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Abstract - Migraine is associated with brain dysfunction, possibly due to
disturbances in the interactions between distributed cortical regions. Detection of
these disturbances in the topological organization of the brain’s functional network
would contribute to further understanding of migraine pathophysiology. Altered
cortical responses to external stimulation of different modalities are observed
in migraine patients, also between attacks (in the interictal state). However,
it is yet unclear if abnormalities are detectable in the functional network at
rest, i.e. without external stimulation. Here, we assessed abnormalities in
migraine functional networks on a global and a local level, based on resting state
electroencephalography (EEG) data and graph analysis. Scalp-wide (128-channel)
eyes closed EEG was recorded in 18 episodic migraine patients with and without
aura and 15 healthy controls. We calculated functional connectivity based on
coherence and phase-lag index, and performed graph analysis to characterize
network topology. The minimum spanning tree, a subgraph with maximum
functional connectivity, was used for comparison. No significant differences were
found in network topology, nor in functional connectivity strength between groups.
These results demonstrate that this type of graph analyses are not sensitive to
any possible abnormalities in the interictal migraine functional network in resting
state. Brain dysfunction in migraine might occur only on a local level, making
EEG-based graph analysis a less suitable technique to uncover such abnormalities.

1. INTRODUCTION

Migraine is a highly disabling brain disorder
and affects approximately 15% of the global

population (Global Burden of Disease Survey, 2010).
Migraine attacks consist of severe, pulsating headache,
typically accompanied by nausea and/or sensitivity
to light, sound or smell. One-third of migraineurs
experience neurological symptoms (usually visual)
preceding the headache phase, known as aura (Goadsby,
2003). The recurrent nature of migraine suggests an
underlying abnormality in the functioning of the brain.
However, it is yet unknown what mechanisms lead
to the pathogenesis of attacks (Moulton et al., 2011;
Scheffer et al., 2013; Hougaard et al., 2015). A better
understanding of these mechanisms is necessary to
improve our understanding of migraine pathophysiology
and thereby improve treatment.

Previous research found that migraine is associated
with altered processing of sensory information when
evoked by an external stimulation (e.g., visual
or magnetic). Such abnormalities in information
processing have been reported even between attacks,
in the interictal state. This might be due to an
extreme responsiveness of cortical neurons, or neuronal

hyperexcitability (Aurora and Wilkinson, 2007; Moulton
et al., 2011). However, it is yet unclear if abnormalities
are detectable without external stimulation, i.e. in the
resting state.

Resting state studies focus on the characterization
of patterns of simultaneously active brain regions
(Allen et al., 2012). The brain can be understood
as a structurally and functionally integrated network:
the structural network corresponds to anatomical
connections between neurons, but electrical pulses
of neuronal communication comprise the functional
network (Bullmore and Sporns, 2009). The functional
network might not always coincide with the underlying
infrastructure of the structural network (Rubinov and
Sporns, 2009). As an analogy, one can think of a
road system: car drivers (functional network) are forced
to drive the roads available (structural network), but
can still decide which roads to take (Honey et al.,
2007; Stam and Reijneveld, 2007). Traffic between
brain regions continuously forms dynamic functional
networks, even at rest (Egúıluz et al., 2005).

A smart spatial organization, or network topology,
is important for proper functioning of the functional
network. The brain constantly negotiates a trade-
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off between low metabolic costs by short connections
and high topological efficiency by long connections. In
this regard, neurons do not function as isolated units.
Assemblies of spatially close neurons interconnect
and specialize in certain aspects of functioning.
By cooperating their activity, or synchronizing, the
assemblies communicate and integrate their separate
functions into a cognitive operation (Lopes da Silva,
2013; Varela et al., 2001). In other words,
higher brain functions comprise a balance between
local specialization and global integration of brain
processes, mediated by a smart network topology.
The functional network thus provides insight into
functionally correlated (but spatially distant) brain
regions (Bullmore and Sporns, 2009; Fingelkurts,
Fingelkurts and Kähkönen, 2005).

Neurological disorders are directly associated with
abnormal levels of synchronization, which shows in
aberrant network topology (Bullmore and Sporns, 2009;
Stam, 2014). Numerous neuroimaging studies showed
aberrant resting state functional network topology
compared to healthy controls in Alzheimer’s disease
(Brier et al., 2014), Parkinson’s disease (Utianski et
al., 2016), schizophrenia (Bullmore and Sporns, 2012)
and epilepsy (Garcia-Ramos et al., 2016). Currently,
it is not known if mechanisms leading to migraine
pathogenesis might show in resting state functional
network topology. Studying patterns of resting state
activity in the migraine brain therefore provides us with
meaningful information about potential abnormalities
in the functional network.

Construction of the functional network topology re-
quires three steps (see Figure 1). First, neuronal pro-

II. Network
topology

I. Functional
connectivity

EEG activity

Neuronal processes

Abstraction 
levels

FIGURE 1: Abstraction levels of functional network
analysis. New complementary information, which gets more
abstract compared to the original neuronal processes, is
found with every analysis step (upward arrow). However,
an increasing abstraction level results in less intuitive
interpretation of the original neuronal processes (downward
arrow). Network topology cannot be directly linked to the
underlying neuronal processes (image copied from De Vico
Fallani et al., 2014).

cesses are recorded by a neuroimaging technique, in this
case the electroencephalogram (EEG). EEG directly
measures neuronal activity and has a high temporal res-
olution that can capture the fast changing functional
network (Bullmore and Sporns, 2009). However, EEG
is sensitive to volume conduction, when two electrodes
measure activity form the same source (Van Diessen
et al., 2015). Second, a tool to quantify synchroniza-
tion from the recorded brain activity, is provided by
functional connectivity. Functional connectivity esti-
mates the temporal correlations between anatomically
remote neurophysiological signals (in this case EEG
time-series). Many methods to estimate functional con-
nectivity have been proposed, each with their pro’s and
cons (Friston, 2011; David et al., 2004). Lastly, to char-
acterize patterns of functional connectivity and thereby
quantify the network topology, a mathematical tool is
used: graph analysis.

A graph is an abstract, mathematical representation
of a real-world complex network, consisting of nodes
(the elements, in this case EEG channels) and edges
(the connections between the elements). Edges have
weights to represent the strength of connections.
Together, nodes and edges form the spatial organization
of the network (Bullmore and Sporns, 2012). The
quantification of graph measures describing network
topology allows for the characterization of efficiency
and cost of information transfer in the network. Graph
analysis can be applied on any complex network, as
these networks typically show similar behavior and
share certain organizational principles. Therefore,
graph analysis provides quantitative comparison of
network topologies in healthy brains and disordered
brains (Bullmore and Sporns, 2009).

Although graph analysis of the complete network
is helpful for understanding disorder mechanisms, it
suffers from methodological issues which might bias
comparison between different groups or conditions (Van
Wijk et al., 2010). For example, graph measures
are influenced by network size (i.e., the number of
nodes) and network sparsity (i.e., percentage of edges
present). Typically, network size and sparsity differ
among individuals, making comparison inconvenient.

An alternative approach to represent brain networks
is the minimum spanning tree (MST). The MST is
a unique, acyclic subgraph of the complete graph, in
which the sum of weights is minimized. The MST
always has N nodes and N − 1 edges, making direct
comparison among networks possible and avoiding
aforementioned issues (Stam et al., 2014; Tewarie et
al., 2015). Furthermore, if the original graph possesses
strong fluctuations in its edge weights, known as a
strong disorder limit, most information transport flows
over the MST (Van Mieghem and Van Langen, 2005).
In terms of the road system, the MST in the strong
disorder limit is comparable to a subnetwork of local
roads interconnected by highways.

The goal of the current study was to examine the
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functional network topology in migraine patients using
eyes-closed EEG resting state data. Analyses were
performed only on alpha-band (8-13 Hz) data, as the
alpha rhythm dominates in eyes-closed resting state
EEG recordings (Van Diessen et al., 2015). Based on
the assumption of hyperexcitability, it was hypothesized
that the functional network is affected in migraine.
The main objective was to investigate differences in
functional network topology between migraine patients
in the interictal state and healthy controls. This was
done using MST measures on both a global level and
a local node level. An intermediate cluster level was
examined with sub-averages of functional connectivity
in five predefined clusters of nodes. Furthermore, the
influence of volume conduction was examined by using
two different functional connectivity methods, one of
which accounted for the effect of volume conduction.

2. METHODS

2.1. Participants

We included two groups of participants: 15 healthy
controls (age 42.67 ± 19.32; 12 women) and 18 episodic1

migraine patients in the interictal state (age 38.56
± 11.50; 16 women). The sample characteristics of
the migraine group can be found in Table 1. The
inclusion criteria for migraine patients were based on
the International Classification of Headache Disorders
III guidelines. The study was approved by the Medical
Ethics Committee of Leiden University Medical Center.
All participants gave written informed consent prior to
the experiment.

2.2. Protocol

EEG was recorded in the resting state. Participants
lay on a bed with their head resting on a pillow,
in a sound-attenuated and electrically shielded room.
The participants were instructed to stay awake during
the recording and think of nothing in particular. To
avoid muscle and eye movement artefacts, participants
were asked to lie still and concentrate their gaze to a
designated point. The recording paradigm consisted of
four blocks of 30 seconds eyes-open and 120 seconds
eyes-closed, to prevent drowsiness. This resulted in 8
minutes of eyes-closed data per participant.

2.3. EEG recordings and preprocessing

EEG was recorded using a 128-channel cap (according
to the 5/10 systems, by WaveGuard, ANTTM Neuro
with Ag/AgCl electrodes) with the left mastoid as
reference. Channels M1 and M2 (see Appendix A)
were not used during recording. All electrodes were
prepared to have an impedance below 20 kΩ. Data were

1Episodic migraine is characterized by those with migraine
who have 0 to 14 headache days per month (International
Classification of Headache Disorders III)

TABLE 1: Sample characteristics of the migraine group
(n=18).

Mean (SD)

Age (years) 38.56 (11.50)
Migraine duration (years) 24.87 (12.82)
Number of attacks (p/month) 1.92 (0.71)
Migraine days (p/month) 3.25 (1.71)
Sex ratio (women:men) 8:1
Migraineurs with aura 6

digitized at a sampling rate of 2048 Hz (Refa amplifier,
TMSi, Oldenzaal, the Netherlands) and stored for
offline analysis. Custom written scripts in MATLAB
R2016b (The MathWorks, Inc.) were used for further
processing and analyses of the EEG data.

Continuous EEG data were low pass filtered to
prevent aliasing at 70 Hz using a zero-phase fifth-
order Butterworth filter, and downsampled to 512 Hz.
A 1 Hz high pass zero-phase fifth-order Butterworth
filter was applied to remove slow drifts. To remove
50 Hz line noise, the data were band-pass filtered
with a second-order infinite impulse response notch
filter. The following 21 channels were excluded from
further analyses, as scalp contact at these locations was
suboptimal in most participants: Fp1, Fpz, Fp2, AF7,
AF8, F7, F8, FT7, FT8, FT9, FT0, FTT9h, FTT10h,
T7, T8, TP7, TP8, TPP9h, TPP10h, P9 and P10 (see
Appendix A). Hence, 105 channels remained for further
analysis.

The data were then divided into non-overlapping
4096 sample (8s) epochs. The epochs were visually
inspected and 8 artefact-free epochs (a total of 64s) were
selected using predefined criteria. These criteria were:
1) the first and last epochs in each of the four eyes-
closed blocks are not selected to avoid transitions from
closing/opening of the eyes; 2) epochs with obvious
(muscle) artefacts are not selected; 3) epochs early
in the recording are preferred to prevent the risk of
drowsiness; 4) epochs with apparent alpha-band (8-
13 Hz) activity are preferred; and 5) epochs without
bad channels (i.e., low-quality or missing signals) are
preferred to prevent loss of information. A second
researcher evaluated the selected epochs, to improve
reliability of epoch selection.

Before the selected epochs were extracted for
further data analysis, the continuous EEG data were
rereferenced to common average. The common
average constituted all channels except bad channels.
Lastly, bad channels were spherically interpolated by
combining signals from neighboring electrodes. In two
datasets, a total of six channels were interpolated: CP6
and P8 in one dataset and POO9h, CCP5h, CPP5h
and CP2 in another dataset. Continuous EEG data
were then filtered in the alpha-band (8-13 Hz) using
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high and low pass zero-phase fifth-order Butterworth
filters. Finally, the selected epochs were extracted from
the band-pass filtered data and used for construction of
the functional network.

2.4. Data processing

Spectral power was calculated in the continuous EEG
epochs of all participants included in the analysis using
Fast Fourier Transform. Per epoch, power was averaged
across the 105 EEG channels. The average group results
can be seen in Figure 2. The power spectra confirmed
that analysis of alpha band (8-13 Hz) activity was
appropriate.

Per participant, the construction of the functional
network was twofold (see Figure 3). First, functional
connectivity was calculated per epoch between all
possible pairs of 105 EEG channels. The eight
resulting epoch-based matrices were averaged and
represented in a single 105x105 matrix. Second, the
minimum spanning tree was constructed based on the
average functional connectivity matrix. This procedure
was done for two different methods of functional
connectivity.

I Functional connectivity analysis

Functional connectivity was estimated with two
different methods: spectral coherence and phase-lag
index. This was done to account for the effect of volume
conduction on data analysis. Both methods are based
on the phase difference between two signals. To obtain
time-varying estimates of phase, a complex component
of the signal is needed. Therefore, the complex signal
was extracted from the band-pass filtered EEG time-
series using the Hilbert transform (Cohen, 2014).

Spectral coherence
Spectral coherence is a measure of synchronization
between two signals based on the consistency of their
phase differences. Even though two signals may have
different phases, coherence will be high if the phase
difference between the signals remains constant. In
other words, coherence estimates whether two signals

FIGURE 2: Power spectra averaged across 105 EEG scalp
channels for the migraine and the control group.

can be related by a linear time-invariant transformation.
Coherence is always real-valued between 0 and 1, with
0 indicating no relationship and 1 indicating a constant
phase difference. High coherence between two EEG
signals indicates a linear relationship, even though this
does not imply that the underlying cortical dynamics
are linear. Despite its fast and easy computation,
coherence can detect only linear relationships between
time-series (David et al. (2004), Van Diessen et al.
(2015)). Coherence was calculated between all pairs
of data channels using equation 1:

γ2xy =
|Sxy|2

SxxSyy
(1)

in which Sxy is the cross-spectral density of signals x
and y (here, time-series of different electrodes) and Sxx
and Syy are the corresponding auto-spectral densities.
A more elaborate explanation of coherence can be found
in Appendix B.

Phase-lag index
Like coherence, the phase-lag index (PLI) is based
on the phase angle differences between two signals.
However, the PLI accounts for volume conduction,
when two electrodes measure activity from the same
source. The signals of two volume-conducted electrodes
will have phase-lags of either zero or π. Therefore, their
phase angle differences will be distributed around zero
or π radian on the imaginary axis of the complex plane.
PLI values will be high if the phase angle differences are
predominantly distributed on one side of the imaginary
axis. In contrast, if half of the phase angle differences
are positive and half are negative with respect to the
imaginary axis, the phase-lag index will be zero (Stam,
Nolte and Daffertshover, 2007; Cohen, 2014). PLI is
calculated by equation 2:

PLIxy =

∣∣∣∣∣n−1
n∑
t=1

sgn(imag(Sxyt))

∣∣∣∣∣ (2)

in which n is the total number of time points in the
epoch and sgn(imag(Sxyt)) indicates the sign of the
imaginary part of the cross-spectral density at time
point t.

Cluster analysis
Functional connectivity strength was calculated to
assess differences between groups in two ways: first,
by means of the connection strength of the whole
FC matrix and second, by the connection strength
in predefined clusters (frontal, central, left, right and
occipital (see Figure 4))2. The connection strength
in predefined clusters included sub-averages of all
electrodes participating within those clusters. For
example, the average connection strength of the central-
occipital cluster is the average of functional connectivity

2A bigger version of the 128 EEG channel layout can be found
in Appendix A.
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FIGURE 3: Data processing pipeline per participant. Based on 8 epochs (each of 4096 samples, or 8 seconds) of alpha-band
data, the functional network was constructed. First, functional connectivity was calculated per epoch between all possible
pairs of 105 EEG channels. The 8 resulting functional connectivity matrices were then averaged, out of which the minimum
spanning tree was constructed. This procedure was done for two functional connectivity methods per participant.
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FIGURE 4: Overview of the 128-channel EEG cap. Colors
indicate which nodes belong to which cluster. Gray nodes
were excluded from analyses, as scalp contact at these
positions was suboptimal in most participants.

values of the 21 channels of the frontal cluster with the
19 channels of the central cluster.

II Minimum spanning tree analysis

The minimum spanning tree (MST) is a subgraph
of the complete weighted graph (i.e., the functional
connectivity matrix in graph form) that connects all
nodes without forming loops, while minimizing the sum
of edge weights. Nodes represent the EEG channels,
while edge weights represent the connections between
them. In the MST, the most important edges in the
network are the ones represented by low weight. In
the current study, however, the most important edges
represent the strongest connections, i.e. the highest
weights. For the computation of the MST, we therefore
defined the edge weight as 1/(functional connectivity
estimate) (Tewarie et al., 2015; Stam et al., 2014).

MST’s were constructed with Kruskal’s algorithm.
The algorithm first arranges edge weights (in this case
1/(functional connectivity values)) in ascending order.
The construction of the MST starts with the lowest link
weight, after which the following lowest link weights
are added until all nodes are connected. Once a link
forms a cycle in the network, the link is discarded.
This results in an acyclic subgraph in which all nodes
N are connected by m = N − 1 links. It follows
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TABLE 2: Summary of global and local minimum spanning tree measures.

Name Explanation Equation

N Nodes Number of nodes
m Links Number of links
k Degree Number of links per node ki =

∑
aij , in which aij is the

adjacency matrix

BC Betweenness centrality Fraction of paths that pass through a given node BCi = 1
(N−1)(N−2)

∑
s 6=v 6=t

σ
(v)
st
σst

, in
which σst is the number of shortest
paths between node s and node t and
σ
(v)
st are the shortest paths between s

and t that pass through node v

E Eccentricity Longest path of a given node Ei = (dij)max, in which dij is the
length of the path from node i to
node j

Lf Leaf fraction Fraction of nodes L with only one link (k = 1) Lf = L/N
D Diameter Longest of all paths (d) in the graph D = d/m
Th Tree hierarchy The trade-off between large scale integration and

maximum betweenness centrality
Th = L

2mBCmax

r Degree correlation Correlation between the degree of a node and
the degrees its neighboring nodes (to which it is
connected)

r =
∑
jk

jk(ejk−qjqk)
σ2 , in which σ2 =∑

k k
2qk− [

∑
k kqk]2 see Appendix C

for more information

O Overlap The fraction of links that two MST’s have in
common

O =
MSTx∩MSTy

m

from the algorithm that two conditions must be met
when constructing the MST: all nodes in the complete,
weighted graph are connected and all edge weights are
unique (Van Mieghem and Van Langen, 2005).

After construction of the MST, all edges were
assigned an equal weight for the sake of proper
comparison between groups. The resulting matrix
is called the adjacency matrix. To quantify the
topology of MST’s, both global and local properties
were examined. All measures are summarized in Table
2.

Local MST measures
Local MST measures indicate node importance within
the network topology and are calculated for each
node separately. In Figure 5, three examples of tree
topologies with equal number of nodes are given. Three
local MST metrics were examined in this study: degree
(k), betweenness centrality (BC ) and eccentricity (E ).
The degree of a node is the number of links connecting
to that node. The path-like tree in Figure 5, consists of
two nodes with degree one, and seven nodes with degree
two. The star-like topology on the other hand, has
one highly connected node (degree eight) and eight leaf
nodes (nodes with k = 1). The betweenness centrality
is the fraction of paths a given node participates in,
between any two nodes in the network. The central
node in the star-like topology in Figure 5, for example,
participates in every path between any pair of its
neighboring leaf nodes and therefore has a BC of one.
The nodes with the highest BC carry the highest load.
Finally, eccentricity is defined as the longest path of

(a) Path-like (b) Hierarchical (c) Star-like

FIGURE 5: Examples of minimum spanning tree
topologies. Blue nodes are the most central nodes, orange
nodes are leafs (degree one). The path-like tree (a) and
the star-like tree (c) represent two extreme shapes. The
hierarchical tree (b) is situated in between those extremes.

a given node. The blue nodes in Figure 5, have
eccentricities of four (path-like tree), two (hierarchical
tree) and one (star-like tree). The lower the eccentricity,
the more central the node is (Tewarie et al., 2015;
Stam et al., 2014). Here, eccentricity is normalized
by the amount of links m and degree by the amount
of nodes N. Local measures were characterized by
means of critical nodes (maximum degree, maximum
betweenness centrality and minimum eccentricity).

Global MST measures
Global measures of MST topology provide information
on the large scale integration of the network. Four
global MST properties were examined in this study:
leaf fraction (Lf ), diameter (D), tree hierarchy (Th) and
degree correlation (R). The leaf fraction is the fraction
of leafs (L) in the network. The number of leafs has a
lower bound of 2 and an upper bound of N − 1. The

6
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diameter of the network is the longest path between
any two nodes in the tree. Diameter is related to leaf
fraction by d = m− L+ 2
in which m is the total number of links and L is the
number of leaf nodes.

Figure 5 implies that the star-like topology results
in efficient network communication; that is, all pairs
of nodes are either one or two links apart. High global
efficiency therefore requires a small diameter (i.e., many
leaf nodes). A star-like topology, however, also is
highly vulnerable due to high BC of the central node.
Failure of this node will disrupt all communication in
the network. A balance between diameter reduction and
overload prevention (high BC comes with high load),
captures an optimal configuration. This trade-off is
reflected by tree hierarchy in equation 3:

Th =
L

2mBCmax
(3)

in which L is the number of leaf nodes, m is the
total number of links and BCmax is the maximum
betweenness centrality. The denominator is multiplied
by 2 to assure that Th ranges between 0 and 1. In the
case of a path (i.e., L = 2 and m approaches infinity),
Th = 0 and in case of a star (i.e., L = m), Th = 0.5
(Tewarie et al., 2015; Stam et al., 2014).

Degree correlation indicates whether the degree of a
node is correlated with the degrees of its neighboring
nodes. A positive degree correlation indicates that
nodes prefer to connect to other nodes with the same
or similar degrees. The tree is then called assortative
(Stam and Van Straaten, 2012; Bullmore and Sporns,
2009; Newman, 2002). Finally, overlap is the fraction
of links that two MST’s have in common. Here,
the overlap between all MST’s of the migraine group
compared to the backbone MST of the control group
(based on the mean functional connectivity matrix of
that group) was calculated, and vice versa.

Strong disorder limit
The MST is the critical backbone of the complete,
weighted graph only under the condition of a strong
disorder limit. If the link weights in the complete
graph show strong variations, then the sum of weights
(by which the MST is constructed) will be dominated
by a single weight. The link weights then possess a
strong disorder limit. If this condition holds, then most
information flow goes over very few backbone links: the
MST (Van Mieghem and Van Langen, 2005).

The weight distribution (Fw) of the complete graph
can be described by the polynomial distribution in
equation 4:

Fw(x) =

{
xα if 0 ≤ x ≤ 1

1 if x > 1
(4)

in which x represents the weights (in our case either
coherence or PLI values) and α is called the extreme

value index. A strong disorder limit occurs when α→ 0.
A decreasing α corresponds to an increasing probability
that shortest paths of the complete graph coincide with
the MST (Tewarie et al., 2014).

For regular graphs3, there is a critical αc > 0 for
which α < αc indicates the critical backbone of the
complete network (i.e., α → 0). According to Van
Mieghem and Van Langen (2005), αc = O(m−2), in
which m are the number of links in the network. We
will use the same criterion as a threshold for the strong
disorder limit in this study. Therefore, with m = 104,
αc ≈ 0.0001.

From the complete graph (i.e., the functional
connectivity matrix), for every participant separately,
we ranked the weights of all matrix elements
in descending order and estimated α from this
distribution, using a power function f(x) = axα + b.

2.5. Statistics

Global and local differences in network topology, as well
as cluster-level differences in functional connectivity
strength between migraineurs and controls were
assessed using Mann-Whitney U-tests. None of the
data were normally distributed or met the assumption
of homogeneity of variance. Therefore, a nonparametric
test was chosen for all measures. A value of p < 0.05
was considered significant.

3. RESULTS

Data from seven participants (four migraineurs and
three controls) were excluded from analysis; one
participant experienced migraine within three days
after recording and was therefore not in the interictal
state; three data sets were unusable due to recording
issues (a broken ground electrode, a high noise level
and problems with data storing); and eyes closed data in
two participants were contaminated by regular artefacts
(eye blinking and heartbeats).

Functional connectivity
Connectivity strength was calculated in two ways.
First, the mean strength of all 105 channels was
calculated for every participant and compared between
migraineurs and controls. Second, sub-averages in
five predefined clusters (frontal, central, left, right and
occipital) were calculated within and between clusters
for every participant and compared between groups.
This was done for both functional connectivity methods
(coherence and PLI). Typical functional connectivity
matrices, based on the mean functional connectivity
per group, can be seen in Figure 6. The results
of the Mann-Whitney U-tests for assessing differences
between groups are presented Table 3. No significant
differences were found in mean connectivity strength
(including all channels) for both functional connectivity

3Regular graphs are graphs in which each node has the same
degree
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TABLE 3: Functional connectivity (sub-)averages based on coherence and phase-lag index in the alpha band (8-13 Hz).
No significant differences were found between migraineurs and controls (p<0.05). Number of channels per cluster: Frontal
(n=21), Central (n=19), Left (n=22), Right (n=22), Occipital (n=21).

COHERENCE PHASE-LAG INDEX

Migraineurs Controls Migraineurs Controls
Cluster Mean (SD) Mean (SD) p-value Mean (SD) Mean (SD) p-value

All 0.42 (0.11) 0.36 (0.07) 0.16 0.22 (0.10) 0.21 (0.09) 0.86
Frontal - Frontal 0.80 (0.11) 0.76 (0.12) 0.34 0.18 (0.06) 0.17 (0.08) 0.52
Frontal - Central 0.40 (0.12) 0.37 (0.15) 0.59 0.25 (0.12) 0.23 (0.13) 0.77
Frontal - Left 0.41 (0.13) 0.36 (0.12) 0.46 0.22 (0.09) 0.19 (0.10) 0.42
Frontal - Right 0.48 (0.16) 0.39 (0.11) 0.14 0.21 (0.09) 0.20 (0.07) 1.00
Frontal - Occipital 0.57 (0.15) 0.51 (0.13) 0.32 0.23 (0.11) 0.23 (0.10) 0.91
Central - Central 0.43 (0.07) 0.46 (0.09) 0.49 0.21 (0.09) 0.20 (0.09) 0.82
Central - Left 0.30 (0.07) 0.28 (0.08) 0.46 0.21 (0.09) 0.20 (0.10) 0.60
Central - Right 0.33 (0.11) 0.29 (0.08) 0.27 0.23 (0.11) 0.21 (0.08) 0.91
Central - Occipital 0.42 (0.12) 0.41 (0.11) 0.66 0.23 (0.11) 0.22 (0.10) 0.73
Left - Left 0.38 (0.05) 0.36 (0.05) 0.14 0.21 (0.10) 0.17 (0.09) 0.38
Left - Right 0.34 (0.08) 0.29 (0.07) 0.13 0.21 (0.10) 0.18 (0.07) 0.69
Left - Occipital 0.36 (0.10) 0.32 (0.10) 0.19 0.22 (0.10) 0.21 (0.10) 0.82
Right - Right 0.44 (0.11) 0.37 (0.05) 0.05 0.22 (0.10) 0.20 (0.07) 0.82
Right - Occipital 0.41 (0.16) 0.32 (0.10) 0.13 0.23 (0.11) 0.22 (0.08) 0.91
Occipital - Occipital 0.54 (0.12) 0.50 (0.09) 0.40 0.22 (0.11) 0.23 (0.09) 0.45

Note: SD= standard deviation

COHERENCE PHASE-LAG INDEX

Migraineurs Controls Migraineurs Controls
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(a) Mean functional connectivity matrices based on
coherence for migraineurs (left) and controls (right).
Clusters are indicated by yellow lines: F = frontal, C =
central, L = left, R = right, O = occipital.

(b) Minimum spanning trees based on the mean coherence
matrix for migraineurs (left) and controls (right).

F C L R O

F

C

L

R

O

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

F C L R O

F

C

L

R

O

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c) Mean functional connectivity matrices based on phase-
lag index for migraineurs (left) and controls (right). Clusters
are indicated by yellow lines: F = frontal, C = central, L =
left, R = right, O = occipital.

(d) Minimum spanning trees based on the mean phase-lag
index matrix for migraineurs (left) and controls (right).

FIGURE 6: Functional connectivity matrices based on the mean functional connectivity per group for coherence (a) and
phase-lag index (c). The corresponding minimum spanning trees are shown for coherence (b) and phase-lag index (d).
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methods. Furthermore, no significant differences were
found within or between clusters between groups for
both connectivity methods. The group effect of the
right within-cluster in coherence just fell short of
significance (p = 0.05). However, after Bonferroni
correction to correct for multiple comparisons (p <
0.05
15 ), the group effect of the right within-cluster in

coherence was far from significant.

MST measures
To quantify the functional network, measures of
the minimum spanning tree (MST) were calculated
on both a global and a local network level for
every participant. Typical MST’s, based on the
mean functional connectivity matrices per group,
can be seen in Figure 6. Global MST measures
yielded no significant differences between groups for
both functional connectivity methods (see Table 4).
Local MST measures were calculated per node and
mean distributions per group are visualized in Figure
7. No significant differences were found in the
distributions of the local MST measures between
groups for both functional connectivity methods.
Furthermore, no significant differences were found in
maximum degree, maximum betweenness centrality
and minimum eccentricity between groups for both
functional connectivity methods (see Table 4). The
collection of critical nodes per group are shown in
Figure 8. Minimum spanning trees including critical
nodes per participant are shown in Appendix D. The
amount of overlap was similar in both groups (see
Table 4). Overlapping links within groups are shown
in Appendix E.

Strong disorder limit
The MST forms the critical backbone of the complete
graph only if the weight distribution possesses a strong
disorder limit. For each participant, we estimated the
extreme value index α in its weight distribution. The
results can be seen in Figure 9. For all participants,
the weight distributions had a value of α between 0.12
and 1.61. Therefore, none of the weight distributions
possess strong disorder limit (αc ≈ 0.0001).

4. DISCUSSION

The present study examined the topological organiza-
tion of brain networks in episodic migraine patients and
healthy controls by applying minimum spanning tree
(MST) analysis to eyes closed resting state EEG data.
This was done based on two different functional connec-
tivity methods to account for the effect of volume con-
duction. For both functional connectivity methods, no
significant differences were found in the MST; neither
on a global level, nor on a local level. Furthermore, no
significant differences were found in functional connec-
tivity strength. In contrast with the hypothesis, the re-
sults indicate that the interictal resting state functional
networks (RSFN) of migraine patients and healthy con-

trols are not different.

Clinical interpretation
Our finding is in accordance with the only similar graph-
based resting state study in migraine patients by Wu et
al. (2016). With eyes-closed magnetoencephalography
(MEG) data, they investigated the complete graphs
of migraineurs (with and without aura) and healthy
controls. Wu et al. (2016) found no significant
differences in topological organization, nor in functional
connectivity strength based on coherence between
groups in the alpha band (8-12 Hz). This study
supports the idea that the interictal migraine functional
network might not function abnormally in the resting
state.

However, multiple findings argue in favor of
permanent abnormalities in the migraine RSFN.
Firstly, studies based on resting state functional
magnetic resonance imaging (rs-fMRI) found increased
connectivity in specific brain areas in the RSFN of
migraineurs compared to healthy controls, especially
in pain-processing areas (Sprenger and Magon, 2013;
Maneiro, Boshyan and Hadjikhani, 2011). The
advantage of fMRI over EEG and MEG is a high spatial
resolution, in the order of millimeters. In EEG and
MEG, only activity in the upper layer of the cortex is
recorded. Abnormalities in the migraine RSFN might
be highly localized and not detectable with EEG- or
MEG-based graph analysis. Possibly, brain dysfunction
is attributed to the level of neuronal assemblies and not
to abnormal network connectivity.

Furthermore, interictal migraine network topology
might be comparable to that of epilepsy. Migraine
and epilepsy follow the same sequence in attacks
(defined by phases before (preictal), during (ictal)
and after (postictal) attacks) and are believed to
have pathophysiological overlap (Nye and Thadani,
2015). In some patients, the disorders occur comorbidly
and are linked genetically. Like migraine, epilepsy
originates from electrical disturbances in the brain and
attacks are unforeseen and unprovoked. Accordingly,
many epilepsy graph-based resting state studies found
abnormal network topology in the interictal state
compared to the ictal state and/or healthy controls
(Ponten et al., 2007; Van Dellen et al., 2009; Garcia-
Ramos et al., 2016). The interictal epilepsy network
might be organized in such a way that it facilitates
an increased tendency to synchronize. This advocates
that the interictal migraine functional network might
be abnormal in the resting state too.

It is currently not known if functional connectivity
and topological organization are abnormal in the pre-
ictal, ictal or postictal migraine states. Future neu-
roimaging studies should investigate whether migraine
patients show abnormal interictal network topology
when compared to other states. Furthermore, the inter-
ictal RSFN might differ between migraineurs with and
without aura (Hougaard et al., 2015). Future research
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TABLE 4: Minimum spanning tree measures in the alpha band (8-13 Hz). No significant differences were found between
migraineurs and controls (p<0.05).

COHERENCE PHASE-LAG INDEX

Migraineurs Controls Migraineurs Controls
MST measure Mean (SD) Mean (SD) p-value Mean (SD) Mean (SD) p-value

Leaf fraction 0.32 (0.05) 0.31 (0.04) 0.86 0.73 (0.09) 0.71 (0.08) 0.62
Diameter 0.35 (0.05) 0.32 (0.07) 0.22 0.13 (0.04) 0.12 (0.04) 0.66
Tree hierarchy 0.52 (0.08) 0.52 (0.07) 0.95 1.00 (0.14) 0.95 (0.12) 0.45
Degree correlation -0.23 (0.10) -0.18 (0.09) 0.32 -0.43 (0.11) -0.38 (0.11) 0.52
Max. degree 4.08 (0.29) 4.57 (1.50) 0.61 22.79 (8.08) 21.08 (8.20) 0.62
Max. BC 0.31 (0.03) 0.30 (0.02) 0.80 0.37 (0.03) 0.37 (0.03) 1.00
Min. eccentricity 0.17 (0.03) 0.16 (0.03) 0.23 0.07 (0.02) 0.07 (0.02) 0.94
Overlap 0.59 (0.08) 0.60 (0.05) 0.84 0.04 (0.03) 0.04 (0.03) 0.53

Note: SD = Standard deviation

COHERENCE PHASE-LAG INDEX

FIGURE 7: Distributions of local minimum spanning tree measures based on coherence (left side) and phase-lag index (right
side). All distributions show the mean and standard deviation of migraineurs (orange) and controls (blue).
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COHERENCE PHASE-LAG INDEX

Migraineurs Controls Migraineurs Controls

Degree

Betweenness centrality

Eccentricity

one time two times three times

FIGURE 8: Totality of critical nodes based on coherence (left side) and phase-lag index (right side) in migraineurs (orange)
and controls (blue). The colors of the dots indicate counts of a critical nodes, if the particular node appeared in more than
one participant.

should elucidate the effect of aura on the RSFN. Lastly,
a combination of fMRI (with high spatial resolution)
and EEG (with high temporal resolution) recordings
might give complementary information and therewith
provide more accurate results.

Data interpretation

The functional connectivity measure is of major
influence on the shape of the MST. Both coherence
and PLI detect coupling in EEG time series, but
with different sensitivity profiles; coherence is able to
detect only linear coupling, while PLI detects weak and
nonlinear coupling (David et al., 2004), and accounts
for volume conduction (Stam, Nolte and Daffertshover,
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2007). However, in epilepsy, measures affected by
volume conduction better discriminate between the
preictal and ictal state (Christodoulakis et al., 2014).
Choice of functional connectivity measure therefore
depends on the research objective.

Comparison between the topological organizations
of the coherence-based MST and the PLI-based MST
clearly reveals the effect of volume conduction (see
Figure 6). In the coherence-based MST, network
topology was dominated by local connections between
neighboring channels. Such local connections were not
present in the PLI-based MST, which was dominated
by long distance connections. Functional connectivity
for neighboring channels might strongly be influenced
by volume conduction in coherence-based MST’s. This
might also explain the higher amount of overlapping
links in coherence compared to PLI.

Based on the constant trade-off between metabolic
costs and topological efficiency due to functional
segregation and functional integration in the human
brain, the MST is expected to show star-like as well
as path-like characteristics, like a hierarchical tree
(Tewarie et al., 2014). Coherence-based MST’s showed
a hierarchical tree with path-like branches, while MST’s
based on phase-lag index showed a hierarchical tree with
typical star-like characteristics. PLI-based MST’s were
characterized by some high-degree nodes and many leaf
nodes (k=1 ), typical for star-like trees. The degree
distribution in coherence showed a peak at k = 2,
which is typical for a tree with a filamentary structure,
or longer ”branches” (Lovelace Rainbolt and Schmitt,
2017). Th in PLI was close to 1 for both groups,
suggesting an optimal combination of short distances
and prevention of overload of any node.

Critical nodes were assessed to visualize local MST
measures. Most critical nodes were expected in the
occipital cortex, as alpha-band activity predominantly
originates from here during wakeful relaxation with
eyes-closed (Van Diessen et al., 2015; Liu et al., 2015).

FIGURE 9: Estimated exponent alpha. Link weights
of the complete network possess a strong disorder limit if
α < 0.0001. In this case, alpha ranges between 0.12 and
1.61 for both groups based on coherence (COH) and phase-
lag index (PLI).

In coherence-based MST’s, critical nodes were scattered
throughout the EEG electrodes in both groups, possibly
due to the effect of volume conduction (see Figure 8).
Contrarily, in PLI-based MST’s, most critical nodes
originated from the occipital/central part in the control
group. In the migraine group, PLI-based critical nodes
were more scattered. Considering the fact that the
migraine RSFN might show abnormalities only on a
local level, the location of critical nodes should be
investigated more thoroughly in future MST analyses.

Influence of the strong disorder limit
MST topology, and thereby MST measures, depend
only on the ranking of link weights of the complete
graph and not on the absolute values or distribution of
those weights. The MST is robust only if link weights
possess strong variations; otherwise, slight changes in
link weight could result in substantially different MST
topology (Stam et al., 2014). Merely a comparison
of MST measures between groups, might therefore
not be conclusive. The distribution of link weights,
and especially the strong disorder limit, should be
investigated too. Only if the weights of the complete
network possess a strong disorder limit, the minimum
spanning tree is the critical backbone of the complete
weighted network (Van Mieghem and Van Langen,
2005). None of the networks in the current study
possessed a strong disorder limit (0.12 ≤ α ≤ 1.61).
Therefore, none of the MST’s in this study dominated
the information flow of the original network. For
the comparison of brain networks, the distribution of
link weights might be more important than network
topology itself; the latter only matters if the MST truly
reflects the complete graph.

Most of the minimum spanning trees in the current
study possess a weak disorder limit ; the link weights
contribute equally to the sum of weights by which the
minimum spanning tree is created (Havlin et al., 2005).
Information flow in these networks is spread out over
more paths than just the MST, leading to a more
balanced overall network load (Van Mieghem and Van
Langen, 2005). Since αc = O(m−2), a lower m (number
of links) will result in a higher αc. MST analyses might
therefore better reflect underlying activity with 32- or
64-channel EEG.

Methodological issues
In general, many methodological choices are required
in EEG-based graph analyses, which may have great
influence on results. The choice of reference electrode,
artefact handling and filtering, the number and length
of epochs and the choice of frequency band can all
affect network topology. Furthermore, there is no
gold standard in defining nodes and edges. These
methodological issues make comparison among studies
difficult (Van Diessen et al., 2015).

The present study showed advantages compared to
other neuroimaging-based migraine studies. Resting
state recordings are simple and not harmful to
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participants, while stimulation studies have a complex
design (Diaz et al., 2013; Meisel et al., 2015) and
might trigger migraine attacks. Furthermore, the MST
is barely affected by epoch length and shows similar
results even for very short epochs (Fraschini et al.,
2016). The use of MST’s makes proper comparison
among complex networks possible (Stam et al., 2014).

However, the current study had some methodological
issues. The time signals in epochs were assumed to
be stationary, while the brain continuously changes
configuration on multiple time scales, even in the order
of seconds (Bullmore and Sporns, 2012; Honey et al.,
2007). Smith et al., 2017 proposed a method for
both coherence and phase-lag index to handle dynamic
connectivity. Furthermore, the resting state comprises
multiple levels of cognition (Diaz et al., 2013; Van
Diessen et al., 2015) and it was not verifiable if all
participants were in the same state. This might have
biased the results. Lastly, graph analysis increases the
abstraction level of information and interpretation of
MST results cannot be directly related to neuronal
dysfunction. Cluster analysis (without the use of
predefined clusters) of functional connectivity patterns
might give more intuitive results compared to the
original neuronal processes. A method for data
clustering in MST’s can be found in Yu et al. (2015).

5. CONCLUSION

The EEG-based resting state functional network
of interictal migraine patients does not show any
abnormalities on a global, intermediate or local
network level compared to healthy controls. Possibly,
abnormalities in resting state are highly localized at the
level of individual neurons or neuronal assemblies and
do not show on network level. The spatial resolution
in EEG might be too low to detect such subtle
abnormalities. Even though resting state EEG studies
are easy to compute and participants do not experience
the resting state as harmful, external stimulation might
be necessary to assess differences between the functional
networks of migraineurs and controls.

Furthermore, the minimum spanning tree offers
an unbiased method for comparison between groups.
The effect of volume conduction can clearly be seen
in MST topology. However, high density EEG
recordings increase the threshold by which the MST is
considered the critical backbone of the complete graph.
Therefore, a trade-off between spatial resolution of the
neuroimaging technique and the resulting number of
links in the MST should be accounted for in future MST
studies.
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APPENDIX A. OVERVIEW OF 128-CHANNEL EEG LAYOUT
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FIGURE A.1: Overview of the 128-channel EEG cap. Colors indicate which nodes belong to which cluster. Gray nodes
were excluded from analyses, as scalp contact at these positions was suboptimal in most participants.
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APPENDIX B. FUNCTIONAL CONNECTIVITY METHODS IN EULER NOTATION

Oscillations are described by three pieces of information: frequency, power and phase. The phase angle of a signal
reveals information about the timing of frequency-band-specific activity, or the position along a sine wave of certain
frequency at any given time point; that is, if the timing of two oscillations is similar, then their phase angles will have
similar values. This piece of information is used as the basis for phase-based connectivity methods, like coherence
and the phase-lag index (PLI). Both of these measures of synchronization are based on the difference in phase
angles between two signals at a certain time-frequency point. Thus, in the case of frequency-band-specific data, the
amount of synchronization between two signals over certain period of time (epoch) can be calculated by averaging
the differences in their respective phase angles over all time points.

As phase angles are circular, the averaging of phase angle values is not straightforward. Phase angles can, however,
be represented as vectors on a unit circle in the complex plane. Euler’s formula (Meik, in which M is the magnitude
and k the direction) provides a way to represent the phase information in polar space. Therefore, the phase angle
difference between two signals at a certain time-frequency point can be represented by a vector on the unit plane.
For all time points in frequency-band-specific data, this will result in a distribution of vectors on the unit circle.

It is the distribution of these vectors which reveals information about synchronization among the signals; that is,
if the timing of the oscillations measured by the EEG electrodes is similar at each point in time in both EEG signals,
then their phase angle differences will have similar values and the distribution will be clustered (see Figure B.1). On
the contrary, if phase angle differences show varying values, then the distribution of their respective vectors will be
more uniform.

To calculate the amount of uniformity, the vectors in polar space representing the phase angles (not the phase
angles themselves) are averaged. The length of this average vector reveals how close the vectors are. In other words,
the length of the average vector represents the amount of clustering of the vectors. This method forms the basis of
coherence and is known as intersite phase clustering (ISPC). It is mathematically described by equation B.1:

ISPCf =

∣∣∣∣∣n−1
n∑
t=1

ei(φtx−φty)

∣∣∣∣∣ (B.1)

in which n is the total number of time points (in this case the number of time points per epoch), the summation
operator combined with n−1 represents the average, φtx−φty represent the phase angle difference of channels x and
y at time point t and ei originates from the Euler formula providing the complex polar representation of the phase
angle difference at frequency f.

Spectral coherence
Spectral coherence, like ISPC, reveals the amount of clustering of the (average) vectors representing phase angle
differences. The difference between both methods, is that spectral coherence is scaled by power values. In Euler
notation, this gives B.2:

Sxy =

∣∣∣∣∣n−1
n∑
t=1

|mtx||mty|eiφtxy

∣∣∣∣∣ (B.2)

in which mx and my are the analytic signals of x and y respectively (Cohen, 2014).

FIGURE B.1: Example of a unit circle in the complex plane representing the phase angles of many electrodes at a certain
time-frequency point. A) The vectors are slightly clustered around a certain value. B) The distribution is quite uniform
(Cohen, 2014).
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APPENDIX C. DEGREE CORRELATION

Degree correlation indicates whether nodes tend to connect to nodes with the same or similar degree. The network
is assortative if high-degree nodes connect to other high-degree nodes and similarly, low-degree nodes connect to
other low-degree nodes. The network is disassortative if high-degree nodes connect with low-degree nodes, resulting
in a hub-and-spoke network. More generally, degree correlation indicates if the number of links between nodes is
systematically different from what is expected by chance. The probability that two nodes with degrees k and k′ by
chance link with each other is given by equation C.1:

pk,k′ =
kk′

2m
(C.1)

in which m is the total number of links in the network (in this case, the MST).
The probability that a randomly chosen node will have degree k is given by pk. However, if a randomly chosen path

in the MST was followed, then the node at its end will have a degree according to a probability distribution of kpk:
high-degree nodes have more links, so the distribution is biased towards nodes of high degree. Degree correlation
is about the remaining degree, the number of edges leaving the node other than the one that was followed. The
remaining degree is one minus the total degree, giving a probability distribution of (k + 1)pk+1. Normalizing this
distribution gives equation C.2:

qk =
(k + 1)pk+1∑

j jpj
(C.2)

which is the probability that a randomly selected path in the MST has a node with degree k at its end.
The joint probability distribution of the two nodes at the ends of a path in the MST with remaining degrees k and

j is given by the degree correlation matrix eij . The degree correlation matrix has the following two characteristics
(equation C.3): ∑

jk

ejk = 1
∑
j

ejk = qk (C.3)

The amount of assortativity is given by equation C.4:

〈jk〉 − 〈j〉〈k〉 =
∑
jk

jk(ejk − qjqk) (C.4)

where 〈...〉 indicates the average over the total number of links. In order to compare the amount of assortativity
among MST’s, the measure is normalized by the variance σ2

q =
∑
k k

2qk − [
∑
k kqk]2 of the distribution qk. Hence,

the (normalized) degree correlation is (equation C.5):

r =
1

σ2
q

∑
jk

jk(ejk − qjqk) (C.5)

r has a value between -1 and 1 and is negative for disassortative MST’s and positive for assortative MST’s (Newman,
2002).
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APPENDIX D. MINIMUM SPANNING TREES AND CRITICAL NODES PER PARTICIPANT

COHERENCE - Migraineurs

Max. k Max. BC Min. E Max. k & max. BC
Max. k & min. E Max. BC & min. E Max. k & max. BC & min. E

FIGURE D.1: Minimum spanning trees and critical nodes based on coherence for all participants in the migraine group. k
is degree, BC is betweenness centrality and E is eccentricity.

19



20

COHERENCE - Controls

Max. k Max. BC Min. E Max. k & max. BC
Max. k & min. E Max. BC & min. E Max. k & max. BC & min. E

FIGURE D.2: Minimum spanning trees and critical nodes based on coherence for all participants in the control group. k is
degree, BC is betweenness centrality and E is eccentricity.
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PHASE-LAG INDEX - Migraineurs

Max. k Max. BC Min. E Max. k & max. BC
Max. k & min. E Max. BC & min. E Max. k & max. BC & min. E

FIGURE D.3: Minimum spanning trees and critical nodes based on phase-lag index for all participants in the migraine
group. k is degree, BC is betweenness centrality and E is eccentricity.
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PHASE-LAG INDEX - Controls

Max. k Max. BC Min. E Max. k & max. BC
Max. k & min. E Max. BC & min. E Max. k & max. BC & min. E

FIGURE D.4: Minimum spanning trees and critical nodes based on phase-lag index for all participants in the control group.
k is degree, BC is betweenness centrality and E is eccentricity.
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APPENDIX E. OVERLAP

COHERENCE

Migraineurs Controls

No overlap with other participants

Link exists in 50% of participants

Link exists in all participants

PHASE-LAG INDEX

Migraineurs Controls

No overlap with other participants

Link exists in 50% of participants

Link exists in all participants

FIGURE E.1: Overlap of MST links of all participants per group. Red links indicate that the particular link exists in all
participants (in that group), while light blue links appear only in individual participants.

23






