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Mechanical Aspects of Robot Hands,
Active Hand Orthoses, and Prostheses:

A Comparative Review
Jens Vertongen , Derek G. Kamper , Member, IEEE, Gerwin Smit , and Heike Vallery

Abstract—The large interest in robot hands and active
hand prostheses has in recent years been joined by
that in active hand orthoses. Despite the differences in
intended uses, these three categories of artificial hand
devices share key characteristics. Examination of the
commonalities could stimulate future design. Thus, in this
article, we undertook a comparative review of publications
describing robot hands, active prostheses, and active
orthoses, with a focus on mechanical structure, actuation
principle, and transmission. Out of a total of 510 papers
identified through the literature search, 72 publications
were included in a focused examination. We identified
trends in the design of artificial hands and gaps in the
literature. After comparing their mechanical aspects, we
propose recommendations for future development.

Index Terms—Dexterity, hands, orthotics, prosthetics,
robotics.

I. INTRODUCTION

ARTIFICIAL hands such as active hand orthoses, prosthe-
ses, and robot grippers are growing fields of research. De-

sign requirements for the three hand categories differ, but share
some characteristics among them. Hand orthoses have to be very
lightweight and comfortable for the user while exerting enough
force to mitigate hand impairments. The limited available space
of orthoses constrains the design of overall devices. Prostheses
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have to be lightweight as well, with a focus on grasping objects
in activities of daily living (ADLs) and a cosmetic appearance
that closely resembles a human hand. Robot grippers often focus
on precision, force, and dexterity, while weight and aesthetics
are less important.

The human hand, a marvel in dexterity, effective grasping, and
manipulation, features 27 bones, 21 degrees of freedom (DOFs)
and 34 muscles. This combination results in a large range of
motion (ROM) of the fingers. Many artificial hands mimic its
structure in pursuit of similar functionality.

Several reviews of hand orthoses [1], hand prostheses [2], and
robot hands [3] have been published. However, no review was
identified that compares their mechanical aspects.

This review provides a structured overview of mechanical
aspects of artificial hands to aid their future design and develop-
ment. The mechanical aspects covered are actuation, transmis-
sion, and mechanical structure.

II. METHODS

We largely followed the PRISMA guidelines [4] and the
Cochrane handbook [5] to conduct this review.

A. Search Protocol

1) Eligibility Criteria: We divided the inclusion criteria into
three categories: device criteria, mechanical aspects, and pub-
lication criteria. We focused on the mechanical design of de-
vices for ADLs and general robotics applications. Therefore, we
excluded devices designed for special purposes (e.g., military,
aerospace, haptic input devices). The mechanical design in-
cludes actuation, transmission, and structure of artificial hands.
Specific inclusion and exclusion criteria were as follows.

1) Device types.
a) Include: Hand orthoses, prosthetic, and robot hands.
b) Exclude: Gloves and nonanthropomorphic grippers.

2) Device purpose.
a) Include: Medical, rehabilitation, assistive, and re-

search devices.
b) Exclude: Military, aerospace, and haptic input de-

vices.
3) Mechanical domain criteria.

a) Include: Actuation, transmission, and structure.
b) Exclude: Energy source, sensors and control, human–

machine interaction, and nonstructural cosmetics.
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4) Publication criteria.
a) Include: Digital journal and conference papers that

describe the mechanical design of active devices.
b) Exclude: Books, review papers, and patents.

2) Information Sources: We searched four bibliographic
databases on February 26, 2019: Scopus, ScienceDirect, Web of
Science, and PubMed. We did not search journals or conference
proceedings outside of these databases, nor physical copies of
nondigitized papers. We did not include patents either. We did
include related work through hand-searching the reference list
of included records.

3) Search Strategy: The full-search database query was as
follows:

[Orthos?s OR Orthotic OR Prosthes?s OR Prosthetic OR
Robot* OR Exo* OR Glove OR Artificial*] AND [Develop* OR
Design OR Construct* OR Mechanic* OR Active] AND [Hand
OR Grasp* OR Grip*]

The “?” and “*” in the query are wildcards for database
searching. We adapted this string slightly to each database’s
search string restrictions.

B. Study Selection

1) Screening and Eligibility: We removed duplicates and ir-
relevant records by screening titles in EndNote. We also ex-
cluded ineligible records by screening titles and abstracts. The
full overview, presented in Section III-B, contains the remaining
records.

2) Keyword Selection: We searched titles and abstracts of
the records in the full overview for relevant keywords (force,
performance, weight, power, experiment, evaluation, verify, test)
in Rayyan [6]. These keywords indicated numerical results
and simplified the selection process. We excluded the records
that did not match any of these keywords and examined the
full-text papers of the remaining records. Papers that described
the mechanical design and reported numerical values of force
and weight were included in the focused overview, presented in
Section III-C.

C. Data Collection

1) Collection Process: For the full overview, we searched
through the title and abstracts for different technologies. For
the focused overview, we retrieved relevant information of the
mechanical aspects from the full-text papers, by using a data col-
lection checklist. We classified this information in a structured
spreadsheet.

2) Data Items Full Overview: Using the following data items,
we extracted information from the papers in the full overview,
to identify general publication trends, actuation methods, trans-
mission types, and other notable developments.

1) Number of publications per year.
2) Electric, Pneumatic, Hydraulic, Shape memory alloy

(SMA), and Twisted and coiled polymer muscle (TCPM).
3) Underactuation, cable transmission (tendon, wire)
4) Three-dimensional (3D) printing (additive manufactur-

ing/rapid prototyping)
3) Data Items Focused Overview: We used the following

data items for the focused overview, to extract mechanical

domain characteristics, important morphological features, and
numerical values of performance.

1) Device information (author, date).
2) Actuation, transmission, mechanical structure.
3) Thumb and wrist, force, weight, DOF, ROM.
4) Bandwidth (frequency of opening and closing the

hand).

III. RESULTS

A. Study Selection

1) Screening: The search of Scopus (1307), ScienceDirect
(999), Web of Science (888), and PubMed (212) delivered a
total of 3406 records. Through the reference lists of several
included papers, we added an additional eight records. These
are related to some database papers, such as previous work and
other publications from the same authors. They went through the
same selection process described in Section II-B. We searched
them for additional information on some devices from the initial
database search.

2) Exclusion and Eligibility: Fig. 1 shows the full exclusion
process, indicating the removal of duplicates as well as irrelevant
and noneligible papers, leading to the full overview. It also
shows the exclusion due to keyword selection and full-text paper
removal. Several old records had no available digital full-text
paper other than a citation. The full overview contains 510
eligible papers. The remaining 72 papers, after selection, form
the focused overview.

The following list indicates the number of records excluded
per criterion of the 549 excluded records: Controller design
(145), nonmechanical design (81), finger design (55), sensor
design (51), actuator or mechanism design (47), review paper
or clinical trials (47), aerospace application (30), glove design
(25), haptic input devices (18), foreign language (18), less than
three fingers (10), passive devices (10), less than 3-DOFs (7),
wrong publication type (3), and not functional (2).

B. Full Overview

The 510 papers of the full overview consist of 91 orthoses, 159
prostheses, 234 robot hands, and 26 papers of both prostheses
and robot hands, indicated as P&R.

1) History of Research Output: Fig. 2 shows the number of
publications for each device category per decade.

2) Actuation: Fig. 3 shows the number of publications
reporting various actuation methods such as electric mo-
tors, pneumatic actuators, hydraulic actuators, SMAs and
TCPMs.

3) Trends in Technologies: We searched for the following
technologies in the full overview: underactuation, cable trans-
mission, and 3D printing. Fig. 4 shows the percentages of the
total number of papers reporting these technologies in the title
or abstract.

C. Focused Overview

Tables I–III present the results and characteristics of 17
orthoses, 28 prostheses, and 27 robot hands of the focused
overview, respectively.
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Fig. 1. Flowchart of the study selection.

Fig. 2. Number of orthoses, prostheses, and robot hand papers pub-
lished over time.

IV. DISCUSSION

A. Full Overview

1) History of Research Output: Fig. 2 shows the progression
of publications over time. Research into hand orthoses is very
recent with more than 90% published in the last 10 years, com-
pared to a more gradual increase in publications of prosthetics
and robotics.

Active prosthetic hands have a long history of development
dating back to the 19th century [7]. The earliest paper in this
review is a hand prosthesis, published in 1917. Since 2009,
development accelerated in both prosthetics and robotics that

Fig. 3. Number of papers reporting specific actuation methods.

Fig. 4. Percentage of papers from full overview reporting underactua-
tion, cable transmission, and 3D printing in the title or abstract.

benefit from technologies, such as 3D printing, lightweight
actuators, and accessible EMG sensors.

2) Actuation: Fig. 3 shows the actuation methods per arti-
ficial hand category. Electric actuators are the most popular,
followed by pneumatic actuators, mainly in robot hands where
access to a pneumatic source is possible. Attempts have been
made toward implementing small pneumatic artificial muscles
(PAMs) [8] or gas-type actuators with a portable fuel car-
tridge [9] to improve portability.

Hydraulic actuation is not common in artificial hands. How-
ever, miniature cylinders that can be applied to hands [10]
provide potential for future devices.

Lightweight compliant actuators that deform with heat, such
as SMAs [11] and the recently developed TCPMs [12], are
not often used. These actuators have drawbacks such as low
force, low bandwidth, and the placement of heating elements
close to the user. Overcoming these issues may allow these
lightweight and inexpensive actuators to improve the design of
future artificial hands.

3) Trends in Technologies: An underactuated mechanism
has more DOFs than actuators [13]. This way, the grasp adapts
to the shape of an object. However, there is an inherent loss of
controllability that makes precise grip positions hard to achieve.
The fewer number of actuators results in a lightweight design
and is therefore commonly used, as shown in Fig. 4.

The use of cable transmission is increasing, which can be
explained by its simple and lightweight nature. Cables are often
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called tendons, because they replicate the natural transmission
of the human hand.

Although 3D printing has been used for several decades, it
became more popular in 2015. In the years leading up to this
increase, several key patents of 3D printing technologies ex-
pired [14]–[16]. This drastically lowered the cost of 3D printing,
and the technology was quickly adopted to produce complex
lightweight structures for artificial hands (see Fig. 4).

B. Qualitative Focused Overview

1) Actuation: The majority of artificial hands are actuated by
electric motors. Many different motor configurations are used,
which results in a wide power range. Fig. 5 shows the average
values and the range of characteristics of electric actuators.
Prosthetic hands are developed for a more specific application
with more constraints than robot hands. Orthoses use fewer
actuators than prostheses and robots, and therefore need more
powerful motors to achieve sufficient grip strength.

The actuation categories are shown in Fig. 6. Electric consists
of stepper, servo, AC, brushed DC, and BLDC motors. Fluidic
actuators are more common in robot hands, SMA and TCPM
are used in the remaining orthoses and prostheses.

A notable method is the dual-mode twisted string actuation
(TSA) [17], [18], which combines a fast mode, for rapid motion
of the fingers, and a force mode that produces a stronger grasp.
Other examples of this dual-mode actuation include the flexion
(screw and slider) and force-magnification drive (pulley and
eccentric cam) [19], joint servo motors and a drive tendon [20],
and two pneumatic cylinders with different effective areas [21].
Many devices use a spring-return mechanism, which is useful
for underactuated hands to passively extend the fingers.

2) Transmission: More than half of the devices use a cable
transmission instead of rigid linkages (see Fig. 6). The cable, or
tendon, is attached at the fingertip, runs along the finger and is
actuated by a motor-driven pulley. This mechanism is inspired
by the tendons of a human hand. Several materials are used for
the cable, where steel is the most common, but Spectra Fiber,
Dyneema, and Kevlar are used for their various properties.

Some notable mechanisms are the electromagnetic (EM) joint
locking mechanism [22] and the circuitous joint [23] that can
both rotate and translate. Differentials are used to facilitate
underactuation and reduction mechanisms to increase output
torque. Most devices use bevel or epicyclic gears, but some
include harmonic drives, screws, and crank-slider mechanisms.

3) Mechanical Structure: Most devices in the focused
overview have rigid structures. Orthoses are placed over the
human hand and display a wide design range: on one end of the
spectrum, rigid dorsal structures that strap around the fingers,
on the other end more typical soft structures or gloves, and
in between hybrid compliant combinations. In contrast, most
prosthetic and robot hands have fully rigid structures. Orthoses
mostly use plastic structures, and prostheses and robot hands
metallic structures (see Fig. 6). Most recent prostheses have
3D-printed structures. Several alternative structures and mate-
rials are used: compliant silicone [24], carbon fibre [25], and a
3D-printed steel monocoque [26].

Fig. 5. Average values and range of power (in W) per hand, motors
per hand and power (in W) per motor for electric motors of the focused
overview for orthoses (O), prostheses (P), and robot hands (R).

Fig. 6. Distribution of actuation methods, transmission, and structures
of the artificial hands in the focused overview.

Fig. 7. Average values and range of the underactuation ratio (a), the
percentage of papers reporting a thumb or wrist (b) and mass-DOF
ratio (c).

4) Underactuation: To quantify underactuation, we look at
the ratio of DOFs per actuators of a device. This underactuation
ratio is 1 for fully actuated hands and higher for an underactuated
mechanism. These mechanisms could result in a lightweight
design because fewer actuators are used.

Fig. 7(a) shows that orthoses and prostheses have an average
ratio close to 3 and are more frequently underactuated than
robot hands, that could be explained by the weight constraints
affecting performance and user acceptance. The ratio of orthoses
and prostheses is close to a distribution of 1 actuator for each
3-DOF finger.

The most underactuated artificial hand has a ratio of 9 [27]
and the most overactuated hand has a ratio of 0.5 by using 40
actuators for 20 DOFs [28].

5) Grasping and Dexterity: A hand’s dexterity determines
fine movements and precise grasps and is classified in two
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categories: power and precision grasp [29], [30]. Fig. 7(b) shows
the number of devices that feature a thumb or a wrist.

The thumb is fundamental to the stability of both power and
precision grasps. It opposes the force of the fingers for a power
grasp and allows precision grasps such as the lateral pinch [31].
Therefore, a thumb is present in most prostheses and robot hands
but in only 60% of orthoses, which can be explained by the
complex movement and location of the thumb on a human hand.

The wrist plays a minor role in grasping objects, but it helps
perform certain actions such as writing, eating, and opening
doors [32]. Few artificial hands have an active wrist which can
be explained by their complex design. The mass-DOF ratio is
shown in Fig. 7(c).

C. Quantitative Focused Overview

1) Force: Artificial hands employ a variety of actuation
methods that result in a large range of forces, especially in
orthoses and robot hands. Electric motors achieve the highest
output force in contrast to the low force produced by SMAs,
pneumatics and TCPMs. Fig. 8(a) and (b) shows the average
fingertip and grip forces together with the range.

Robotics have a higher range of fingertip force and average
grip force compared to prostheses that can be explained by the
use of more powerful and remotely placed actuators. Prostheses
are limited in weight and usually have smaller, locally placed
actuators. Higher average fingertip forces of orthoses could help
to overcome residual forces of the human hand. The grip force
of orthoses was generally not reported and is absent in Fig. 8(b).

To compare these values to the human hand; the highest
average grip strength is 347 N for women and 534 N for men [33],
resulting in an average grip force of 440 N.

2) Weight: Both orthoses and prostheses have to be
lightweight; the comfort of a prosthesis is negatively affected
with high weight, and orthosis users often have limited force in
the impaired arm. Weight restrictions for robotic arms are less
tight. Despite the higher grip force that robot hands often have,
Fig. 8(c) shows that their force-mass ratio is the lowest. This is
due to their high mass, shown in Fig. 8(d).

The average mass of a human hand is 426 g [34] and the
average force-mass ratio is above 1000 N/Kg. To define a
lightweight orthoses and prostheses design, we use the proposed
desirable mass limit for prostheses of 400 g [35]. More than
80% of orthoses and 43% of prostheses in this overview clas-
sify as lightweight. Particularly alternative actuation methods
such as SMA, TCPM, and electrohydraulics appear to enable
lightweight solutions.

3) DOF: Fig. 8(e) shows that robot hands have the highest
average DOFs and orthoses the lowest.

4) ROM: The ROM of a hand depends on the rotational limits
of the three finger joints: MCP, PIP, and DIP and for the thumb:
MCP and IP. The normal ROM of a human hand is 100◦ (MCP),
105◦ (PIP), and 85◦ (DIP) [36]. Most of prostheses and robot
hands report a ROM close to the normal ROM. The difficult
interaction between a paretic hand and an orthotic structure can
lead to a challenging alignment of the joint centers and could
explain the lower values of orthoses. Furthermore, orthoses are

Fig. 8. Average values and range of the fingertip force, grip force,
force-mass ratio, mass, DOFs and bandwidth of orthoses (O), prosthe-
ses (P), and robot hands (R).

often designed to achieve functional ROM, which is 73◦ (MCP),
86◦ (PIP), and 61◦ (DIP) [36].

5) Bandwidth: Fig. 8(f) shows the bandwidth in hertz, which
is the frequency of opening and closing the hand. We define
the bandwidth to be high if it is more than 1 Hz. All three
categories have a high average bandwidth, and the use of electric
motors and pneumatic actuators often result in a fast-grasping
hand. In contrast, SMAs and TCPMs report low bandwidths that
can be explained by their slow heating cycles. Devices with the
highest bandwidth use electric motors and a steel cable or rigid
transmission [37], [38].

D. Design Recommendations

1) Promising Features: Several technological trends exist
that show potential for new types of hands.

A dual-mode actuation that switches between a high-speed
mode and a high-force mode is already employed in various
mechanisms [17]–[21] and seems to make artificial hands more
versatile.

Fluidic actuators such as PAMs and cylinders could lead to a
flexible or lightweight design [10], [39]. Compliant actuation,
where a spring is placed in series or in parallel with the actu-
ator may also help make artificial hands more compliant and
shock-absorbing. Several devices using SMAs and TCPMs are
very lightweight and could be effective once their force and
bandwidth is improved.

Cable-driven hands, using a motor and pulley, have benefits
over traditional linkage transmissions, e.g., they are simple
and compact [40]. Several materials with high tensile strength
are used (Dyneema, Kevlar), but out of the reported materials
only steel cables can both pull and push. These cables are
composed of several coiled steel wires that can transmit push
forces [41]. Circuitous joints that rotate and translate allow
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better joint alignment of orthoses [23]. EM joint locking is cur-
rently used in robotics and could add functionality to prosthetic
hands [22].

Hybrid combinations of materials or 3D-printed structures
may be lightweight, strong, and customizable. A 3D-printed
monocoque protects delicate mechanisms inside and can be used
for both prostheses and robot hands [26], [42].

2) Current Challenges: Both orthoses and prostheses have to
be lightweight, portable, and comfortable, and they need a high
grip force to be effective and to be adopted by their users [43].
Furthermore, there is a desire in orthoses for a limited profile,
easy donning and doffing, and active thumb assistance. Imple-
menting an active wrist is uncommon and seems challenging for
all artificial hands. The complexity of current robot hands limits
their use to specialized applications.

3) Future Directions: Orthoses could benefit from soft/hard
hybrid mechanical structures to improve comfort, donning,
and doffing, which are key criteria for adoption. Thus, we
recommend pivoting away from glove-based designs toward
custom 3D-printed structures. Furthermore, underactuation
seems the most promising route for both orthoses and prostheses.
Cable-driven designs, which can minimize an orthosis’ profile
and mimic the human anatomy, seem most effective. While
pneumatic actuators are becoming increasingly popular for
orthoses, the high forces needed and a desire for limited profile
suggests that electric motors with cable transmissions will
remain important.

Future prostheses need to reduce weight while increasing grip
force. 3D printing could allow for efficient use of material to
achieve lightweight yet durable structures. Although micromo-
tors are common and effective actuators, miniature hydraulics
hold potential as well [44]. An active thumb, wrist, or joint-
locking mechanism, with intuitive control, could substantially
improve functionality if not too heavy. Besides promising devel-
opments of active prostheses, body-powered systems have other
benefits, such as sensory feedback [10], and a future combination
of both could be interesting.

Many current robot hands are complex and expensive, with
numerous actuators and DOFs. This results in a limited range of
applications. It is desirable to simplify the design, while main-
taining acceptable dexterity, for use beyond industrial applica-
tions, for example in service robots. We recommend designing
underactuated systems with lighter actuators, or using cable
transmissions to simplify the construction. Furthermore, the use
of series elastic actuation or compliant materials could improve
future versatility of robot hands.

V. CONCLUSION

The full overview of 510 papers sheds light on the design
history, while the focused overview of 72 papers compares
mechanical aspects of hand orthoses, prostheses, and robot
hands. The full overview shows that these research areas have
been growing rapidly over the last decade, but that some trends
are only present in one or two of the hand categories, such as
employing specific actuation principles.

Also, tight weight constraints especially in prosthetics have
led to very lightweight yet dexterous solutions. There may thus

be possibilities for transfer between the domains. Emerging tech-
nologies like additive manufacturing and lightweight actuators
enable improved artificial hands for a wide range of applications.
This review can serve as an overview of existing literature to aid
the development of future artificial hands.

REFERENCES

[1] R. Bos, C. Haarman, and T. Stortelder, “A structured overview of trends
and technologies used in dynamic hand orthoses,” J. NeuroEngineering
Rehabil., vol. 13, no. 62, pp. 240–243, 2016.

[2] R. Clement, K. Bugler, and C. Oliver, “Bionic prosthetic hands: A review of
present technology and future aspirations,” Surgeon, vol. 9, no. 6, pp. 336–
340, 2011.

[3] M. Controzzi, C. Cipriani, and M. C. Carrozza, Design of Artificial Hands:
A Review. Cham, Switzerland: Springer, 2014, pp. 219–246.

[4] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and T. P. Group, “Preferred
reporting items for systematic reviews and meta-analyses: The prisma
statement,” PLoS Med., vol. 6, no. 7, pp. 1–6, Jul. 2009.

[5] J. Higgins and S. Green, Cochrane Handbook for Systematic Reviews of
Interventions. version 5.1.0 [updated Mar. 2011] ed. London, U.K.: The
Cochrane Collaboration, 2011.

[6] M. Ouzzani, H. Hammady, Z. Fedorowicz, and A. Elmagarmid,
“Rayyan—A web and mobile app for systematic reviews,” Systematic
Rev., vol. 5, no. 1, 2016, Art. no. 210.

[7] E. Spellerberg, “Improvement in artificial arms,” United States Patent
42 515, Apr. 26, 1864.

[8] H. Takeda, N. Tsujiuchi, T. Koizumi, H. Kan, M. Hirano, and Y. Nakamura,
“Development of prosthetic arm with pneumatic prosthetic hand and
tendon-driven wrist,” in Proc. Conf. IEEE Eng. Med. Biol. Soc., Sep. 2009,
pp. 5048–5051.

[9] K. B. Fite, T. J. Withrow, X. Shen, K. W. Wait, J. E. Mitchell, and M.
Goldfarb, “A gas-actuated anthropomorphic prosthesis for transhumeral
amputees,” IEEE Trans. Robot., vol. 24, no. 1, pp. 159–169, Feb. 2008.

[10] G. Smit, D. H. Plettenburg, and F. C. T. van der Helm, “The lightweight
delft cylinder hand: First multi-articulating hand that meets the basic user
requirements,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 3,
pp. 431–440, May 2015.

[11] S. Miyazaki and K. Otsuka, “Development of shape memory alloys,” ISIJ
Int., vol. 29, no. 5, pp. 353–377, 1989.

[12] C. S. Haines, M. D. Lima, and N. Li, “Artificial muscles from fishing line
and sewing thread,” Science, vol. 343, no. 6173, pp. 868–872, 2014.

[13] R. Balasubramanian and A. M. Dollar, Performance of Serial Underactu-
ated Mechanisms: Number of Degrees of Freedom and Actuators. Berlin,
Germany: Springer, 2013, pp. 1–13.

[14] S. R. Abrams, J. U. Korein, V. Srinivasan, and K. Tarabanis, “Method
employing sequential two-dimensional geometry for producing shells for
fabrication by a rapid prototyping system,” U.S. Patent 5 587 913, Dec.
24, 1996.

[15] C. R. Deckard, “Method for producing parts by selective sintering,” United
States Patent 5 639 070, Jun. 17, 1997.

[16] C. M. Childers and C. W. Hull, “Method of making a three-dimensional ob-
ject by stereolithography,” United States Patent 5 609 812, Mar. 11, 1997.

[17] Y. J. Shin, K.-H. Rew, K. Kim, and S. Kim, “Development of anthropomor-
phic robot hand with dual-mode twisting actuation and electromagnetic
joint locking mechanism,” in Proc. IEEE Int. Conf. Robot. Automat.,
May. 2013, pp. 2759–2764.

[18] S. H. Jeong, K. Kim, and S. Kim, “Designing anthropomorphic robot hand
with active dual-mode twisted string actuation mechanism and tiny tension
sensors,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1571–1578, Jul. 2017.

[19] Y. Takaki and T. Omata, “High-performance anthropomorphic robot
hand with grasping-force-magnification mechanism,” IEEE/ASME Trans.
Mechatronics, vol. 16, no. 3, pp. 583–591, Jun. 2011.

[20] M. R. Williams and W. Walter, “Development of a prototype over-actuated
biomimetic prosthetic hand,” PLoS One, vol. 10, pp. 1–15, Mar. 2015.

[21] K. Kim, S. H. Jeong, P. Kim, and K. Kim, “Design of robot hand with
pneumatic dual-mode actuation mechanism powered by chemical gas gen-
eration method,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 4193–4200,
Oct. 2018.

[22] Y. J. Shin, S. Kim, and K.-S. Kim, “Design of prosthetic robot hand with
high performances based on novel actuation principles,” IFAC Proc. Vol.,
vol. 46, no. 5, pp. 313–318, 2013.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 22,2021 at 13:57:08 UTC from IEEE Xplore.  Restrictions apply. 



964 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 26, NO. 2, APRIL 2021

[23] F. Zhang, L. Hua, Y. Fu, H. Chen, and S. Wang, “Design and development
of a hand exoskeleton for rehabilitation of hand injuries,” Mechanism
Mach. Theory, vol. 73, pp. 103–116, 2014.

[24] M. Tian, Y. Xiao, X. Wang, J. Chen, and W. Zhao, “Design and experi-
mental research of pneumatic soft humanoid robot hand,” in Robot Intell.
Technol. and Appl., J.-H. Kim, F. Karray, J. Jo, P. Sincak, and H. Myung,
Eds., vol. 4. Cham, Switzerland: Springer, 2017, pp. 469–478.

[25] L. Zollo, S. Roccella, E. Guglielmelli, M. C. Carrozza, and P. Dario,
“Biomechatronic design and control of an anthropomorphic artificial hand
for prosthetic and robotic applications,” IEEE/ASME Trans. Mechatronics,
vol. 12, no. 4, pp. 418–429, Aug. 2007.

[26] T. Wiste and M. Goldfarb, “Design of a simplified compliant anthropo-
morphic robot hand,” in Proc. IEEE Int. Conf. Robot. Automat., May 2017,
pp. 3433–3438.

[27] H.-K. Ko, C.-H. Cho, H.-C. Kwon, and K.-H. Kim, “Design of an under-
actuated robot hand based on displacement-force conversion mechanism,”
Int. J. Precis. Eng. Manuf., vol. 13, no. 4, pp. 509–516, Apr. 2012.

[28] Z. Xu, V. Kumar, and E. Todorov, “A low-cost and modular, 20-dof
anthropomorphic robotic hand: Design, actuation and modeling,” in Proc.
13th IEEE-RAS Int. Conf. Humanoid Robots, Oct. 2013, pp. 368–375.

[29] M. R. Cutkosky, “On grasp choice, grasp models, and the design of hands
for manufacturing tasks,” IEEE Trans. Robot. Automat., vol. 5, no. 3,
pp. 269–279, Jun. 1989.

[30] J. R. Napier, “The prehensile movements of the human hand,” J. Bone
Joint Surgery, vol. 38, no. 4, pp. 902–913, 1956.

[31] D. Dalli and M. A. Saliba, “Towards the development of a minimal
anthropomorphic robot hand,” in Proc. IEEE-RAS Int. Conf. Humanoid
Robots, Nov. 2014, pp. 413–418.

[32] S. Kestner, “Defining the relationship between prosthetic wrist function
and its use in performing work tasks and activities of daily living,” J.
Prosthetics Orthotics, vol. 18, no. 3, pp. 80–86, 2006.

[33] V. Mathiowetz et al., “Grip and pinch strength: Normative data for adults,”
Archive Phys. Med. Rehabil., vol. 66, pp. 69–74, 1985.

[34] C. E. Clauser, J. T. McConville, and J. W. Young, “Weight, volume, and
center of mass of segments of the human body,” Aerosp. Med. Res. Lab.,
Aerosp. Med. Div., Air Force Syst. Command, 1969.

[35] J. Pons, E. Rocon, R. Ceres, D. Reynaerts, B. Saro, and S. E. A. Levin,
“The manus-hand dextrous robotics upper limb prosthesis: Mechanical
and manipulation aspects,” Auton. Robots, vol. 16, no. 2, pp. 143–163,
Mar. 2004.

[36] M. Hume, H. Gellman, H. McKellop, and R. Brumfield, “Functional range
of motion of the joints of the hand,” J. Hand Surgery, vol. 15, no. 2,
pp. 240–243, 1990.

[37] S. Roccella, M. C. Carrozza, G. Cappiello, J.-J. Cabibihan, C. Laschi,
and P. E. A. Dario, “Design and development of five-fingered hands for
a humanoid emotion expression robot,” Int. J. Humanoid Robot., vol. 4,
no. 1, pp. 181–206, 2007.

[38] H. Kawasaki, H. Shimomura, and Y. Shimizu, “Educational-industrial
complex development of an anthropomorphic robot hand ‘Gifu hand’,”
Adv. Robot., vol. 15, no. 3, pp. 357–363, 2001.

[39] C. Pylatiuk, S. Mounier, A. Kargov, S. Schulz, and G. Bretthauer,
“Progress in the development of a multifunctional hand prosthesis,” in
Proc. 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Sep. 2004, vol. 2,
pp. 4260–4263.

[40] H. In, K. Cho, and K. Kim, “Jointless structure and under-actuation
mechanism for compact hand exoskeleton,” in Proc. IEEE Int. Conf.
Rehabil. Robot., Jun. 2011, pp. 1–6.

[41] B. Zeng, S. Fan, L. Jiang, M. Cheng, and H. Liu, “Design and control of
an anthropomorphic prosthetic hand with a cosmesis,” in Proc. IEEE Int.
Conf. Mechatronics Automat., Aug. 2016, pp. 926–930.

[42] S. A. Dalley, T. E. Wiste, H. A. Varol, and M. Goldfarb, “A multigrasp
hand prosthesis for transradial amputees,” in Proc. Int Conf. IEEE Eng.
Med. Biol., Aug. 2010, pp. 5062–5065.

[43] F. Cordella, A. L. Ciancio, R. Sacchetti, A. Davalli, A. G. Cutti, and E.
E. A. Guglielmelli, “Literature review on needs of upper limb prosthesis
users,” Front. Neurosci., vol. 10, 2016, Art. no. 2019.

[44] S. Schulz, C. Pylatiuk, A. Kargov, R. Oberle, and G. Bretthauer, “Progress
in the development of anthropomorphic fluidic hands for a humanoid
robot,” in Proc. 4th IEEE/RAS Int. Conf. Humanoid Robots, Nov. 2004,
vol. 2, pp. 566–575.

[45] M. Fontana, A. Dettori, F. Salsedo, and M. Bergamasco, “Mechanical
design of a novel hand exoskeleton for accurate force displaying,” in Proc.
IEEE Int. Conf. Robot. Autom., May 2009, pp. 1704–1709.

[46] J. Arata, K. Ohmoto, R. Gassert, O. Lambercy, H. Fujimoto, and I. Wada,
“A new hand exoskeleton device for rehabilitation using a three-layered
sliding spring mechanism,” in Proc. IEEE Int. Conf. Robot. Autom.,
May 2013, pp. 3902–3907.

[47] D. Y. Zheng, M. Luo, and S. S. Yang, “Design of a mechanical exoskeleton
system for improving hand-gripping force,” Adv. Mater. Res., vol. 663,
pp. 708–712, 2013.

[48] Y. Lee, “Design of exoskeleton robotic hand/arm system for upper limbs
rehabilitation considering mobility and portability,” in Proc. Int. Conf.
URAI, Nov. 2014, pp. 540–544.

[49] B. W. Gasser and M. Goldfarb, “Design and performance characterization
of a hand orthosis prototype to aid activities of daily living in a post-
stroke population,” in Proc. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2015,
pp. 3877–3880.

[50] I. Jo and J. Bae, “Design and control of a wearable and force-controllable
hand exoskeleton system,” Mechatronics, vol. 41, pp. 90–101, 2017.

[51] C. J. Nycz, T. Bützer, O. Lambercy, J. Arata, G. S. Fischer, and R. Gassert,
“Design and characterization of a lightweight and fully portable remote
actuation system for use with a hand exoskeleton,” IEEE Robot. Autom.
Lett., vol. 1, no. 2, pp. 976–983, Jul. 2016.

[52] Y. Park, I. Jo, and J. Bae, “Development of a dual-cable hand exoskeleton
system for virtual reality,” in Proc. IEEE/RSJ Int. Conf. IROS, Oct. 2016,
pp. 1019–1024.

[53] O. Sandoval-Gonzalez et al., “Design and development of a hand exoskele-
ton robot for active and passive rehabilitation,” Int. J. Adv. Robot. Syst.,
vol. 13, no. 2, 2016, Art. no. 66.

[54] M. Sarac, M. Solazzi, E. Sotgiu, M. Bergamasco, and A. Frisoli, “De-
sign and kinematic optimization of a novel underactuated robotic hand
exoskeleton,” Meccanica, vol. 52, no. 3, pp. 749–761, 2017.

[55] B. W. Gasser, D. A. Bennett, C. M. Durrough, and M. Goldfarb, “Design
and preliminary assessment of vanderbilt hand exoskeleton,” in Proc. Int.
Conf. Rehabil. Robot., Jul. 2017, pp. 1537–1542.

[56] A. Lince et al., “Design and testing of an under-actuated surface EMG-
driven hand exoskeleton,” in Proc. Int. Conf. Rehabil. Robot., Jul. 2017,
pp. 670–675.

[57] L. Saharan, M. J. de Andrade, W. Saleem, R. H. Baughman, and Y. Tadesse,
“iGrab: hand orthosis powered by twisted and coiled polymer muscles,”
Smart Mater. Struct., vol. 26, no. 10, Art. no. 105048, Sep. 2017.

[58] M. Sarac, M. Solazzi, D. Leonardis, E. Sotgiu, M. Bergamasco, and A.
Frisoli, “Design of an underactuated hand exoskeleton with joint esti-
mation,” in Advances in Italian Mechanism Science, G. Boschetti and
A. Gasparetto, Eds. Cham, Switzerland: Springer, 2017, pp. 97–105.

[59] A. Sharma, L. Saharan, and Y. Tadesse, “3-D printed orthotic hand with
wrist mechanism using twisted and coiled polymeric muscles,” in Proc.
Conf. ASME IMECE, 2017, pp. 1–6.

[60] M. Xiloyannis, L. Cappello, B. K. Dinh, C. W. Antuvan, and L. Masia,
“Design and preliminary testing of a soft exosuit for assisting elbow
movements and hand grasping,” in Converging Clin. and Eng. Res.
on Neurorehabilitation II, J. Ibáñez, J. González-Vargas, J. M. Azorín,
M. Akay, and J. L. Pons, Eds., Cham, Switzerland: Springer, 2017,
pp. 557–561.

[61] C. Light and P. Chappell, “Development of a lightweight and adapt-
able multiple-axis hand prosthesis,” Med. Eng. Phys., vol. 22, no. 10,
pp. 679–684, 2000.

[62] K. J. Laurentis and C. Mavroidis, “Mechanical design of a shape memory
alloy actuated prosthetic hand,” Technol. Health Care, vol. 10, pp. 91–106,
2002.

[63] F. Sebastiani, S. Roccella, F. Vecchi, M. C. Carrozza, and P. Dario,
“Experimental analysis and performance comparison of three different
prosthetic hands designed according to a biomechatronic approach,” in
Proc. Conf. IEEE/ASME AIM, Jul. 2003, vol. 1, pp. 64–69.

[64] M. Carrozza, C. Suppo, F. Sebastiani, B. Massa, F. Vecchi, and R. E. A.
Lazzarini, “The spring hand: Development of a self-adaptive prosthesis
for restoring natural grasping,” Auton. Robots, vol. 16, no. 2, pp. 125–141,
Mar. 2004.

[65] H. Huang, Li Jiang, Y. Liu, L. Hou, H. Cai, and H. Liu, “The mechanical
design and experiments of HIT/DLR prosthetic hand,” in Proc. IEEE Int.
Conf. Robot. Biomimetics, Dec. 2006, pp. 896–901.

[66] A. Kargov et al., “Development of a multifunctional cosmetic pros-
thetic hand,” in Proc. IEEE 10th Int. Conf. Rehabil. Robot., Jun. 2007,
pp. 550–553.

[67] K. T. O’Toole and M. M. McGrath, “Mechanical design and theoretical
analysis of a four fingered prosthetic hand incorporating embedded SMA
bundle actuators,” Int. J. Med. Health Sci., vol. 1, no. 7, pp. 430–437, 2007.

[68] N. Li, L. Jiang, D. Yang, X. Wang, S. Fan, and H. Liu, “Development
of an anthropomorphic prosthetic hand for man-machine interaction,” in
Intelligent Robotics and Applications, H. Liu, H. Ding, Z. Xiong, and X.
Zhu, Eds. Berlin, Germany: Springer, 2010, pp. 38–46.

[69] M. Hioki et al., “Design and control of electromyogram prosthetic hand
with high grasping force,” in Proc. IEEE Int. Conf. Robot. Biomimetics,
Dec. 2011, pp. 1128–1133.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 22,2021 at 13:57:08 UTC from IEEE Xplore.  Restrictions apply. 



VERTONGEN et al.: MECHANICAL ASPECTS OF ROBOT HANDS, ACTIVE HAND ORTHOSES, AND PROSTHESES: A COMPARATIVE REVIEW 965

[70] H. Huang, Y.-J. Pang, D.-P. Yang, C.-Y. Sun, L. Jiang, and N. E. A. Li, “A
bio-mechanical designed prosthetic hand with multi-control strategies,”
Int. J. Hum. Robot., vol. 9, no. 2, 2012, Art. no. 1250013.

[71] M. Polisiero et al., “Design and assessment of a low-cost, electromyo-
graphically controlled, prosthetic hand, medical devices,” Med. Dev.,
vol. 6, pp. 97–104, 2013.

[72] H. Liu, D. Yang, L. Jiang, and S. Fan, “Development of a multi-DOF pros-
thetic hand with intrinsic actuation, intutive control and sensory feedback,”
Ind. Robot, vol. 41, no. 4, pp. 381–392, 2014.

[73] Y.-W. Liu, F. Feng, and Y.-F. Gao, “Hit prosthetic hand based on tendon-
driven mechanism,” J. Central South Univ., vol. 21, no. 5, pp. 1778–1791,
May 2014.

[74] K. Andrianesis and A. Tzes, “Development and control of a multifunc-
tional prosthetic hand with shape memory alloy actuators,” J. Intell. Robot.
Syst., vol. 78, pp. 257–289, 2015.

[75] P. Slade, A. Akhtar, M. Nguyen, and T. Bretl, “Tact: Design and per-
formance of an open-source, affordable, myoelectric prosthetic hand,” in
Proc. IEEE Int. Conf. Robot. Autom., May 2015, pp. 6451–6456.

[76] T. Takaki, K. Shima, N. Mukaidani, T. Tsuji, A. Otsuka, and T. Chin,
“Electromyographic prosthetic hand using grasping-force-magnification
mechanism with five independently driven fingers,” Adv. Robot., vol. 29,
no. 24, pp. 1586–1598, 2015.

[77] D. van der Riet, R. Stopforth, G. Bright, and O. Diegel, “The low
cost design of a 3D printed multi-fingered myoelectric prosthetic hand,”
Mechatronics: Princ., Technol. Appl.,2015, pp. 85–117.

[78] A. Arjun, L. Saharan, and Y. Tadesse, “Design of a 3D printed hand
prosthesis actuated by nylon 6-6 polymer based artificial muscles,” in
Proc. IEEE Int. Conf. Automat. Sci. Eng., Aug. 2016, pp. 910–915.

[79] R. Fourie and R. Stopforth, “The mechanical design of a biologically
inspired prosthetic hand, the touch hand 3,” in Proc. Pattern Recognit.
Assoc. South Afr. Robot. Mechatronics, Nov. 2017, pp. 38–43.

[80] P. Wattanasiri, P. Tangpornprasert, and C. Virulsri, “Design of multi-grip
patterns prosthetic hand with single actuator,” IEEE Trans. Neural. Syst.
Rehabil. Eng., vol. 26, no. 6, pp. 1188–1198, Jun. 2018.

[81] T. Zhang, L. Jiang, and H. Liu, “Design and functional evaluation of a
dexterous myoelectric hand prosthesis with biomimetic tactile sensor,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 7, pp. 1391–1399,
Jul. 2018.

[82] H. Hashimoto, H. Ogawa, M. Obama, T. Umeda, K. Tatuno, and T. Fu-
rukawa, “Development of a multi-fingered robot hand with fingertip tactile
sensors,” in Proc. Conf. IEEE/RSJ IROS, Jul. 1993, vol. 2, pp. 875–882.

[83] A. Kargov et al., “Development of an anthropomorphic hand for a mobile
assistive robot,” in Proc. 9th Int. Conf. Rehabil. Robot., Jun. 2005, pp. 182–
186.

[84] T. Mouri, H. Kawasaki, and K. Umebayashi, “Developments of new an-
thropomorphic robot hand and its master slave system,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., Aug. 2005, pp. 3225–3230.

[85] M. C. Carrozza, G. Cappiello, S. Micera, B. B. Edin, L. Beccai, and
C. Cipriani, “Design of a cybernetic hand for perception and action,” Biol.
Cybern., vol. 95, no. 6, 2006, Art. no. 629.

[86] W. Fukui et al., “Development of multi-fingered universal robot hand with
torque limiter mechanism,” in Proc. 35th Annu. Conf. IEEE Ind. Electron.,
Nov. 2009, pp. 2205–2210.

[87] H. Kaminaga, J. Ono, Y. Shimoyama, T. Amari, Y. Katayama, and Y.
Nakamura, “Anthropomorphic robot hand with hydrostatic cluster actuator
and detachable passive wire mechanism,” in Proc. IEEE-RAS Int. Conf.
Humanoid Robots, Dec. 2009, pp. 1–6.

[88] S. Lee, S. Noh, Y. Lee, and J. H. Park, “Development of bio-mimetic
robot hand using parallel mechanisms,” in Proc. IEEE Int. Conf. Robot.
Biomimetics, Dec. 2009, pp. 550–555.

[89] H. Takeuchi and T. Watanabe, “Development of a multi-fingered robot
hand with softness-changeable skin mechanism,” in Proc. ISR (41st Int.
Symp. Robot.) ROBOTIK (6th German Conf. Robot.), Jun. 2010, pp. 1–7.

[90] Y. Kurita, Y. Ono, A. Ikeda, and T. Ogasawara, “Human-sized anthropo-
morphic robot hand with detachable mechanism at the wrist,” Mechanism
Mach. Theory, vol. 46, no. 1, pp. 53–66, 2011.

[91] J. Y. Nagase, S. Wakimoto, T. Satoh, N. Saga, and K. Suzumori, “Design
of a variable-stiffness robotic hand using pneumatic soft rubber actuators,”
Smart Mater. Struct., vol. 20, no. 10, Aug. 2011, Art. no. 105015.

[92] N. Thayer and S. Priya, “Design and implementation of a dexterous
anthropomorphic robotic typing (DART) hand,” Smart Mater. Struct.,
vol. 20, no. 3, Feb. 2011, Art. no. 035010.

[93] J. Bae, S. Park, J. Park, M. Baeg, D. Kim, and S. Oh, “Development of
a low cost anthropomorphic robot hand with high capability,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012, pp. 4776–4782.

[94] H. S. Kang and D. H. Shin, “Development of an anthropomorphic robot
hand with size and motion range identical to a human hand,” Int. J. Precis.
Eng. Manuf., vol. 14, no. 4, pp. 543–549, Apr. 2013.

[95] Y. Hirano, K. Akiyama, and R. Ozawa, “Design of low-cost and easy-
assemblable robotic hands with stiff and elastic gear trains,” in Proc.
IEEE/RSJ Int. Conf. IROS, Oct. 2016, pp. 864–870.

[96] N. E. Krausz, R. A. L. Rorrer, and R. F. F. Weir, “Design and fabrication
of a six degree-of-freedom open source hand,” IEEE Trans. Neural Syst.
Rehabil., vol. 24, no. 5, pp. 562–572, May 2016.

[97] M. Huang and H. Huang, “Innovative human-like dual robotic hand mecha-
tronic design and its chess-playing experiment,” IEEE Access, vol. 7,
pp. 7872–7888, 2019.

Jens Vertongen received the B.Eng. degree
in electromechanics from the Thomas More
University of Applied Sciences, Mechelen, Bel-
gium, in 2015. He is currently working toward
the M.Sc. degree in Mechanical Engineering -
BioMechanical Design, Delft University of Tech-
nology, Delft, The Netherlands.

He has worked as a Research Intern for the
Joint Department of Biomedical Engineering,
The North Carolina State University, Raleigh,
NC, USA. His research interests include biome-

chanics and assistive technology devices, such as prostheses and
orthoses.

Derek G. Kamper (Member, IEEE) received
the B.E. degree in electrical engineering from
Dartmouth College, Hanover, NH, USA, and the
M.S. and Ph.D. degrees in biomedical engineer-
ing from The Ohio State University, Columbus,
OH, USA.

He then completed a postdoctoral fellowship
with the Rehabilitation Institute of Chicago. He is
currently an Associate Professor with the Joint
Department of Biomedical Engineering, Univer-
sity of North Carolina at Chapel Hill and North

Carolina State University, Raleigh, NC, USA. His research interests
include mechatronics and upper extremity neuromechanics, with the
goal of facilitating neurorehabilitation.

Gerwin Smit received the B.Eng. degree in me-
chanical engineering in 2005, the M.Sc. degree
in biomechanical engineering in 2008, and the
Ph.D. degree in biomedical engineering in 2013
from the Delft University of Technology, Delft,
The Netherlands.

In 2014 he worked at the Sensory-Motor Sys-
tems Lab, ETH Zurich, Switzerland. He was a
Co-Founder of the company Delft Prosthetics
in 2010. He is currently an Assistant Profes-
sor with the Department of BioMechanical En-

gineering, Delft University of Technology, Delft, The Netherlands. His
research interests include prosthetics, surgical instruments, and 3D-
printing and technologies for developing countries.

Heike Vallery received the Dipl.-Ing. degree
in mechanical engineering from RWTH Aachen
University, Aachen, Germany, in 2004, and the
doctoral degree in engineering from the Techni-
cal University of Munich, Munich, Germany, in
2009.

She is currently a Full Professor with the
BioMechanical Engineering Department, Delft
University of Technology, Delft, The Nether-
lands. She also holds an honorary professorship
with the Department for Rehabilitation Medicine,

Erasmus MC, Rotterdam, The Netherlands. Her research interests
include bipedal locomotion, compliant actuation, and rehabilitation
robotics.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 22,2021 at 13:57:08 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


