how these techniques can be used to optimize the sensor
resources considering a cost function related to the tracking accuracy.

Parts of this chapter have been published in:

M. I. Schöpe, H. Driessen, and A. Yarovoy, “Optimal Balancing of Multi-Function Radar Budget for Multi-Target
Tracking Using Lagrangian Relaxation”, in Proceedings of the 22nd International Conference on Information
Fusion (FUSION), Ottawa, Ontario, Canada, 2019.
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2.1. Optimal Multi-Task Radar Resource Manage-
ment

As already mentioned in Chapter 1, the approach here is not to schedule tasks with fixed
resource demands into the sensor timeline. This thesis aims to find optimal RRM solu-
tion methods that find the best global resource allocation for all tasks and fit into the total
available budget. The problem can therefore be formulated as a constrained optimization
problem.

Optimization problems that involve constraints are usually more difficult to solve than
unconstrained problems. The constraints can be divided into equality and inequality con-
straints, as shown in the general problem stated in (2.1) where the first two constraints are
equality constraints and the last one is an inequality constraint:

minimize
𝒙

𝑓(𝒙)

subject to 𝒈(𝒙) = 𝑨
𝒉(𝒙) ≥ 𝑩
𝒊(𝒙) < 𝑪.

(2.1)

Depending on the type of constraint, different solution methods can be chosen. If the opti-
mization problem only involves equality constraints, LR can be used to convert it to an un-
constrained optimization problem that can be solved iteratively. The solution will converge
to the equality constraint. When one or more inequality constraints need to be considered,
the solution is generally more difficult to obtain. Other solution methods such as, e.g., lin-
ear, non-linear, or quadratic programming need to be applied. These techniques have been
covered extensively in the literature, and more information about the different optimization
methods can be found e.g. in [28–31]. When this kind of optimization is applied to a dy-
namic system, it falls into the domain of optimal control. An introduction and overview
can, e.g., be found in [32–34].

It has been shown that LR is a beneficial technique to solve constrained optimization
problems related to RRM; see, for instance, the approaches byWintenby and Krishnamurthy
in [35], White and Williams in [36], or Castañón in [37]. Alternatively, the Quality of Ser-
vice Resource Allocation Method (Q-RAM) could be used. Q-RAM requires an action
space discretization while LR allows the sub-problems to be solved analytically. Never-
theless, these methods are conceptually very similar. Some interesting approaches using
Q-RAM have been shown by Irci et al. in [38] and Charlish et al. in [39] and [40].

This chapter will focus on the solution of RRM problems when the cost can easily be
calculated through a relatively simple function. It is structured as follows. The assumed
general RRM problem is formulated in Section 2.2 and Section 2.3 describes how a cost
function can be formulated and what the general requirements are. The specific tracking
problem treated in this chapter is defined in Section 2.4 as a constrained optimization prob-
lem. Subsequently, Section 2.5 introduces our proposed solution of the RRMproblem, using
LR and the subgradient method. Furthermore, the results are illustrated by time-invariant
and time-variant tracking scenarios in Section 2.6, using the position uncertainty from the
predicted steady-state Kalman error covariance matrix as cost function. Finally, the chapter
ends with general conclusions in Section 2.7.
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2.2. General Radar Resource Management Problem
Definition

This section introduces the general optimization problem that will be considered in the fol-
lowing chapters.

2.2.1. Motion Model
At every moment in time 𝑡, each target considered within this model can be characterized
by a state based on its position and velocity in 𝑥 and 𝑦 direction within a two-dimensional
Cartesian coordinate system. For target 𝑛 this state is defined as

𝒔𝑛𝑡 = [𝑥𝑛𝑡 𝑦𝑛𝑡 �̇�𝑛𝑡 �̇�𝑛𝑡 ]
𝑇 , (2.2)

where 𝑥𝑛𝑡 , 𝑦𝑛𝑡 and �̇�𝑛𝑡 , �̇�𝑛𝑡 are the position and velocity of target 𝑛 in 𝑥 and 𝑦, respectively.
The future target state at time 𝑡 + Δ𝑡 can be calculated following a function

𝒔𝑛𝑡+Δ𝑡 = 𝑓Δ𝑡 (𝒔𝑛𝑡 , 𝒘𝑛𝑡 ) , (2.3)

where 𝑠𝑛𝑡+Δ𝑡 is the next following state at time 𝑡 + Δ𝑡 and 𝒘𝑛𝑡 ∈ ℝ4 is the maneuverability
noise for target 𝑛 at time 𝑡. The state evolution equation (2.3) directly defines the evolution
Probability Density Function (PDF) which is given as

𝑝 (𝒔𝑛𝑡+Δ𝑡|𝒔𝑛𝑡 ) . (2.4)

2.2.2. Measurement Model
A sensor is assumed that is taking noisy observations of the state 𝒔𝑛𝑡 with sensor action
𝒂𝑛𝑡 ∈ ℝ𝑚, where 𝑚 is the amount of adjustable action parameters. A measurement 𝒛𝑛𝑡 of
target 𝑛 at time 𝑡 can be characterized by using the measurement function 𝔥 as

𝒛𝑛𝑡 = 𝔥 (𝒔𝑛𝑡 , 𝒗𝑛𝑡 , 𝒂𝑛𝑡 ) , (2.5)

where 𝒗𝑛𝑡 ∈ ℝ𝑞 is the measurement noise for target 𝑛 and 𝑞 is the amount of measurement
parameters. The measurement equation (2.5) directly defines the measurement PDF which
can be written as

𝑝 (𝒛𝑛𝑡 |𝒔𝑛𝑡 , 𝒂𝑛𝑡 ) . (2.6)

2.2.3. Tracking Algorithm
For the tracking scenarios considered in this chapter, a tracking algorithm should be chosen
that aims at computing the posterior density. For linear systems, a KF can be adopted as an
exact solution. For non-linear systems, possible algorithms are an extended KF (EKF) or a
particle filter, for example.

2.2.4. Budget Optimization Problem
As mentioned in Chapter 1, the radar sensor is assumed to have a limited maximum budget
Θ𝑚𝑎𝑥 of any kind. For action 𝒂𝑛𝑡 that is executed for each task 𝑛, a certain amount of
budget (e.g. time or energy allocations) is required. In an overload situation, the current
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tasks require more of the total budget than is available. Thus, the available budget has to be
distributed over the tasks to minimize a cost (e.g., related to the uncertainty of the current
situation).

At time 𝑡, the optimization problem for 𝑁 different tasks can be written as

minimize
𝒂𝑡

𝑁

∑
𝑛=1

𝑐(𝒂𝑛𝑡 , 𝒔𝑛𝑡 )

subject to
𝑁

∑
𝑛=1

Θ𝑛𝑡 (𝒂𝑛𝑡 ) ≤ Θ𝑚𝑎𝑥 ,

(2.7)

where Θ𝑛𝑡 ∈ [0, 1] is the budget for task 𝑛 at time 𝑡, 𝑐(⋅) is the used cost function and
Θ𝑚𝑎𝑥 ∈ [0, 1] is the maximum available budget (0: no budget assigned, 1: all budget
assigned). If all resources are supposed to be optimized, the maximum budget Θ𝑚𝑎𝑥, will
be 1 but in some cases also values smaller than 1 are possible, e.g., if resources have to be
reserved for very important other tasks.

2.3. The Cost Function
When applying such an RRM approach, the final performance of the sensor system will be
determined by the cost function, which is preferred over a heuristic approach. However, it
introduces the explicit formulation of such a cost function in the application of the frame-
work. The definition of an operationally relevant cost function is essential to benefit from
these techniques efficiently but is not the focus of this thesis. An example of an opera-
tionally more relevant cost function has been discussed by Katsilieris et al. [41]. However,
it should be noted that their cost function formulation is designed for a specific application
and might not lead to the expected results in other situations.

Sometimes it has been suggested that generic measures of performance, such as the In-
formation Gain or the Renyi divergence applied to the posterior density of the full state,
could be applied (see, e.g., [20, 42]). Given the very different natures of radar scenarios,
such generic measures are more reliable and comparable. For instance, if the cost is mea-
sured in the Information Gain, this formulation is directly clear and valid as it is not con-
nected to a specific application. This research is based on the conviction that one single cost
function will not meet the desires of different users in different applications with different
sensors, targets, and environments.

The development of specific cost functions is essential and will be a development task in
itself that will require close cooperationwith potential users. In heuristic solutions, a specific
cost function is often already built-in in the approach and cannot easily be adjusted. This is
one of the reasons why the primary focus in this thesis is on developing a generic framework
for RRM, which allows the user to decide on the preferred cost function. Therefore, the
development of such user-specific cost functions is out of the scope, but it will be shown
how different cost functions affect the results.
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2.4. Radar ResourceManagement Tracking Problem
Definition

In this section, the tracking problem under consideration is described in detail. The chosen
parameters to be optimized are the revisit time 𝑇 and the dwell time 𝜏. In the following,
time will be referred to in time steps 𝑘𝑛 which are separeted by the revisit time 𝑇𝑛 for target
𝑛. It is assumed that a certain number of targets are in the observable area around our
radar system and are already being tracked. The targets are moving according to a linear
dynamical system. When discrete time steps 𝑘 are considered, the next state for target 𝑛 can
be predicted as

𝒔𝑛𝑘𝑛+1 = 𝑭(𝑇𝑛) ⋅ 𝒔
𝑛
𝑘𝑛 +𝒘

𝑛
𝑘𝑛 , (2.8)

where 𝒔𝑛 is the state of the target and 𝑭(𝑇𝑛) ∈ ℝ4×4 is the according state transition matrix
which is based on the revisit time 𝑇𝑛. Moreover, 𝒘𝑛𝑘𝑛 ∈ ℝ4 is the zero-mean Gaussian
maneuverability noise for target 𝑛, whose covariance is defined as

𝐸 (𝒘𝑛𝑘𝑛(𝒘
𝑛
𝑘)𝑇) =

⎡
⎢
⎢
⎢
⎣

(𝑇𝑛)2
2 0
0 (𝑇𝑛)2

2
𝑇𝑛 0
0 𝑇𝑛

⎤
⎥
⎥
⎥
⎦

[
(𝑇𝑛)2
2 0 𝑇𝑛 0
0 (𝑇𝑛)2

2 0 𝑇𝑛
] 𝜎2𝑤,𝑛

=

⎡
⎢
⎢
⎢
⎢
⎣

(𝑇𝑛)4
4 0 (𝑇𝑛)3

2 0
0 (𝑇𝑛)4

4 0 (𝑇𝑛)3
2

(𝑇𝑛)3
2 0 (𝑇𝑛)2 0
0 (𝑇𝑛)3

2 0 (𝑇𝑛)2

⎤
⎥
⎥
⎥
⎥
⎦

𝜎2𝑤,𝑛

(2.9)

with 𝜎2𝑤,𝑛 being the maneuverability noise variance.
All measurements are considered to be well separated, so there are no association prob-

lems. In this chapter, it is assumed that the relationship between the Cartesian target state
and the measurements is linear. In that case, the measurement function in (2.5) can be re-
placed by a matrix. For target 𝑛 at time 𝑘𝑛, the measurement can therefore be described
as

𝒛𝑛𝑘𝑛 = 𝑯 ⋅ 𝒔
𝑠
𝑘𝑛 + 𝒗

𝑛
𝑘𝑛 , (2.10)

where 𝑯 ∈ ℝ2×4 is the measurement matrix and 𝒗𝑛𝑘𝑛 ∈ ℝ2 the zero-mean Gaussian mea-
surement noise. It is assumed that the standard deviation of the latter depends on the dwell
time 𝜏 as

𝜎𝑣,𝑛 =
𝜎0,𝑛
√𝜏𝑛

, (2.11)

where 𝜎0,𝑛 is a predefined basic measurement noise standard deviation for target 𝑛. This
relation of dwell time and measurement standard deviation is slightly different as presented
in [43] where the square root was not applied. It has been shown that the formulation in
(2.11) is more realistic when considering a Signal-to-Noise Ratio (SNR) based on the dwell
time (see Chapter 3 for more information).
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For the actual tracking, a KF can be applied, for instance. The problem that is being
solved in this chapter is how to optimally assign dwell times and revisit intervals to the
different tracks to achieve the best result according to some cost. The problem is formulated
as an optimization problem to find the minimum of a cost function 𝑐(𝑇𝑛 , 𝜏𝑛), constrained
by a maximum available budget for all tracking tasks.

The general optimization problem can therefore be described as

minimize
𝑻,𝝉

𝑁

∑
𝑛=1

𝑐(𝑇𝑛 , 𝜏𝑛)

subject to
𝑁

∑
𝑛=1

𝜏𝑛
𝑇𝑛
≤ 𝐵𝑚𝑎𝑥 ,

(2.12)

where𝑁 ∈ ℤ+ is the amount of tasks (or the amount of targets to be tracked),𝑻 = [𝑇1, ..., 𝑇𝑁]𝑇 ∈
ℝ𝑁 are the revisit intervals and 𝝉 = [𝜏1, ..., 𝜏𝑁]𝑇 ∈ ℝ𝑁 the dwell times for all 𝑁 targets,
𝑐(𝑇, 𝜏) is the chosen cost function and 𝐵𝑚𝑎𝑥 ∈ [0, 1] is the maximum time budget for all
tasks combined.

The time budget is defined as the ratio of dwell time and revisit interval. Therefore, this
number represents the fraction of the revisit interval that is being used by the dwell time per
task. The idea of the global constraint 𝐵𝑚𝑎𝑥 is to limit the total time budget of all tasks to a
value between 0 (no sensor time used) and 1 (all sensor time used).

2.5. Proposed Solution of the RRM Tracking Prob-
lem

Our solution approach uses the LR technique. Following this approach, the original op-
timization problem, or Primal Problem (PP), can be relaxed by adding the constraints as
penalty terms to the cost function, which results in the so-called Lagrangian Dual (LD). The
optimization problem of finding the maximum of the LD over the Lagrange multiplier (also
referred to as dual variable), is called LD Problem (LDP) and can be expressed as

𝑍𝐷 =max
𝜆
(min

𝑻,𝝉
(

𝑁

∑
𝑛=1

(𝑐(𝑇𝑛 , 𝜏𝑛) + 𝜆 ⋅
𝜏𝑛
𝑇𝑛
)) − 𝜆 ⋅ 𝐵𝑚𝑎𝑥) . (2.13)

where 𝜆 ∈ ℝ is the Lagrange multiplier for the budget constraint.
It needs to be noted that in general cases when only a weak duality can be assumed, the

solution of the LDP is a lower bound to the PP. Generally, there is still a so-called duality
gap between the optimal PP and the optimal LDP solution. Only when strong duality can
be assumed, the duality gap is zero, and the solution of the LDP is equal to the solution of
the PP. More details about LR and duality can be found in Appendix A.

It can easily be seen that the resulting LDP in (2.13) is just a sum of 𝑁 sub-optimization
problems, one for each task. Therefore, this problem does not have to be solved for all
tasks jointly but can be decoupled into the individual tasks 𝑛. Accordingly, (2.13) is split
up into 𝑁 easier to solve optimization problems. It is important to realize that 𝜆 is a single
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multiplier for the sum of all sub-optimization problems. Therefore, it is considered the outer
optimization problem, solved after optimizing the parameters 𝑇𝑛 and 𝜏𝑛 per task 𝑛. Since
those sub-optimization problems can still be quite complicated, they are going to be solved
in different stages through an iterative process with steps 𝑙 ∈ ℤ+. First, an initial value for
the Lagrange multiplier 𝜆𝑙 is chosen.

The LD function for each target 𝑖 is solved with the current Lagrange multiplier value,
as shown in (2.14):

{𝑇𝑙𝑛 , 𝜏𝑙𝑛} = argmin
𝑇𝑛 ,𝜏𝑛

(𝑐(𝑇𝑛 , 𝜏𝑛) + 𝜆𝑙 (
𝜏𝑛
𝑇𝑛
)) . (2.14)

The total budget 𝐵𝑚𝑎𝑥 is omitted here, because it is a constant with respect to 𝑻𝑙 and 𝝉𝑙 and
does therefore not change the position of the minimum in the Lagrangian. The current opti-
mal values 𝑻𝑙 = [𝑇𝑙1 , ..., 𝑇𝑙𝑁]𝑇 and 𝝉𝑙 = [𝜏𝑙1, ..., 𝜏𝑙𝑁]𝑇 are then used to find the next Lagrange
multiplier 𝜆𝑙+1. This is done by the use of the subgradient method, as explained in detail in
Appendix A. The subgradient for Lagrange multiplier 𝜆𝑙 is chosen as

𝑠𝑙𝜆 =
𝑁

∑
𝑛=1

𝜏𝑛
𝑇𝑛
− 𝐵𝑚𝑎𝑥 . (2.15)

The Lagrangian multiplier is then updated with a chosen step size 𝜁𝑙. Therefore the new
Lagrangian multipliers for the next iteration are calculated as shown in (2.16):

𝜆𝑙+1 = 𝑚𝑎𝑥{0, 𝜆𝑙 + 𝜁𝑙𝑠𝑙𝜆}. (2.16)

The initial multiplier value 𝜆0 has to be suitably chosen. Since the budget constraint is an
inequality constraint, the value of its Lagrange multiplier can only be positive. With the new
value 𝜆𝑙+1, the process is started again until the desired precision of the solution is reached.

2.6. One-Dimensional Tracking Scenario
In this chapter, a one-dimensional tracking scenario is considered as an example. To conduct
the tracking, the KF is used according to the state and measurement definitions mentioned
in (2.2), (2.8) and (2.10). In this section, a possible solution to such a scenario is discussed.

2.6.1. Steady-State of the Tracking Filter Error-Covariance
If the targets are known already, and the KFs are assumed to be staying in a steady-state,
the predicted error-covariance matrix of the KF could be used as the cost function. Being
in steady-state means that the measurement uncertainties and maneuverabilities per target
are constant, and therefore an optimal time-invariant KF error-covariance can be computed.
It can be shown that the α-β-filter is an example for a steady-state KF [44]. The predicted
error-covariance matrix is minimized in order to find the revisit intervals 𝑻 and the dwell
times 𝝉.

For this scenario, it is assumed that the objects follow a linear dynamical system as
described in (2.8) and (2.10). The state matrix in the one-dimensional case is therefore
defined as

𝒔 = [𝑝, �̇�]𝑇 , (2.17)
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where 𝑝 is the position of the target and �̇� is the velocity of the target.
A method to calculate the error covariance for a steady-state KF has been introduced by

Kalata in [45] with an extension by Gray and Murray in [46]. In their work, the steady-state
equations for an α-β-filter are calculated based on a tracking index Λ, which for a target 𝑛
is defined as

Λ𝑛 ∝
position maneuverability uncertainty of target n
position measurement uncertainty of target n

=̂𝑇
2
𝑛𝜎𝑤,𝑛
𝜎𝑣,𝑛

,
(2.18)

where 𝜎𝑣,𝑛 is the standard deviation of the measurement noise (see (2.11)) and 𝜎𝑤,𝑛 is the
standard deviation of the maneuverability noise for target 𝑛. Through the tracking index, the
filter parameters α and β can be calculated. To simplify the calculations, an extra damping
parameter has been introduced in [46], which is defined as

𝑟𝑛 = √1 − 𝛼𝑛

= 4 + Λ𝑛 −√8Λ𝑛 + Λ2𝑛
4 .

(2.19)

From this, α can be calculated as
𝛼𝑛 = 1 − 𝑟2𝑛

= 1 − (4 + Λ𝑛 −
√8Λ𝑛 + Λ2𝑛
4 )

(2.20)

and β as
𝛽𝑛 = 2(2 − 𝛼𝑛) − 4√1 − 𝛼𝑛 . (2.21)

Based on (2.20) and (2.21), the filtered covariancematrix can be formed, as shown byKalata
in [45]. The corresponding matrix is shown in (2.22).

𝑷𝑘𝑛|𝑘𝑛(𝑇𝑛 , 𝜏𝑛 , 𝜎0,𝑛 , 𝜎𝑤,𝑛) = [
𝜎2𝑝,𝑛 𝜎2𝑝𝑣,𝑛
𝜎2𝑝𝑣,𝑛 𝜎2𝑣,𝑛 ]

= [
𝛼𝑛𝜎2𝑣,𝑛

𝛽𝑛
𝑇𝑛
𝜎2𝑛,𝑛

𝛽𝑛
𝑇𝑛
𝜎2𝑣,𝑛

(2𝛼𝑛−𝛽𝑛)𝛽𝑛
2(1−𝛼𝑛)𝑇2𝑛

𝜎2𝑣,𝑛
] .

(2.22)

Since the interest here lies in creating a cost function based on the prediction of the error
covariance matrix, the approach in [45] is followed and the cost function for target 𝑛 is
defined according to the KF prediction equations as

𝑷𝑘𝑛|𝑘𝑛−1(𝑇𝑛 , 𝜏𝑛 , 𝜎0,𝑛 , 𝜎𝑤,𝑛)
= 𝑭(𝑇𝑛)𝑷𝑘𝑛|𝑘𝑛 ,𝑛(𝑇𝑛 , 𝜏𝑛 , 𝜎0,𝑛 , 𝜎𝑤,𝑛)𝑭𝑇(𝑇𝑛) + 𝜳𝑛𝜳𝑇𝑛𝜎2𝑤,𝑛

= [1 𝑇𝑛
0 1 ] [

𝛼𝑛𝜎2𝑣,𝑛
𝛽𝑛
𝑇𝑛
𝜎2𝑣,𝑛

𝛽𝑛
𝑇𝑛
𝜎2𝑣,𝑛

(2𝛼𝑛−𝛽𝑛)𝛽𝑛
2(1−𝛼𝑛)𝑇2𝑛

𝜎2𝑣,𝑛
] [ 1 0
𝑇𝑛 1]

+ [
𝑇2𝑛
2
𝑇𝑛
] [𝑇

2𝑛
2 𝑇𝑛] 𝜎2𝑤,𝑛 ,

(2.23)
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where 𝑭(𝑇𝑛) is the dynamic matrix for target 𝑛.
As a simple cost function for target 𝑛, the first element of the predicted error-covariance

matrix will be used, corresponding to the error covariance in range. The cost function def-
inition is slightly different from the one presented in [43]. In contrast to that previous for-
mulation, an additional term is added here that penalizes very small values of 𝑇 to avoid
choosing parameters that are impractical in an actual application:

𝑐1,𝑛(𝑇𝑛 , 𝜏𝑛) = [1 0]𝑷𝑘𝑛|𝑘𝑛−1(𝑇𝑛 , 𝜏𝑛 , 𝜎0,𝑛 , 𝜎𝑤,𝑛) [
1
0] +

1000
(𝑇𝑛)2

. (2.24)

Cost function 𝑐1 is convex for positive values of 𝑇 and 𝜏. Therefore, the algorithm achieves
approximate optimality in this case. The cost function will lead to a budget distribution
based only on the different targets’ maneuverability and measurement uncertainty.

2.6.2. Time-Invariant Problem
In a time-invariant scenario, the KFs for all objects are assumed to be in a steady-state, which
means that both the measurement uncertainties and the maneuverabilities are constant. This
leads to a constant predicted error-covariance matrix. A single solution can therefore be
calculated that is valid for every moment in time.

To illustrate that the LR approach leads to an automatic budget distribution, a simulation
is conducted. The budgets are calculated according to the method mentioned in Section
2.5, without creating an explicit schedule of the task. Three targets are assumed, starting
at different positions from the radar, which is positioned at the origin of the coordinate
system. The state of the objects is defined as 𝒔 = [𝑝, �̇�]𝑇 in a Cartesian coordinate system
where 𝑝 is the position of the target in meters while �̇� is its velocity in meters per second.
For the KF, the dynamic matrix for target 𝑛 is defined as 𝑭(𝑇𝑛) = [1, 𝑇𝑛; 0, 1], while the
measurement matrix is defined as 𝑯 = [1, 0]. As cost function, 𝑐1 is used as defined in
(2.24). The targets have different measurement uncertainties and maneuverabilities to point
out that our approach balances the budgets according to those uncertainties while still taking
the constraints into account. A total budget 𝐵𝑚𝑎𝑥 of 1 is assumed, which corresponds to
using all available sensor time for tracking. The LR step size is set to a constant value. The
features of the tracked targets are summarized in Table 2.1, while the general simulation
parameters are shown in Table 2.2.

Table 2.1: Initial target parameters for time-invariant scenario simulation.

Target Position Velocity Measurement Maneuverability
[m] [ms−1] variance [m2] [m2 s−4]

1 -1000 10 25 25
2 2000 20 25 250
3 1000 -30 300 25

The simulation results are shown in Figure 2.1 and in Table 2.3. It can be seen that
the LR indeed converges to constant budget values, which add up to a total of 1. In every
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Table 2.2: Simulation parameters for time-invariant scenario.

Parameter Value
Amount of targets (𝑁): 3

Maximum budget (𝐵𝑚𝑎𝑥): 1
Initial Lagrangian multiplier (𝜆0): 10000

Step size for LR (𝜁): 100
Precision of subgradient solution: 0.01

Cost function: 𝑐1

time step of the simulation, the Lagrange multipliers are adjusted, leading to the Lagrangian
approaching the value of the cost function. The process stops after 411 iterations when
the subgradient of the constraint reaches 0 with the desired precision of 0.01. Since the
cost function is only based on the measurement uncertainty and maneuverability, the actual
state of the targets has no direct impact on the result. Obviously, both the differences in
maneuverability (see the budget difference between tasks 1 and 2) and the differences in
measurement uncertainty (see the budget difference between tasks 1 and 3) lead to quite
different sensor budgets for the different tasks. This solution is not trivial, as it can not
simply be achieved analytically.
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Figure 2.1: Simulation results of time-invariant budget allocation using cost function 𝑐1 for three tracked targets.

2.6.3. Time-Variant Problem
In this time-variant scenario, it is assumed that the state of the targets influences the cost.
The position and velocity will influence the solutions, which will therefore not be valid for
the whole future, as assumed in the time-invariant scenario. For that reason, it needs to be
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Table 2.3: Simulation results of time-invariant budget allocation after convergence using cost function 𝑐1 for three
tracked tasks.

Target Revisit interval 𝑇 [s] Dwell time 𝜏 [s] Budget
1 1.79 0.36 0.20
2 1.27 0.37 0.29
3 1.58 0.79 0.50

updated in certain intervals in which the filters can be assumed to be nearly in a steady-state.
The formulation of the state vector 𝒔, the dynamic matrix 𝑭 and the measurement matrix

𝑯 are the same as in the time-invariant scenario. Since cost function 𝑐1 is only depending
on the uncertainty of the measurement and the maneuverability, it will assign resources to
targets only according to the uncertainty of their states. In a real application, this will for
instance lead to paying more attention to targets that are far away than to closer ones. This is
not a very useful cost function formulation, because the threat of an object is directly related
to its state. It is therefore obvious that is is very important to carefully formulate the cost
function according to the mission needs. For illustration purposes, the above mentioned
cost function is extended by a heuristic threat factor 𝜃𝑡(𝒔). This threat factor is based on
the threat formulation as used for example by Katsilieris, Driessen and Yarovoy in [47]
and is related to the Closest Point of Approach (CPA). Since the examples presented in
this chapter are one-dimensional, only the time to reach the CPA is considered. The CPA
is equivalent to the radar location in our case. To convert the time into threat, the same
sigmoid function as suggested in [47] is used, with an additional offset of +0.1, to avoid
a factor of 0. The following parameters for the sigmoid function are applied: 𝑡1 = 10 s,
𝑡0.5 = 20 s and 𝑡0 = 30 s. This is by all means not the best cost function. Its purpose is to
point out how important it is to define a proper cost function and to illustrate the impact of
an extra heuristic factor. The cost function 𝑐2 for target 𝑛 is therefore defined as

𝑐2,𝑖(𝑇𝑛 , 𝜏𝑛) = ([1 0]𝑷𝑘𝑛|𝑘𝑛−1(𝑇𝑛 , 𝜏𝑛 , 𝜎0,𝑛 , 𝜎𝑤,𝑛) [
1
0] +

1000
(𝑇𝑛)2

)𝜃𝑡(𝒔𝑛). (2.25)

The budgets for all targets are updated in a fixed time interval 𝛽𝑡. During this time interval,
measurements are conducted according to the calculated dwell times 𝝉 and revisit intervals
𝑻. Separate KFs are used to track the objects accordingly. All 𝑻 and 𝝉 stay constant until
a new update of the budgets is performed by the use of LR. Two separate simulations with
𝛽𝑡 = 5 s and 𝛽𝑡 = 10 s are conducted. It is assumed that the targets are constantly tracked
without track drops or reinitializations.

The LR budget algorithm is fed with the predicted positions given by the KF based on
noisy measurements. The features of the simulated targets are the same as in the previous
simulation; see Table 2.1. All other simulation-related values are shown in Table 2.4 and
the trajectories of the targets are shown in Figure 2.2.

The simulation results are shown in Figures 2.3 and 2.4. It can be seen that our LR
approach leads to changing budgets over time according to the uncertainty and the threat.
When an object is expected to reach the radar position comparatively quickly, it gets much
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Table 2.4: Simulation parameters for time-variant scenario.

Parameter Value
Amount of targets (𝑁): 3

Maximum budget (𝐵𝑚𝑎𝑥): 1
Total simulation time (𝑡𝑚𝑎𝑥): 100 s
Simulation step size (𝑡𝑠𝑡𝑒𝑝): 0.1 s
Budget update interval (𝛽𝑡): 5 s and 10 s

Initial Lagrangian multiplier (𝜆0): 10000
Step size for LR (𝜁): 1

Precision of subgradient solution: 0.01
Cost function: 𝑐2
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Figure 2.2: Target trajectory of the three simulated targets mentioned in Table 2.1. The thin lines show the predicted
positions by the KFs.
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more attention than the other targets. At the same time, the total sum of budgets stays within
the constraint.
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Figure 2.3: Simulation results of time-variant budget allocation using cost function 𝑐2 for three tracked targets
with a budget update interval of 𝛽𝑡 = 5 s.

Of course, the budget update interval 𝛽𝑡 has an impact on the resulting budgets, which
can be seen when comparing Figures 2.3 and 2.4. If the budgets are updated fast enough,
the KFs can be assumed to a stay in a steady-state. If the target states change very quickly,
the chosen budget update interval needs to be reduced. It is therefore important to choose
this interval properly. Figure 2.5 shows the resulting cost differences when different fixed
budget update periods are compared to a budget update period of 𝛽𝑡 = 1 s. Contrary to the
previous simulations, the LR budget algorithm is fed with the exact target position in order
to remove any uncertainty and to be able to compare the cost properly. It can be seen that
the smallest budget update interval always leads to the smallest cost differences. The longer
the update interval, the higher the cost compared to the optimal solution.

2.6.4. Comparison of Time-Variant Solution with Other Ap-
proaches

To illustrate that this approach leads to improved results, it is compared with different bud-
get allocation techniques according to the cost given by cost function 𝑐2. The simulation
parameters are identical with those in Tables 2.3 and 2.4, but the LR budget algorithm is
again fed with the exact target positions. The different strategies are

• LR approach with a budget update interval of 𝛽𝑡 = 1 s

• Random budget distribution

• Equal budget distribution (1/𝑁)
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Figure 2.4: Simulation results of time-variant budget allocation using cost function 𝑐2 for three tracked targets
with a budget update interval of 𝛽𝑡 = 10 s.
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Figure 2.5: Simulation results of time-variant budget allocation using cost function 𝑐2 for three tracked targets
with different budget update intervals 𝛽𝑡. The difference in cost is with respect to the cost result for 𝛽𝑡 = 1 s.
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A comparison of the results from different budget assignment approaches is shown Fig-
ure 2.6. It can be seen that the LR approach always delivers the lowest cost.
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Figure 2.6: Comparison of the cost of three different budget assignment strategies. It can be seen that the LR
strategy always leads to the lowest total cost.

2.7. Conclusions
This chapter explores the advantages of an optimal approach for solving the RRM problem
of tracking multiple targets. Many solutions have been proposed previously that claim to
solve RRM problems for single task optimization. However, the problem becomes more
complicated to solve when multiple tasks have to be considered, and the MFR system is
operating at its resource limit. Allocating more resources for one task will then inevitably
reduce them for the other tasks, leading to a deteriorated performance. In this chapter, it has
been shown that an optimal steady-state solution for such a multi-task resource balancing
problem for an LTI tracking problem can be obtained by applying LR.

The optimization problem has been decoupled into sub-optimization problems using LR
and has then been solved using the subgradient method. The proposed solution has been ap-
plied to a simple one-dimensional tracking scenario with three objects to be tracked. The
revisit intervals and dwell times are the radar parameters that have to be tuned. A constraint
on the total budget guarantees that the total available budget will not be exceeded. Two
different cost functions based on the steady-state KF error covariance have been taken into
account. The results show that the resources are successfully allocated according to the bud-
get constraint, and optimality w.r.t. the cost function is reached with any desired precision.
For the presented LTI scenario, the algorithm calculates the optimal non-myopic solution to
the allocation problem, assuming an infinite optimization horizon. For this particular LTI
case, the solution can be seen as the optimal POMDP solution.

The chosen cost function is based on the one-step-ahead prediction error variances,
which leads to a larger relative budget for targets with higher maneuverability or larger
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measurement error variances. The time budget is therefore based on uncertainty, which is
generally desirable. This would imply that long-range objects will receive more radar bud-
get in an operational radar scenario than objects close by. Such behavior is usually not very
useful from an operational point of view. It shows that for future practical implementation,
the explicit formulation of operationally relevant cost functions is required.

It has been illustrated that slightly more useful solutions are already generated when ap-
plying a heuristic operationally inspired adaptation to the cost function. Since this adapted
cost function introduces a time-varying setting, the LR algorithm based on steady-state anal-
ysis has been applied to predefined time intervals. It has been shown that the budget update
intervals lead to approximately optimal solutions for a dynamic scenario, as long as they are
chosen small enough. In that case, the tracking filters can be assumed to stay in a steady-
state during those intervals. As the situation evolves and the algorithm does not consider
these changes, the solution of the algorithm can now rather be considered myopic.

Finally, a comparison of our LR approach with other heuristic budget distribution strate-
gies has been presented. It can be seen that our technique indeed always delivers the lowest
cost. It is the first time that this kind of analysis has been performed.
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A Generic Framework for

Radar Resource Management
in Multi-Target Tracking

In the previous chapter it was shown, that LR and subgradient method are efficient tools to
allocate sensor resources in a simple one-dimensional LTI setting. This chapter builds upon
those results and extends it to a non-myopic solution approach by assuming an underlying
POMDP for each target. Since Chapter 2 considered a cost function for the steady-state,
that approach already treated a special case of the POMDP. In this chapter, the PRmethod is
applied to solve these POMDPs. The performance of this algorithmic solution is evaluated
through two-dimensional tracking scenarios that take more radar parameters into account
than in the last chapter.

Parts of this chapter have been published in:

M. I. Schöpe, H. Driessen, and A. Yarovoy, “Multi-Task Sensor Resource Balancing Using Lagrangian Relax-
ation and Policy Rollout”, in Proceedings of the 23rd International Conference on Information Fusion (FUSION),
Online, 2020.

M. I. Schöpe, H. Driessen, and A. Yarovoy, “A Constrained POMDP Formulation and Algorithmic Solution for
Radar Resource Management in Multi-Target Tracking”, ISIF Journal of Advances in Information Fusion (JAIF),
vol. 16, no. 1, pp. 31-47, Jun. 2021.
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3.1. Stochastic Optimization for Radar ResourceMan-
agement

Stochastic optimization is widely applied in different fields, such as business, economics
and finance, sciences and engineering, as well as health and transportation. In contrast to
deterministic optimization, stochastic optimization has much fewer standardized definitions
and notations. In [48] Powell gives a general introduction to the field and tries to present the
most common stochastic optimization problems and their solutions using a unified frame-
work and notation.

Generally, stochastic optimization is an optimization that includes random variables.
The available information about these random variables is used to make decisions that also
include possible future events. Therefore, a stochastic optimization approach is directly
taking the uncertainty of the problem into account. Stochastic optimization techniques have
extensively been covered in literature, e.g., in [49, 50]. An excellent general overview of
how stochastic optimization can be applied in a CR or RRM context using the POMDP
framework has been presented by Charlish et al. in [51].

The remainder of this chapter is structured as follows. Section 3.2 gives an overview of
available methods that apply MDPs and POMDPs for stochastic RRM problems. Further-
more, Section 3.3 gives a short overview of the proposed approach. Section 3.4 introduces
the POMDP framework, while Section 3.5 gives an overview of common POMDP solution
methods. Section 3.6 introduces the assumed radar scenario. In Section 3.7, the results of
the OSB and the AODB algorithm are compared in a simplified LTI scenario. Section 3.8
shows the simulation results for a dynamic radar-related scenario. It is solved by applying
the AODB algorithm and optimizing both dwell time and revisit interval. Section 3.9 gives
an overview of the performance of the AODB algorithm compared to other approaches and
finally, Section 3.10 contains the conclusions.

3.2. Markov Decision Processes in Radar Resource
Management

Markov Decision Processes (MDPs) and POMDPs are attractive frameworks for modeling
and solving stochastic RRM problems. They use a number of states to formulate a dynamic
control problem in which the optimal actions can be found through optimizing a cost or
reward function. A depiction of an MDP is shown in Figure 3.1.

Those frameworks have been applied to single tasks, for instance, by Charlish and Hoff-
mann in [53] or by Krishnamurthy in [54]. Both methods optimize the time between con-
secutive measurement operations. Charlish and Hoffmann are considering a radar tracking
example, where the track quality needs to be optimized. At the same time, Krishnamurthy
presents a more general sensor scenario where the measurement performance is optimized
regarding false alarm rate and the quality of the estimate. The former approach applied PR,
while the latter used a stochastic dynamic programming algorithm. The PR evaluates each
possible action by calculating the expected cost over a certain future horizon using Monte
Carlo sampling (see Figure 3.2).

More specifically, PR simulates the chosen action to be evaluated and a possible obser-
vation following it. Subsequently, the expected situation of the environment is calculated
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Figure 3.1: Depiction of an MDP [52].

for the next time step, and a new action and observation pair is simulated based on a pre-
defined action schedule called Base Policy (BP). PR keeps simulating the future situation
and executing the actions defined in the BP until a certain horizon is reached. One of those
simulation strings is called a rollout. Based on the output of all the steps in one rollout,
an expected cost can be calculated for the first action simulated in the rollout. Since PR
is a Monte Carlo method, more rollouts per evaluated action will be more accurate. PR is
potentially interesting due to its straightforward concept and the fact that it will deliver the
optimal result if infinite Monte Carlo samples are evaluated.

Two other approaches show how radar actions can be determined by applying Reinforce-
ment Learning (RL) [55] and deep RL [56] to solve an underlying MDP. In their papers,
both Selvi et al. and Thornton et al. optimize the sensing strategies for a single target while
a communication signal uses the same frequency bands. Both publications show that the
optimal policy can improve the performance despite the presence of the interferer. Another
approach by Pulkkinen et al. solves an MDP using RL in order to optimize the time budget
of an MFR in a tracking scenario [57]. RL is an interesting approach to RRM, but it is often
not feasible because of the enormous state space of many RRM problem formulations. In
such a case, the algorithm’s training would need an enormous amount of data and a lot of
computation time. Additionally, the success of RL or other Machine Learning (ML) ap-
proaches highly depends on the data used by the algorithm to learn. If the amount of data
is not sufficient, not appropriate, or a wrong model is assumed, the performance of ML
approaches will deteriorate tremendously.

Constrained (PO)MDPs have been proposed to solvemulti-task control problems, where
the constraint(s), among others, can represent the limit on the available resources or budgets
for all the tasks. Possible applications are radar networks or single radars withmultiple tasks.
The computational complexity of these problems is potentially large. It has been suggested
to decouple the main optimization problem into smaller and easier to solve sub-problems
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Figure 3.2: Block scheme of a PR. Each action A is evaluated through multiple rollouts. Each of those rollouts is
a series of Monte Carlo sampling steps until the rollout horizon H is reached. At the end, the cost of all rollouts
for each action is evaluated to calculate the expected cost for that action.

by the use of LR. One LR approach for sensor networks with an energy-constraint on the
inter-sensor communication has been published byWilliams et al. in [58]. Some notable LR
approaches formulti-task radar scenarios are, e.g., [35] byWintenby andKrishnamurthy and
[36] byWhite andWilliams. Wintenby and Krishnamurthy apply aMarkov chain consisting
of performance states for each tracking task and solve it with a combination of LR and
approximate dynamic programming. White and Williams assume a discretized state space
and a fully observable MDP, which they solve by using dynamic programming. In addition
to that, Castãnón applies LR in combination with a constrained POMDP for multi-object
classification in [37]. The chosen POMDP solution method in that approach is the so-called
Witness algorithm. As an alternative to LR, one could also consider Q-RAM in combination
with POMDPs (see Chapter 2).

Another interesting approach for applying POMDPs for RRM has been introduced by
Krishnamurthy and Djonin in [59] where they divide the RRM algorithm into ”Sensor Mi-
cromanagement” and ”Sensor Macromanagement”. The former is formulated as a POMDP
and determines when the resource allocation has to be updated. There is always one task that
receives a high resource allocation, while the others receive a lower one. Themacromanage-
ment, on the other hand, decides which target will get the highest priority and therefore the
highest resource allocation. A block scheme depiction of this approach is shown in Figure
3.3. This process is based on the realized cost of the micromanagement and some heuristic
rules. This research, on the other hand, aims to combinemicro- andmacromanagement. The
resource distribution is defined directly through the cost function and without any heuris-
tic functions. In addition to that, the budgets of the tasks can gradually change over time,
contrarily to the approach of Krishnamurthy and Djonin, where only two different actions
exist.
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Figure 3.3: A block scheme of the approach by Krishnamurthy and Djonin [59].

Although the approach by Krishnamurthy and Djonin is interesting, it still works with
heuristic priorities and a very small amount of possible actions. In contrast, this thesis com-
bines Micro- and Macromanagement into one method without explicitly defining priorities.
Additionally, the algorithm can choose from a large number of different actions to optimize
the performance.

Furthermore, MDP and POMDP frameworks are often applied in the context of artifi-
cial intelligence and robotics. In those contexts, the problem is often formulated to give the
lowest cost for the action, increasing the information available to the so-called agent. For
instance, specific sensor actions can be performed to reduce the agent’s uncertainty about
the current situation and simultaneously increase the information. In a robotic context, the
agent might also adjust its position to observe the environment better, generating more in-
formation. Such approaches are not only using the POMDP’s state to determine the cost but
also the belief that the agent has about the state it is in. Some approaches that formulate the
POMDP in such a way can be found in [60–63]. In an RRM context, such formulations are
very interesting, as the sensor usually cannot directly impact the state of the POMDP but
rather try to increase the available information on the state based on the sensor actions.

3.3. High-Level Description of the Proposed Approach
This chapter follows the general RRM problem definition as shown in Chapter 2.2. The
details about the assumptions for the simulations of this chapter are presented in Section
3.6.

3.3.1. The Cost Function
The development of specific cost functions is essential and will be a development task in
itself that will require close cooperationwith potential users. However, as alreadymentioned
in Chapter 2, the development of such user-specific cost functions is out of the scope of this
thesis. For the simulations, some example cost functions will be presented that are by no
means supposed to be perfect.
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3.3.2. Proposed Approach
In this chapter, the RRM problem is considered a multi-task time budget-constrained con-
trol problem, where the individual tasks are different tracking tasks. The chosen problem
formulation directly leads to the assumption of a constrained POMDP.

The optimal balancing of sensor budgets in an LTI setting by using the OSB algorithm
has already been shown in Chapter 2. It applies LR to distribute the resources over the
different tasks. Subsequently, generic dynamical problems have been considered by utiliz-
ing the POMDP framework, and this chapter introduces the Approximately Optimal Dy-
namic Budget Balancing (AODB) algorithm with a cost function based on the predicted
error-covariance of the KF. It has been shown that the results of the AODB algorithm are
approximately optimal with respect to the steady-state error-covariance of a KF. The RRM
problem was solved non-myopically using PR, an online Monte Carlo technique, which
stochastically predicts the future. The results of this chapter have also been published in
[64].

3.4. Definition of a POMDP
A POMDP describes an MDP for which the state cannot be observed directly. Instead, an
observation is taken, which generates a probability distribution over the possible states. This
is called the belief state. Based on the belief state and the knowledge of the underlyingMDP,
a POMDP allows solving optimization problems non-myopically, meaning that it takes the
expected future into account. In the following, the time is assumed to be discretized in inter-
vals 𝑘 with length 𝑇, the time between two consecutive observations. This introduction to
POMDPs is intentionally kept very general. It, therefore, also does not contain any explicit
constraints.

Generally, a POMDP is defined by the following parameters (see for example [65] and
[66]):

State space 𝑺: Consists of all possible states that can be reached within the process,
see (2.2). At time step 𝑘 the state is defined as 𝒔𝑘. Based on the underlying states and
the received observations, the belief-state defines a probability distribution over all possible
states. It is defined as 𝒃𝑘.

Action space 𝑨: Consists of all possible actions within the process. Each action has a
certain cost defined by the cost function. The action at time step 𝑘 is denoted 𝒂𝑘.

Observation space 𝒁: Consists of all possible observations that can be received within
the process. An observation at time step 𝑘 it is defined as 𝒛𝑘.

Transition probability𝜳(𝒔𝑘 , 𝒔𝑘+1, 𝒂𝑘): The probability function 𝑝(𝒔𝑘+1|𝒔𝑘 , 𝒂𝑘) that
defines the probability of transitioning from state 𝒔𝑘 to state 𝒔𝑘+1 given action 𝒂𝑘. Note:
In this chapter, the state transition probability does not depend on the chosen action, while
the belief state transition does depend on it.

Probability of observation 𝑶(𝒛𝑘 , 𝒔𝑘+1, 𝒂𝑘): The probability function 𝑝(𝒛𝑘|𝒔𝑘+1, 𝒂𝑘)
that defines the probability to receive a certain observation 𝒛𝑘 when executing action 𝒂𝑘
with the resulting state being 𝒔𝑘+1.

Cost function 𝑐(𝒔𝑘 , 𝒂𝑘): The immediate cost of executing action 𝒂𝑘 in state 𝒔𝑘. Note:
In this chapter the cost function does not directly depend on the state.

Discount factor 𝛾: A discount factor that discounts future time steps w.r.t. the present.
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Note: in this chapter the discount factor is always set to 𝛾 = 1.

POMDPs can be solved for finite or infinite horizons. Infinite horizons use the whole
future to determine the optimal actions. As the very distant future probably has a negligible
impact on the current situation, the future steps are often discounted using some factor. On
the other hand, finite horizons only look a certain amount of steps ahead into the future. The
advantage is that the computational load is finite as well. Therefore, approaches with finite
horizons are usually easy to implement in practice. Themain disadvantage of finite horizons
is that the resulting policy is suboptimal, i.e., an approximation of the policy obtained when
applying an infinite horizon.

For a finite horizon, the value ofℋ represents the number of considered measurement
time steps into the future. Commonly, finite horizons are implemented as receding horizons,
which means that every time a new budget allocation is calculated, the horizon ℋ will be
shifted and reapplied from the current moment in time. This thesis uses receding horizons
to limit the computational load.

In [53], Charlish and Hoffmann have written a very clear summary of the general solu-
tion of a POMDP, which is used as a base for the following equations. The goal is to find
the actions that minimize the total cost (value 𝑉ℋ over horizonℋ). Starting at time step 𝑘0
this can be expressed as

𝑉ℋ = 𝐸 [
𝑘0+ℋ

∑
𝑘=𝑘0

𝑐(𝒔𝑘 , 𝒂𝑘)] . (3.1)

Using 𝐶𝐵(𝒃𝑘 , 𝒂𝑘) = ∑𝒔∈𝑺 𝒃𝑘(𝒔)𝑐(𝒔, 𝒂𝑘) being the expected cost given belief state 𝒃𝑘, 𝑉ℋ
can be written as a so-called value function of the belief state 𝒃𝑘0 at time step 𝑘0:

𝑉ℋ(𝒃𝑘0) = 𝐸 [
𝑘0+ℋ

∑
𝑘=𝑘0

𝐶𝐵(𝒃𝑘 , 𝒂𝑘)|𝒃𝑘0] . (3.2)

For belief state 𝒃0 and taking action 𝒂0, the optimal value function is defined according to
Bellman’s equation [67] as

𝑉∗ℋ(𝒃0) =min
𝒂0∈𝑨

(𝐶𝐵(𝒃0, 𝒂0) + 𝛾 ⋅ 𝐸 [𝑉∗ℋ−1(𝒃1)|𝒃0, 𝒂0]) . (3.3)

For very long or infinite horizons, the discount factor can be set to 𝛾 < 1. Using this
equation, the optimal policy can be expressed as

𝜋∗0(𝒃0) = argmin
𝒂0∈𝑨

(𝐶𝐵(𝒃0, 𝒂0) + 𝛾 ⋅ 𝐸 [𝑉∗ℋ−1(𝒃1)|𝒃0, 𝒂0]) . (3.4)

For each 𝒃𝑘 and 𝒂𝑘 the optimal so-called Q-value is then defined as

𝑄ℋ−𝑘(𝒃𝑘 , 𝒂𝑘) = 𝐶𝐵(𝒃𝑘 , 𝒂𝑘) + 𝛾 ⋅ 𝐸 [𝑉∗ℋ−𝑘−1(𝒃𝑘+1)|𝒃𝑘 , 𝒂𝑘] . (3.5)

Another way to find the optimal policy is to find the action 𝒂𝑘 that minimizes the optimal
Q-value:

𝜋∗𝑘(𝒃𝑘) = argmin
𝒂𝑘∈𝑨

(𝑄ℋ−𝑘(𝒃𝑘 , 𝒂𝑘)). (3.6)



3

34 3. A Generic Framework for RRM in Multi-Target Tracking

Therefore, it is necessary to calculate the Q-value for all possible actions, which is generally
infeasible.

3.5. Solution Methods for POMDPs
For solving a POMDP, there are both online, as well as offline approaches. The choice of
the type of these methods usually depends on the size of the state space. The so-called state
space explosion limits the usefulness of exact offline techniques.

Most offline methods are based on the so-called Value Iteration (VI), which iteratively
calculates the cost/reward values of all possible states. There are exact approaches to VI
(e.g., One-Pass algorithm [68]), as well as approximate point-based algorithms (e.g., Point-
Based Value Iteration (PBVI) or Perseus [69]). The former techniques often lead to highly
complex optimization problems. In contrast, the latter require many grid points within the
state space (and therefore much memory and computational effort) to converge towards
the exact solution. The advantage of offline solutions is that the POMDP is solved only
once, and the solution is always valid afterward. Unfortunately, those methods are already
infeasible for a small dimensional state space.

Contrary to that, online algorithms only solve a small part of the POMDP that is relevant
at the current moment. This makes them less accurate but much easier and faster to compute.
Some of the online approaches involve approximate tree methods (see, for example, the
overview in [65]) or Monte Carlo sampling (e.g., PR).

Since an exact and complete solution of the POMDP is usually infeasible in real sce-
narios, this chapter focuses on implementing PR as an approximate solution. The general
structure of the proposed algorithm is illustrated in Figure 3.4. The outputs of the algorithm
are the converged budgets for each task.

Task 1 Policy Rollout 1

Subgradient
method

Task 2 Policy Rollout 2

Task N Policy Rollout N

Initial λ

λ

Lagrangian relaxation

. . . .

. . . .

. . . . . .

Output of converged algorithm:

Approximately optimal budgets     Θ𝑘
1 …Θ𝑘

𝑁

Θ𝑘
1

Θ𝑘
2

Θ𝑘
𝑁

Figure 3.4: High level block scheme of the proposed algorithm.

3.5.1. Policy Rollout for POMDPs
The PR technique takes Monte Carlo samples of the expected future, which means that it
stochastically explores the possible future actions and the according costs. Observations
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and belief states are generated from a given initial belief state and a given candidate action
within a rollout. There is a rollout evaluation per action 𝒂 in the action space 𝑨. The
candidate action is taken in the first step of the rollout, while a so-called BP 𝜋𝑏𝑎𝑠𝑒 is used
for every following step, until the horizon ℋ is reached. In each rollout, the total cost
is summed up. This procedure is repeated 𝑀 times, and then the summed cost of all 𝑀
rollouts is averaged. This is the expected cost of the evaluated action. The action that
produced the lowest expected cost is chosen for the next time step. It has been shown that
PR leads to a policy that is at least as good as the BP with a very high probability if enough
samples are provided [30]. The choice of the BP and the amount of samples to be taken are
therefore crucial to the algorithm’s performance. The number of samples is equivalent to
the number of rollouts𝑀 per action used to average the cost. In other words, one sample is
the evaluation of one possible future. Finding a good BP for a radar scenario is no trivial
task. For example, one could think about using information from previously experienced
situations that were similar to the current one. If the executed actions from the last run have
been saved, they can be reused again to improve the policy further. This could be considered
in the context of RL, for instance. Unfortunately, it is not very likely to experience the exact
same situation multiple times if a huge state space is assumed, so the usefulness in such a
case is questionable (see also the remark about RL in Section 3.2). Another straightforward
choice of the BP could be an equal resource allocation to all the tasks. PR has been covered
extensively, e.g. by Bertsekas in [28–30].

The PR can be expressed mathematically as shown in (3.7) and (3.8). The Q-value is
defined as

𝑄𝜋𝑏𝑎𝑠𝑒ℋ−𝑘 (𝒃𝑘 , 𝒂𝑘) = 𝐶𝐵(𝒃𝑘 , 𝒂𝑘) + 𝐸 [𝑉
𝜋𝑏𝑎𝑠𝑒
ℋ−𝑘−1(𝒃𝑘+1)|𝒃𝑘 , 𝒂𝑘] , (3.7)

where 𝐸[⋅] is the expectation. The best policy can then be found by applying

𝜋𝑘(𝒃𝑘) = argmin
𝒂𝑘∈𝑨

(𝑄𝜋𝑏𝑎𝑠𝑒ℋ−𝑘 (𝒃𝑘 , 𝒂𝑘)). (3.8)

PR does not necessarily lead to the optimal policy. It rather aims at improving the chosen
BP 𝜋𝑏𝑎𝑠𝑒.

3.6. Assumed Radar Scenario
For the rest of the chapter, a two-dimensional radar tracking example is assumed that will be
solved using the AODB algorithm. Measurements are taken in range, angle, and possibly
radial velocity. The algorithm jointly optimizes the revisit interval 𝑇 (the time between two
consecutive measurements) and the dwell time 𝜏 (the time the sensor spends focused on a
target). The algorithm calculates the budgets of all tasks and makes sure that they fit into the
time frame but does not create an explicit schedule. Therefore, the assumed measurements
are taken independently of each other and can be overlapping in time. In order to put all
tasks into a single timeline, an explicit scheduler needs to be implemented on a lower level.
At which moments this budget calculation is performed depends on the preferences of the
user. In the following, the assumptions of the assumed radar scenario are explained in more
detail.
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3.6.1. Assumed Radar Systems
In the simulations, two different sets of system parameters are assumed, as shown in Table
3.1. The table shows the zero-mean Gaussian measurement noise variances for range (𝜎2𝑟,0),
azimuth angle (𝜎2𝜃,0), and radial velocity (𝜎2𝑑,0) w.r.t. the measurement of a reference target
which is sensed with an SNR of 1. The parameters of the reference measurement are shown
in Table 3.2 and are valid for all simulations that are presented in this chapter. Radar System
A measures range and azimuth only, while System B is able to measure radial velocity as
well. The values of the variances in Table 3.1 are chosen somewhat arbitrarily. It is not
intended to compare the different radar systems but rather to show how the AODB algorithm
can universally be applied to different systems.

Table 3.1: System parameters of the assumed radar systems with respect to the reference measurement.

System Measurement 𝝈2𝒓,0 [m2] 𝝈2𝜽,0 [rad2] 𝝈2𝒅,0 [m2 s−2]
A r/θ 625 4e-4 -
B r/θ/d 2500 2e-4 25

Table 3.2: Parameters of reference measurement.

SNR (SNR0) RCS (𝜍0) Dwell time (𝜏0) Range (𝑟0)
1 10m2 1 s 50 km

3.6.2. Velocity Model
The velocity and maneuverability of the targets is assumed to be constant. Between two
resource allocation updates the actions are assumed to stay unchanged. The action vector
𝒂𝑛 ∈ ℝ2 consists of the dwell time and the revisit interval. The latter defines the time
between the measurements of target 𝑛. In contrary to previous publications, in this chapter
the revisit interval 𝑇𝑛 and the dwell time 𝜏𝑛 are optimized jointly. The revisit intervals with
length 𝑇𝑛 are depending on the targets and are therefore denoted as 𝑘𝑛. Considering this,
(2.3) can explicitly be written as

𝒔𝑛𝑘𝑛+1 = 𝑭𝑛𝒔
𝑛
𝑘𝑛 +𝒘

𝑛
𝑘𝑛 , (3.9)

with 𝑭𝑛 ∈ ℝ4×4 defined as

𝑭𝑛 =
⎡
⎢
⎢
⎣

1 0 𝑇𝑛 0
0 1 0 𝑇𝑛
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎦

(3.10)
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and the zero-mean Gaussian maneuverability noise 𝒘𝑛 with covariance

𝑸𝑛 =
⎡
⎢
⎢
⎣

𝑇4𝑛 /4 0 𝑇3𝑛 /2 0
0 𝑇4𝑛 /4 0 𝑇3𝑛 /2

𝑇3𝑛 /2 0 𝑇2𝑛 0
0 𝑇3𝑛 /2 0 𝑇2𝑛

⎤
⎥
⎥
⎦
𝜎2𝑤,𝑛 , (3.11)

where 𝜎2𝑤,𝑛 is the maneuverability noise variance of target 𝑛.
Because of the non-linear relationship between measurements and states, an EKF is

applied. The corresponding observation matrix 𝑯𝑛𝑘𝑛 is defined as the Jacobian of the mea-
surement transformation function 𝒉:

𝑯𝑛𝑘𝑛 =
𝜕𝒉
𝜕𝒔 |𝒔𝑛𝑘𝑛

. (3.12)

It has dimensions 𝑯𝑛𝑘𝑛 ∈ ℝ2×4 for System A and 𝑯𝑛𝑘𝑛 ∈ ℝ3×4 for System B.

3.6.3. SNR Model
In the following examples, sensor measurements in range (𝑟), azimuth (𝜃) and radial veloc-
ity (𝑑) are assumed. Since the transformation between polar and Cartesian coordinates is
non-linear, the measurement equation in (6.1) for target 𝑛 at time step 𝑘𝑛 can be defined as

𝒛𝑛𝑘𝑛 = 𝒉(𝒔
𝑛
𝑘𝑛) + 𝒗

𝑛
𝑘𝑛 , (3.13)

where 𝒉(𝒔𝑛𝑘𝑛) ∈ ℝ3 is the measurement transformation function at 𝒔
𝑛
𝑘𝑛 which for System

B is defined as

𝒉(𝒔𝑛𝑘𝑛)=

⎡
⎢
⎢
⎣
√(𝑥𝑛𝑘𝑛)2+(𝑦

𝑛
𝑘𝑛)2 ,atan2(𝑦

𝑛
𝑘𝑛 , 𝑥

𝑛
𝑘𝑛) ,

𝑥𝑛𝑘𝑛�̇�
𝑛
𝑘𝑛+𝑦

𝑛
𝑘𝑛�̇�

𝑛
𝑘𝑛

√(𝑥𝑛𝑘𝑛)2+(𝑦
𝑛
𝑘𝑛)2

⎤
⎥
⎥
⎦

𝑇

(3.14)

and 𝒗𝑛𝑘𝑛 ∈ ℝ3 is the zero-mean Gaussian measurement noise for target 𝑛. The range,
azimuth and radial velocity components of 𝒗𝑛𝑘𝑛 are independent:

𝒗𝑛𝑘𝑛 = [𝑣
𝑟,𝑛
𝑘𝑛 𝑣𝜃,𝑛𝑘𝑛 𝑣𝑑,𝑛𝑘𝑛 ]𝑇 , (3.15)

with variances 𝜎2𝑟,𝑛, 𝜎2𝜃,𝑛 and 𝜎2𝑑,𝑛. In this chapter, the SNR is calculated by using (3.16)
which is based on equations by Koch in [70]:

SNR𝑘𝑛(𝜍𝑛 , 𝜏𝑛 , 𝑟𝑛𝑘𝑛) = SNR0⋅(
𝜍𝑛
𝜍0
)⋅(𝜏𝑛𝜏0

)⋅(
𝑟𝑛𝑘𝑛
𝑟0
)
−4

⋅𝑒−2Δ𝛼 , (3.16)

where Δ𝛼 is the relative beam positioning error, 𝜍𝑛 is the constant Radar Cross Section
(RCS) of the target 𝑛, 𝑟𝑛𝑘𝑛 is the distance of target 𝑛 at time step 𝑘𝑛 and 𝜍0, 𝜏0 and 𝑟0 are the
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corresponding values for a reference target. In (3.16), the dwell time is used equivalently
to the transmitted energy mentioned by Koch. Similar to the approach in [70], the relative
beam positioning error is calculated using

Δ𝛼 =
(𝜃𝑘𝑛 − �̂�𝑘𝑛)

2

Γ2 , (3.17)

where 𝜃𝑘𝑛 is the real target angle and �̂�𝑘𝑛 is the predicted target angle in azimuth at time 𝑘𝑛
and Γ is the one-sided beam-width in azimuth.

Using (3.16), the variance of the range, azimuth and radial velocity measurement noise
for target 𝑛 can be defined as (see e.g. [71])

𝜎2•,𝑛 =
𝜎2•,0

SNR𝑘𝑛(𝜍𝑛 , 𝜏𝑛 , 𝑟𝑛𝑘𝑛)
, (3.18)

where • ∈ (𝑟, 𝜃, 𝑑) and 𝜎2•,0 is the measurement noise variance for a reference target 0 as
defined in Table 3.1.

Due to the independent measurements, the measurement covariance when using System
B can be defined as

𝑹𝑛𝑘𝑛 = [
𝜎2𝑟,𝑛 0 0
0 𝜎2𝜃,𝑛 0
0 0 𝜎2𝑑,𝑛

] . (3.19)

3.6.4. Cost Function
The assumed cost function is constructed from the predicted error-covariance matrix at time
step 𝑘𝑛 + 1. The current predicted error-covariance matrix 𝑷𝑘𝑛|𝑘𝑛−1 ∈ ℝ4×4 at time step
𝑘𝑛 can be defined for target 𝑛 as

𝑷𝑘𝑛|𝑘𝑛−1(𝑇𝑛 , 𝜏𝑛 , 𝒔𝑛𝑘𝑛−1) = 𝑭𝑛𝑷𝑘𝑛−1|𝑘𝑛−1(𝑇𝑛 , 𝜏𝑛 , 𝒔
𝑛
𝑘𝑛−1)𝑭𝑇𝑛 + 𝑸𝑛 , (3.20)

where 𝑭𝑛 is the transition matrix with interval length 𝑇𝑛 as defined in (5.23), 𝑷𝑘𝑛−1|𝑘𝑛−1 ∈
ℝ4×4 is the last filtered error-covariance matrix and 𝑸𝑛 is the maneuverability covariance
with interval length 𝑇𝑛 as defined in (5.24). Based on this, another estimation and prediction
cycle is applied to the error-covariance. The result is the error-covariance𝑷𝑘𝑛+1|𝑘𝑛 ∈ ℝ4×4
for time 𝑘𝑛 + 1:

𝑷𝑘𝑛+1|𝑘𝑛(𝑇𝑛 , 𝜏𝑛 , 𝒔𝑛𝑘𝑛) = 𝑭𝑛𝑷𝑘𝑛|𝑘𝑛(𝑇𝑛 , 𝜏𝑛 , 𝒔
𝑛
𝑘𝑛)𝑭𝑇𝑛 + 𝑸𝑛 , (3.21)

The cost function that is used in the following sections is based on this expression.



3.7. Linear Time-Invariant Example

3

39

3.6.5. Optimization Problem:
It is assumed that there are 𝑁 tracked targets in the environment. The RRM problem can
thus be expressed as

minimize
𝑻,𝝉

𝑁

∑
𝑛=1

𝐸 [𝑐(𝑇𝑛 , 𝜏𝑛 , 𝒔𝑛𝑘𝑛 , 𝑷𝑘𝑛+1|𝑘𝑛)]

subject to
𝑁

∑
𝑛=1

𝜏𝑛
𝑇𝑛
≤ Θ𝑚𝑎𝑥 ,

(3.22)

where Θ𝑚𝑎𝑥 ∈ [0, 1] is the total available budget. The term budget refers to a ratio of
dwell time 𝜏 and revisit interval 𝑇. The expectation 𝐸 [⋅] is used due to the fact that the PR
evaluates the possible future.

Furthermore, every detection is always correctly assigned to the corresponding target.

3.7. Linear Time-Invariant Example
In this section, a simplified LTI scenario is assumed to investigate if the AODB algorithm
converges to the same results as given by the OSB algorithm, which is the optimal solution
in this case.

3.7.1. General Simulation Parameters
Radar System A as mentioned in Table 3.1 is considered. For this simple example, no beam
positioning error is taken into account, e.g. due to a very wide beam by using an MFR with
a phased array antenna applying DBF on receive. The probability of detection is assumed to
be 1. The implemented BP is simply to apply the evaluated action in every step of the PR.
Therefore 𝜋𝑏𝑎𝑠𝑒 = 𝒂. A constant LR step size is applied in all simulations. Within the PR,
the expected future cost is simulated over the defined horizon for each possible action. The
action that produces the lowest expected cost will be chosen for the measurements during
the next time steps. No additional random movement (process noise) is considered within
the PR. For the simulations in this section, the sum of the predicted error-covariance for the
position in 𝑥 and 𝑦 direction is applied as cost function. To avoid choosing parameters that
are impractical in a real application, an extra term is added that penalizes small values of 𝑇
(see also Chapter 2). Using (3.21) this can be expressed as

𝑐(𝑇𝑛 , 𝜏𝑛 , 𝒔𝑛𝑘𝑛 , 𝑷𝑘𝑛+1|𝑘𝑛) = trace (𝑼𝑷𝑘𝑛+1|𝑘𝑛(𝑇𝑛 , 𝜏𝑛 , 𝒔𝑛𝑘𝑛)𝑼𝑇) +
1000
(𝑇𝑛)2

, (3.23)

where
𝑼 = [1 0 0 0

0 1 0 0] (3.24)

is the selection matrix that selects the upper left 2-by-2 submatrix from the error-covariance
matrix.

Table 3.3 shows general simulation parameters. The initial Lagrange multiplier value is
set to 1. The budgets are recalculated every 𝑡𝐵 = 5 s. Within the PR, the expected future
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is simulated and evaluated for each possible action. The radar is always positioned at the
origin of the Cartesian coordinate system.

Table 3.3: General simulation parameters of LTI scenario.

Parameter Value
Precision of LR (𝛿𝐿𝑅): 0.001
Action discretization (Δ𝑇, Δ𝜏): 0.0025 s
Number of rollouts (𝒩𝑟): 10
Rollout horizon (ℋ): 10 steps
Base Policy (𝜋𝑏𝑎𝑠𝑒) 𝒂
Maximum budget (Θ𝑚𝑎𝑥): 1
Budget update (𝑡𝐵): 5 s
Beam positioning error (Δ𝛼): 0
Probability of detection (𝑃𝐷): 1

3.7.2. Comparison OSB and AODB
In order to prove the validity of the proposed AODB algorithm, a comparison is conducted
with the OSB algorithm as proposed in Chapter 2. The OSB algorithm calculates the optimal
steady-state error-covariance given a revisit interval 𝑇 and a dwell time 𝜏 by using equations
by Kalata in [45] and by Gray and Murray in [46]. It is used as explained in Chapter 2 with
the general simulation parameters from Table 3.3.

For the comparison, System A and five target tracking tasks are considered with the
parameters shown in Table 3.4. The revisit interval 𝑇 and the dwell time 𝜏 are discretized
in steps of 0.0025 s. It is assumed that the budget values are recalculated every 5 seconds.
In between, measurements of the targets are taken with the previously calculated revisit
intervals 𝑇𝑛 and dwell times 𝜏𝑛. The tracks are assumed to be initialized at the beginning
of the simulation.

Since the steady-state solution of the OSB algorithm is only valid for a single dimension,
it is assumed that the targets are all positioned at the same position, and the system knows
the exact azimuth angle. All targets are static, and only the RCS is considered to be different.

The simulation results are shown Figure 3.5a. It can be seen that the budget allocations
Θ𝑛 = 𝜏𝑛/𝑇𝑛 converge to results that are very close to the values that have been determined
with the OSB algorithm.

Theoretically, the AODB algorithm should work with any number of tasks. In order
to demonstrate that, the above simulation has been repeated with 10 tasks. Equivalent to
targets 1 to 5, the RCS values of targets 6 to 10 are increasing in steps of 10m2. Figure 3.5b
shows the approximately optimal budget distribution.

3.8. Dynamic Radar Example
In this section, the performance of the AODB algorithm is investigated in a more realistic
radar-related example with different system parameters.
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Table 3.4: Initial target parameters for LTI scenario.

Target 𝑛 𝒙𝑛0 [km] 𝒚𝑛0 [km] �̇�𝑛0 [m s−1] �̇�𝑛0 [m s−1] 𝝈2𝒘 [m2 s−4] 𝝇𝒏 [m2]
1 50 0 0 0 25 10
2 50 0 0 0 25 20
3 50 0 0 0 25 30
4 50 0 0 0 25 40
5 50 0 0 0 25 50
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(a) Lines from top to bottom: Targets 1 to 5.
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(b) Lines from top to bottom: Targets 1 to 10.

Figure 3.5: Budget per task over time after initialization of AODB algorithm for 5 and for 10 targets. Solid lines:
results from AODB. Dashed lines: Optimal steady-state results from OSB.
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3.8.1. General Simulation Parameters
The cost function as introduced in (3.23) is applied. Table 3.5 shows general simulation pa-
rameters for these simulations. The initial Lagrange multiplier value is set to 1. The budgets
are recalculated every 𝑡𝐵 = 5 s and measurements are taken in between with the currently
calculated resource allocations. The BP is executing the evaluated action in every step of
the PR horizon (𝜋𝑏𝑎𝑠𝑒 = 𝒂). Within the PR, the expected future is simulated and evalu-
ated for each possible action. The radar is always positioned at the origin of the Cartesian
coordinate system.

Table 3.5: General simulation parameters of dynamic scenario.

Parameter Value
Precision of LR (𝛿𝐿𝑅): 0.001
Action discretization (Δ𝑇, Δ𝜏): 0.0025 s
Number of rollouts (𝒩𝑟): 5
Rollout horizon (ℋ): 15 steps
Base Policy (𝜋𝑏𝑎𝑠𝑒) 𝒂
Maximum budget (Θ𝑚𝑎𝑥): 1
Budget update (𝑡𝐵): 5 s
Beam positioning error (Δ𝛼): 0
Probability of detection (𝑃𝐷): 1

3.8.2. Dynamic Radar Scenario for 𝑃𝐷 = 1
A dynamic scenario with five moving targets is considered in this simulation. The initial
target parameters are given in Table 3.6 and are valid at the moment when the corresponding
track is started. Their trajectories are shown in Figure 3.6. The simulation is conducted with
System A and B separately. As in the LTI simulations of Section 3.7, no beam positioning
error is taken into account, e.g., due to a very wide beam by using an MFR with a phased
array antenna applying DBF on receive. The probability of detection is assumed to be 1. A
horizon ofℋ = 15 is assumed. Targets 1 to 4 are tracked from the beginning, while Target
5 joins as a new track after 25 s. After 60 s, the total budget is reduced to Θ𝑚𝑎𝑥 = 0.9.
The reason for this could be that an operator manually assigned 10 percent of the budget
to another task, for instance. At 90 s the maneuverability variance of Target 1 increases
by a factor of 36 to a value of 900m2 s−4, which is known to the system in advance, for
instance through some knowledge of the environment. The simulation results for System
A can be found in Figures 3.7a and 3.7c, where the former shows the resource distribution
over the tasks over time and the latter shows the amount of LR iterations that was needed
for convergence. The corresponding simulation results for System B are shown in Figure
3.7b and 3.7d.

The algorithm manages to calculate the budget for both systems while adjusting to un-
known and known changes. Before the known variance change at 90 seconds, the algorithm
already gradually increases the budget for Target 1. The algorithm delivers very similar but
still different solutions for the two systems. It can be seen that the amount of LR iterations
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needed until convergence stays low unless more significant changes in the situation are tak-
ing place. The maximum is 66 iterations for a single resource allocation calculation for the
chosen parameters, assuming System B. Using System A leads to similar peak values.

Apart from the impact of the three mentioned sudden changes that are applied to the
system, it is also evident that there seems to be a certain dependence of the budgets on
the range. While the budget assigned to Targets 1 and 2 stays roughly constant between
the different events, Target 3 gets an increasing amount of resources assigned, while the
resources of Targets 4 and 5 are decreasing. This is because Target 1 and 2 are moving
roughly perpendicular to the radar, while Target 3 is moving away from it, and Targets 4 and
5 are moving towards it. In Section 3.8.4 this effect is investigated with an extra simulation.

Table 3.6: Initial target parameters for dynamic scenario.

Target 𝑛 𝒙𝑛0 [km] 𝒚𝑛0 [km] �̇�𝑛0 [m s−1] �̇�𝑛0 [m s−1] 𝝈2𝒘 [m2 s−4] 𝝇𝒏 [m2]
1 12 10 9 -15 25 20
2 12 15 -30 15 25 20
3 7 11 45 30 64 10
4 19 2 -35 0 64 10
5 10 11 -20 -25 64 10
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Figure 3.6: Trajectories of targets in dynamic scenario.
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(a) Resource allocations using radar System A.
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(b) Resource allocations using radar System B.
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(c) Number of LR iterations using radar System A.
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(d) Number of LR iterations using radar System B.

Figure 3.7: Dynamic scenario simulation results for Systems A and B. A few markers are added to help to distin-
guish the allocations for the different targets.

3.8.3. Dynamic Radar Scenario for 𝑃𝐷 < 1
In a real situation, a low SNR can lead to missed detections. In addition to that, the used
radar system might not be able to transmit with a wide beam and apply DBF on receive.
Therefore, another simulation is presented in this subsection that considers a probability
of detection based on the calculated SNR and the beam positioning error. The scenario is
identical with the one shown in Section 3.8.2 and apart from the probability of detection and
the beam positioning error, all values in Table 3.5 are applied. The SNR is calculated using
(3.16) and taking into account a beamwidth of 2∘. In addition to that, a measurement in the
simulation as well as in the PR is only generated with the probability of detection [70]

𝑃𝐷,𝑘𝑛 = 𝑃
1

1+SNR𝑘𝑛
𝐹𝐴 , (3.25)

where 𝑃𝐹𝐴 = 10−4 is the constant probability of false alarm. It is assumed that the false
alarms do not influence the tracks. The result of this simulation assuming System A can be
found in Figures 3.8 and 3.9.

It can be seen that the resulting budget allocations are less smooth than in the simulations
assuming 𝑃𝐷 = 1. Still, the AODB algorithm leads to comparable results even though some
of the detection probabilities are quite low.

3.8.4. Analysis of the Impact of the Chosen Cost Function
To show the impact of the range on the resource distribution by the AODB algorithm, an-
other simulation has been conducted with three targets. Target 1 has the initial parameters
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Figure 3.8: Dynamic scenario simulation using radar System A with 𝑃𝐷 < 1. A few markers are added to distin-
guish the allocations for the different targets.
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Figure 3.9: Average probability of detection per budget update interval for the dynamic scenario with 𝑃𝐷 < 1. A
few markers are added to distinguish the allocations for the different targets.
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Figure 3.10: Budget allocation for two static and one moving target.
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𝑥0 = 6 km, 𝑦0 = 6 km, �̇�0 = 50m s−1 and �̇�0 = 50m s−1. Targets 2 and 3 are static at
positions 𝑥 = 12.4 km, 𝑦 = 9 km and 𝑥 = 8.4 km, 𝑦 = 9.2 km, respectively. The simulation
result is presented in Figure 3.10 and shows that the budget assigned to Target 1 is increasing
with growing target distance from the radar while the budget assigned to the other targets
is decreasing. This behavior is expected but does not represent what is typically desired or
expected for a radar application.

3.9. Analysis of Performance
In the following subsections, a closer look is taken at the general performance of the AODB
algorithm w.r.t. other resource allocation methods.

The assumed scenario is the same as in Section 3.8, so the radar and target parameters
are identical to Tables 3.1, 3.5 and 3.6. For the following simulations, one implementation
of the AODB algorithm and three other strategies using radar System A are considered. The
cost evaluation is done for two cases, firstly for 𝑃𝐷 = 1 and secondly for 𝑃𝐷 < 1 based on
the SNR including a beam positioning error as presented in Section 3.8.3.

It is generally difficult to judge the performance of RRM algorithms in theory because
it depends on the specific situation and the specific mission where they are applied. De-
pending on the user of the radar system, there might be different views on the different
parameters. It is possible to show that an approach optimizes the resource distribution ac-
cording to the chosen cost function. However, if the cost function is not well designed, the
tracking, detection, or classification performance can still be unsatisfying. Therefore, the
focus is on the expected cost in this section.

The techniques that are compared to each other are the following:

• Random policy: For a given revisit interval 𝑇 = 1.2 s, randomly divide the available
resources among all tasks.

• Equal policy: For a given revisit interval 𝑇 = 1.2 s, the available budget is always
distributed equally to all tasks.

• Unequal policy: For a given revisit interval 𝑇 = 1.2 s, target 1 gets more resources
assigned than the other targets. The remaining resources are distributed equally over
targets 2 to 5.

• AODB15: AODB algorithm, assigning resources using PR (ℋ=15,𝑀=5).

Figures 3.11a and 3.11b show how the expected cost develops over time for the different
techniques that are mentioned above. For the heuristic methods, the future expected cost
during a horizon of ℋ=15 has been evaluated stochastically assuming the chosen action,
equivalently to the PR. One can see how the AODB clearly minimizes the cost compared to
the other techniques for both 𝑃𝐷 = 1 and 𝑃𝐷 < 1.

3.10. Conclusions
In this chapter, a novel generic framework and proposed approximately optimal algorithmic
solutions for solving RRM problems have been developed and shown the algorithm’s appli-
cability to a dynamic multi-target tracking scenario. The proposed framework models the
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Figure 3.11: Comparison of the expected cost for different resource distribution methods assuming radar System
A. Note that the cost is plotted in a logarithmic scale.

different sensor tasks as constrained POMDPs and solves them by applying a combination
of LR and PR. Contrary to the previous chapter, where primarily LTI scenarios were con-
sidered, this chapter focuses on dynamic situations with different parameters. The proposed
solution is a step towards a genuinely generic framework.

In a simple radar tracking scenario, the dwell time and the revisit interval were optimized
using a cost function based on the predicted position error-covariance computed using the
EKF.

It was shown that the AODB algorithm budget allocations are close to the optimal
steady-state solution in an LTI setting as presented in Chapter 2. Furthermore, the simu-
lation results show that the AODB algorithm can be applied to different systems. It was
pointed out how it adjusted itself to known and unknown situational changes in a dynamic
scenario.

The presented cost function leads to a larger budget being given to tracking tasks with
higher uncertainty. At first glance, this may seem to be entirely appropriate; however, this
means that more budget will be assigned to targets at a more extended range. Thus, a simple
error-covariance-based cost function will not always suit practical radar applications.

A detailed analysis of the performance of a practical implementation of the algorithm
has also been conducted by comparing the optimized cost to other resource distribution
methods. It was found that the AODB always led to the lowest cost values compared to the
other considered techniques.





4
Investigating the

Computational Load of the
AODB Algorithm

The results from the previous chapter already implied that the solution of a POMDP using
PR can be computationally complex. Chapter 4, therefore, explores the computational load
of the AODB algorithm in detail and makes recommendations for the optimal choice of
the optimization parameters. Additionally, an alternative implementation of the AODB is
introduced that replaces the PR byMPC. Through multiple simulation scenarios, it is shown
that this approximation leads to lower computation times while maintaining similar results
as the previously discussed PR implementation.

Parts of this chapter have been published in:

M. I. Schöpe, H. Driessen, and A. Yarovoy, “A Constrained POMDP Formulation and Algorithmic Solution for
Radar Resource Management in Multi-Target Tracking”, ISIF Journal of Advances in Information Fusion (JAIF),
vol. 16, no. 1, pp. 31-47, Jun. 2021.

T. de Boer, M. I. Schöpe, and H. Driessen, “Radar Resource Management for Multi-Target Tracking Using Model
Predictive Control”, in Proceedings of the 24th International Conference on Information Fusion (FUSION), Sun
City, North West, South Africa, 2021, accepted for publication.

The ideas for this chapter and the general solution approaches originated from Max Ian Schöpe. The detailed
implementation of the proposed MPC approach has been carried out by the MSc student Thies de Boer under the
close daily supervision of Max Ian Schöpe. The student wrote the publication draft with a significant amount
of suggestions and corrections by Max Ian Schöpe. Hans Driessen provided additional input during the whole
process.
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4.1. Computational Efficiency of POMDP Solution
Methods

As mentioned in the previous chapters, the exact solution of a POMDP becomes increas-
ingly intractable with growing state and action space. In fact, exact solutions are already
intractable with a relatively small amount of discrete belief state [72]. Especially in radar
applications, the state space of a target is often considered to be continuous, as it can move
anywhere in the scene and have a wide range of velocities. This practically leads to an in-
finite number of possible states. Therefore, real-time radar approaches inevitably require
approximate POMDP solution methods to be applied. An overview of these kinds of tech-
niques can be found in [65, 66]. In this thesis and other recent publications, PR is applied in
order to solve the POMDP [53, 73, 74]. The PR can theoretically deal with very large state
spaces, but for accurate results, it requires more rollouts for averaging with an increasing
amount of states. Additionally, the PR needs to explore all available actions, which leads
to an even higher computational cost. Thus, applying PR is often a computationally expen-
sive procedure. Although the PR is already an approximate POMDP solution, there exist
approximations to the PR as well. In fact, it has been shown that Model Predictive Control
(MPC) is a special case of PR with a much lower computational load [75].

In Section 4.2, computational load of the AODB algorithm as introduced in Chapter 3
is analyzed with respect to multiple input parameters. Furthermore, an implementation of
the AODB that applies MPC instead of PR to find the best sensing action is introduced as
a possible computationally more efficient alternative in Section 4.3. Finally, Section 4.4
contains the conclusions for this chapter.

4.2. Analysis of Computational Load
In this section, the computational load of the AODB algorithm is investigated. It should
be noted that the current version of the algorithm has not been derived with high efficiency
in mind. The following results should be seen as indications since the process can still be
optimized.

The computational load of the algorithm has been investigated w.r.t. the following pa-
rameters:

• Amount of tracking tasks.

• Step size of LR.

• Desired precision of results.

• Initial value of the Lagrange multiplier.

• Rollout length.

In the following, simulation results are shown based on a single budget calculation.
This means that way the LR converges to its final result based on the above parameters is
investigated. To generate the figures, the results of 10 simulations have been averaged. The
general simulation parameters are shown in Table 4.1. Those parameters are valid for all
following simulations, except for the currently evaluated parameter. For that one, a sweep
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over different values is applied, which is specified in the corresponding subsection. A fixed
action space is assumed that is the same for each calculation in the parameter sweep. The
chosen system for these simulations produces measurements in range and angle (system
A), and the target parameters are the same as in Chapter 3.8, see Table 3.6. The initial
Lagrange multiplier value is set to 1. In addition to that, the cost function as introduced in
(3.23) is used for all following simulations. In the following figures, normalized times and
normalized LR iterations numbers are shown. This means that each data graph is normalized
w.r.t. its maximum value. This is done to emphasize that the capability of the hardware and
the choice of the general input parameters are not relevant for the discussion of the results.

Table 4.1: General simulation parameters for computational load analysis.

Parameter Value
Precision of LR (𝛿𝐿𝑅): 0.01
Action discretization (Δ𝑇, Δ𝜏): 0.0035 s
Number of rollouts (𝒩𝑟): 2
Rollout horizon (ℋ): 2 steps
Base Policy (𝜋𝑏𝑎𝑠𝑒) 𝒂
Maximum budget (Θ𝑚𝑎𝑥): 1
Number of simulations: 10
Beam positioning error (Δ𝛼): 0
Prob. of detection (𝑃𝐷): 1

4.2.1. Influence of Number of Tasks on AODB
The following simulation shows the influence of an increasing number of tasks on the com-
putational load and execution time of the AODB algorithm. Using the above mentioned
parameters, 24 different simulations have been conducted for 2 to 25 tracking tasks. The
initial Lagrange multiplier value is 1, and the chosen constant LR step size is 8000. There-
fore, it is assumed that there is no prior knowledge about the optimal Lagrange multiplier.
The results of this simulation can be seen in Figure 4.1a. It can be seen that amount of iter-
ations, the total time until the LR converges, and the time needed for each LR iteration are
increasing approximately linearly for a rising number of tracked targets until the increase
slows down for larger amounts of targets of 15 and more.

4.2.2. Influence of LR Step Size on AODB
In this subsection, a simulation shows the influence of an increasing LR step size on the
computational load and execution time of the AODB algorithm. In total, 5 tracking tasks and
50 step sizes between 250 and 20000 are considered, while the initial Lagrange multiplier
value is 1. The results of this simulation can be found in Figure 4.1b. It can be seen that the
amount of LR iterations needed and the time until convergence are decreasing exponentially.
The average time per LR iteration stays approximately constant.
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4.2.3. Influence of LR Precision on AODB
The following simulation shows the influence of different LR result precisions on the com-
putational load and execution time of the AODB algorithm. Again, 5 tracking tasks and 50
precision values between 0.001 and 0.2 are considered. The results of this simulation can
be found in Figure 4.1c. The initial Lagrange multiplier value is 1, and the chosen constant
step size is 8000. It can be seen that the amount of LR iterations and the total LR conver-
gence time are decreasing roughly exponentially. The average time per LR iteration stays
approximately constant.

4.2.4. Influence of Initial Lagrange Multiplier Value on AODB
This simulation shows the influence of different initial Lagrange multiplier values on the
computational load and execution time of the AODB algorithm. The simulation considers
5 tracking tasks and 50 initial Lagrangian multiplier values between 1 and 100000. The
chosen constant step size is 8000. The results of this simulation can be found in Figure
4.1d. It can be seen that the amount of LR iterations and the LR convergence time have a
clear minimum at about 24000. This is the best starting value because it allows the fastest
convergence. The average time per LR iteration stays approximately constant.

4.2.5. Influence of Rollout Horizon Lengths on AODB
The following simulation shows the influence of different PR horizon lengths on the com-
putational load and execution time of the AODB algorithm. In total, 5 tracking tasks are
considered, and the rollout length varies from 1 to 25. The initial Lagrange multiplier value
is 1, and the chosen constant step size is 8000. The results of this simulation can be found in
Figure 4.1e. It can be seen that the amount of LR iterations increases fast in the beginning,
before slowly decreasing again for horizon lengths of 6 and longer. The total time needed
increases approximately linearly, as well as the time needed per LR iteration.

4.2.6. Conclusions on Computational Load
Based on the simulation result of the previous subsections, some conclusions can be made
regarding the choice of the input parameters. They will be summarized in the following
paragraphs.

Number of targets and initial Lagrange multiplier value: Both the necessary num-
ber of LR iterations, as well as the total LR convergence time increases with an increasing
number of tracking tasks. Unfortunately, it is generally not possible to influence the num-
ber of tasks at will. However, the effect of increasing convergence time can be reduced
by choosing the appropriate initial Lagrange multiplier value. It was found that there is
a distinct minimum in the number of LR iterations before convergence (see Figure 4.1d).
The minimum convergence time, equivalent to a single LR iteration, is attained when that
Lagrange multiplier value is chosen as the initial value. It is interesting to see that initial
Lagrange multiplier values bigger than the optimal value lead to longer computations than
values smaller than the optimum. If some prior knowledge about the Lagrange multiplier
value is available (e.g. from the previous budget calculation), this can tremendously de-
crease the convergence time if the situation has not changed too much since. Boyd et al.
have labeled this approach a ”Warm Start” [76].
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(a) Convergence for different numbers of tracking tasks.
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(b) Convergence for different LR step sizes.
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(c) Convergence for different LR result precisions.
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(d) Convergence for different initial Lagrange multiplier values.
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(e) Convergence for different rollout horizon lengths.

Figure 4.1: Analysis of the computational load based on different parameters. Number of LR iterations (blue with
crosses) and total time (red) needed for convergence, as well as average time per LR iteration (dashed red).
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LR step size and precision of LR result: Increasing LR step size and decreasing pre-
cision both lead to a decreasing number of LR iterations and time until convergence, while
the time needed for one LR iteration stays more or less constant. Generally, it is useful to
choose a rather big LR step size. However, if it is chosen too big w.r.t. the precision and the
action space discretization, the algorithm might not converge but oscillate around the mini-
mum. If the desired results lie in a local minimum instead of the global one, the algorithm
might miss that minimum entirely if the step size is chosen too big. Therefore, choosing a
constant step size is probably not the best solution, and adaptive step sizes could increase the
performance. There is more freedom to choose the precision, but one should keep in mind
that a lower precision will lead to a less accurate result, leading to not precisely meeting the
maximum budget constraint.

PR horizon length: Increasing the horizon length leads to an almost linear increase
of the time per LR iteration. Very short horizons seem to lead to very low numbers of LR
iterations until convergence. For horizon lengths longer than 2, the number of LR iterations
increases very quickly, although it slightly decreases again for horizons longer than 6. The
total LR convergence time increases with growing rollout length (see Figure 4.1e). It is,
therefore, reasonable to choose the shortest horizon necessary. It needs to be kept in mind
that this is a trade-off with an impact on the track performance, so a longer horizon can
potentially improve the mission performance further.

Size of the action space: The PR is exploring all possible actions in the action space.
Therefore, reducing the evaluated action will also significantly decrease the computation
time. One possible way to approach this is to narrow down a part of the action space where
the minimum is expected. Then only this part would have to be explored by the PR. A
possible implementation could be an adaptive action space per task that only explores the
area close to the solution of the last LR iteration.

4.3. An Alternative AODB Algorithm
Based on the results from the last chapters, it was decided to investigate alternative POMDP
solution methods. Generally, there are four different classes of approximate POMDP solu-
tion methods:

• Policy Function Approximation

• Cost Function Approximation

• Value Function Approximation

• Direct Lookahead approximation

The previously applied PR method falls into the category of Direct Lookahead Approxi-
mation. For the given problem, Policy Function, Cost Function, and Value Function ap-
proximations are very difficult to achieve. Therefore, it was decided to implement MPC as
another Direct Lookahead Approximation solution method. More details on the analysis of
the different POMDP solution methods can be found in [77]. The expectation is that the
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computational effort will decrease while keeping a good result quality. Additionally, MPC
can optimize the actions at multiple future moments over the evaluated horizon because
of the reduced computational effort. This is an advantage over PR, which only optimizes
the first action. The formulation of the solution and the presented results are based on the
master’s thesis result of Thies de Boer [77] and a submitted paper to the Fusion conference
[78].

4.3.1. Model Predictive Control
The same POMDP formulation of the tracking tasks as in Chapter 3 is assumed. In the
previous solution, the POMDP was solved using a PR algorithm that allocates the resources
by sampling the possible future in a Monte Carlo fashion. In order to receive accurate
results with big state spaces, many of those rollouts have to be performed and averaged. As
mentioned before, this can lead to a high computational load.

It has been shown that MPC is a special case of the PR and replaces the randomly sam-
pled future by a modeled approach [75]. It is therefore assumed to lead to a significant
decrease in computational load.

Similar to the PR, MPC is a receding horizon approach. This means the prediction hori-
zon is shifted forward after every iteration. The basic operating principle can be summarized
as follows, whereℋ indicates the prediction horizon, which is here always assumed to be
equal to the control horizon.

Beginning at time step 𝑘, the procedure is as follows:
1. Assuming the predefined model, minimize cost over prediction horizon to get the

optimal action sequence of lengthℋ over the prediction horizon:

minimize
𝒂𝑡

𝑘+ℋ

∑
𝑡=𝑘

𝑐(𝒂𝑡 , 𝒔𝑡)

2. Execute only the action corresponding to the next time-step.

3. Go to time step 𝑘 + 1 and start again at step 1.
Essentially, those steps are equivalent to the PRwith two exceptions. Firstly, as it is assumed
that the tracked target strictly follows the underlying motion model, only one sampling of
the future is necessary, as there are no other possible futures. Secondly, because of this
simplification, the MPC approach can optimize the actions in every time step of the horizon.
In contrast, PR applies a predefined BP for each horizon step, except the first one.

If a small number of rollouts per action is chosen or if the choice of the BP is bad, MPC
could potentially lead to better results than PR. Additionally, MPC has the advantage that it
can handle larger action spaces due to the reduced computational effort needed.

4.3.2. Optimization Problem and Simulation Scenario
The optimization problem is exactly the same as introduced in (3.22). For reasons of sim-
plification, the revisit interval 𝑇 is set to a constant value in the following simulations. The
chosen radar system is equivalent to System A in Table 3.1 and the same EKF as in Chapter
3 is applied in these simulations. Also, the motion and measurement models are the same.
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Since the revisit interval 𝑇 is set to a constant value, the penalty termmentioned in (3.23)
can be removed and the cost function can then be written as

𝑐(𝜏𝑛𝑘 , 𝒔𝑛𝑘𝑷𝑘𝑛+1|𝑘𝑛) = trace (𝑬𝑷𝑘|𝑘−1(𝜏𝑛𝑘 , 𝒔𝑛𝑘𝑷𝑘𝑛+1|𝑘𝑛)𝑬𝑇) , (4.1)

where

𝐸 = [1 0 0 0
0 1 0 0] . (4.2)

As mentioned in the previous chapters (e.g., Section A), LR is also applied in this imple-
mentation of the AODB to include the constraint into the cost function and solve the prob-
lem iteratively. Instead of applying the subgradient method, the so-called Golden Section
Search (GSS) is used as explained in Appendix B. The algorithm’s performance is evaluated
through the following simulation scenarios for both the PR and the MPC implementation.

4.3.3. Simulation Scenario A
Simulation scenario A consists of 5 targets. The corresponding trajectories are shown in
Figure 4.2 and the target parameters can be found in Table 4.3. All noise is assumed to
be Gaussian with zero-mean. In this example, some events are taking place during the
simulation time which have an impact on the resulting budget allocations:

• t = 20 s: A new object (task 5) needs to be tracked.

• t = 60 s: Total available budget decreases from 1.0 to 0.9.

• t = 90 s: Maneuverability of target 1 increases.

For the simulation the parameters listed in Table 4.2 were used.

Table 4.2: Simulation parameters scenario A.

Reference parameter Value
Maneuverability noise variance (𝜎2𝑤) 2.5m2 s−4
Radar Cross Section (𝜍) 10m2

Prediction horizon length (ℋ) 15
Number of rollouts (𝒩𝑟) 10
Simulation update interval 5 s
Budget precision (𝛿𝐿𝑅) 0.002
Revisit interval (𝑇) 1 s

Figures 4.3a and 4.3b show the budget distributions for the example scenario from Fig-
ure 4.2 using the MPC and the PR algorithm, respectively. It can be seen that targets that are
located further away from the radar are allocated a larger amount of the budget than those
closer to the radar. This is due to the properties of the chosen cost function and has already
been discussed in Section 3.8.4. Furthermore, the figure reflects the changes to the system
at the different time steps. At 𝑡 = 20 s, a new object needs to be tracked, and some budget
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Figure 4.2: Trajectories of the 5 objects to be tracked for a scenario of 100 s.

Table 4.3: Initial target parameters for simulation Scenario A

Target 𝑛 𝒙𝑛0 [km] 𝒚𝑛0 [km] �̇�𝑛0 [m s−1] �̇�𝑛0 [m s−1] 𝝈2𝒘 [m2 s−4] 𝝇𝒏 [m2]
1 6.3 8.2 23 -23 2.5 10
2 2.6 14.2 49 14 2.5 10
3 15.6 11.3 -11 -24 2.5 10
4 3.3 17 -10 -16 2.5 10
5 13.2 5.2 27 5 2.5 10
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(a) Optimization using MPC. (b) Otimization using PR.

Figure 4.3: Budget allocations for Scenario A.

is made available for this task. At 𝑡 = 60 s, the total available budget decreases, which is
expressed by a decreased budget for each task. At 𝑡 = 90 s, the maneuverability noise vari-
ance of the first target increases, resulting in the need to take more accurate measurements
of this target and therefore increasing the budget of task 1. When comparing the budget
distributions from the PR and MPC, it can be seen that the budgets are mostly the same.
The main difference is seen at the change in maneuverability at 𝑡 = 90 s. In the case of
MPC, the effect of this change shows only after 𝑡 = 90 s, while in the case of PR, the effect
of this maneuverability change can already be observed at 𝑡 = 80 s. This is because, in the
PR optimization, a predefined BP is executed after the first horizon step, while the MPC
is optimizing the actions for all horizon steps. As the horizon is 15 steps or 15 s long, this
change in maneuverability already needs to be taken into account at 𝑡 = 80 s. Therefore,
the actions are already slightly influenced by this change.

Execution Time Comparison
The main goal of applying MPC was to lower the computational load compared to the PR
algorithm. This is evaluated by comparing the execution time of an average budget update
operation using both algorithms. For this comparison, scenarios with linearly moving and
non-maneuvering targets similar to Scenario A are used with varying numbers of moving
objects. Figure 4.4 shows the results from averaging the execution times over three simu-
lation runs. It can be seen that the execution times are significantly lower when using MPC
compared to when PR is used.

Realized Cost Comparison
For MPC to be a good replacement for the PR, the resulting budget allocations should be
similar. To investigate this, the realized costs were compared using the same scenarios as
the execution time comparison. The realized cost is defined as the sum of the evaluated cost
function at every time step during the simulation. Figure 4.5 shows the average realized
costs for three simulation runs. For comparison, the realized cost of using an equal distribu-
tion, i.e., allocating the same budget to all targets at every time step, is also included in the



4.3. An Alternative AODB Algorithm

4

59

Figure 4.4: Comparison of execution times of PR and MPC algorithms.

figure. It can be seen that MPC and PR have similar performances when looking at the re-
alized costs. For 20 objects, MPC even seems to perform better than PR due to the variance
in the PR results. For more accurate results, more rollouts per action must be performed in
the PR, and additionally, the result must be averaged over more simulation runs.

4.3.4. Simulation Scenario B
Simulation Scenario B consists of a static and amoving target. The first targetmoves straight
at the beginning of the simulation before turning towards the radar sensor and then contin-
uing a linear trajectory. This trajectory is shown in Figure 4.6. The parameters used for the
simulation are summarized in Table 4.4. Figures 4.7a and 4.7b show the resulting budget
distributions of this scenario for MPC and PR, respectively. In this case, the budget distri-
bution is very similar. Furthermore, the resulting realized costs over the simulation time are
very close to each other.

4.3.5. Simulation Scenario C
Simulation Scenario C consists again of two targets. The first target makes an unexpected
maneuver at 𝑡 = 15 s which can be seen in Figure 4.8. In the scenario there is an area
15 km ≥ 𝑥 ≤ 20 km, 15 km ≥ 𝑦 ≤ 20 km, in which the quality of the measurements are
negatively affected due to, e.g. weather conditions. If an object enters this area, at least
80% of the budget is needed for the radar to keep the track. The second target makes the
same maneuver but in the negative x and y quadrant, where there is no such grey area.
For this simulation, the parameters listed in Table 4.5 were used. The resulting budget
distributions for MPC and PR can be seen in Figures 4.9a and 4.9b. It can be seen that the
PR implementation adapts earlier to the unexpected maneuver, as in some of the rollouts
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Figure 4.5: Comparison of realized costs of equal distribution, PR and MPC.

Table 4.4: Simulation parameters Scenario B

Reference parameter Value
Maneuverability noise variance object 1 (𝜎2𝑤) 2.5m2 s−4
Maneuverability noise variance object 2 (𝜎2𝑤) 0.1m2 s−4
Radar Cross Section (𝜍) 10m2

Prediction horizon length (ℋ) 5
Number of rollouts 10
Simulation update interval 5 s
Budget precision (𝛿𝐿𝑅) 0.002
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Figure 4.6: Trajectories of the targets in Scenario B.

(a) Optimization using MPC. (b) Optimization using PR.

Figure 4.7: Budget allocations for Scenario B.
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the object maneuvers into the grey area between 𝑡 = 15 s and 𝑡 = 20 s, while the MPC
approach at that point still assumes that the target continues moving straight into the same
direction, avoiding the grey area. As a result, when applying the MPC implementation, the
track would be lost during this scenario. This downside of MPC only assuming a perfect
system model can be treated by using a more robust MPC scheme, similar to [79], where
different disturbances in the state are considered. However, this leads to a computationally
more complex control law.

Table 4.5: Simulation parameters for Scenario C

Reference parameter Value
Maneuverability noise variance object 1 (𝜎2𝑤) 2.5m2 s−4
Maneuverability noise variance object 2 (𝜎2𝑤) 2.5m2 s−4
Radar Cross Section (𝜍) 10m2

Prediction horizon length (ℋ) 5
Base Policy (𝜋𝑏𝑎𝑠𝑒) 𝒂
Number of rollouts 10
Simulation update interval 5 s
Budget precision (𝛿𝐿𝑅) 0.002

Figure 4.8: Trajectory of target 1 in Scenario C.
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(a) Optimization using MPC. (b) Optimization using PR.

Figure 4.9: Budget allocations for Scenario C.

4.4. Conclusions
In this chapter, the computational load of the AODB algorithm was investigated. Based
on those results, suggestions about a good choice of input parameters have been presented.
These practical results are very valuable as the literature on RRM usually stays on a very
high level without presenting practical implementation details. It was shown that the com-
putational load of the PR can become very high, and alternative implementation could be
considered for increasing the computational efficiency.

Based on the previous experiences, it has been chosen to investigate the impact of re-
placing the PR with MPC. The fact that this is easily possible emphasizes the generality and
flexibility of the framework. The applicability of the MPCmethod has been shown in a sim-
ple dynamic tracking scenario with linearly moving targets, as well as in a scenario with a
maneuvering target. The budget allocations and cost results of both the PR implementation
and the MPC implementation are very similar, highlighting that both solutions are valid in
the chosen simulation scenarios.

For the same type of scenario, it has been shown that the new MPC approach clearly
outperforms the previously considered PR method w.r.t. the computation time. Addition-
ally, the reduction in computational effort enables the MPC approach to optimize actions
for multiple time steps into the future, while PR only optimizes the subsequent action.

Nevertheless, it has also been shown that certain scenarios exist where the PR leads to
better tracking results than the MPC. This emphasizes that the MPC is an approximation of
the PR.

For future research, it might be interesting to investigate the possibility of combining
aspects of both PR and MPC, such as applying PR for a continuous action space.





5
Radar Resource Management

for Multi-Target Joint
Tracking and Classification

The previous chapters introduced a framework to RRM which can flexibly be used in many
different use cases by adjusting the chosen cost function according to the needs and wishes of
the user. It was shown that the framework is applicable to tracking scenarios and delivers
very promising results. Additionally, a performance analysis discussed the problems and
limitations w.r.t. the implementation of the proposed algorithm. This chapter focuses on
the generality of the approach and shows how the presented framework can be applied to
include different types of operations. It is also shown that tracking and classification can be
treated jointly through a single task type with a proper model and a reasonable cost function
definition. The resources for these tasks are optimized jointly by considering a single cost
function.

Parts of this chapter have been published in:

M. I. Schöpe, H. Driessen, and A. Yarovoy, “Optimal Threat-based Radar Resource Management for Multi-Target
Joint Tracking and Classification”, ISIF Journal of Advances in Information Fusion (JAIF), 2021, under review.
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5.1. Radar Resource Management for Classification
For a successful radar application, it is often necessary to make a distinction between differ-
ent types of targets. Therefore, classification is a vital task for every modern radar system
and needs to be considered in RRM. A general high-level overview of classification tech-
niques in CR and RRM is shown by Brüggenwirth et al. in [10]. Furthermore, Kreucher and
Hero presented a very generic framework that is potentially capable of doing joint detection,
tracking and classification [26]. The explanation of the approach stays on a very high level
and is only demonstrated through a detection and tracking scenario.

Most RRM approaches for classification are myopic and focus on a simple waveform
or sensor mode selection, often for a single object. In [80] Sowelam and Tewfik present
such an approach where the Kullback-Leibler information is maximized for the subsequent
measurement. Based on this, the algorithm can decide if another measurement is necessary
and which waveform needs to be chosen from a predefined library. Another example has
been shown by Bell et al. and considers both tracking and classification [81]. The system
is assumed to have separate tracking and classification modes which each have a prede-
fined waveform library to choose from. The proposed algorithm makes a decision about
the following sensor action to be executed. As objective functions, both task-driven and
information-driven possibilities are discussed. While the task-driven approach requires dif-
ferent objective functions for the two sensing modes, the information-driven approach can
compare the two different task types through the information gain.

A popular approach is to introduce a measure of risk or threat. The idea is to summarize
the interesting task quantities into a single scalar number that is easy to compare. In [24],
Martin introduces a risk-based approachwhere the risk depends on the probability of making
awrong classification and the possibility of track lossmultipliedwith predefined cost values.
The approach finds a solution for both tracking and classification in a myopic fashion. The
measurements are always taken in the same way, but the algorithm decides which target
will be sensed. In [25] and [82], similar approaches are presented. From the perspective of
this thesis, such a cost function definition is not preferred, as predefined cost values cannot
easily represent the risk in all possible situations. This leads to a lack of flexibility in the
approach. Bolderhij et al. present an approach for military radar applications that relies on
a large amount of expert knowledge to decide the risk level [83]. Although many different
situations are considered, this approach does not automatically balance the resources and
can not flexibly adapt to different situations. A more interesting approach is shown by
Katsilieris et al. in [47] where joint tracking and classification is performed by running
a tracking filter per target class in parallel. The classification is done by comparing the
likelihood of a measurement to belong to the different tracks. The next sensing action is
then chosen by evaluating the threat’s uncertainty based on the target state.

Many RRM approaches for classification assume an MDP or POMDP framework. This
is relatively easy to implement for simple classification problems, as the number of consid-
ered states is usually quite low. An advantage of using such a framework is the possibility of
taking the expected future into account. Chong et al. present a very simple general example
of how to use classification in RRM with POMDPs [66]. Castãnón applies a non-myopic
POMDP approach for a classification scenario of almost 10000 objects where the algorithm
chooses from a set of sensor modes [37]. This approach does not take the position and ve-
locity of the objects into account. Another interesting approach has been presented by La
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Scala et al. in [84] and non-myopically solves the underlying POMDP in a detection and
classification scenario. The algorithm selects the best waveforms from a predefined library.
The authors promise that an extension to tracking can be achieved without much effort but
do not demonstrate that explicitly. Two other classification approaches that assume anMDP
or POMDP framework are shown in [25, 85]. Since the amount of states is relatively low
in most classification problems, also ML techniques have been suggested for solving the
underlying (PO)MDPs, e.g., by Langford and Zadrozny in [86] and Blatt and Hero in [87].

Most approaches that focus on RRM for classification are very concrete and apply
heuristic rules to compare different task types. In most of the proposed approaches, the
different tasks are assumed to be independent or very weakly dependent. This chapter will
specifically focus on cases where the tasks are joint. In addition to that, most approaches
are myopic and do not take into account MDP or POMDP frameworks. The introduction of
risk or threat measures is widespread and seems promising as it simplifies the comparison
of tasks. This chapter shows that the generic algorithm introduced in the previous chapters
can be used to address the shortcomings of previously published literature. It is explained
how the approach can easily be adjusted to include joint tracking and classification, using a
single cost function for both task types. The underlying POMDP is solved non-myopically
and the resulting policy is achieved by balancing all the considered actions in the action
space.

The remainder of this chapter is structured as follows. Section 5.2 defines the general
RRM problem and Section 5.3 introduces the proposed joint tracking and classification ap-
proach. Furthermore, Section 5.4 introduces the applied threat and cost function, while
Section 5.5 gives details about the radar scenario used for the simulations as discussed in
Sections 5.6 to 5.8. Finally, Section 5.9 contains the conclusions.

5.2. General Problem Definition and Radar Scenario
The general formulation of the problem is the same as shown in Chapter 2. The algorithm is
essentially the same as presented in Chapter 3, but each target now has a class parameter as-
signed, which influences the movements of the targets. In the simulations, this is taken into
account in the target tracking and optimization. In addition to that, a scalar number called
“threat” is introduced that contains the uncertainty of both the track and the classification
of a target.

If not stated otherwise, the assumptions fromChapter 3 are still valid here. This includes
the assumed radar systems, the velocity andmeasurementmodels, and the SNRmodel. Only
zero-mean Gaussian noise is considered in the following. Therefore, all mentioned PDFs
are Gaussian.

5.3. Joint Tracking and Classification
This chapter assumes that each target is of a specific predefined class that is initially un-
known to the radar system. To make the classification decision, a Bayesian classifier will
be applied. Suppose a class feature could be measured directly, and the features were in-
dependent of each other. In that case, the classification problem can be solved, e.g., by
applying a naive Bayes classifier using these class measurements directly.

If the class features cannot be observed directly, the behavior of the target often contains



5

68 5. RRM for Multi-Target Joint Tracking and Classification

information about the underlying target type. In that case, joint tracking and classification
can be applied. Similar approaches have been presented, e.g., in [88, 89]. Based on the mea-
surements taken by the radar sensor, a track can be created with the help of a tracking filter
(e.g., EKF as applied in the previous chapter). The track then describes the movements of
the observed objects. The problem that needs to be solved contains both discrete (class) and
continuous variables (e.g., position, velocity) of the targets are considered. The following
equations are based on Bayesian theory (see, for instance, [90–92]).

Taking into account the class of the target, the state evolution equation in (2.3) changes
to

𝒔𝑛𝑡+Δ𝑡 = 𝑓Δ𝑡 (𝒔𝑛𝑡 , 𝑐𝑛 , 𝒘𝑛𝑡 ) , (5.1)

where 𝑐𝑛 ∈ 𝑪 is a scalar and denotes the class of target 𝑛 which is not changing over time.
The measurement function is defined similarly to (6.1):

𝒛𝑛𝑡 = 𝔥 (𝒔𝑛𝑡 , 𝒗𝑛𝑡 , 𝒂𝑛𝑡 , 𝑓𝑛𝑐 ) , (5.2)

where 𝑓𝑛 is a directly measurable feature of target 𝑛, represented by a scalar value. The
PDF for feature 𝑓𝑛𝑐 can explicitly be written as

𝑝 (𝑧𝑛𝑡,𝑓|SNR, 𝑐𝑛) =
1

√2𝜋𝜎2𝑓 (SNR)
exp(−12

(𝑧𝑛𝑡,𝑓 − 𝑓𝑛𝑐 )2
𝜎2𝑓 (SNR)

) , (5.3)

where 𝑧𝑛𝑡,𝑓 is the measurement of the feature of target 𝑛 at time 𝑡, and 𝜎2𝑓 (SNR) is the feature
measurement variance which depends on the SNR. One could think for instance of the RCS
or the micro-Doppler spectrum. This feature is assumed to be directly connected to the
class of the object and not dependent on the state of the target. Therefore, the measurement
𝒛𝑛𝑡 consists of a state (position and Doppler) and a class (feature) component. The PDFs
of state, process or maneuverability noise and measurement noise can then depend on the
underlying target class:

𝑝 (𝒔𝑛𝑡+Δ𝑡|𝑐𝑛) ,
𝑝 (𝒘𝑛𝑡 |𝑐𝑛) ,
𝑝 (𝒗𝑛𝑡 |𝑐𝑛)
𝑝 (𝑓𝑛𝑐 |𝑐𝑛) .

(5.4)

The goal of this joint tracking and classification approach is to recursively calculate the
posterior joint PDF

𝑝 (𝒔𝑛𝑡 , 𝑐𝑛|𝒁𝑛𝑡 ) = 𝑝 (𝒔𝑛𝑡 |𝑐𝑛 , 𝒁𝑛𝑡 ) 𝑃(𝑐𝑛|𝒁𝑛𝑡 ), (5.5)

where 𝒁𝑛𝑡 = [𝒛𝑛𝑡 , 𝒛𝑛𝑡−Δ𝑡 , 𝒛𝑛𝑡−2Δ𝑡 , … , 𝒛𝑛0 ] are all measurements taken for target 𝑛 until time
𝑡 and 𝑃(𝑐𝑛|𝒁𝑛𝑡 ) are the prior class probabilities which are known from the last iteration.
Using the the Bayesian evolution and update equations, the conditional posterior density
can be written as

𝑝 (𝒔𝑛𝑡+Δ𝑡|𝑐𝑛 , 𝒁𝑛𝑡 ) = ∫
𝑆
𝑝 (𝒔𝑛𝑡+Δ𝑡|𝒔𝑛𝑡 , 𝑐𝑛) 𝑝 (𝒔𝑛𝑡 |𝑐𝑛 , 𝒁𝑛𝑡 ) 𝑑𝒔𝑛𝑡 , (5.6)
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where

𝑝 (𝒔𝑛𝑡 |𝑐𝑛 , 𝒁𝑛𝑡 ) =
𝑝 (𝒛𝑛𝑡 |𝒔𝑛𝑡 , 𝑐𝑛) 𝑝 (𝒔𝑛𝑡 |𝑐𝑛 , 𝒁𝑛𝑡−Δ𝑡)

𝑝 (𝒛𝑛𝑡 |𝑐𝑛 , 𝒁𝑛𝑡−Δ𝑡)
. (5.7)

The normalizing constant in the denominator is calculated with

𝑝 (𝒛𝑛𝑡 |𝑐𝑛 , 𝒁𝑛𝑡−Δ𝑡) = ∫
𝑆
𝑝 (𝒛𝑛𝑡 |𝒔𝑛𝑡 , 𝑐𝑛 , 𝒁𝑛𝑡−Δ𝑡) 𝑝 (𝒔𝑛𝑡 |𝑐𝑛 , 𝒁𝑛𝑡 ) 𝑑𝒔𝑛𝑡 . (5.8)

As the measurement consists of a state dependent and a state independent part which is
based only on the class, this expression can also be written as

𝑝 (𝒛𝑛𝑡 |𝑐𝑛 , 𝒁𝑛𝑡−Δ𝑡) = 𝑝 (𝒛𝑛,𝑠𝑡 |𝑐𝑛 , 𝒁𝑛,𝑠𝑡−Δ𝑡) 𝑝 (𝒛𝑛,𝑐𝑡 |𝑐𝑛) , (5.9)

where 𝒛𝑛,𝑠,𝑐 denotes the state and class-dependentmeasurement and 𝒛𝑛,𝑐 the class-dependent
feature 𝑓𝑛𝑐 measurement for target 𝑛 at time 𝑡. The posterior class probability is calculated
via

𝑃 (𝑐𝑛|𝒁𝑛𝑡 ) =
𝑝 (𝒛𝑛𝑡 |𝑐𝑛 , 𝒁𝑛𝑡−Δ𝑡) 𝑃 (𝑐𝑛|𝒁𝑛𝑡−Δ𝑡)

𝑝 (𝒛𝑛𝑡 |𝒁𝑛𝑡−Δ𝑡)
. (5.10)

The likelihood of the current measurement given all the previous measurement is defined
as

𝑝 (𝒛𝑛𝑡 |𝒁𝑛𝑡−Δ𝑡) =
𝐶

∑
𝑐=1

𝑝(𝒛𝑛𝑡 |𝑐𝑛 , 𝒁𝑛𝑡−Δ𝑡)𝑃 (𝑐𝑛|𝒁𝑛𝑡−Δ𝑡) , (5.11)

where 𝐶 is the number of assumed target classes. The recursive process that is described
through (5.1) to (5.11) requires 𝐶 different tracking filters, each conditioned to a specific
class. Based on the likelihood of the current measurement being associated with one of the
tracks, the class probability is updated. The process is summarized in Figure 5.1.
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𝑝(𝑧𝑘|𝑐 = 1, 𝑍𝑘−1)

𝑝(𝑧𝑘|𝑐 = 𝐶, 𝑍𝑘−1)

𝑝(𝑠𝑘|𝑐 = 1, 𝑍𝑘)
𝑝(𝑧𝑘|𝑐 = 2, 𝑍𝑘−1)

𝑝(𝑠𝑘|𝑐 = 2, 𝑍𝑘)

𝑝(𝑠𝑘|𝑐 = 𝐶, 𝑍𝑘)

𝑧𝑘 𝑃(𝑐|𝑍𝑘)

Figure 5.1: Joint tracking and classification process.
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5.4. Formulation of Cost Function
The assumed cost function in this chapter is based on a definition of threat. This definition
depends heavily on the considered scenario and the wishes and expectations of the user.
There is practically an unlimited amount of possibilities for constructing such a function.
In this section, it is considered that the threat 𝜙(𝑐, 𝒔) depends on the class and the state of a
target. The cost function will be defined by the variance in the threat knowledge of a target.
This means that the cost will be very high for unclassified targets, as all class-dependent
threat values are equally likely. Once the knowledge of the target class increases, also this
variance in threat will decrease. An explicit example formulation of the threat and the cost
function will be introduced later, together with the simulation scenarios. First, the focus is
on transforming the PDF from the state domain to the threat domain. As the cost calculation
is done for each target separately, the target-related superscript 𝑛 is dropped to simplify the
notations in the following subsections.

5.4.1. Unscented Transform
The running target tracks supply a PDF of the target state. Since the transformation of
the state PDF to the threat PDF is nonlinear, a sampling approach is chosen. A possible
implementation of this is to sample the threat PDF with a certain number of random samples
in the state PDF. For an accurate result, many samples are necessary, which can make this
approach very slow. Therefore, in this chapter the samples in the state space of the target
are chosen with the help of the unscented transform that is also applied in the Unscented
KF [93]. For a D-dimensional PDF, 2𝐷 + 1 sigma points are necessary. The procedure for
calculating the current threat at a certain moment in time is as follows:

1. Calculate the Cholesky decomposition of the belief state covariance matrix of the
target:

𝑳𝑳𝑇 = 𝑷, (5.12)

where 𝑷 is the belief state covariance matrix of the target.

2. Calculate the so-called sigma points:

𝕩0 = �̂�,
𝕩𝑖 = �̂� + √𝐷 + 𝜅 col𝑖𝑳 𝑖 = 1,… , 𝐷,

𝕩𝑖+𝐷 = �̂� − √𝐷 + 𝜅 col𝑖𝑳 𝑖 = 1,… , 𝐷.
(5.13)

where �̂� is the belief state mean of the target, 𝜅 = 3 − 𝐷 and col𝑖𝑳 denotes the 𝑖-th
column of matrix 𝑳.

3. Now, each of these samples has to be transformed to the threat domain by using the
threat function 𝜙(𝑐, 𝒔).

𝕪𝑖𝑐 = 𝜙(�̂�, 𝕩𝑖)) 𝑖 = 0,… , 2𝐷, (5.14)

where �̂� is the believed class of the target.
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4. From the samples in the threat domain, the threat PDF is defined by the mean and
covariance:

�̂�𝑐 =
2𝐷

∑
𝑖=0
𝑤𝑖𝕪𝑖𝑐 ,

Σ𝜙,𝑐 =
2𝐷

∑
𝑖=0
𝑤𝑖(𝕪𝑖𝑐 − �̂�𝑐)(𝕪𝑖𝑐 − �̂�𝑐)𝑇 ,

(5.15)

where �̂�𝑐 is the mean and Σ𝜙,𝑐 the covariance of the threat PDF based on class 𝑐 and
𝑤𝑖 are weights for the samples given as

𝑤𝑖 = {

𝜅
𝐷+𝜅 , if 𝑖 = 0

1
2(𝐷+𝜅) , otherwise

. (5.16)

5.4.2. Combination of Threat PDFs
Since the threat PDF depends on the class 𝑐, is has to be calculated for each class separately.
Based on the resulting PDFs for 𝐶 different classes, a total PDF can be constructed. The
total mean of the threat �̂�tot for the target is defined as

�̂�tot = ∫
Φ
𝜙𝑝(𝜙|𝒛)𝑑𝜙

= ∫
Φ
𝜙

𝐶

∑
𝑐=1

𝒩(𝜙; �̂�𝑐 , Σ𝜙,𝑐)𝑃(𝑐|𝒁)𝑑𝜙

=
𝐶

∑
𝑐=1

𝑃(𝑐|𝒁)∫
Φ
𝜙𝒩(𝜙; �̂�𝑐 , Σ𝜙,𝑐)𝑑𝜙

=
𝐶

∑
𝑐=1

𝑃(𝑐|𝒁)�̂�𝑐 ,

(5.17)

where 𝒛 is a recent measurement of the target state,𝒩(𝜙; �̂�𝑐 , Σ𝜙,𝑐) denotes a normal distri-
bution with mean �̂�𝑐 and variance Σ𝜙,𝑐 and 𝑃(𝑐, 𝒁) is the posterior class probability based
on all previous measurements 𝒁. The variance can be calculated using

Σ𝜙,tot = ∫
Φ
(𝜙 − �̂�tot)2𝑝(𝜙|𝒛)𝑑𝜙

= ∫
Φ
(𝜙2 − 2𝜙�̂�tot + �̂�𝑐)2)𝑝(𝜙|𝒛)𝑑𝜙

= ∫
Φ
𝜙2𝑝(𝜙|𝒛)𝑑𝜙 − �̂�2tot.

(5.18)
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Using

∫
Φ
𝜙2𝑝(𝜙|𝒛)𝑑𝜙 = ∫

Φ
𝜙2

𝐶

∑
𝑐=1

𝒩(𝜙; �̂�𝑐 , Σ𝜙,𝑐)𝑃(𝑐|𝒁)𝑑𝜙

=
𝐶

∑
𝑐=1

𝑃(𝑐|𝒁)∫
Φ
𝜙2𝒩(𝜙; �̂�𝑐 , Σ𝜙,𝑐)𝑑𝜙

=
𝐶

∑
𝑐=1

𝑃(𝑐|𝒁)(Σ𝜙,𝑐 + �̂�2𝑐 ),

(5.19)

it can also be written as

Σ𝜙,tot =
𝐶

∑
𝑐=1

𝑃(𝑐|𝒁)(Σ𝜙,𝑐 + �̂�2𝑐 ) − �̂�2tot. (5.20)

5.4.3. Variance of Threat
The previous subsection described a way to transform the PDF in the state and class domain
to the threat domain by taking into account multiple possible target classes. Given this threat
PDF, different cost functions could be constructed. A simple and unambiguous choice is to
simply evaluate the total threat variance Σ𝜙,tot. The underlying assumption is that the radar
system cannot influence the target state but only the uncertainty about the knowledge of the
target state by adjusting its sensing actions. Following this cost function, the most resources
will be assigned to the targets where the biggest decrease in uncertainty (decrease in threat
variance) is expected.

The hypothesis is that this will lead to more resources being assigned to objects of an
uncertain class. Once all the objects are classified, the uncertainty in the threat will drop
significantly and only depend on the uncertainty in the track. This emphasizes our joint
tracking and classification approach, as the uncertainty in both the tracking and classification
class is directly considered through this cost function. For the remainder of this chapter the
cost function will thus be defined as

𝒞(𝒂, 𝒔𝑘|𝑘−1, 𝑷𝑘|𝑘−1, 𝑐) = Σ𝜙,tot, (5.21)

where 𝒔𝑘|𝑘−1 is the predicted state and 𝑷𝑘|𝑘−1 is the predicted error-covariance for the
considered target given by the tracking filter. Therefore, the predicted belief state is used as
input for the cost calculation.

5.5. Assumed Radar Scenario
If notmentioned otherwise in the following, the general assumptions about the two-dimensional
scenarios and the radar systems are the same as introduced in Chapter 3.6. Additionally,
some further assumptions are being made in this chapter.
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5.5.1. Target Classes
Each target is assumed to belong to a specific class. The class is defined before the simu-
lation scenario starts and cannot be changed. Therefore, it stays the same during the entire
scenario. The measurement variance regarding the class feature 𝑓𝑛 of object 𝑛 is calculated
as explained in (3.18). The corresponding variance value for the reference measurement
𝑓0 is shown together with the other simulation parameters in the specific subsection. For
the simulations discussed below, different target classes are considered that have an influ-
ence on the maneuverability of the targets. Therefore, (2.3) needs to be adjusted and made
class-dependent. The next state can be written as

𝒔𝑛𝑘𝑛+1 = 𝑭𝑛𝒔
𝑛
𝑘𝑛 +𝒘

𝑛,𝑐
𝑘𝑛 , (5.22)

with 𝑭𝑛 ∈ ℝ4×4 defined as

𝑭𝑛 =
⎡
⎢
⎢
⎣

1 0 𝑇𝑛 0
0 1 0 𝑇𝑛
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎦

(5.23)

and the maneuverability noise 𝒘𝑛,𝑐 with covariance

𝑸𝑛,𝑐 =
⎡
⎢
⎢
⎣

𝑇3𝑛 /3 0 𝑇2𝑛 /2 0
0 𝑇3𝑛 /3 0 𝑇2𝑛 /2

𝑇2𝑛 /2 0 𝑇𝑛 0
0 𝑇2𝑛 /2 0 𝑇𝑛

⎤
⎥
⎥
⎦
𝜎2𝑤,𝑐 , (5.24)

where 𝜎2𝑤,𝑐 is the maneuverability noise variance for class 𝑐.These maneuverabilities are
implemented in the trajectory simulations of the targets and are also taken into account in the
resource optimization algorithm. Note that in this chapter, a different maneuverability noise
covariance is assumed compared to the previous chapters. As already discussed earlier, one
tracking filter per target class is applied, each tuned to one of the classes.

5.5.2. Optimization Problem
There are 𝑁 tracked targets in the environment. Equivalently to Section 3.6, the RRM
problem can thus be expressed as

minimize
𝑻,𝝉

𝑁

∑
𝑛=1

𝐸 [𝒞 (𝒔𝑛𝑘𝑛|𝑘𝑛−1(𝑇𝑛 , 𝜏𝑛) , 𝑷
𝑛
𝑘𝑛|𝑘𝑛−1(𝑇𝑛 , 𝜏𝑛) , 𝑐

𝑛)]

subject to
𝑁

∑
𝑛=1

𝜏𝑛
𝑇𝑛
≤ Θ𝑚𝑎𝑥 .

(5.25)

The cost that is optimized is therefore based on the current prediction of the tracking filter,
which is based on the measurement actions 𝑇 and 𝜏. Similar to Chapter 3.6, an EKF is
applied, and every detection is automatically assigned to the correct track. Both the revisit
time 𝑇, as well as the dwell time 𝜏 are optimized. The state measurements are influenced
by both 𝑇 and 𝜏, while the state-independent feature measurement is only influenced by the
dwell time.
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5.5.3. Threat Definition
Since a two-dimensional scenario is assumed, the dimension parameter in the unscented
transform is 𝐷 = 2. As mentioned before, the choice of the “correct” threat definition
depends on the scenario and the user’s wishes. As an example, in the following, the threat
𝜙 is defined as

𝜙(𝑐, 𝒔) =
𝜌𝑐 ⋅ (0.1 + exp (− 𝑟(𝒔)−𝑟

′

𝜂 ))

1 + exp (− 𝑟(𝒔)−𝑟
′

𝜂 )
, (5.26)

where 𝜌𝑐 is a scalar factor unique for each class, 𝑟(𝒔) = √𝑥2 + 𝑦2 is the range of the
target from the sensor, 𝑟′ = 18𝑘𝑚 is a reference range and 𝜂 = 5000 is a parameter to
fine-tune the threat function slope. A possible example of such a threat is shown in Figure
5.2. This formulation assumes that targets at a long distance pose a very low threat, while
the threat increases the closer the target advances towards the sensor location. At a certain
distance, the maximum threat value is reached. In addition to that, some classes generally
pose a higher threat than others. One could think of an automotive scenario where a vehicle
is moving towards the sensor location. When it is far away, the threat would be low as it
will probably turn away at some point. However, once it comes closer, the threat increases
until it is not very likely to turn away anymore, which means that the maximum threat level
is reached, and a collision is almost inevitable. Regarding the different classes, one could
think of a truck having a higher base threat level than a cyclist, for instance.
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Figure 5.2: Example threat function for 3 different targets. The reference range 𝑟′ is 18 km and the tuning parameter
𝜂 is 5000. The class parameters 𝜌 are set to values 1,2 and 3.

5.6. Simulation Scenario A
In this section, the dynamic tracking example as presented in Chapter 3.8 is used to show
the impact of the chosen cost function based on the threat. Essentially, the AODB algorithm
from Chapter 3 is applied with the cost function as defined in (5.21). The radar sensor is
placed at the origin of the coordinate system. Initially, there are four targets in the scene.
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After 25 s, a fifth target is detected, and a new track is started. All targets move with constant
velocities. Here, it is assumed that the class of the targets is not of interest, so no classifica-
tion is applied during the simulation scenario. The simulation parameters are summarized in
Table 5.1, while the target parameters are shown in Table 5.2. The trajectories of the targets
during the simulation scenario are shown in Figure 5.3 and the resulting budget allocation
of the simulations are shown in Figure 5.4.

Since classification is not considered in this example, the uncertainty in threat comes di-
rectly from the tracking accuracy. This is reflected in Figure 5.4 by the fact that the budgets
overall show very similar behavior to the dashed lines. Those lines indicate the results from
Chapter 3, where the error-covariance of the tracking filter was used directly to optimize
the resource allocation. For example, Target 4 receives the largest budget allocation during
the first 70% of the scenario, while Target 5 always receives the smallest, which is in line
with the previous results. It should be noted that the algorithm decides the resource alloca-
tions on the expected threat variance reduction rather than the actual threat variance values.
Nevertheless, the target with the highest threat variance will offer the biggest opportunity
to reduce this threat variance in most cases.

Table 5.1: Simulation parameters for Simulation Scenario A.

Parameter Value
Precision of solution (𝛿) 0.01
Action space discretization steps (Δ𝑇, Δ𝜏) Adaptive
Action space limits revisit interval (𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥) 𝑇 ∈ [0.1 s… 5 s]
Action space limits dwell time (𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥) 𝜏 ∈ [0.1 s…∞]
Number of rollouts (𝑀) 10
Rollout horizon (ℋ) 10
Base Policy (𝜋𝑏𝑎𝑠𝑒) 𝒂
Maximum available budget (Θ𝑚𝑎𝑥) 1
Budget update interval (𝑡𝐵) 5 s
Beam positioning error (Δ𝛼) 0
Probability of detection (𝑃𝐷) 1
Threat reference range (𝑟′) 18 km
Threat slope parameter (𝜂) 5000

5.7. Simulation Scenario B
In this section, a dynamic joint tracking and classification scenario is presented. The radar
sensor is placed at the origin of the coordinate system. There are two possible classes and
two observed targets. The first target is of Class 1, and the second one of Class 2. The
radar sensor does not know these classes, which means that the initial class probabilities
are equal for both classes for each target. The available budget is set to 1, implying that the
radar system fully focuses on these two tracking tasks. The targets move with a class-typical
maneuverability noise which can be seen from trajectories in Figure 5.5a. The simulation
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Table 5.2: Initial target parameters for Simulation Scenario A.

Parameter Target
1 2 3 4 5

𝑥𝑛0 [km] 12 12 7 19 7.9
𝑦𝑛0 [km] 10 15 11 2 8.3
�̇�𝑛0 [m s−1] 9 -30 45 -35 -20
�̇�𝑛0 [m s−1] -15 15 30 0 -25
𝜍𝑛 [m2] 25 25 64 64 64
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Figure 5.3: Trajectories of the targets for Simulation Scenario A. The symbols mark the starting positions.
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Figure 5.4: Resulting budget distribution for Simulation ScenarioA. The dashed lines denote the results for tracking
without classification as shown in Figure 3.7a.

parameters are identical with the ones for Simulations A as mentioned in Table 5.1. The
target and class parameters are shown in Tables 5.3 and 5.4, respectively. The simulation
results are presented in Figures 5.5b to 5.5f.

In the beginning, Target 2 gets a larger amount of dwell time assigned than Target 1,
which leads to a quick classification. Target 2 is closer to the radar sensor than Target 1,
which means that not knowing the class leads to a higher threat variance. Additionally, the
feature measurements for Target 2 are more accurate than for Target 1 due to the smaller
distance and, therefore, higher SNR. Subsequently, after 5 s, the dwell time and with it the
relative budget for Target 2 drops, while Target 1 gets significantly more dwell time and
budget assigned. During the bigger part of the scenario, the sensor focuses on classifying
Target 1, which is more difficult due to its larger distance from the sensor. While Target 1
gets slowly classified, its budget starts to decrease after about 45 s. The budget for Target
2 increases at the same time. After both targets are successfully classified at about 70 s, the
assigned budgets for both targets stay around 0.5, although Target 1 still gets a higher dwell
time. The targets are both classified and theoretically deserve a similar amount of attention.
However, as Target 1 was classified later, there is still slightly more uncertainty left about its
class, leading to a higher dwell time allocation. This behavior emphasizes that the resource
allocation is based on the expected threat variance reduction. Figure 5.6e shows how the
early classification of Target 2 leads to a significant direct decrease in threat variance, while
the classification of Target 1 takes longer, and the cost therefore also drops slower.

5.8. Simulation Scenario C
This simulation scenario is similar to Scenario B. The radar sensor is again placed at the
origin of the coordinate system, and the available maximum budget is set to Θ𝑚𝑎𝑥 = 0.5.
The reason for a lower maximum budget could be, e.g., that an operator of the radar system
manually assigned some of the total budget to other tasks. Additionally, the length of the
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0 20 40 60 80 100

Time [s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
 p

ro
b

a
b

ili
ty

Target 1

Target 2

(f) Resulting class probabilities. A value of 1 means that a target
was correctly classified.

Figure 5.5: Trajectories and simulation results for Simulation Scenario B.
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Table 5.3: Initial target parameters for Simulation Scenario B.

Parameter Target
1 2

𝑥𝑛0 [km] 14.8 9.2
𝑦𝑛0 [km] 13.9 15.9
�̇�𝑛0 [m s−1] 2 2
�̇�𝑛0 [m s−1] -1 1
𝜍𝑛 [m2] 5 5
𝑐𝑛 1 2

Table 5.4: Class parameters for Simulation Scenario B.

Parameter Class
1 2

Class feature 𝑓𝑐 1 2
Threat parameter 𝜌𝑐 1 9
Maneuverability 𝜎𝑤,𝑐
[m s−2]

2 5

simulation is 500 s, which is longer than in Scenario B. All other general simulation param-
eters are the same as shown in Table 5.1. The initial target parameters are shown in Table
5.5 and the class parameters are summarized in Table 5.6. This time, there are three targets
in the environment, and the targets can be of three possible classes. Figure 5.6a shows the
trajectories of the simulated targets. The simulation results are shown in Figures 5.6b to
5.6f.

At the beginning of the scenario, it can be seen that Target 3 gets the largest relative bud-
get assigned. Subsequently, it gets classified very quickly. It can be seen that the algorithm
makes a wrong decision about the class of Targets 1 and 2. Figure 5.6e shows that making
the first classification decisions leads to a large reduction of the calculated threat variance
for all targets within the first 100 s. It can be seen that while the algorithm slowly classifies
Target 2 between about 100 s and 300 s, the threat variance increases and then drops again.
The reason is that the class probabilities are shifting during that phase, and there is no clear
decision made yet. The same happens to Target 1, as its class probability values are also
changing at that time. Between about 320 s and 420 s Target 1 is classified correctly, which
also leads to an increased threat variance. After 400 s, all targets are correctly classified,
and the threat variances decrease rapidly.

In Figure 5.6b, it can be seen that the budget allocations roughly follow the threat vari-
ances. The target with the highest threat variance usually receives the largest budget. Sim-
ilarly, the dwell times are assigned approximately proportional to the threat variance.
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(a) Trajectories of the targets for Simulation Scenario C. The
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(c) Resulting dwell time distribution.
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(d) Resulting revisit time distribution.
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(e) Resulting optimized cost (threat variance).
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(f) Resulting class probabilities. A value of 1 means that a target
was correctly classified.

Figure 5.6: Trajectories and simulation results for Simulation Scenario C.
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Table 5.5: Initial target parameters for Simulation Scenario C.

Parameter Target
1 2 3

𝑥𝑛0 [km] 10.1 12.3 12.1
𝑦𝑛0 [km] 17.1 17.5 15.3
�̇�𝑛0 [m s−1] 1 -2 1
�̇�𝑛0 [m s−1] 2 2 -2
𝜍𝑛 [m2] 5 5 5
𝑐𝑛 1 2 3

Table 5.6: Class parameters for Simulation Scenario C.

Parameter Class
1 2 3

Class feature 𝑓𝑐 1 2 3
Threat parameter 𝜌𝑐 1 9 19
Maneuverability 𝜎𝑤,𝑐
[m s−2]

2 5 9

5.9. Conclusions
This chapter introduced a novel RRM approach for joint tracking and classification using
the framework presented in Chapter 3. In contrast to most available approaches, two dif-
ferent task types are combined into one. It is shown that it is possible to solve the RRM
problem for multiple task types by using only a single cost function based on a definition of
mission threat. Such approaches have been suggested previously but have never been fully
developed and demonstrated with the help of practical simulation scenarios.

Firstly, the joint tracking and classification framework has been introduced, which builds
on the previous RRM framework as shown in Chapter 3.

Secondly, it has been explained how to move from the state to the threat domain and
combine the cost of different target classes. The idea of threat is to transform the state of
each task into an easily comparable scalar number.

Finally, an explicit definition of a possible mission threat has been introduced. The
presented threat definition is based on the position and a class-dependent parameter. It has
been shown how the threat looks like for multiple classes in a two-dimensional environment.

Through an analysis of the dynamic tracking Scenarios A to C, it has been shown that the
algorithm works in different situations. It calculates the resource allocations based on the
class probabilities and the tracking state accuracy. The algorithm tries to classify targets of
unknown classes faster, especially when they are close to the radar sensor. The classification
is done over time while tracking for targets that are further away and have a smaller threat
variance. Once the targets are classified, the resource allocations depend primarily on the
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track uncertainty. This means that the target tracks get the resources assigned based on the
expected decrease in uncertainty. The presented simulations confirm the correctness of the
proposed algorithm.



6
Radar Resource Management
for Multi-Sensor Multi-Target

Tracking

As shown in the previous chapters, the suggested RRM approach delivers promising results
for single sensors. However, in many applications multiple sensors are cooperating in or-
der to observe the environment. One could think of automotive scenarios with multiple cars
or air surveillance with sensors at different locations. Therefore, this chapter extends the
previous approach to include multiple connected sensors. The applicability of the generic
framework and the proposed algorithmic solutions is shown through multiple dynamic sim-
ulation scenarios.

Parts of this chapter have been published in:

B. van der Werk, M. I. Schöpe, and H. Driessen, “Approximately Optimal Radar Resource Management for Multi-
Sensor Multi-Target Tracking”, in Proceedings of the 24th International Conference on Information Fusion (FU-
SION), Sun City, North West, South Africa, 2021, accepted for publication.

K. Jayachandra, M. I. Schöpe, and A. Yarovoy, “Joint Radar Communication Resource Allocation for Automotive
Applications Using Policy Rollout”, IEEE Transactions on Vehicular Technology, 2021, under review.

The ideas for this chapter and the general solution approaches originated from Max Ian Schöpe. The detailed
implementation of the proposed algorithms has been carried out by the MSc students Bas van der Werk and Karan
Jayachandra under the close daily supervision of Max Ian Schöpe. The students wrote the publication drafts with
a significant amount of suggestions and corrections by Max Ian Schöpe. Hans Driessen provided additional input
during the whole process.
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6.1. Literature Review
The majority of RRM approaches focus on single sensor systems, as shown in the previous
chapters. However, many modern applications of sensor systems require the cooperation
of multiple sensors [94]. Many previous approaches to RRM for sensor networks have
been focusing on sensor selection without resource balancing (see, e.g., [58, 95, 96]), which
usually means that only the one sensor that results in the best measurement is chosen for the
task in question. Bogdanović et al. show a game-theoretic approach to sensor selection in
[97]. Another game-theoretic approach has been presented byWang et al. and optimizes the
time, and aperture for Inverse Synthetic Aperture Radar [98]. However, both approaches do
not formulate the problem as a budget-balancing problem. In [99], Shi et al. use Deep RL
to solve an underlying MDP for optimizing the selection of sensors. This is done in order
to achieve a certain tracking accuracy while minimizing the power consumption. Also, that
approach does not apply resource balancing. In addition to that, it only delivers a myopic
solution. Another RRM approach to a network scenario has been presented by Han et al.
[100]. It aims at decreasing the sensing time of the individual sensors while keeping the
sensing performance at some desired level. This is done to free up sensor resources for
extra communication tasks. Such an approach is not desirable for many applications since
it does not lead to optimal measurement accuracy. In [101], Bell et al. developed an RRM
solution that balances the resources for sensor networks. However, that approach does not
exploit a non-myopic POMDP framework and only demonstrates results for a single-target
tracking scenario.

A simple sensor selection ignores a part of the potential of an adaptive sensor network.
Therefore, this chapter strives to optimize the actions for each sensor while taking into
account the global mission, the local sensor constraints, and the expected future situation
through the POMDP framework. The results presented in this chapter are an outcome of the
master’s theses of Bas van der Werk [102] and Karan Jayachandra [103] which have also
been published as conference papers in [104, 105].

The remainder of this chapter is structured as follows. Section 6.2 describes the consid-
ered RRM problem for a general multi-target multi-sensor tracking scenario and defines the
optimization problem. Subsequently, Section 6.3 proposes a distributed approach to solve
the described RRM problem. Simulation results are provided that show the performance of
the proposed method. Furthermore, Section shows a possible approach for an automotive
scenario where both time and frequency resources are allocated. The algorithm decides to
share information with a central system when they reduce uncertainty. Simulation results
show the applicability of the approach. Finally, the conclusions can be found in Section 6.5.

6.2. Problem Definition

This chapter is largely based on the assumptions that were introduced in Chapter 2.2, which
need to be extended for multiple sensors. This is done in the following. As before, an
underlying POMDP is assumed to describe the development of the targets states.
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6.2.1. Measurement Model
The state of the targets cannot be observed directly but is observed through noisy measure-
ments using𝑀 sensors. A measurement of target 𝑛 at time 𝑡 can be defined as,

𝒛𝑚,𝑛𝑡 = 𝔥(𝒔𝑛𝑡 , 𝒗𝑚,𝑛𝑡 , 𝒂𝑚,𝑛𝑡 ), (6.1)

where 𝒗𝑚,𝑛𝑡 is the zero-mean Gaussian measurement noise and 𝒂𝑚,𝑛𝑡 is the action that is
executed at sensor 𝑚 for target 𝑛 at time 𝑡. This measurement function directly defines a
measurement PDF given as

𝑝(𝒛𝑚,𝑛𝑡 |𝒔𝑛𝑡 , 𝒂𝑚,𝑛𝑡 ). (6.2)

In the following, it is assumed that measurements are taken in time steps 𝑘. As it simplifies
the equations, the notation of those time steps does not reflect that they can be of different
lengths for different sensors and tasks.

6.2.2. Tracking Algorithm
As mentioned in previous chapters, any filter that calculates the posterior density can be
applied. For linear systems, this can be a KF, while the EKF or a particle filter are applicable
methods for non-linear systems.

In the following, it is assumed that the sensors can communicate with a central processor
that exploits the information received from all sensors. Measurement fusion is applied by
using an update scheme in which the central processor updates the track estimate recursively
for each measurement of the individual sensors. The result is a fused global estimate for the
state 𝒔𝔣𝑘|𝑘 and for the covariance 𝑃

𝔣
𝑘|𝑘. The updating process for one certain target using all

𝑀 sensors is summarized in Algorithm 1, where 𝑹 is the measurement variance matrix and
𝑯 is the observation matrix.
Algorithm 1:Measurement fusion in central processor.

Input 𝑷𝔣𝑘|𝑘−1, 𝒔
𝔣
𝑘|𝑘−1, 𝑹, 𝑯, 𝔥

𝑷 = 𝑷𝔣𝑘|𝑘−1
𝒔 = 𝒔𝔣𝑘|𝑘−1
𝑚 = 1
while𝑚 < 𝑀 do

𝑷 = updatecovariance(𝑹𝑚 , 𝑯𝑚 , 𝑷)
𝒔 = updatestate(𝑹𝑚 , 𝑯𝑚 , 𝑷, 𝒛𝑚 , 𝒔)
𝑚 = 𝑚 + 1

end
𝑷𝔣𝑘|𝑘 = 𝑷
𝒔𝔣𝑘|𝑘 = 𝒔
Return 𝑷𝔣𝑘|𝑘 , 𝒔

𝔣
𝑘|𝑘

In the following, the tracking process is based on the sensing information of all sensors
following the process in Algorithm 1. It is assumed that all sensors produce independent
measurements.
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6.2.3. Optimization Problem
Equivalently to the formulation in (2.12), the goal is to minimize a cost function 𝓒 while
each sensor𝑚 only has a limited resource budget 𝑏𝑚𝑎𝑥𝑚 available. The optimization problem
can be formulated as

minimize
𝑨

𝐸 [1𝑇𝓒]

subject to
⎡
⎢
⎢
⎣

𝑏11 𝑏12 ⋯ 𝑏1𝑁
𝑏21 𝑏22
⋮ ⋱
𝑏𝑀1 𝑏𝑀𝑁

⎤
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝

𝑩(𝑨)

⋅
⎡
⎢
⎢
⎣

1
1
⋮
1

⎤
⎥
⎥
⎦
≤
⎡
⎢
⎢
⎣

𝑏𝑚𝑎𝑥1
𝑏𝑚𝑎𝑥2
⋮

𝑏𝑚𝑎𝑥𝑀

⎤
⎥
⎥
⎦⏝⎵⏟⎵⏝

𝑩𝑚𝑎𝑥

, (6.3)

where
𝓒 = [𝒞1(𝑨, 𝒔1) 𝒞2(𝑨, 𝒔2) ⋯ 𝒞𝑁(𝑨, 𝒔𝑁)]

𝑇
(6.4)

represents the cost related to all targets, 1 ∈ ℝ𝑁 is a vector of all ones and

𝑨 =
⎡
⎢
⎢
⎣

𝒂1,1 𝒂1,2 ⋯ 𝒂1,𝑁
𝒂2,1 𝒂2,2 ⋯ 𝒂2,𝑁
⋮ … ⋱ ⋮

𝒂𝑀,1 𝒂𝑀,2 ⋯ 𝒂𝑀,𝑁

⎤
⎥
⎥
⎦
, (6.5)

is the action matrix for all targets and sensors which is being optimized. The individual
budgets b𝑚,𝑛 inside the resource budgetmatrix𝑩(𝑨) represent a percentage of themaximum
budget 𝑏𝑚𝑎𝑥𝑚 spent by sensor𝑚 on target 𝑛.

6.3. AODB for Multi-Sensor Scenarios
Sections 6.3.1 and 6.3.2 introduce two different implementations of the RRM algorithm to
optimize the sensing resources.

6.3.1. Approximately Optimal Approach
The optimal approach is to optimize all actions of all sensors jointly through a central pro-
cessor which takes care of the tracking, as well as the resource optimization. The proposed
solution is based on this idea. The sensor resources for target 𝑛 are allocated by optimizing
a cost 𝒞𝑛 which depends on the actions of multiple sensors. Based on (6.4) at time 𝑘 this
can be written as

𝒞𝑛(𝑨𝑘 , 𝒔𝑛𝑘) = 𝒞𝑛(𝒂1,𝑛𝑘 , 𝒂2,𝑛𝑘 , ⋯ , 𝒂𝑀,𝑛𝑘 , 𝒔𝑛𝑘). (6.6)
The problem can be decomposed into 𝑁 parallel sub-optimization problems using LR. The
optimal actions for all 𝑀 sensors related to target 𝑛 are computed using a global PR in the
central processing node. This centralized implementation optimizes a global policy per task
to explore the actions of all sensors at the same time. Hence, the action space will be of size
𝐷𝑀 where𝐷 is the number of actions each sensor can choose from. Increasing the number of
sensors will result in an exponential increase of the action space. In practice, when described
as a POMDP, this problem would be very complicated to solve exactly for a large number of
possible states and actions. Therefore, it is proposed to solve it approximately by applying
PR.
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6.3.2. Distributed Implementation
Because of the increased computational complexity with growing number of sensors, a prac-
tical implementation is proposed which allows each sensor to solve a part of the problem
separately. Instead of sharing its sensing information with a central processor, each sensor
node broadcasts it to all sensors in the network. Each sensor then functions as a processing
node on its own to compute fused estimates and to find the best possible actions 𝒂𝑚,𝑛 for
that specific sensor. This also means that the tracking will be done in each sensor node sep-
arately. The cost 𝒞𝑛 for target 𝑛 can be decomposed into a summation of costs 𝑐𝑚,𝑛 from
multiple sensors as

𝒞𝑛(𝑨𝑘 , 𝒔𝑛𝑘) = 𝑐1,𝑛(𝒂1,𝑛𝑘 , 𝑰1,𝑛𝑘 , 𝒔𝑛𝑘) + 𝑐2,𝑛(𝒂2,𝑛𝑘 , 𝑰2,𝑛𝑘 , 𝒔𝑛𝑘) +⋯+ 𝑐𝑀,𝑛(𝒂𝑀,𝑛𝑘 , 𝑰𝑀,𝑛𝑘 , 𝒔𝑛𝑘). (6.7)

Here, 𝑰𝑚,𝑛𝑘 represents the information that sensor 𝑚 received from all other sensors about
target 𝑛 at time 𝑘. The distributed optimization problem is therefore defined as

minimize
𝑨𝑘

∑𝑁𝑛=1 ∑
𝑀
𝑚=1 𝐸 [𝑐𝑚,𝑛(𝒂𝑚,𝑛𝑘 , 𝑰𝑚,𝑛𝑘 , 𝒔𝑛𝑘)]

subject to 𝑩(𝑨𝑘) ⋅ 1 ≤ 𝒃𝑚𝑎𝑥 .
(6.8)

The problem is decomposed into a sub-optimization problem per task per sensor using LR.
By doing so, each individual PR optimization only needs to explore the action space w.r.t.
a single sensor and not a combination of all sensors.

As the PR is making predictions of the expected future for a single sensor, it does not
have access to the currently optimized actions of all other sensors during the resource opti-
mization process. In this implementation it is therefore assumed that the sensors use the last
known optimized actions of the other sensors as input and calculate their expected impact
on the cost. Hence, the information term 𝑰𝑚,𝑛𝑘 is defined as the last known actions of the
other sensors and can be written as

𝑰𝑚,𝑛𝑘 = [𝒂1,𝑛𝑘−1⋯𝒂𝑚−1,𝑛𝑘−1 𝒂𝑚+1,𝑛𝑘−1 ⋯𝒂𝑀,𝑛𝑘−1]. (6.9)

The additional communication overhead is assumed to be negligible compared to the reduc-
tion in computation time required for the PR. In the proposed approach, the optimization
stops once each sensor has found the optimal solution given the previous actions of the other
sensors. In case the sensors can also communicate efficiently during the optimization pro-
cedure, this step could be repeated multiple times. After each iteration, the sensors could
then exchange the optimized actions until the solution converges to a steady result. The dis-
tributed implementation is assumed to converge to similar results as the centralized approach
described in the previous section, as long as the situation doesn’t change too much between
exchanging optimized actions. A high-level block diagram of the algorithm is presented in
Figure 6.1 showing the distributed approach.

6.3.3. General Simulation Assumptions
If not stated otherwise, the assumptions for the following simulations are the same as in
Chapter 3. The assumed radar system is of type A as shown in Table 3.1. For the tracking
of the simulated targets, an EKF is applied.

A two-dimensional radar tracking scenario is assumed. Measurements are taken in range
and angle. For every sensor, the algorithm calculates the optimal dwell time 𝜏. The revisit
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Figure 6.1: High level block diagram of the distributed implementation. Each sensor computes their budget allo-
cations via the PR and then shares their last known actions with the other sensors.

time 𝑇 is assumed to be constant. In between budget allocation updates, the actions are
assumed to remain unchanged. For all tasks per sensor, the budget allocation is computed
such that the sum of the actions meets the resource constraint. In this implementation, the
algorithm does not execute an explicit scheduling of all the tasks into the sensor timelines.

6.3.4. Observation Model
The observation model and the influence of the SNR on the measurements for each sensor
are the same as explained in Chapter 3.6.3. In the following, the multi-sensor notation will
be added.

An observation of target 𝑛 made by sensor𝑚 is therefore given by

𝒛𝑚,𝑛𝑘 = 𝒉𝑚(𝒔𝑛𝑘 , ) + 𝒗𝑚,𝑛𝑘 , (6.10)

where 𝒉𝑚(𝒔𝑛𝑘) is the measurement transformation function for sensor 𝑚 and 𝒗𝑚,𝑛𝑘 is the
measurement noise for sensor 𝑚 sensing target 𝑛. The measurement noise for range and
angle are assumed to be independent of each other which can be written as

𝒗𝑚,𝑛𝑘 = [𝑣𝑚,𝑛𝑟 , 𝑣𝑚,𝑛𝜃 ]𝑇 , (6.11)

with corresponding variances 𝜎2𝑟 and 𝜎2𝜃 . The measurement transformation function which
transforms the Cartesian measurements into polar measurements is defined as

𝒉𝑚(𝒔𝑛𝑘) = [
√(𝑥𝑛𝑘 − 𝑥′𝑚)2 + (𝑦𝑛𝑘 − 𝑦′𝑚)2
atan2(𝑦𝑛𝑘 − 𝑦′𝑚 , 𝑥𝑛𝑘 − 𝑥′𝑚)

] , (6.12)

where x′𝑚 and y′𝑚 are the location of sensor𝑚 in Cartesian coordinates.
The observation matrix 𝑯𝑚,𝑛𝑘 ∈ ℝ2×4 for sensor 𝑚 observing target 𝑛 is defined as the

Jacobian of the measurement transformation function 𝒉 evaluated at the current predicted
target state 𝒔𝑛𝑘|𝑘−1, which can be written as

𝑯𝑚,𝑛𝑘 = 𝛿𝒉𝑚
𝛿𝒔 |𝒔𝑛𝑘|𝑘−1

. (6.13)
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6.3.5. Cost Function and Constraint
In both the centralized and distributed approach the cost 𝒞𝑛 is based on the predicted error
covariance. The current predicted error covariance at time step 𝑘 is defined as

𝑷𝑛𝑘+1|𝑘 = 𝑭𝑷𝑛𝑘|𝑘𝑭𝑇 + 𝑸𝑛 , (6.14)

where𝑭 is the state transitionmatrix,𝑸𝑛 is the zero-meanGaussian process noise covariance
for target 𝑛 and 𝑷𝑛𝑘|𝑘 is the estimated error covariance for target 𝑛, which also depends on
sensor𝑚 in the distributed implementation.

The cost for target 𝑛 at time step 𝑘 inside the PR is defined to be the trace of the positional
elements of the error covariance.

𝑐𝑛 = [1 1 0 0] ⋅ diag(𝑷𝑛𝑘+1|𝑘) (6.15)

The individual budgets 𝑏𝑚,𝑛 are defined as the ratio of the dwell time over the revisit time
per sensor per target:

𝑏𝑚,𝑛 =
𝜏𝑚,𝑛
𝑇𝑚,𝑛

. (6.16)

In the following, the performance of the distributed implementation is evaluated in a radar
tracking scenario. In addition to that, a comparison is made based on the resulting cost and
computation time.

6.3.6. Simulation Parameters
The general simulation parameters used for the simulations are shown in Table 6.1. Two
radar sensors are considered. The maximum budget for each sensor is set to 1. The budget
allocation is recalculated every 20 seconds, and there is a total of 40 budget updates, which
corresponds to a simulated scenario of 800 s in length. Between budget updates, measure-
ments are taken using the currently allocated budgets and subsequently shared with either
the central processor or the other sensors. The revisit interval 𝑇 is constant.

Table 6.1: General Simulation Parameters.

Parameter Value
Maximum Budget (𝑏𝑚𝑎𝑥𝑛 ) 1
Budget update interval (𝑡𝐵) 20 s
Simulation steps (Δ𝑡𝑠) 40
Simulation length (𝔖) 800 s
Beam-positioning error (Δ𝛼) 0
Probability of Detection (𝑃𝐷) 1
Precision of LR (𝛿𝐿𝑅) 0.05
Action discretization (Δ𝜏) 0.01 s
Number of rollouts (𝒩𝑟) 4
Rollout horizon Length (ℋ) 15
Base Policy (𝜋𝑏𝑎𝑠𝑒) 𝒂
Number of sensors (𝑀) 2
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The chosen BP is defined as the evaluated action at each step in the PR (𝜋𝑏𝑎𝑠𝑒 = 𝒂𝑘).
The PR has a horizon length of 15 measurement steps. Each evaluation of the PR is repeated
four times and averaged for the final result. The actions to optimize are the dwell times
𝜏 for each sensor. They are selected from a one-dimensional discrete action space. The
discretization for the dwell time Δ𝜏 is defined to be 0.01 seconds.

6.3.7. Simulation A: Dynamic Tracking Scenario
Adynamic radar tracking scenario is considered involving six non-maneuvering targets with
constant velocities. The placement of the sensors and the trajectories of the targets is given
in Figure 6.2. For Targets 1 to 7, the velocities, the RCS, and the maneuverability variances
that are assumed in the EKF are shown in Table 6.2.

Figure 6.2: Visualization of the dynamic radar tracking scenario involving six targets and two sensors. The initial
starting locations are shown at the beginning of each trajectory.

Table 6.2: Target parameters.

Target 1 2 3 4 5 6 7
V𝑥 [m/s] 30 -10 70 20 80 -15 4
V𝑦 [m/s] 10 85 4 -10 5 -10 -40
𝜍 [m2] 50 20 90 80 20 100 40
𝜎2𝑤 [m2 s−2] 13 24 15 22 17 11 9

The simulation runs for 40 simulation steps, where each step corresponds to the length
of the budget update interval. Before each simulation step, the sensors’ budget allocation is
computed using the PR based on the distributed solution. This allocation is then applied to
the sensors for 20 s until a new resource optimization is started.

Figure 6.3 shows how the cost changes during the first resource optimization procedure
at the beginning of the simulation. Both the primal cost 1𝑇𝓒 and the dual cost 𝑍𝐷 are shown.
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Both the primal and dual cost converge in 25 LR iterations to the final values. There is still
a so-called duality gap between primal and dual due to the choice of the solution precision.

Figure 6.3: Evolution of the primal and dual cost from the distributed implementation during the first budget
allocation process.

Figures 6.4a and 6.4b show the resulting budget allocations over multiple resource allo-
cation steps for Sensor 1 and Sensor 2 respectively. Initially, Sensor 2 spends a significant
amount of resource budget on Targets 6 and 7. Sensor 1, on the other hand, spends its bud-
get more evenly over Targets 1 to 5 while not spending much attention on Targets 6 and
7. The figures indicate that the resources are allocated jointly to both sensors, based on the
range-dependent measurement SNR.

At time step Δ𝑡𝑠 = 10, the maximum budget of Sensor 1 is decreased to 0.8 which
is also reflected in Figure 6.4a. At time step Δ𝑡𝑠 = 26, Sensor 2 cannot track Targets 6
and 7 anymore due to, e.g., a restriction of the scanning angle. Consequently, Sensor 2
spends a significant amount of budget on the other targets, while Sensor 1 compensates for
the missing information from Sensor 2 by spending most of its resources on Targets 6 and
7. Hence, by allowing communication between sensors, the sensor network is able to cope
with sudden changes in the number of targets that the sensors can track.

6.3.8. Simulation B: Comparison of Implementations
In this simulation section, a comparison is made between the centralized, the distributed,
and a third independent implementation. The independent implementation applies multi-
sensor tracking as explained in Section 6.2.2, but applies the RRM algorithm from Chapter
3 for each sensor individually. There is a central tracking filter, but the individual resource
optimizations for each sensor do not consider the other sensors’ presence. For calculating
the total cost of the independent solution, the cost from all sensors is summed up.

To compare different solution approaches, four dynamic scenarios are considered. Each
scenario consists of six non-maneuvering targets with constant velocities, starting at dif-
ferent locations and two stationary sensors. For each scenario, 10 simulation steps Δ𝑡𝑠 are
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(a) Budget allocation for Sensor 1. (b) Budget allocation for Sensor 2.

Figure 6.4: Budget allocations over multiple simulation steps. At time step Δ𝑡𝑠 = 10 the maximum budget for
Sensor 1 is reduced to 0.8. At time step Δ𝑡𝑠 = 26 Sensor 2 can no longer track Targets 6 and 7.

computed for all three solutions. In order to get a better comparison, each scenario is aver-
aged over 10 simulation runs. Figure 6.5 shows the average primal and dual cost summed
over all simulation steps of the simulation for the three implementations. It can be seen that
both the centralized and distributed implementation outperform the independent implemen-
tation w.r.t. the primal and dual cost. Note that the costs for the centralized and distributed
approach are formulated slightly differently. To make the costs of the different approaches
comparable, the average cost per target track is evaluated. This is done by multiplying the
total costs for the centralized and independent implementation by 1/𝑁 and for the distributed
implementation by 1/(𝑀𝑁).

Figure 6.5: Cost comparison between the independent, centralized and distributed implementation averaged over
multiple dynamic scenarios. The results are compared based on the average primal cost (left) and average dual
cost (right).

Table 6.3 shows the average runtime of the four scenarios. As expected, due to the
exponential increase of the action space for an increasing number of sensors, the average
runtime of the centralized implementation is significantly larger w.r.t. the other two imple-
mentations. Interestingly, the average runtime of the distributed implementation is smaller
than the independent implementation. This is probably due to the initial pick of the La-
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grangian multiplier.

Table 6.3: Runtime comparison of independent, centralized and distributed implementation averaged over multiple
runs.

Approach Runtime in seconds
Independent 158
Distributed 113
Centralized 1187

It can be seen that the costs of the centralized en distributed implementation are approxi-
mately equal. This implies that both implementations compute more or less the same budget
allocations. To verify this, the average difference between the budget allocations of the cen-
tralized and the distributed implementation is computed for each considered target over the
whole simulation. This is done in another simulation scenario in which 24 randomly placed
targets with constant velocities, and two static sensors are considered, similar to the setup
in Figure 6.2. The results are shown in Figure 6.6.

Figure 6.6: Percentage difference in dwell times for 24 randomly placed targets between the centralized and dis-
tributed implementation in a dynamic scenario.

Since the targets are displacing between the budget allocation updates, the last known
dwell times of the other sensors used in the budget optimizations are the values of the pre-
vious resource allocation. Thus, it is expected to see a difference between the resource
allocations of the centralized and distributed solution. However, the maximum difference
between both implementations is below the defined LR solution precision of 5%. Therefore,
the results of the centralized and the distributed implementation are approximately equal
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and converge to similar results over time, if the communication intervals of the sensors are
chosen small enough w.r.t. the movements of the targets.

6.4. AODB for Multi-Sensor Automotive Applications
The approach covered in this chapter until this point was not designed for any specific use
case. This chapter considers an automotive application to demonstrate how the proposed
framework and algorithm can be used in practice. Especially with the emerging of self-
driving cars, the sensors used in cars are becoming more and more important. As Figure 6.7
shows, not only radar but also lidar and cameras, as well as the Global Positioning System
(GPS), play a role for self-driving cars. Therefore, the management of those sensors is
becoming increasingly important. Some additional assumptions and definitions about this
scenario are covered in the following.

Figure 6.7: Depiction of the sensors in a self-driving car [106].

6.4.1. Automotive Radar Systems
Most MFR systems are pulse radar systems, which means that they transmit a pulsed radio
signal. Using rotatable phased array antennas and DBF, they are capable of transmitting
these pulses into different directions using a potentially narrow beam. The steering direction
can be changed rapidly and therefore allows to focus on multiple individual targets almost
simultaneously. Contrarily, standard automotive radar systems use Frequency-Modulated
Continuous-Wave (FMCW) signals. While pulse radars need to turn off the transmitter
to wait for the echo of the transmitted waveform to arrive, FMCW radars are constantly
transmitting chirp signals. In addition to that, most automotive radars do not have very
good beamforming capabilities and transmit a wide beam that illuminates a big part of the
environment instead of focusing on specific single targets. A more detailed introduction to
FMCW can be found, for instance, in [107].

The following basic assumptions are made about the radar system:
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• The radar transmits signals in frames of a specific constant length. Each frame con-
sists of a certain amount of slots, each consisting of an FMCW chirp. An example
frame is shown in Figure 6.8.

• Based on the frame definition, the revisit time 𝑇 is constant and defined as the length
of one frame. Additionally, the actions for the dwell time 𝜏 are directly defined by
the chirp slots. This means that the dwell time actions are by definition already dis-
cretized, and the shortest possible dwell time is the length of one chirp.

• The radar is assumed to illuminate the environment using a wide beam. In the fol-
lowing, a car is considered to be a radar node that consists of multiple radar sensors
that are able to illuminate all 360° around the car. It is assumed that the radar systems
are not controlled separately by the algorithm. As it is not possible to focus on sin-
gle objects, increasing the dwell time for improving the sensing accuracy for a single
object will automatically also increase the sensing accuracies for the other objects.
Therefore, each sensor is assumed to execute a single action for all targets.

• For a single car, the best action would always be to use the full frame for transmission.
Therefore, no RRM would be necessary in that case. However, this changes when
multiple cars are close to each other in the same environment. Therefore, it is assumed
here that there is communication between the radar nodes, and the actions of each
radar node depend on the others.

• For simplicity, it is assumed that the cars that are part of the optimization procedure
are not detecting each other as a target. Instead, it is assumed that the cars observe
other objects outside of their cooperative system and optimize their sensor resources
w.r.t. these external targets.

Slot with FMCW chirp

Radar frame

Figure 6.8: Depiction of a radar frame for an automotive scenario.

6.4.2. Radar-to-Radar Interference
Interference in automotive radar is a common topic in current research, as it can introduce
extra noise in the signal or even produce so-called ghost targets. There are a few reasons,
why interference is considered a big challenge in automotive applications. Firstly, the fre-
quency spectrum of automotive radars is limited by regulations. Therefore, all car radars
operate in similar frequency bands. Secondly, automotive radars are practically always
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transmitting and there is no silence as there is in between the signals of pulse radars. There-
fore, interference is almost inevitable if no actions are taken against it. Thirdly, every mod-
ern car has multiple radar systems installed, which means that on crowded streets hundreds
of radar systems are interfering with each other.

Much research has covered interference avoidance or mitigation techniques, some of
which assume cooperation between the vehicles. This can already be seen as a basic RRM,
as it adjusts the sensing parameters to the current situation. Some approaches that are dealing
with this topic can be found, e.g., in [108–111].

For simplicity, in the following, it is assumed that interference is unacceptable andwould
make accurate sensing impossible. Therefore, only one radar node can sense at the same
time, while the others are silent.

6.4.3. Joint Sensing and Communication
For the cooperation of cars, somemeans of communication is necessary. This could be extra
systems, such as 5G or Wi-Fi, for instance. Another possibility is to use the radar sensor
for both sensing and communication tasks. Such an approach can be implemented through
separate waveforms for the different tasks or by embedding the communication signal into
the sensing waveform. It has been suggested that such an approach can reduce the costs
and space needed for the devices. In addition to that, it would help to free up the frequency
spectrum, as sensing and communication would use the same frequency band [112]. Many
specific communication-related topics have been covered by recent research, e.g., how to
synchronize different automotive radars for communication [113].

In the following, it is assumed that all information is communicated perfectly between
the radar nodes.

6.4.4. Time and Frequency Optimization Approach
The approach and most of the assumptions are the same as in the previous parts of this
chapter. There are three main differences. Firstly, the radar sensors are moving through the
environment. As the radar measurements only depend on the relative distance of sensors
and targets, the same equations as in Section 6.3.4 can be used. Secondly, it is assumed that
only one radar system is allowed to transmit at the same time. All the others need to be
silent during that period and can only listen. And thirdly, it is assumed that the radar can
choose from a set of different predefined frequency bands that all deliver the same sensing
performance. This will allow multiple radar systems to operate simultaneously while not
interfering with each other. The algorithm does not assign a specific frequency band to the
sensors but instead allocates a relative budget. Based on this, a frequency can be chosen,
which is not part of the simulations in this chapter. Another assumption is that each sensor
can only operate in a single frequency band at a time.

It is assumed that a central processor exists which fuses the measurements for tracking
and performs the RRM optimization. For this section, the communication is assumed to be
performed through an external system. Additionally, it is assumed that the information is



6.4. AODB for Multi-Sensor Automotive Applications

6

97

transmitted instantly. Based on those assumptions, the problem can be written as

minimize
𝜏

𝑁

∑
𝑛=1

𝐸 [𝑐(𝑨𝑘 , 𝒔𝑛𝑘)]

subject to
𝑀

∑
𝑚=1

𝒂𝑚𝑘 ≤ 𝒃𝑚𝑎𝑥 ⋅ 𝑓𝐵

𝒂𝑚𝑘 ≤ 𝒃𝑚𝑎𝑥 ∀ 𝑚 ∈ {1, 2,⋯ ,𝑀},

(6.17)

where 𝑀 is the number of sensors, 𝒃𝑚𝑎𝑥 is the maximum budgets for all sensor nodes, 𝑓𝐵
is the number of available frequency bands and 𝑨𝑘 = [𝒂1𝑘 , ⋯ , 𝒂𝑀𝑘 ] are the sensor actions
that each sensor executes. The first constraint takes care that the maximum budget is not
exceeded, while the second constraint makes sure that a single sensor cannot occupy mul-
tiple frequency bands at once. As the sensors are observing all targets at the same time, the
actions do not depend on the target.

6.4.5. Communication Selection Optimization Approach
The problem formulation slightly changes when it is assumed that communication is done
through the radar sensor. In the presented case, this assumption means that communication
is considered an extra task that uses a part of the available sensing resources. In the follow-
ing, it is assumed that communicating the measurement information for a certain target 𝑛
takes a certain transmission and reception time, denoted as 𝑡𝐼. Furthermore, it is assumed
that measurements from some sensors might lead to a more significant improvement of
the overall target information in the central processor than the measurements from other
sensors. Therefore, the resource allocation for communication can be reduced if only the
measurements leading to the biggest cost improvement are transmitted.

In order to do that, a measurement selection matrix 𝑼 ∈ ℝ𝑀×𝑁 is introduced. It is a
matrix consisting of binary values, one for each target and sensor and can be written as

𝑼 =
⎡
⎢
⎢
⎣

𝑈1,1 𝑈1,2 ⋯ 𝑈1,𝑁
𝑈2,1 𝑈2,2 ⋯ 𝑈2,𝑁
⋮ ⋮ ⋱ ⋯

𝑈𝑀,1 𝑈𝑀,2 ⋯ 𝑈𝑀,𝑁

⎤
⎥
⎥
⎦
. (6.18)

The optimization problem from (6.17) then changes to

minimize
𝜏

𝑁

∑
𝑛=1

𝐸 [𝑐(𝑨𝑘 , 𝒔𝑛𝑘)]

subject to
𝑀

∑
𝑚=1

𝒂𝑚𝑘 + 1𝑇𝑀𝑼1𝑁 ⋅ 𝑡𝐼 ≤ 𝒃𝑚𝑎𝑥 ⋅ 𝑓𝐵

𝒂𝑚𝑘 ≤ 𝒃𝑚𝑎𝑥 ∀ 𝑚 ∈ {1, 2,⋯ ,𝑀},

(6.19)

where 1𝑀 ∈ ℝ𝑀 and 1𝑀 ∈ ℝ𝑁 are vectors of all ones of length 𝑀 and 𝑁, respectively.
Using this formulation, the RRM algorithm calculates a resource allocation for the sensing
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tasks, while deciding which measurement data from which sensor is going to be transmitted
to the central node based on the expected influence on the cost.

6.4.6. Simulation A: Time and Frequency Allocation
A simple tracking example is considered in the following to show the validity of the ap-
proach in an automotive application. Both sensing time and frequency are optimized, and
an EKF is applied for tracking the objects. The cost function is the same as in (6.15). In
total, two separate frequency bands with identical sensing performance are considered. The
communication between the sensors and the central node is assumed to be perfect and in-
stantaneous. The optimization problem is considered as explained in Section 6.4.4. The
simulation results are based on the algorithm as shown in [103] and [105].

The considered scenario consists of 2 targets without sensors that are moving through
the scene. In addition to that, 3 radar nodes (e.g., cars, in the following referred to as sensors)
are considered, of which one is static, and the other two are moving. The scenario is shown
in Figure 6.9 and takes a total of 30 s. It can be considered an urban three-way intersection.
While Target 1 is taking a right turn starting at 26 s, Target 2 is accelerating after 42 seconds
and reaches a final velocity of 16m s−1 or almost 60 kmh−1. Sensors 2 and 3 are moving
with a constant velocity. For reasons of simplification and a better overview in the figures,
it is assumed that the radar nodes are not targets themselves, which means that the other
radars will not sense them. The general simulation parameters are shown in Table 6.4 and
the initial target and sensor parameters are shown in Table 6.5.

Figure 6.10 shows the resulting frequency allocations. It can be seen that most of the
resources are first assigned to Sensors 1 and 3, as they are placed in themiddle of the scenario
and can observe both targets reasonably well. After about 24 s, the budget of Sensor 3 is
reduced while the budget of Sensor 2 is increased. The reason is that Sensor 3 is moving
away from the targets, while Sensor 2 is moving to a position where it can observe both
targets more accurately. All sensor resource allocations are below the maximum possible
sensor budget per frequency band. Therefore, no sensor needs to operate in two frequency
bands simultaneously. However, it should be noted that at least one of the sensors needs to
operate in both frequency bands, although not necessarily simultaneously. This might not
be possible in a practical application. Thus, a more sophisticated approach might need to
be chosen for the explicit scheduling, or an additional constraint needs to be added to the
optimization problem.

6.4.7. Simulation B: Time and Frequency Allocation with Com-
munication Selection.

This section considers the same simulation scenario as discussed in Simulation A, see Figure
6.9. Therefore, Tables 6.4 and 6.5 are valid for this simulation as well. The only difference is
that communication is considered to consume a part of the sensor resources. Therefore, the
sensor needs to evaluate which information improves the knowledge about the environment
and decide if it is worth transmitting it to the central processing node. The sensing time
required for transmitting measurement information of a single target is assumed to be 𝑡𝐼 =
0.05 s. The problem formulation follows the definition in Section 6.4.5. The simulation
results are based on the algorithm as shown in [103] and [105].

The simulation results can be found in Figures 6.11 and 6.12. It can be seen that the
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Figure 6.9: Trajectories of the targets (circles) and sensors (diamonds) for simulation scenarios A and B. The
circles and diamonds mark the initial starting positions.

Table 6.4: Simulation parameters for simulation scenarios A and B.

Parameter Value
System range noise variance (𝜎2𝑟,0) 0.01m2

System angle noise variance (𝜎2𝜃,0) 6.4×10−7 rad2
Reference SNR (SNR0) 1
Reference RCS (𝜍0) 10m2

Reference dwell time (𝜏0) 1 s
Reference range (𝑟0) 50m
Revisit interval (𝑇) 1 s
Action space discretization steps (Δ𝜏) 7.9ms
Action space limits dwell time (𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥) 𝜏 ∈ [7.9ms… 1 s]
Number of rollouts (𝑀) 4
Rollout horizon (ℋ) 4
Base Policy (𝜋𝑏𝑎𝑠𝑒) 𝒂
Maximum available budget (Θ𝑚𝑎𝑥) 2
Budget update interval (𝑡𝐵) 1 s
Beam positioning error (Δ𝛼) 0
Probability of detection (𝑃𝐷) 1
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Table 6.5: Initial target and sensor parameters for simulation scenarios A and B.

Parameter Target 1 Target 2 Sensor 1 Sensor 2 Sensor 3
𝑥𝑛0 [m] 27 223 20 -170 20
𝑦𝑛0 [m] 10 165 175 161 161
�̇�𝑛0 [m s−1] 0 -12 0 6 0
�̇�𝑛0 [m s−1] 12 0 0 0 -4
𝜍𝑛 [m2] 20 20 - - -
𝜎𝑛𝑤 [m2 s−4] 20 20 - - -
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Figure 6.10: Resource allocations to the three sensors for simulation scenario A. As two frequency bands are
considered, the maximum available budget is 2.
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Figure 6.11: Resource allocations to the three sensors for simulation scenario B. As two frequency bands are
considered, the maximum budget is 2. The black line denotes the time allocated to communication for all sensors
(both for transmitting and receiving).
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resource allocations to the three sensors are similar to the results from Simulation A. The
differences in the budgets reflect the fact that sensing and communication tasks are com-
peting for resources. The algorithm allocates the resources based on their impact on the
cost. In Figure 6.12 it can be seen that Sensor 3 transmits its measurements of both targets
at the beginning of the simulation until 13 s. Afterward, it is only transmitting the mea-
surements of Target 1. The reason is that it is first placed in the middle of the intersection
with a relatively short distance to both targets. As it moves away from the intersection, its
measurements are getting more and more inaccurate, especially for Target 2. For Sensor 2,
the opposite is happening as it is moving towards the intersection. It can be observed that
the measurements of Sensor 2 are so bad in the beginning that none of them are being trans-
mitted to the central processing node (for instance at 3 s and 5 s). As the stationary Sensor 1
is placed centrally at the intersection, it has a relatively short distance to both targets during
the whole scenario and most of the time transmits both targets’ measurement information.
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Figure 6.12: Communication selection of the three sensors for simulation scenario B. The blue and red bars denote
that the information of Target 1 and Target 2, respectively, is transmitted to the central processing node from the
specified sensor.

6.5. Conclusions
This chapter covered the extension of the previously suggested RRM framework to multi-
sensor scenarios. Its applicability was shown in two different problem settings.

In a theoretical multi-sensor multi-target tracking scenario, it has been shown how the
RRM problem can be solved using the framework mentioned in Chapter 3. The strength of
this approach is the practical formulation as a distributed algorithm. It has been shown that
both the approximately optimal and the distributed solution lead to a lower cost than doing
individual resource optimization per sensor. In addition to that, the distributed solution
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reduces the computational complexity of the optimal solution significantly.
An automotive scenario has shown how the RRM problem can be solved by taking com-

munication between cars into account. The algorithm, which is again based on the frame-
work from Chapter 3, allocates the available sensor time, as well as available frequency
bands to the different cars based on the uncertainty in the target tracks. The constraint takes
care that no mutual radar interference between the cars takes place. In addition to that, the
algorithm decides which car has relevant information that needs to be shared with the other
cars. By doing that, electromagnetic spectrum usage can be reduced.
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7.1. Major Results and Novelties
The major results of this PhD research are discussed in the following subsections.

• Optimal Multi-Task Resource Balancing (Chapter 2)
Many solutions have been proposed previously that claim to solve RRM problems fo-
cus on single task optimization. However, the problem becomes more complicated to
solve when multiple tasks have to be considered, and the MFR system is operating at
its resource limit. Allocating more resources for one task will then inevitably reduce
them for the other tasks, leading to a deteriorated performance. In this thesis, it has
been shown for the first time that a steady-state solution for such a multi-task
resource balancing problem for an LTI tracking problem can be obtained by ap-
plying LR using the proposed OSB algorithm. The presented LTI problem can be
seen as a special case of a general POMDP problem formulation. The resources are
successfully allocated according to a chosen cost function, and optimality w.r.t. the
cost function is reached with any desired precision. Due to the optimality of this ap-
proach, the results are better than general heuristic RRM techniques. In Chapter
2, this has been illustrated for a one-dimensional multi-target tracking scenario while
using the optimal steady-state solution of the KF as the cost function. It is the first
time that this kind of analysis has been performed. The proposed algorithm can also
be used to solve dynamic problems in a myopic fashion.

• A generic framework and algorithmic solution (Chapters 3 and 4)
Most available approaches have been specifically designed with a specific applica-
tion scenario and sensor type in mind. In this thesis, a novel generic framework
and algorithmic solution for RRM inmulti-target tracking have been introduced
and demonstrated in practical scenarios. Assuming an underlying POMDP, it has
been shown that the proposed AODB algorithm using a combination of LR and PR
can be applied for a non-myopic RRM solution in dynamic multi-task scenarios. Ad-
ditionally, it has been shown that this generic solution is applicable to a variety
of sensors and leads to more optimal results than heuristic methods w.r.t. the
chosen cost function. In Chapters 3 and 4 it was demonstrated how the algorithm
performs in amulti-target tracking scenario. The novel framework has been further
investigated through a detailed analysis of the performance and computational
efficiency. These practical results are very valuable since there is not much litera-
ture available for multi-task RRM solutions assuming POMDPs, and the ones that
exist usually stay on a very high theoretical level without comparison to other tech-
niques. Since the PR was found to have a high computational load, MPC has
been investigated as an alternative POMDP solution method and was found to
be a time-saving but still accurate alternative.

• RRM for joint tracking and classification (Chapter 5)
Many approaches tackle the RRMproblem for single types of tasks, such as searching,
classification, or tracking. In practice, an MFR system would be able to perform mul-
tiple different task types in parallel. To make use of this versatility, earlier proposed
solutions have been assuming, e.g., separate cost functions for the different task types
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or by introducing extra heuristics. The proposed novel approach shows that it is
possible to solve the RRM problem for multiple task types by using only a single
cost function based on a definition of mission threat. Such an approach has been
suggested previously but has never been fully developed and demonstrated with
the help of practical simulation scenarios. In Chapter 5 this novel approach is illus-
trated in a joint tracking and classification scenario for multiple targets. It is pointed
out how the character of the sensing task changes once the corresponding target is
classified. This leads to different budget allocations not only based on the tracking
accuracy but also on the progress of the classification.

• RRM for sensor networks (Chapter 6)
Due to the increase of cheaply available computational power and the growing inter-
est in connecting multiple sensors, RRM will become increasingly crucial for sensor
networks. The vast majority of RRM research focuses on single sensors, while there
are many approaches for solving sensor selection problems. In this thesis, novel ap-
proaches of RRM for sensor networks have been presented, and their usefulness
has been demonstrated in general tracking scenarios, as well as in automotive
scenarios. The approach is illustrated in Chapter 6. The proposed approach is novel,
as RRM approaches for sensor networks that assume a balancing of limited resources
only existed on a conceptual level. This thesis demonstrates how such an algorithm
can be implemented in practice.

7.2. Recommendations for Future Work
Due to the challenging problem setting, not all interesting aspects of this research topic could
be explored in detail. The following recommendations are intended as possible starting
points for further research:

• Investigation of different cost functions. Within this thesis, the focus was on solution
methods for RRM, assuming that an informative cost function exists. In the presented
examples, cost functions have been applied that are easy to understand and whose
results are easy to compare. However, in real scenarios, appropriate cost functions
heavily depend on the point of view of the sensor user or operator and the specific
situation at hand. Depending on what goal the sensing mission is supposed to achieve,
the cost function can therefore strongly vary. Therefore, it is recommended to have a
closer look at possible cost functions and take different scenarios into account.

• Investigation of base policies for the PR. In this thesis, the BP of the PR is assumed to
execute the same action again for all future time steps. When some previous knowl-
edge is available, this straightforward BP could be replaced by another one leading
to better performance, e.g., by using a sequence of different actions instead of simply
repeating the same one. It would be very interesting to explore possible base policies
and their impact on the mission. A possible method to investigate is Parallel Rollout,
which evaluates the cost using multiple BPs.

• Investigation of the impact of different horizon lengths. Generally, one would assume
that a longer horizon should lead to a lower cost in the long term. In POMDP theory,
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this is indeed true, but for practical implementations and scenarios, as shown in this
thesis, this is much more difficult to illustrate. Therefore, it would be insightful to
see how different horizon lengths for the POMDP solution influence the algorithm’s
performance when applied in a very uncertain dynamic environment.

• Find optimal parameters for algorithm. This thesis demonstrates that an algorithm
applying LR and PR delivers useful results. However, the analysis also showed that
it takes a very long time to converge. Therefore, for a practical implementation, it is
recommended to investigate aspects such as an adaptive action space for the PR, an
adaptive step size for the LR, and other improvements increasing the computational
efficiency (e.g., parallel computing).

• Including of search functionality. The algorithm presented in this thesis was applied
to a joint tracking and classification scenario. The underlying ideas should also be
applicable to include searching functionality. For a genuinely generic RRM solution,
this aspect would need to be added to the solution.



A
Lagrangian Relaxation for

RRM

By using LR, one can decouple big constrained optimization problems into smaller ones
that can be solved independently of each other. This section introduces how this technique
can be used in RRM.

A.1. Lagrangian relaxation principle
LR is an approach to simplify a complicated constrained optimization problem. In this
process, constraints can be removed by adding them as penalty terms into the original prob-
lem, or PP, in combination with so-called Lagrange multipliers. As a consequence, a new
optimization problem is created that has less constraints than the PP. The optimization pro-
cedure consists of maximizing the minimum of the cost function by adjusting the Lagrange
multipliers. This is called the LDP which is usually a lower estimate of the PP if the initial
Lagrange multipliers are chosen correctly (see for example [114]).

LR and Lagrange multipliers have been extensively covered in literature (for example
in [28, 31, 34, 114, 115]). As an example of how LR is applied, the general optimization
problem with 𝑁 input variables is considered that is shown in (A.1).

minimize
𝒙

𝑓(𝒙)

subject to 𝒈(𝒙) ≤ 𝑨
𝒉(𝒙) ≥ 𝑩,

(A.1)
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where

𝒙 = [𝑥1, ..., 𝑥𝑁]𝑇 ∈ ℝ𝑁 ,
𝒈(𝒙) = [𝑔1(𝒙), ..., 𝑔𝑚(𝒙)]𝑇 ∈ ℝ𝑚 ,
𝒉(𝒙) = [ℎ1(𝒙), ..., ℎ𝑝(𝒙)]𝑇 ∈ ℝ𝑝,
𝑨 = [𝐴1, ..., 𝐴𝑚]𝑇 ∈ ℝ𝑚 ,
𝑩 = [𝐵1, ..., 𝐵𝑝]𝑇 ∈ ℝ𝑝.

As mentioned above, the idea is to include the constraints into the primal optimization prob-
lem. This is done by adding a penalty term for each removed constraint, multiplied by La-
grange multipliers, which are defined as 𝝀 = [𝜆1, ..., 𝜆𝑚]𝑇 ∈ ℝ𝑚 and 𝝁 = [𝜇1, ..., 𝜇𝑁]𝑇 ∈
ℝ𝑝. The Lagrangian is defined as

𝐿(𝒙, 𝝀, 𝝁) = 𝑓(𝒙) +
𝑚

∑
𝑖=1
𝜆𝑖(𝑔𝑖(𝒙) − 𝐴𝑖) +

𝑝

∑
𝑗=1
𝜇𝑗(𝐵𝑗 − ℎ𝑗(𝒙)). (A.2)

The relaxed problem is called LD (LD) function and is defined as

𝑑(𝝀, 𝝁) =minimize
𝒙

𝐿(𝒙, 𝝀, 𝝁). (A.3)

The LDP is then characterized as finding the maximum of the LD function with respect to
the Lagrange multipliers, as shown in (A.4).

𝑍𝐷 =maximize
𝝀,𝝁

𝑑(𝝀, 𝝁). (A.4)

To summarize, the objective function is minimized over 𝒙, while also being maximized over
the Lagrange multipliers, in order to come as close to the PP as possible. To find the optimal
Lagrange multipliers and therefore the tightest lower bound to the PP, iterative approaches
can be used. There are many techniques available to calculate the Lagrange multipliers
iteratively, like the commonly used subgradient method. It will be explained in the next
subsection.

A.2. Duality
Generally, applying LR does not lead to the optimal solution of the PP. In the general case,
weak duality holds, which means that the optimal solution of the PP (𝑝⋆) and the optimal
solution of the LDP (𝑑⋆) are not equal:

𝑑⋆ ≤ 𝑝⋆. (A.5)

In this case, the solution of the LDP provides a lower bound to the solution of the PP. The
difference between the solutions 𝑝⋆ − 𝑑⋆ is called the duality gap.

In some cases, strong duality holds. This means that the duality gap is zero, and the
solution of the LDP provides the same solution as the PP:

𝑑⋆ = 𝑝⋆. (A.6)

Strong duality usually holds when the primal function is convex. Amore detailed discussion
about sufficient conditions for strong duality can be found, e.g., in [31].
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A.3. Subgradient method
The subgradient method (see for example [114]) is an iterative process that starts with a cho-
sen initial value for the Lagrange multipliers (e.g. 1). At each iteration 𝑙, first the minimum
of the relaxed problem is calculated (LD function, see (A.2)). Next, the subgradients are
chosen for each constraint as 𝒆𝑙𝜆 = [𝑒𝑙𝜆,1, ..., 𝑒𝑙𝜆,𝑚]𝑇 ∈ ℝ𝑚 and 𝒆𝑙𝜇 = [𝑒𝑙𝜇,1, ..., 𝑒𝑙𝜇,𝑝]𝑇 ∈ ℝ𝑝.
Following the notation that has been used above for the constraints, the subgradients are
defined as

𝒆𝑙𝜆 = (𝒈(𝒙𝑙) − 𝑨)
𝒆𝑙𝜇 = (𝑩 − 𝒉(𝒙𝑙)).

(A.7)

The Lagrange multipliers are then updated with a specific step size 𝛾𝑙. For inequality con-
straints, the penalty terms are not allowed to become negative. Therefore the new Lagrange
multipliers for the next iteration are calculated as shown in (A.8):

𝝀𝑙+1 = 𝑚𝑎𝑥{0, 𝝀𝑙 + 𝛾𝑙𝒆𝑙𝜆}
𝝁𝑙+1 = 𝑚𝑎𝑥{0, 𝝁𝑙 + 𝛾𝑙𝒆𝑙𝜇}.

(A.8)

The step size can be chosen freely. A possibility are constant or decreasing step sizes like
𝛾0/𝑙 or 1/𝛾𝑙, for example. The process is then started again with the new Lagrange multi-
pliers. A new LD function is found and afterwards, new subgradients are calculated again.
Theoretically, the exact result has been found when the gradients 𝒆𝑙𝜆 and 𝒆𝑙𝜇 reach 0. Since
this value will never be reached exactly, the process is repeated until the gradient reaches 0
with a desired precision.

To summarize, a short overview of the subgradient algorithm for the above mentioned
optimization problem is given here:

1. 𝑙 = 0: Set the Lagrangian multipliers to initial value (𝝀0 = 𝝀0, 𝝁0 = 𝝁0).

2. Calculate solution for 𝑑(𝝀, 𝝁) and save 𝒙𝑙.

3. Choose subgradients for Lagrangian multipliers 𝒆𝑙𝜆 and 𝒆𝑙𝜇 (see (A.7)).

4. Check if 𝒆𝑙𝜆 ≈ 0 and 𝒆𝑙𝜇 ≈ 0 with desired precision. If it is, stop the process.

5. Adjust Lagrangian multipliers as shown in (A.8).

6. Go to step 2 and set 𝑙 = 𝑙 + 1.





B
Golden Section Search

Golden Section Search (GSS) is a technique which is used to find an extremum of a function.
In this thesis, it is used as an alternative to the subgradient method. This explanation is based
on [77, 78]. In the implementation for this thesis, the goal is to find the Lagrange multiplier
𝜆 such that

|𝑓(𝜆)| ≤ 𝜀, (B.1)

where

𝑓(𝜆) =
𝑁

∑
𝑛=1

𝒂𝑛(𝜆) − 𝐵𝑚𝑎𝑥 (B.2)

and 𝜀 is indicating the tolerance of the constraint. The optimized action 𝒂𝑛 directly follows
from the chosen 𝜆 in the LR optimization procedure, see explanation of LR in Appendix
A. In the standard GSS method, as described in for example [116], is extended due to the
fact that initially the lower and upper bounds of 𝜆 are unknown. To find these bounds, 𝜆 is
increased with a certain step size after every timestep 𝑙. As 𝜆 needs to make sure that (B.1)
is met, the initial values for the upper and lower bounds are chosen as 𝜆𝑙 and 𝜆𝑙+1 when
there is a sign change in between of 𝑓(𝜆𝑙) and 𝑓(𝜆𝑙+1). These lower and upper bounds will
be referred to as 𝑥𝐿 and 𝑥𝑈. Once these bounds are found, 𝑓(𝜆) is evaluated between 𝑥𝑈
and 𝑥𝐿. It has been shown that an efficient way of choosing these intermediate points is to
use the Golden Ratio conjugate (𝑟 = √5−1

2 ≈ 0.618). First, the two intermediate points
𝑥1 = 𝑥𝐿+𝑟(𝑥𝑈−𝑥𝐿) and 𝑥2 = 𝑥𝑈−𝑟(𝑥𝑈−𝑥𝐿) are evaluated. If 𝑓(𝑥1) is smaller or equal
𝑓(𝑥2), then 𝑥𝑈 is shifted to 𝑥1, otherwise 𝑥𝐿 or is shifted to 𝑥2. Subsequently, the function
is evaluated at the newly chosen point. This procedure is repeated until (B.1) is met. The
whole search method is summarized in Algorithm 2.
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Algorithm 2: Finding the Lagrange multiplier using golden section search
Step 1 Starting from 𝜆 = 0, increase 𝜆 and compute f(𝜆) until f(𝜆) becomes
negative;
Step 2 This 𝜆 becomes 𝑥𝑈 while the previous 𝜆 becomes 𝑥𝐿;
𝑥1 = 𝑥𝑈 − 𝑟(𝑥𝑈 − 𝑥𝐿);
𝑥2 = 𝑥𝐿 + 𝑟(𝑥𝑈 − 𝑥𝐿);
Compute f(𝑥1) and f(𝑥2);
Step 3;
while 𝑓(𝑥1) ≤ 𝜀 ∩ 𝑓(𝑥2) ≤ 𝜀 do

if 𝑓(𝑥1) ≤ 𝑓(𝑥2) then
𝑥𝑈 = 𝑥2;
𝑥2 = 𝑥1;
𝑥1 = 𝑥𝑈 − 𝑟(𝑥𝑈 − 𝑥𝐿);
Compute f(𝑥1);

else
𝑥𝐿 = 𝑥1;
𝑥1 = 𝑥2;
𝑥2 = 𝑥𝐿 + 𝑟(𝑥𝑈 − 𝑥𝐿);
Compute f(𝑥2);

end
end
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