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Abstract

Agriculture plays a vital role in the global economy, providing the necessary food and
resources for human survival. With the world’s population projected to surge, the demand
for food is set to escalate in the coming decades. This increasing demand, coupled with the
challenges posed by climate change and the detrimental effects of pollution due to fertiliz-
ers, underscores the urgency for more efficient and sustainable crop management strategies.
Effective crop management is a complex and time-consuming task that involves various fac-
tors, including climate conditions and soil quality. Traditional crop management strategies
often rely on expert knowledge to guide the decision-making process, which may be sub-
optimal and prone to error. Reinforcement learning (RL) has gained significant attention in
recent years as a promising approach for decision-making and control in agriculture, aiding
in the management process.

RL environments such as CyclesGym [51], accommodate the design of agents that oper-
ate within an agricultural system, often surpassing the performance of traditional strategies.
However, the optimal policy may vary heavily depending on the specific field location, due
to its specific weather conditions and soil quality. In this thesis, we aim to investigate the
use of RL for managing fields in multiple locations with the aim of reducing training time
and data and increasing robustness compared to independent training. To this end, we plan
to use multi-task learning methods and optimizers to reduce total training time, to improve
RL agents’ adaptability to changing environments, and to reduce data usage required for
maximum performance across multiple agricultural fields.
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Chapter 1

Introduction

1.1 Motivation

The agricultural sector is facing multiple challenges in the recent years. The global population
is projected to increase by 25% until 2050 [2], shown in Figure 1.1, leading to an analogous
rise in food demand. Concurrently, the need for consistent and sustainable crop yields is harder
to fulfill as the world is experiencing more frequent and severe weather events due to climate
change [18]. The production and excessive use of fertilizers such as Nitrogen (N) contribute to
greenhouse gas emissions [34] and environmental pollution[33]. Such use, alone, is more than
the aviation and shipping industry combined, as shown in 1.2, emphasizing the need for opti-
mized and environmentally-conscious crop management strategies.

Figure 1.1: Global population size projection. As population increases, the global food demand
increases as well. Plot based on UN data [2].
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1. INTRODUCTION

Domain expertise and advancements in agronomic research have proven effective in main-
taining and enhancing crop yields, leveraging time-tested methods and domain expertise. How-
ever, there are inherent limitations to such practices, as they lack adaptability to events such
as sudden weather events, and are mainly based on general empirical guidelines [15]. As the
problem of optimizing crop management is highly complex, due to the multitude of variables
that can affect plant growth and can be controlled there exists potential to further harness effi-
ciencies through intelligent control and decision-making systems [54]. Reinforcement Learning

Figure 1.2: Environmental impact of Nitrogen as fertilizer is bigger than aviation combined with
shipping. Plot based on data from [34] [33].

(RL), with its inherent ability to learn optimal action sequences and adapt to evolving conditions,
presents a promising avenue for optimization[31]. Analogous to human learning from trial and
error, RL agents can navigate the complexities of agricultural environments, aligning interven-
tions such as irrigation, fertilization or crop rotations in an optimal sequence for maximizing
yield and sustainability [51]. Based on previous literature [51] it is shown that an RL agent can
outperform the current employed strategies by 11-33%, translating to hundreds of millions of
dollars lost, when scaled to continent size. See in Figure 1.3.

However, the application of RL in agriculture currently faces a significant challenge: the
need to train a single agent for each crop field, as an agent cannot perform optimally even in
geographically close locations, as shown in Figure 1.4 and Table 1.1. This approach is not only
computationally intensive but lacks scalability, limiting the broader deployment of Reinforce-
ment Learning agents across diverse agricultural lands.

The objective of this thesis is to explore and address this limitation. By utilizing the Cycles-
Gym [51] framework, this project seeks to develop general RL agents that can adapt to different
crop fields, optimizing crop management across a range of conditions. While progress in RL
training efficiency will reduce required resources, such agents can also provide more robust and
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1.1. Motivation

Figure 1.3: Comparison of rewards, in k$ per hectare, between a Reinforcement Learning Policy
and a Fixed Policy. A Fixed Policy is a farmer’s pre-decided strategy, that is based on empirical
guidelines. Rewards are measured based on economic profit, per year, per hectare of land. The
x-axis shows the time horizon of the training data, thus comparing different scenarios. Rewards
are averaged for each year in the specified time period. Plot derived from [51]

adaptable models in the long run. In doing so, this work aims to contribute to the growing
need for scalable and efficient agricultural practices that can meet the demands of a growing
population and address the pressing challenges posed by pollution and climate change-induced
agricultural vulnerabilities.

1.1.1 Single field training limitations

Using a single agent for each individual field might seem like a simple solution, but it’s not fea-
sible for broader applications. This raises essential questions: How do soil element changes and
weather variations affect the performance of an agent? How extensive can an area be for a single
agent to effectively manage? To that end, we trained four distinct agents, each for a specific loca-
tion in Switzerland: Trelex, Senarclen, Orges, and Bassins. These locations are spaced between
5 and 25 km apart. The performance of each agent across these locations is presented in Table
1.1 and Figure 1.4. Interestingly, even for locations A,B just 5 km apart, an agent trained on
data of location A, can significantly underperform compared to an agent specifically trained in
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1. INTRODUCTION

location B. This highlights the difficulty in transferring knowledge between even closely situated
areas.

Considering the broader context, one can calculate the total computational time needed for
Europe. Training a single agent for a specific agricultural area takes about 2–3 hours. Europe
has a vast agricultural expanse of 1.57 million km2. Dividing this area into 25 km2 tiles (keeping
in mind that even a 5 km difference can lead to inferior agent performance), one can grasp the
scale of the challenge ahead.

Training time per field : 2–3hours

Total area of farmland in Europe : 1.57million km2

Total training time for Europe :
1,570,000×2.5hours

25 km2

≈ 157thousand hours

≈ 18 years

Naturally, spending 18 years of computational time to train ≈ 65000 models, needing the
respective amount of data and human resources, is an ineffective way to optimize crop manage-
ment. By scaling this world-wide, and taking into account the organizational and infrastructural
effort, it becomes evident that both pre-determined, empirical-based policies that are currently
employed, and single-agent-per-field strategies are quite impractical. Instead the proposed ap-
proach aims to develop general RL agents capable of optimal decision making across diverse
fields, leading to saving computational costs, increasing crop yield, and reducing the total cli-
mate impact of agriculture.

Table 1.1: Rewards of Reinforcement Learning agents evaluated in multiple swiss fields in k$ per
hectare of land. While all of these fields are in a radius of 12km, the rewards differ significantly.

Deployed in
Trelex Senarclen Orges Bassins

Tr
ai

ne
d

in Trelex 0.72 0.45 -10 0.42
Senarclen -12 0.58 -9.7 -15
Orges 0.46 0.41 0.49 0.42
Bassins -11 0.45 -9.9 0.32

1.2 Proposed Approach

The approach taken in this research to address the challenges of optimizing crop management
across locations using Reinforcement Learning is outlined in this section. The proposed methods
center around Multi-Task Reinforcement Learning (MTRL) and optimizer techniques.
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1.2. Proposed Approach

Figure 1.4: Performance comparison of multiple agents in different locations. In this plot, the
metric used is Performance % =

pA
B

pB
B
× 100, where pA

B is the performance of an agent trained
in location A and evaluated in location B. The distance between the 4 locations shown in this
barplot are 5-25km. Note: There should be negative bars, given the Table 1.1, however, to save
space in this plot that serves as motivation, any performance % ≤ 0, is given as 0, to show that
inability to provide any meaningful rewards.

1.2.1 Multi-Task Reinforcement Learning (MTRL)

Multi-Task Reinforcement Learning provides a framework that allows a single agent to learn
multiple tasks simultaneously. By sharing common features and leveraging the intrinsic rela-
tionship among different tasks, MTRL promotes more efficient learning and facilitates knowl-
edge transfer across different tasks[13]. This provides the capability of agent generalization
across diverse fields, varying in soil, weather condtions and suitable crops. The significance of
this extends beyond computational efficiency; in an industry in which actors can only target for
narrow profit margins [25], small percentage gains in crop yield can translate into substantial
economic impact. Therefore, the choice of MTRL in this research is based on the complexity
and requirements of modern agricultural optimization, highlighting its importance for scalable
and sustainable methods. In this research, sequential task sampling [29] is the main applied
MTRL method.
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1. INTRODUCTION

1.2.2 Multi-Task Learning Optimizers

Effective training of MTRL models requires specialized optimization techniques. Various op-
timizers have been developed to enhance the convergence and stability of MTRL training. In
this research, the focus is on PCGrad [59], that tries to solve the conflicting gradients problem
during MTRL [59], based on the hypothesis that diverse agricultural fields, with their respective
data, lead to conflicting gradients during RL training.

1.2.3 Conclusion of the Proposed Approach

This study provides the first Multi-Task Reinforcement Learning approach for crop manage-
ment. Our proposed approach combines the principles of Multi-Task Reinforcement Learning
and MTRL-specific optimizers’ techniques to create a robust and scalable solution to the intri-
cate problem of optimizing crop management across diverse fields and conditions.

1.3 Research Objectives

In the context of using Reinforcement Learning in agriculture, this section defines our research
objectives. We focus on understanding the advantages and limitations generalized RL agents for
agricultural deployment. More specifically:

1. How can Reinforcement Learning agents be designed to generalize across diverse agri-
cultural areas, without the need for field-specific training?

2. How do general Reinforcement Learning agents compare to field-specific agents in terms
of training speed, performance, and adaptability?

3. What methods offer the greatest efficiency in terms of computational resources and time
in developing reinforcement learning agents capable of managing diverse agricultural
areas?

4. What is the largest area that can be managed by a single Reinforcement Learning (RL)
agent?

6



Chapter 2

Background

2.1 Markovian Decision Process (MDP)

Markov Decision Processes (MDPs) provide a mathematical framework for modeling sequential
decision-making, especially under uncertainty, which, in turn, is a core concept for Reinforce-
ment Learning (RL) [4]. Formally, an MDP is defined by a tuple (S,A,P,R), where:

• S is a finite set of states,

• A is a finite set of actions,

• P is the state transition probability function, and

• R is the reward function.

A visualization of these components is shown in 2.1
The state transition probability function P : S× A× S → [0,1] defines the probability of

transitioning from state s to state s′ after taking action a, and is given by:

P(s′|s,a) = Pr(St+1 = s′|St = s,At = a) (2.1)

where St and At denote the state and action at time t, respectively. The reward function

R : S×A×S→ R

provides the expected reward received after transitioning from state s to state s′ due to action a,
and is defined as:

R(s,a,s′) = E[Rt+1|St = s,At = a,St+1 = s′] (2.2)

,
A policy π : S×A→ [0,1] specifies the probability of choosing action a in state s. The

objective in an MDP is to find an optimal policy π∗ that maximizes the expected cumulative
reward over time. This is often expressed in terms of the value function V π(s) or the action-
value function Qπ(s,a), which are defined as:

7



2. BACKGROUND

Figure 2.1: Visualization of interactions between agents and environment in MDP. Image taken
from [48]

V π(s) = Eπ

[
∞

∑
t=0

γ
tRt |S0 = s

]
(2.3)

,

Qπ(s,a) = Eπ

[
∞

∑
t=0

γ
tRt |S0 = s,A0 = a

]
(2.4)

,
where 0≤ γ < 1 is the discount factor which models the agent’s consideration for future re-

wards. The optimal policy π∗ can then be obtained by solving the Bellman optimality equations:

V ∗(s) = max
a

[
R(s,a)+ γ ∑

s′∈S
P(s′|s,a)V ∗(s′)

]
(2.5)

,

Q∗(s,a) = R(s,a)+ γ ∑
s′∈S

P(s′|s,a)max
a′

Q∗(s′,a′) (2.6)

.
MDPs are foundational for understanding the dynamics in which Reinforcement Learning

(RL) operates. They provide a systematic way of modeling and solving decision-making prob-
lems in multiple domains by translating real-world problems into a formalized computational
structure [40].

2.2 Reinforcement Learning

Reinforcement Learning is a broader computational approach to learning optimal decision-
making in uncertain environments. Unlike MDPs, RL does not assume prior knowledge of

8



2.2. Reinforcement Learning

transition probabilities or reward functions. Instead, an agent learns from the feedback—rewards
and new states—it receives upon taking actions in different states, progressively improving its
policy through a process of trial-and-error [48]. This learning paradigm allows the agent to learn
either the underlying MDP’s structure or a policy that performs well without necessarily learning
the MDP’s parameters [24].

The fundamental goal in RL is to learn an optimal policy that maximizes the expected cumu-
lative reward over time. This is achieved through an ongoing process where the agent continually
interacts with the environment, receiving feedback in the form of rewards that inform the agent
about the quality of the actions taken. The agent uses this feedback to update its policy, aiming
to improve its future performance.

RL encompasses a wide array of algorithms designed to efficiently explore the action space,
balance the trade-off between exploration (trying new actions to discover their effects) and ex-
ploitation (choosing actions that are known to yield good rewards), and learn a policy either
by estimating the value functions or by directly optimizing the policy. Algorithms such as
Q-learning, SARSA, and Temporal Difference Learning are foundational methods in RL that
estimate the value of state-action pairs to guide the policy towards higher rewards [48].

2.2.1 Deep Reinforcement Learning (DRL)

Recently, Deep Reinforcement Learning (DRL), which combines deep neural networks with RL,
has significantly expanded the capabilities of traditional RL [35]. By tackling complex, high-
dimensional problems, DRL overcomes the limitations of classical RL methods, extending its
applicability to real-world challenges like autonomous driving, robotics, and game playing [5].

Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) stands as a common algorithm in DRL applications, aiming
for a balance between Value Iteration and Policy Iteration to ensure stable and robust learning
[43]. Unlike traditional policy optimization methods, PPO focuses on a moderate step towards
the new policy, without extreme policy changes. This moderation is achieved through a surrogate
objective function that penalizes changes in the policy that are ”too far” from the old policy. The
objective function for PPO is articulated as:

L(θ) = Et
[
min

(
rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât

)]
(2.7)

where rt(θ) =
πθ(at |st)

πθold (at |st)
denotes the probability ratio, Ât is the estimated advantage at time t, and

ε is a hyperparameter controlling the clipping. The clipping function ensures the updates remain
bounded, promoting stable and effective learning.

2.2.2 Multi-Task Reinforcement Learning

Multi-Task Reinforcement Learning (MTRL) extends the conventional Reinforcement Learning
(RL) framework to handle multiple tasks simultaneously. This extension is particularly relevant
in real-world scenarios where a system is required to perform several tasks, each with poten-
tially differing objectives and with differing input data. The core idea in MTRL is to leverage
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2. BACKGROUND

the intrinsically common features and shared structures between the different tasks to improve
the learning efficiency and performance on each task[10]. This is achieved by sharing represen-
tations, value functions, or policies across different tasks. [42]

Multi-Task Reinforcement Learning (MTRL) relies on the benefits of utilizing relations
across tasks to improve the performance on any single task, specifically with context-based
representations[46]. Furthermore, addressing the challenge of parameter sharing among differ-
ent tasks, parameter-compositional MTRL can train a single policy that can be applied to a set
of different tasks [47].

To achieve high performance across tasks and overcome challenges associated with MTRL,
multiple architectures and methodologies have been proposed. Based on attention-mechanisms
[52], an attention-based mixture model manages the shared information across different tasks
and addresses the challenge of how parameters in the network should be reused across tasks[12].
Additionally, a survey on Multi-Task Deep Reinforcement Learning discusses state-of-the-art
approaches by comparing and contrasting recent solutions such as DISTRAL (DIStill TRAnsfer
Learning) [50], IMPALA (Importance Weighted Actor-Learner Architecture)[14], and PopArt[21],
elaborating on the research challenges associated with multitask rl [53]. Moreover, the concept
of soft modularization is introduced to optimize the learning process, by dynamically reconfig-
uring the base policy network for each task [57].

Sequential Task Sampling

The Multi-Task Reinforcement Learning training in this research, is using sequential task sam-
pling [23] [29] [28], where model weights are updated sequentially, based on the rollouts of each
task. Given a set of T tasks, a MTRL optimization is performed from an initialization φ. For
each task t = 1,..., T , we sample minibatches B(1)

t , . . . ,B(K)
t from task data Dt and change the

gradients based on them, as shown in the following equations:

θ
(0)
t = φ, (2.8)

θ
(k)
t = θ

(k−1)
t −α

∂L
(

θ
(k−1)
t ;B(k)

t

)
∂θ

(k−1)
t

(2.9)

2.2.3 Optimizers

One common approach in Multi-Task Learning is to optimize an objective function, which is
typically a weighted average of the task-specific objective functions, namely unitary scalariza-
tion [28]. This approach aims at finding a balance between the tasks so that the learning process
is beneficial to all tasks involved. However, it’s often debated whether the conventional meth-
ods of simply optimizing a weighted average of the task losses are effective [55]. Research has
led to the proposal of specialized optimization algorithms tailored for deep multi-task models.
These algorithms are believed to yield solutions superior to those obtained by merely optimizing
a weighted average of the task losses[59].
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2.3. Crop Management Optimization in Agriculture

PCGrad

A method in the multi-task optimizer category is PCGrad, which aims to solve the challenge of
conflicting gradients during training [59], as shown in 2.2. Vectors x and y similarity is defined
as cos(x,y). for the cosine similarity between vectors. If the following two conditions hold:

• conflicting gradient directions: cos
(

∇θ∥Li,∇θ∥L j

)
< 0 for some i, j ∈ T

• differing gradient magnitudes:
∥∥∥∇θ∥Li

∥∥∥≫ ∥∥∥∇θ∥L j

∥∥∥ for some i, j ∈ T

learning is slowed and possibly ineffective [59]. To solve such conflicts, a projection of the per-
task gradient onto the gradients’ normal plane. If g is the update direction and [x]+ := max(x,0).
Given per-task gradients ∇θ∥Li, PCGrad [59] projects each task gradient onto the normal plane
of all the gradients with which it conflicts:gi← ∇θ∥Li,gi← gi +

−gT
i ∇θ∥L j(x)∥∥∥∇θ∥L j

∥∥∥2


+

∇θ∥L j∀ j ∈ T \{i}

∀i ∈ T ,

g =−∑
i∈T

gi,

Figure 2.2: Conflicting and non-conflicting gradients in PCGrad, and their projections [59]

2.3 Crop Management Optimization in Agriculture

Crop Management Optimization (CMO) is a domain within agricultural research aimed at en-
hancing productivity and sustainability. It involves optimizing the allocation of resources and
timing of agricultural activities to maximize yield, minimize costs, and ensure environmental
sustainability[20]. The application of optimization techniques in agriculture facilitates better
decision-making amid uncertain environmental conditions and limited resources.

The integration of machine learning (ML) and artificial intelligence (AI) in CMO has shown
potential in advancing optimized agricultural practices. Computational techniques such as ML
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2. BACKGROUND

and AI enable the analysis of large datasets, which include weather data, soil conditions, and
crop performance, to generate insights and predictions. Through the application of ML and AI,
more informed decision-making regarding planting, irrigation, fertilization, and pest control can
be achieved[30].

Reinforcement Learning (RL), a subset of ML, has found application in CMO. By modeling
the agricultural decision-making process as a Markov Decision Process, RL can be employed to
learn optimal policies in agricultural tasks. The iterative learning process inherent in RL allows
for the continuous improvement of policies based on feedback from the environment, making it
a dynamic tool to address the evolving challenges faced in agricultural management[11].

2.3.1 Machine Learning for Crop Management

Machine Learning (ML) has emerged as a potent tool for addressing complex problems in var-
ious domains, including agriculture. In crop management, ML can be employed to analyze
large datasets derived from various sources such as satellite imagery, weather stations, and soil
sensors to generate actionable insights[30]. Through ML algorithms, patterns and relationships
within data can be discerned, enabling predictive modeling and decision support for various as-
pects of crop management including pest and disease detection, yield prediction, and resource
optimization.

The application of ML in crop management has been facilitated by the advent of big data
technologies and the increasing availability of high-resolution spatial and temporal data. Re-
mote sensing technologies, for instance, provide a continuous stream of data regarding crop
health, soil conditions, and environmental factors, which can be analyzed using ML to monitor
crop conditions and predict yields[30]. Moreover, ML can be employed to optimize irrigation
schedules, fertilization plans, and other resource allocations, thereby contributing to the overall
efficiency and sustainability of agricultural practices.

Various machine learning algorithms have been adapted to tackle distinct challenges within
crop management. For instance, supervised learning algorithms have been employed for tasks
such as disease detection and yield prediction where labeled data is available[6]. In scenarios
where labeled data are scarce or expensive to obtain, unsupervised and semi-supervised learning
paradigms are beneficial. They find use in plant systems biology for tasks like clustering, di-
mensionality reduction, self-supervised learning, and transfer learning[56]. On the other hand,
Reinforcement Learning (RL) is another paradigm that finds application in optimizing decision-
making processes in crop management. [16]

2.3.2 Reinforcement Learning in Agriculture

Reinforcement Learning (RL) aligns well with the challenges and requirements of crop manage-
ment optimization. The inherent nature of RL to learn from interactions with the environment
and improve decision-making over time makes it apt for agricultural settings where the deci-
sions pertaining to irrigation, fertilization, and pest control have a significant impact on the
yield. Through continuous learning and adaptation, RL can help in designing dynamic policies
that can better cope with the uncertainties and variabilities in agricultural scenarios[16].
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One of the platforms facilitating the application of RL in agriculture is DSSATGym, which
serves as a bridge between RL research and realistic crop management tasks. DSSATGym
provides an open-source RL environment interfaced with the Decision Support System for
Agrotechnology Transfer (DSSAT), a high fidelity crop simulator. This setup allows for the
simulation of real-world sequential decision problems in agriculture, aiding in the development
and testing of RL algorithms for crop management optimization[54].

CyclesGym is another platform that leverages the increasing abundance of data in agricul-
tural systems to design adaptive policies through RL. The platform encourages learning long-
term crop management strategies, as shown in 2.3 by adapting to environmental conditions, pro-
viding a natural technique for learning policies in sequential decision-making problems within
agriculture[51]. In this research, specifically, we performed experiments using Cycles and Cy-
clesGym, as it is the only package that allows for multi-year modelling of crop growth.

Figure 2.3: Agricultural management for long-term decisions. Multi-year strategies affect both
environmental and economic impact. [51]

FarmGym aims to foster both the RL research and interaction between agronomy and RL
communities. It models a farm as a dynamical system with many interacting entities and takes a
gamification approach to make the environment engaging yet realistic for testing and developing
RL algorithms for stochastic and dynamic farm management scenarios[31].

CropGym provides a configurable environment for conducting RL research in crop man-
agement. Built around PCSE, a python library with various crop simulation models, CropGym
facilitates learning fertilization management policies using process-based crop growth models.
It particularly focuses on reducing the environmental impact of nitrogen fertilizers by optimizing
fertilizer management strategies through RL[37].
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Chapter 3

Methods

3.1 Environment Description

Understanding the environment in which a Reinforcement Learning agent operates is crucial for
designing effective RL approaches. The environment serves as the source of the agent’s input,
and the agent interacts with the environment by taking actions. Consequently, the performance
of the RL agent is largely influenced by its understanding of the environment. For this reason, it
is essential to explain the environment from both the Reinforcement Learning (RL) and physical
perspectives. By defining the environment comprehensively, we can better address the problems
and challenges involved in applying RL to crop management.

3.1.1 Physical Problem

The physical problem addressed in this research is specific to crop management with an empha-
sis on optimizing nitrogen application and irrigation for maximal crop growth and profit while
minimizing environmental impacts. Both nitrogen and water are required resources for crop
development, yet their mismanagement can lead to undesirable consequences [32]. Excessive
nitrogen application can result in soil degradation, water pollution, and greenhouse gas emis-
sions, whereas inefficient irrigation practices can waste water, degrade soil, and contribute to
groundwater depletion [7].

The challenge arises from the dynamic and interconnected factors that influence crop growth,
nitrogen uptake, and water use, including daily weather conditions, soil properties, and agro-
nomic practices [45]. Weather variables like temperature, precipitation, and solar radiation di-
rectly impact crop growth and water demand, while soil properties such as clay, sand, organic
matter content, and bulk density affect nutrient and water availability and retention [27].

Achieving optimal nitrogen and irrigation management in this complex system requires a
data-driven approach that can account for the interaction of multiple factors. By building upon
a Reinforcement Learning (RL) framework that incorporates detailed weather and soil data with
realistic simulations, the research seeks to help farmers make informed choices for sustainable
and profitable crop management across diverse fields, improving crop yield and quality while
reducing environmental impacts.
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Data Description

The weather information used in the simulations includes daily weather data over an area, down-
loaded from AGERA5 [8] and Cycles [27]. Each daily weather record comprises of several
variables: YEAR and DOY, representing the year and numerical day of the year; PP, precipita-
tion in mm/day; TX and TN, the maximum and minimum daily temperatures in degrees Celsius;
SOLAR, the daily solar radiation in MJ/m2/day; RHX and RHN, the maximum and minimum
relative humidity in % ; and WIND, the average wind speed in m/s.

Soil information is also used in simulations. The soil data includes properties of different soil
layers, with columns indicating LAYER, THICK, CLAY, SAND, ORGANIC, BD, FC, PWP, SON,
NO3, NH4, BYP H, and BYP V. LAYER indicates the layer number, and THICK is the thickness
of each soil layer in meters. CLAY and SAND represent the clay and sand particle size fractions
of each layer in %. ORGANIC is the organic matter concentration in %. BD is bulk density in
Mg/m3, and FC and PWP are the field capacity and permanent wilting point volumetric water
contents, respectively, in m3/m3. SON is the soil organic nitrogen mass in kg/ha for each soil
layer. NO3 and NH4 are the nitrate and ammonium masses in kg/ha for each soil layer. BYP H
and BYP V represent the fractions of horizontal and vertical bypass flows in each soil layer.

3.2 Cycles

Cycles is a Crop Growth Model (CGM) [58] for soil, water, and plant simulations, developed
to understand and predict biogeochemical processes in agroecosystems. Designed to operate at
various temporal and spatial scales, Cycles facilitates the study of complex interactions between
soil, water, and plants in agricultural systems. The model incorporates the effects of weather,
soil properties, crop management practices, and plant growth on carbon and nitrogen dynamics,
soil water flow, and nutrient cycling. Cycles allows users to explore and evaluate various agricul-
tural management practices and their implications for soil health, crop yield, and environmental
sustainability. The model integrates daily weather data, detailed soil profile information, and
crop-specific parameters to simulate plant growth, nutrient uptake, and soil carbon and nitrogen
dynamics.

3.2.1 Running Cycles Simulations

Cycles performs simulations by using parameters and limits defined in multiple different data
files. Given a set of files as input, it provides a set of files as output, containing detailed infor-
mation regarding the simulation. In more detail:

• The set of input files contains information regarding the simulation hyperparameters, op-
erations (such as fertilization, irrigation, planting, tilling, and harvesting) applied during
the simulations, and soil/weather data as described before.

• The set of output files contains information regarding daily environmental data, crop
growth, biomass accumulation, nitrogen effects and deposits, water balance and more.
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More information can be found in Appendix A.
A simple single-year simulation overview of the operations affecting the results is shown in

Figure 3.1 providing the basic operations that affect the it. Specific information, such as amount
of fertilizer, day of the year to perform an operation are given by input files.

Figure 3.1: Cycles simulation overview

3.3 CyclesGym

3.3.1 Introduction to CyclesGym

CyclesGym [51] is a Reinforcement Learning environment designed for long-term planning in
agroecosystems. It is based on the multi-year, multi-crop Crop Growth Model (CGM) Cycles
[27] and provides an OpenAI Gym [9] compatible environment for simulating and optimizing
Reinforcement Learning (RL) crop management policies in Python. Why CyclesGym?

• Long-Term Planning: Enables the modeling of multi-year environments with multiple
crops, reflecting the real-world complexities of agricultural management.

• Modularity: Offers a modular OpenAI gym [9] environment, with a fully customizable
set of state space, reward functions, weather generators using Python’s inheritance func-
tionality.

• Crop options: Offers an extensive selection of ready crop configurations, while also al-
lowing custom-made crops.
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• Real-World Benchmark: Serves as a novel benchmark for researchers, bridging the gap
between theoretical RL and practical agricultural applications.

Cycles Integration in CyclesGym

CyclesGym is utilizing mechanistic crop growth models (CGMs), namely the Cycles [27] model,
to simulate crop growth and soil conditions driven by the weather conditions and farming oper-
ations.

It is important to understand why there is a need to use such a mechanistic model. The Cycles
model is integrated into CyclesGym to provide a realistic representation of agricultural ecosys-
tems, simulating crop growth processes. In RL, to solve such a complex application requires a
simulator that can reproduce real-world conditions [17]. While datasets can supply information
on daily weather patterns and initial soil conditions, they often fall short in capturing the nuanced
effects of specific fertilization and irrigation operations, with regard to amount and time of the
year, on both soil and plant conditions. This is where the Cycles CGM contributes the required
data. By simulating the effects of each agricultural operation, CyclesGym ensures that the RL
agent receives precise feedback during both training and evaluation phases, enabling more in-
formed and effective decision-making in crop management. Naturally, an alternative option is
to gather data using equipment from real-world fields, based on the actions of our agent, but
it is easily understandable that this is an extremely expensive, inefficient and lengthy process.
Hence, the integration of Cycles with a gym environment is the only computationally efficient
way of modeling and training RL agents for crop management.

As shown in Figure 3.2 the RL Environment is using the simulation data provided by the
mechanistic Crop Growth Model in St+1, based on the actions At

However, using mechanistic models comes with disadvantages.

• Dependency on the quality of the model. The performance of an RL agent is directly
affected by how good a mechanistic model is to simulate real-word.

• Sim2Real gap The simulations generated by a Crop Growth Model and reality can differ
greatly. This can be tackled in a certain degree by either calibrating the model [3]

Environment Configuration in CyclesGym

• State Space: The observation space includes variables provided by the Cycles model,
such as soil moisture, nutrient levels, crop growth stage and daily weather conditions
provided by a dataset.

• Actions: Actions encompass various management techniques, reflecting real-world agri-
cultural practices, such as irrigating, fertilizing and.

• Rewards: Rewards are based on the final economic profit of the farmer after harvesting -
or multiple harvests in multi-year experiments.
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Figure 3.2: CyclesGym training loop and integration of Cycles Crop Growth Model

Training and Evaluation with CyclesGym CyclesGym serves as the primary environment
for training and evaluating RL agents in this research. The Cycles model plays a crucial role in
simulating underlying agroecosystem dynamics, enabling the learning of adaptive strategies that
outperform expert practices in various scenarios.

1. Environment Initialization: Configuring CyclesGym with specific crop fields, weather
scenarios, and management objectives.

2. Agent Interaction: The RL agent interacts with the CyclesGym environment, guided
by the Cycles model’s simulations, taking actions, observing new states, and receiving
rewards.

3. Evaluation and Analysis: Assessing the RL agent’s performance in unseen test scenarios,
reflecting the real-world applicability of the learned strategies.

Agent Interaction with CyclesGym The RL agent’s interaction with the CyclesGym envi-
ronment is a critical phase where the Cycles model plays a vital role. This interaction consists
of the following components (refer to Figure 3.2):

• Action Execution: The RL agent takes actions such as irrigation and fertilization. These
actions are then processed by the Cycles model, which simulates their effects on the soil
and crop growth dynamics.

• State Observation: After executing an action, the RL agent observes the new state of
the environment. The Cycles model provides some these state observations, reflecting the
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real-world effects of the agent’s actions on variables like soil moisture, nutrient levels, and
crop growth stage, alongside daily weather conditions provided by the dataset.

• Reward Calculation: The reward function in CyclesGym guides the RL agent’s learning.
The Cycles model contributes to defining the reward by providing information such as
crop yield, nitrogen leaching, etc.

Conclusion The integration of the Cycles model into CyclesGym provides a robust and re-
alistic platform for exploring long-term crop management strategies. By simulating complex
interactions between crops, soil, weather, and management practices, CyclesGym facilitates the
development of RL agents capable of addressing modern agriculture’s complex challenges.

3.4 Action Space

The action space, which determines the set of decisions an RL agent can make, primarily com-
prises two critical agricultural interventions: fertilizing and irrigation. By optimizing these ac-
tions, we aim to enhance the agent’s ability to adapt and perform across varied land types and
weather conditions.

3.4.1 Action Space for Fertilization-only Experiments

In the fertilization-only scenario, the action space is defined by the amount of nitrogen fertilizer
applied to the crops. In the equation 3.4.1, representing the action space, each unit corresponds
to an application of 40 kg of nitrogen fertilizer per hectare of land.

At = {k ·40kg/haN fertilizer |k ∈ {0,1,2,3,4}}

(3.1)

The 40 kg amount was chosen as it was already used in previous research [49].

3.4.2 Action Space for Fertilization and Irrigation Experiments

In the scenario with both fertilization and irrigation actions, the action space is defined by the
amount of nitrogen fertilizer and the amount of irrigation water applied to the crops. In the
equation 3.2, each unit corresponds to an application of 40 kg/ha of nitrogen fertilizer and 6
m3/ha of irrigation water.

AN,I = {k ·40kg/haN fertilizer,k ·6m3/haIrrigation water |k ∈ {0,1,2,3,4}} (3.2)

The 6m3̂ water amount was chosen as it was already used in previous research [49].
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3.5 State Space

While in Markov Decision Processes (MDPs) [40], states are assumed to be Markovian, contain-
ing relevant information regarding the past and the future, in practice, and in agriculture, access
to such data is rare and expensive [51]. To address this, Partially Observable Markov Decision
Processes (POMDPs) [36] are used by CyclesGym.

In our application, we use a set of values, comprised of the values in each observation in
Table 3.1 to represent the each state in the POMDP.

Observation Description Optional
PP Daily Precipitation No
TX Maximum daily temperature No
TN Minimum daily temperature No
SOLAR Solar radiation No
RHX Maximum daily relative humidity No
RHN Minimum daily relative humidity No
STAGE Stage in the plant life cycle No
CUM. BIOMASS Cumulative plant biomass No
N STRESS Daily N stress value of the crop No
WATER STRESS Daily water stress value of the crop No
ORG SOIL N Sum of microbial biomass N and No

stabilized soil organic N pools
PROF SOIL NO3 Soil profile nitrate-N content No
PROF SOIL NH4 Soil profile ammonium-N content No
N TO DATE Nitrogen amount used in fertilization so far in the ismulation No
WATER TO DATE Water amount used in irrigation during the simulation so far No
Y Years left to simulate Yes
TASK Task Identifier Yes

Table 3.1: Observation variables and their descriptions.

3.6 Reward Functions

3.6.1 Financial-Based Reward Function

In the initial design of our experiments, the reward function R(st ,at) considered only the yield
amount and nitrogen use. It was defined as follows:

R(st ,at) =

{
Yt −CN ·Nt if t is harvest day
−CN ·Nt otherwise

(3.3)

where:

• Yt is the yield amount at time t
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• Nt is the amount of nitrogen used at time t

• CN is the cost of nitrogen per unit, given as 4.96 USD/kg of N

3.6.2 Integrated Financial and Environmental Reward Function

The updated reward function R(st ,at) considers yield amount, nitrogen use, leaching fee, irriga-
tion fee, and balance fee. It can be defined as follows:

R(st ,at) =

{
Yt −CN ·Nt −Lt ·FL− It ·FI−Bt · I{Bt≥10} ·FB if t is harvest day
−CN ·Nt −Lt ·FL− It ·FI otherwise

(3.4)

where:

• Yt is the yield amount at time t.

• Nt is the amount of nitrogen used at time t.

• CN is the cost of nitrogen per unit, given as 4.96 USD/kg N.

• Lt is the amount of nitrogen leached at time t.

• FL is the leaching fee, given as 2.0 USD/kg N/ha.

• It is the amount of irrigation water used at time t.

• FI is the irrigation fee, given as 1.1 USD/mm/ha.

• Bt is the nitrogen balance at time t, calculated as Nfertilizer−Nremoved where Nfertilizer is the
N applied as mineral fertilizer, and Nremoved is the N harvested in maize grain, calculated
from crop yield and an estimated grain N concentration of 11.5 g N/kg grain as in Eagle
et al. (2020).

• I{Bt≥10} is an indicator function that is 1 if Bt ≥ 10 and 0 otherwise.

• FB is the balance fee, given as 2 USD.

3.7 Dataset

In this research, a dataset was created to facilitate the exploration of RL approaches in crop
management, and to systematically study the effects of the proposed methods in a controlled
environment. The dataset comprises of weather and soil data from various locations, as well as
modifications to existing weather files and Corn-specific information.
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3.7.1 Data Collection

Weather Data

Weather data were collected from multiple locations, including Leon (Spain), Chaiyaphum
(Thailand), Bremen (Germany), Dresden (Germany), Stuttgart (Germany), Munich (Germany),
and Munster (Germany). The data were sourced from the AGERA5 dataset [8], which provides
global weather data tailored for agriculture. AGERA5 is available from the Earth Informatics
and can be accessed at https://www.earthinformatics.eu/tools/agera5-global-weath
er-data-set-tailored-agriculture. Cycles ships with weather files on New Holland and
Rock Springs, both located in USA [1].

Soil Data

Soil data were collected from the SoilGrid [39] dataset, which provides global predictions for
soil properties and classes at a fine spatial resolution. SoilGrid is available from the ISRIC -
World Soil Information and can be accessed at https://soilgrids.org. As a go-to file, the
GenericHagerstown soil file that was shipped alongside Cycles, was used as well.

3.7.2 Weather File Generation

Based on the Rock Springs and New Holland weather files, which can be found included in
the Cycles release [1], new weather files were generated by modifying specific elements. Two
different sets of modifications were performed:

• The daily maximum temperature was changed from -10 to +18, in steps of 2, resulting in
15 new weather files for each of the Rock Springs and New Holland weather files, code-
named RSTX1, RSTX2...RSTX15, and NHTX1, NHTX2...NHTX15. RS stands for Rock Springs
based files, NH stands for New Holland based files and TX stands for max temperature.

• Four elements were modified by changing their daily values according to the following
ranges:

– Maximum temperature (tx): -5 to 12, in steps of 2

– Maximum relative humidity (rhx): -20 to 21, in steps of 15

– Minimum relative humidity (rhn): -20 to 21, in steps of 15

– Wind speed (wind): 0 to 9, in steps of 4

This resulted in 243 new weather files for each of the Rock Springs and New Holland
weather files, codenamed RS1, RS2...RS243, and NH1, NH2...NH243. RS stands for Rock
Springs based files, and NH stands for New Holland based files.
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3.7.3 Corn-Specific Information Modification

Cycles ships with a set of plant-specific information, that is used as input in simulations. As
before, this set was extended and corn-specific information was modified by changing the fol-
lowing parameters:

• Flowering range: 800 to 1500, in steps of 100

• Maturity range: 1500 to 2500, in steps of 100

These modifications allowed for the exploration of the effects of different flowering and
maturity ranges on crop growth and management strategies.
According to experts, the configuration CornRM.110 was the one that was more suitable for the
fields of Central Europe, and as such, it was selected during the RL experiments more often.

3.7.4 Conclusion

The creation of this dataset provides a rich and diverse set of data for training and evaluating RL
agents in crop management. The modifications to weather files and Corn-specific information
enabled the systematic exploration of various scenarios, the development of adaptive policies
for multiple environmental conditions and the evaluation of the impact of method choices on the
RL agent performance.

3.8 Task Selection

In this research, task selection was vital for evaluating MTRL methods in crop management.
The objective was to develop RL agents capable of managing diverse field conditions. There-
fore, tasks that are addressed by similar policies were not ideal for evaluating the effectiveness
of an MTRL method. The primary step involved identifying tasks from the dataset that necessi-
tated distinct policies for effective resolution, ensuring a comprehensive evaluation of multi-task
learning.

As task, we define the set of input files used for a Cycles simulation, and specifically, the
set of weather, soil and crop files.

3.8.1 Policy Evaluation

To identify diverse tasks without extensively training agents for every task, a simplified method
was employed. Instead of using neural networks, we utilized ”dummy” agents. These agents
executed predefined actions at set dates during the crop-growth cycle.

The initial phase of task selection involved evaluating various Nitrogen (N) application and
irrigation policies on different dates. The farmer’s profit was the metric for policy assessment,
acting as the reward. Policies were denoted as a tuple (x, y, z), where each element corresponds
to an action from the action space detailed in subsection 3.4.2.
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Policies were chosen from a predefined set, with x, y, and z indicating actions executed
on specific dates. The combined total of x, y, and z was restricted to 4 to prevent excessive
fertilization and irrigation. The date range spanned from planting to harvesting, and various date
combinations were tested to gauge policy effectiveness.

In detail, a ”dummy” agent was provided with two tuples: one indicating actions and the
other specifying the dates for these actions. Supplying this information as input to Cycles to
perform a simulation, and by processing the simulation results as CyclesGym would, yielded a
performance metric in k$ per hectare, the standard reward unit in this study.

3.8.2 Task Selection Criteria

Tasks were selected based on the diversity of their best-performing policies. Tasks that required
different policies were considered more challenging and diverse, making them suitable for eval-
uating MTRL.
Through this process, the best-performing policies for each task would be saved, as well as
the performances of every policy on every task. At the end, the top-3 performing policies
for each task, would be evaluated in the rest of the tasks, and only the tasks that had com-
pletely different top-3 best performing policies would be saved. To give an example, if task
X has policies (2,2,0),(3,1,0),(4,0,0) as top-3 in performance, while task Y had policies
(0,0,4),(0,1,3),(1,0,3) as top-3 in performance, we would save these two tasks, as they are
solved by completely different set of policies.

3.8.3 Conclusion

To summarize, instead of having a neural network decide the actions, a simplified agent was
employed, with preset actions that were to be taken on specific, predefined dates, allowing us
to avoid lengthy trainings, and quickly identify whether two tasks are diverse enough to not be
solved by similar policies.

The task selection process was crucial for evaluating multi-task learning in crop manage-
ment. By focusing on tasks that require different policies to reach top performance, it was pos-
sible to assess the advantages of multi-task learning in handling diverse and challenging tasks.
This approach provided a more robust and meaningful assessment of multi-task learning in crop
management.

3.9 Reinforcement Learning Framework

To facilitate the Reinforcement Learning model training, Stable Baselines 3 was used as the RL
framework. Stable Baselines 3 is a set of high-quality implementations of reinforcement learn-
ing algorithms in Python. It provides a consistent and easy-to-use interface for Reinforcement
Learning research and development [41].
Why Stable Baselines 3?
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• Compatibility: Seamlessly integrates with CyclesGym, providing a unified platform for
training and evaluating RL agents.

• Versatility: Offers a wide range of pre-implemented RL algorithms, enabling experimen-
tation with different approaches to find the optimal solution for crop management.

• Efficiency: Built with a focus on performance and ease of use, facilitating rapid prototyp-
ing and development.

3.9.1 Experiment configuration

In Stable Baselines 3, the default network architecture for both the policy and value networks is
a multi-layer perceptron (MLP) with two hidden layers. Each hidden layer contains 64 neurons
by default. The activation function used for the hidden layers is the TanH function [26]. The
output layer of the policy network has a size that corresponds to the number of actions in the
action space, while the output layer of the value network has a single neuron.
When explicitly mentioned, some experiments were performed using MLP, with three hidden
layers, where each layer contained 512 neurons. The training algorithm is PPO [44]

Early Stopping

Early stopping is a regularization technique used during the training of machine learning models
to prevent overfitting [19]. It involves terminating the training process before the model starts to
memorize rather than generalize from the training data. This is particularly useful to save com-
putational resources and to ensure the model’s performance generalizes well to unseen data. The
principle behind early stopping is to monitor the model’s performance on a validation dataset and
halt the training once the performance ceases to improve. In this work, early stopping was em-
ployed as a pragmatic approach to prevent overfitting and excessive training time. Specifically,
the training was terminated after the performance did not exhibit more than a 5% change in the
error rate for a window of 15 epochs. This practice helped in preventing the potential overfitting
and ensuring a robust model performance across different tasks while being resource-efficient.

3.10 Multi-Task Reinforcement Learning

In this section, this work’s Multi-Task Reinforcement Learning (MTRL) employed techniques
will be we discussed. These techniques were selected based on a review of the literature, identi-
fying them as performing optimally in various multi-task scenarios.

Sequential Task Sampling, named in [28] and found in [38] is a technique where the model
weights are updated sequentially, using the rollouts of every tasks - one task at a time. This
method is grounded on the principle that focusing on one task at a time can potentially lead to
better convergence and data efficiency [28].

To update the DRL model’s weights, two methods were used:

26



3.10. Multi-Task Reinforcement Learning

• Unitary Scalarization [28] where the updated step is towards the opposite direction of the
sum of per-task gradients:

∇θMT = ∑
i∈T

∇θLi

.

• PCGrad[59], where each task gradiented is projected onto the normal plane, defined by
the total gradients that the task is conflicting with
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Chapter 4

Results

4.1 Evaluation Metrics

It is already established by previous research, that an RL agent can outperform traditional strate-
gies in crop management. However, to evaluate general RL agents, the performance comparison
should be against the performance of optimal policies, by trained, task-specific RL agents, and
not against the performance of traditional approaches. In essence, the benchmark for a gen-
eral agent’s success is how closely it can emulate the performance of an agent optimized for a
specific task. As such, the following metric is used in the graphs, unless specified otherwise:

Per f ormance % =
pA

B

pB
B
×100 % (4.1)

where pA
B is the performance, measured in economical profit of k$ per hectare of land, of an

agent trained in location A and evaluated in location B.

4.2 Reward Function Refinement

To gain a deeper understanding of the complexities in generalizing an RL agent, we explored
the idea that a single agent trained in one specific location (Location A) could be deployed
and operate efficiently in different environments (Locations B, C...). The experiments were
conducted by training the agent in Location A and subsequently deploying and evaluating it in
the other locations. A series of experiments were conducted with the aim was to:

• Assess RL agent’s ability to generalize and perform in new, unseen environments

• Evaluate which tasks provide knowledge that can be transferred to other tasks

• Evaluate which agents are robust enought to perform well across tasks

As mentioned in Section ?? and based on previous literature, the experiments were using
Equation 3.3 as Reward Function, which was defined solely on the profit based on crop yield,
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Figure 4.1: Performance of agents in Munich, New Holland, Rock Springs and evaluated in all
of them as well. Metric is Equation 4.1

subtracting the cost of fertilization.

A significant drawback that was observed during the experiments was the excessive use of
nitrogen. The reward function was primarily focused on maximizing economic benefits, i.e., the
profit from yield minus the cost of nitrogen. This led to an imbalance where the agent was not
sufficiently penalized for over-utilizing nitrogen, resulting in an inefficient strategy.

As shown in Figure 4.1, the initial training environment is almost irrelevant, as an agent
trained with data from Munich, Germany will perform almost as well in New Holland, USA, as
an agent trained for that specific location. This performance is counterintuitive, as one would
expect that an agent trained in Europe would not perform perform nearly as well as an agent
trained for a specific location in the US. To further investigate this, experiments were run on the
diverse tasks that were identified from the created dataset, as mentioned in Section 3.8. How-
ever, the counterintuitive results were, again, repeated, as shown in Figure 4.2.

After a consultation meeting with agricultural experts, it was apparent that the reward func-
tion was overly simplistic and did not adequately represent the multifaceted real-world costs
involved in crop management. The experts highlighted the need to incorporate additional costs
such as leaching fees, irrigation fees, and balance fees [32], in order to create a more realistic

30



4.2. Reward Function Refinement

Figure 4.2: Performance of agents in RS39, RS49, NH161, NH91 and evaluated in all of them
as well. These tasks are from the generated dataset, and selected to be diverse and dissimilar, as
mentioned in Section 3.8. It is notable that even in these diverse tasks, the worst performance of
an agent is 85%. Further information on these tasks can be found in Metric is Equation 4.1

reward function that reflects the economic trade-offs that farmers face. As a result, the reward
function was updated to incorporate these factors.

The reward function, as expressed in Equation 3.4, takes into account not only the profit
from crop yield and the cost of fertilizer, but the cost of irrigation, as well as multiple possible
environmental-impact fees. As shown in Figure 4.3, the performance of the agents trained in
diverse tasks differ significantly, as one would expect.

With this modification in the reward function, the evaluation of a developed MTRL agent
is substantially more robust. Previously, using the initial reward function, all agents appeared
to perform almost uniformly across tasks, which would make it challenging to understand if a
developed MTRL agent could generalize or not. Now, given the clear performance differences
among trained agents across tasks, if a developed MTRL agent excels in multiple tasks, it is a
clear indication of its generalization capabilities.
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Figure 4.3: Performance of agents in RS39, RS49, NH161, NH91 and evaluated in all of them
as well. These tasks are from the generated dataset, and selected to be diverse and dissimilar, as
mentioned in Section 3.8. It is notable that even in these diverse tasks, the worst performance of
an agent is 85%. Further information on these tasks can be found in Metric is Equation 4.1

4.3 Multi-Task Reinforcement Learning Experiments

In the pursuit of understanding the generalization capabilities of a single agent in reinforcement
learning (RL) applied to crop management, a series of progressive ideas were explored. Initially,
the concept of generalization was investigated, whereby a single agent trained in one location
(A) was evaluated across diverse tasks, as shown in Figures 4.3 and 1.4. However, as these
tasks were diverse, the subset of tasks that were dissimilar only across temperature were used
to evaluate whether performance deteriorates monotonically in progressively dissimilar tasks.
The focus then shifted to the efficiency, generalization, and speed of multi-task learning models,
including the limits of concurrent tasks that can be learned, the largest trainable area for specific
and intermediate tasks, and addressing potential conflicts in gradients using optimizers, such as
PCGrad.

In the following experiments, tasks from the dataset, as explained in Section 3.7, are used.
To clarify, as task, we define the set of input files used for a Cycles simulation, and specifically,
the set of weather, soil and crop files.
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Figure 4.4: Performance of an NHTX3-trained agent in each of the NTHX tasks

4.3.1 Selected Diverse Tasks

As mentioned in Section 3.8, multiple diverse tasks were identified in the dataset. However,
the initial evaluation of hardcoded policies only served as an indicator on possible tasks. To
solidify the selection of such tasks, an RL agent was trained for each, and evaluated across all
the candidates. Four were selected as the most diverse, and are most commonly used in the
following experiments.

• Rock Springs 39 (RS39)

• Rock Springs 48 (RS48)

• New Holland 91 (NH91)

• New Holland 161 (NH161)

Their performance is shown in Figure 4.3. For more information about the meaning of each
number, see Section 3.8.

4.3.2 Monotonic Plot

In the monotonic plot experiment, the performance of a single agent is evaluated across progres-
sively dissimilar tasks. Specifically, we consider tasks NHTX1 through NHTX15, where the
maximum daily temperature is incrementally increased. The rationale behind this is to under-
stand how an agent’s performance might decrease in increasingly divergent conditions. In Figure
4.4 the performance of an agent trained in NHTX3 and evaluated in tasks NHTX1,...,NHTX15
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is decreasign monotonically, confirming the hypothesis that increasing the difference between
tasks, the performance of an agent is decreased.

4.3.3 Multi-Task Reinforcement Learning evaluation in similar tasks

Building on the concept of Multi-Task Reinforcement Learning, this experiment focuses on
sequential sampling MTRL training, as detailed in 2.2.2. The agent is trained on four specific
tasks: RSTX1, RSTX5, RSTX10, and RSTX15, which again differ only on the daily maximum
temperature, and evaluated across RSTX1,...,RSTX15. As shown in Figure 4.5, the agent not
only performs well on the training tasks but also interpolates effectively on the intermediate
evaluation tasks. This showcases the agent’s ability to generalize, leading to a speed-up of 50-
75% compared to training a separate agent for each task, when the total training steps are taken
into account.

Figure 4.5: Performance of an MTRL agent, trained in RSTX1, RSTX5, RSTX10, and RSTX15
and evaluated in each of the RSTXx tasks

4.3.4 Multi-Task Reinforcement Learning evaluation in diverse tasks

While the previous experiment demonstrated MTRL’s potential in similar tasks, as the only
difference was maximum daily temperature, this experiment pushes the boundaries by testing
the agent on four dissimilar tasks: RS39, RS48, NH91, and NH161, as identified in Section
4.3.1. As shown in Figure 4.6, the results are promising: MTRL successfully solves all the
tasks, achieving a 50% speed-up compared to the total individual agent training steps.
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Figure 4.6: Performance of an RL agent trained on {RS39, RS48, NH91, NH161}, evaluated
across all four tasks.

4.3.5 Multi-Task Reinforcement Learning with PCGrad in similar tasks

PCGrad, known for addressing conflicting gradients, is introduced in this experiment. The
agent is trained on tasks RSTX1, RSTX5, RSTX10, and RSTX15. However, when evaluated
across RSTX1-15, an MTRL model without PCGrad outperforms its counterpart with PCGrad,
as shown in Figure 4.7.

4.3.6 Multi-Task Reinforcement Learning with PCGrad in the diverse Tasks

Given the results of the previous experiment, we hypothesized that PCGrad’s effectiveness might
be reduced when the algorithm is applied to tasks that are similar, as PCGrad’s main focus is
conflicting gradients between tasks. To test this, we repeated the experiment with the four diverse
tasks mentioned earlier. As shown in Figure 4.8, the results confirmed the hypothesis: PCGrad
performed equally or better in three out of the four tasks. In Figure 4.9, we show again the
effectiveness of PCGrad, compared to non-PCGrad training, in diverse locations. The locations
used were the same as in 4.2, where we showed that single agent training is failing even in
locations that are close distance-wise. This underscores the idea that MTRL can generalize
compared to a single agent, and that PCGrad is better suited for diverse tasks and aligns with
this research’s goal, to develop general agents that manage diverse fields.
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Figure 4.7: Performance of two RL agents trained on {RSTX1, RSTX5, RSTX10, RSTX15},
evaluated across all 15 RSTXx tasks. One was trained with the PCGrad optimizer, and one
without.

4.3.7 Multi-Task Reinforcement Learning with PCGrad in combining diverse
and similar tasks

To further validate our findings regarding PC, we scaled up the experiment. The agent was
trained on three RSTX tasks(RSTX1, RSTX10, RSTX15) and the four diverse tasks (RS39,
RS48, NH91, NH161). When evaluated, it was evident that the use of PCGrad significantly
enhanced the agent’s ability to generalize across all tasks, as shown in Figure 4.10, confirming
that PCGrad is a significant improvement method for MTRL.

4.3.8 Multi-Task Reinforcement Learning with Large Networks (with/without
PCGrad)

In this experiment, we explored the impact of network size on performance. While the ”De-
fault Network” comprised a shared parameter network of 2 MLPs with 64 neurons per layer,
we introduced a ”Large Network” comprising 3 MLPs with 512 neurons per layer. The results,
in Figure 4.11 show that without PCGrad, the large network’s performance dropped. However,
when combined with PCGrad, the ”Large Network”’s performance was almost on par with the
performance of the ”Default Network” using PCGrad. This experiment supports our previous
hypothesis on PCGrad’s potential in diverse tasks. However, the benefits of using a larger net-
work remain unclear and should be investigated further.
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Figure 4.8: Performance of two RL agents trained on {RS39, RS48, NH91, NH161}, evaluated
across all four tasks. One was trained with the PCGrad optimizer, and one without.

4.3.9 Minimum number of required tasks

As the number of training tasks in Multi-Task Reinforcement Learning affects performance and
computational resources needed, it is crucial to identify the required tasks for optimal perfor-
mance, and their number. In assessing the agents trained with and without the PCGrad opti-
mizer, a series of experiments were conducted. These were designed to determine the minimal
set of training tasks required for the agents to achieve optimal performance across different tasks.
Three different task sets were considered, based on temperature variations, to assess the agents’
generalization capabilities.

As expected, based on Figure 4.7, across all experiments that were performed on the Rock-
SpringsTX set of tasks, the agent that was trained without PCGrad showed superior performance.

Figure 4.12 shows that there is a noticeable decrement in performance for the best perform-
ing agent on intermediary tasks. This suggests that training on temperature extremes alone does
not equip the agent to generalize well across the entire range.

Figure 4.13 further investigates this by training the agents on two intermediate temperature
tasks, RSTX7 and RSTX12. While the agent not using PCGrad still outperforms its counterpart,
it shows, again, a decline in performance on the lower temperature tasks.

To explore a more balanced training set, Figure 4.14 shows the performance of the agents
on three tasks: RSTX1, RSTX7, and RSTX15. With this mix of extreme and intermediate tasks,
the best-performing agent performs extremely well across all the evaluation environments.
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Figure 4.9: Performance comparison of RL agents trained on {Trelex, Senarclen, ORges,
Bassins}. The local agent is an RL agent trained on a single environment and its performance
is the optimal, while the other two were trained with Multi-Task Reinforcement Learning with
and without PCGrad respectively. The use of PCGrad leads to superior generalization across the
locations.

This supports the importance of the training task selection. However, it is unclear which
tasks should be selected in a more realistic scenario, and by what criteria.

4.3.10 Realistic experiments

To conclude the experimentation with MTRL techniques and PCGrad optimizers, we run an
experiment in a more realistic scenario, by retrieving data on 8 swiss locations, namely:

• Zurich

• Bern

• Basel

• Geneva

• Senarclens

• Ogres
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Figure 4.10: Performance of two RL agents trained on {RS39, RS48, NH91, NH161, RSTX1,
RSTX10, RSTX15}, evaluated across all 15 RSTXx tasks and the 4 diverse tasks. One was
trained with the PCGrad optimizer, and one without.

• Trelex

• Bassins

The purpose of the experiment is to examine the out-of-distribution performance of our
agent, in the weather setting of the same country, without using synthetic tasks. Towards that
goal, we trained two agent with and without using PCGrad, on the first 4 of these tasks, and
evaluated on all of them, as showed in 4.15. The results show that both agents were capable
of demonstrating a level of generalization to the out-of-distribution tasks. This suggests that
training on a subset of representative tasks within the same geographical region (in this case,
Switzerland) can equip agents to handle novel tasks within that region. However, it’s worth
noting that certain drops in performance were observed for both agents across these out-of-
distribution tasks. This suggests that while there is a level of inherent generalization, there still
exist nuances or specificities in the unseen tasks that challenge the agents’ performance.

4.3.11 Conclusion

In summary, these experiments provide valuable insights into the capabilities and limitations
of Multi-Task Reinforcement Learning, PCGrad, and network sizes. The consistent theme is
the ability for MTRL agnets to generalize across multiple tasks and the potential of PCGrad to
further optimize such agents, especially in diverse tasks.
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Figure 4.11: Comparing 4 agents of each combination of {with PCGrad, without PCGrad} and
{Large Network, Default Network}. Large Network with PCGrad shows great improvement in
performance compared to Large Network without PCGrad. However, both fall short compared
to the performance of Default Network.

Figure 4.12: Comparing performances of two agents (with and without PCGrad optimizer during
training), trained on the RSTX1 and RSTX15 tasks, the performance of the non-PCGrad using
agent stands out. In an effort to minimize the training tasks used, we chose the two most extreme
ones - lowest and highest temperature. A significant performance drop is observed in the middle
tasks, by the best performing agent.
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Figure 4.13: Comparing performances of two agents (with and without PCGrad optimizer during
training), trained on the RSTX7 and RSTX12 tasks, the performance of the non-PCGrad using
agent stands out. In an effort to minimize the number of training tasks used, we chose two middle
temperature tasks. However, a significant performance drop is observed in the low temperature
tasks.

Figure 4.14: Comparing performances of two agents (with and without PCGrad optimizer during
training), trained on the RSTX1, RSTX7 and RSTX15 tasks, the performance of the non-PCGrad
using agent stands out. In an effort to minimize the training tasks used, we chose three out of
15 - two in the extremities and one in the middle temperature range. The best performing agent
performs well across the board.
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Figure 4.15: Comparing performances of two agents (with and without PCGrad optimizer dur-
ing training), on 8 swiss locations. The agents were trained on Zurich, Bern, Basel, Geneva
and evaluated on the training tasks and on Senarclens, Ogres, Trelex, Bassins. We observe a
generalization in tasks that are out of distribution. However, drops in performance exist.
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Chapter 5

Conclusion & Discussion

5.1 Conclusions

This thesis delved deep into crop management using reinforcement learning (RL), specifically
focusing on the generalization capabilities of RL agents. Through a set of experiments, we
investigated the potential and limitations of various Multi-Task Reinforcement Learning training
and optimization techniques. To conclude, we summarize the key findings of this thesis, and
discuss the limitations and future interesting work.

5.1.1 Key Findings

Our research confirm the claims of prior studies regarding RL agents outperforming more tradi-
tional strategies in crop management. The first step was redefining common agricultural reward
functions by including additional real-world costs, such as environmental-impact fees and irri-
gation costs, which resulted in a more robust evaluation of agents, and more realistic behavior
of the trained agents.

Then, we showed the importance of generalization in this specific application. Training a
single agent for each geographical location is simply impossible in terms of time and required
comutational resources. To tackle this challenge, we investigated the use of Multi-Task Re-
inforcement Learning (MTRL). Our experiments showcased the power of MTRL in enabling
agents to generalize across tasks. Whether the tasks were similar in nature or diverse, MTRL-
equipped agents demonstrated a significant speed-up in training and an ability to interpolate
between the tasks they were trained on.

Furthermore, we showed PCGrad’s potential in environments with diverse tasks. While in
similar tasks it did not provide a discernible advantage, the improvement was evident when
agents were trained across diverse tasks, making it a promising technique for real-world scenar-
ios where diversity is the norm rather than the exception.

The exploration into different network sizes indicated that larger networks, although com-
putationally more intensive, did not always guarantee better performance. However, when com-
bined with optimization techniques like PCGrad, larger networks demonstrated competitive per-
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formance, suggesting that the further investigation between network architecture and optimiza-
tion methods is a promising future direction.

Our results highlighted the importance of training task selection in MTRL. A ”suitable”
task identification method could offer better generalization performance, specifically in diverse
scenarios.

Finally, in a realistic setting involving Swiss locations, our trained agents showcased gen-
eralization to out-of-distribution tasks, though there were observable performance drops. This
reiterates the need for comprehensive training data that covers potential edge cases, alongside
task identification techniques.

5.2 Limitations and Future Research

This study explores the application of Multi-Task Reinforcement Learning (MTRL) in agricul-
ture, building upon the CyclesGym framework. However, it contains certain limitations that are
discussed in the following subsections. These limitations include issues related to data acquisi-
tion, task similarity analysis, model architecture, the selected Reinforcement Learning (RL) and
MTRL algorithms, and the simulation models used. Acknowledging these limitations provides
a clearer understanding of the study’s findings and outlines areas for future research.

5.2.1 Data Limitations

As the data used in this study were collected from online sources, this approach has limitations
such as potential inaccuracies, inconsistencies, or missing values in the data which could affect
the model’s performance. Additionally, the data may not capture all relevant variables for agri-
cultural field management, possibly leading to an oversimplified model of real-world scenarios.

5.2.2 Task Similarity

The MTRL agent showed promising performance across multiple tasks. However, the similarity
or dissimilarity among these tasks is not clear. Understanding task similarity could help in
deploying trained agents across similar tasks globally, improving performance and reducing the
need for retraining. A systematic approach to measure task similarity and its impact on MTRL
performance is needed.

5.2.3 Model Architecture

A few model architectures were explored in this study, although it was not the primary focus.
Other architectures might perform better or worse. The chosen architectures may have biases or
assumptions affecting the findings’ generalizability. Evaluating different architectures could be
a focus for future research to find the optimal model structure for this domain.
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5.2.4 RL Algorithm

The RL algorithm choice can significantly impact model performance. This study investigated
a limited number of RL algorithms, leaving many other potentially effective algorithms unex-
plored. Different RL algorithms may have varying efficiency, convergence speed, and robustness
in handling multi-task learning in this scenario. Exploring alternative RL algorithms could be
beneficial.

5.2.5 MTRL Algorithm

The MTRL algorithm was selected based on literature reviews. However, there are other multi-
task optimizers and methods that might offer different performance characteristics. The ap-
proach to context representation in the MTRL algorithm could also impact performance across
tasks. Exploring various MTRL algorithms, multi-task optimizers, and context representation
strategies could provide more insights into achieving higher performance in multi-task reinforce-
ment learning scenarios.

5.2.6 Sim2Real Gap

The simulation-to-reality (Sim2Real) [22] gap represents a significant challenge in transition-
ing the learned policies of the MTRL agent to real-world agricultural management tasks. The
performance observed within the simulated environment may not accurately reflect the perfor-
mance in real-world scenarios due to various factors such as unmodeled dynamics, real-world
uncertainties, and discrepancies between the simulated and real-world data. The Sim2Real gap
underscores the necessity for rigorous real-world validation to ascertain the efficacy and appli-
cability of the developed MTRL agent in actual agricultural settings.

5.2.7 Cycles Model

The simulation environment utilized in this research employs the Cycles mechanistic model to
mimic agricultural dynamics. Nonetheless, the accuracy of the Cycles model in capturing the
real world dynamics is a crucial factor; any inconsistencies or inaccuracies in the model could
potentially mislead the training of the RL agent. The effect of the research output is dependent
on the accuracy and reliability of the Cycles model. More precise mechanistic simulation models
might yield different training outcomes and subsequently affect the RL agent’s performance.

5.2.8 Multi-Year Effects

The training conducted in this study spanned one-year simulations. However, agriculture is
inherently a multi-year endeavor with complex interactions over time, encompassing crop ro-
tations, weather variations, soil fertility dynamics, and other long-term factors. An RL agent
trained and validated on single-year simulations may exhibit deteriorated performance in multi-
year scenarios. The discount factor in reinforcement learning, which determines the agent’s
consideration for future rewards, plays a crucial role in long-term decision-making. The sim-
plistic single-year training might overlook the intricate and cumulative effects that evolve over
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multiple years, necessitating further research to explore multi-year training and evaluation to
ensure the robustness and longevity of the agent’s performance.

5.2.9 Future Work Ideas

1. Incorporation of Remote Sensing Data: Satellite and drone imagery offer high-resolution
insights into environmental factors, which are crucial for precision agriculture. The aim
is to leverage these data sources to enhance the models’ understanding of on-ground con-
ditions. An experiment to validate this approach would involve training models using
remote sensing data combined with traditional parameters. The subsequent evaluation
would compare the models’ ability to predict optimal farming strategies, potentially lead-
ing to more informed agricultural decisions.

2. Real-time Adaptation to Weather Changes: Weather plays a pivotal role in agricultural
outcomes. The proposition is to have models that can swiftly adapt their strategies based
on real-time and forecasted weather conditions, ensuring that farming practices remain
optimal even under unpredictable circumstances. To assess the efficacy of this real-time
adaptability, one could simulate sudden weather changes and evaluate how well the mod-
els adjust their recommendations.

3. Human-in-the-Loop Learning: While computational models are powerful, human ex-
pertise, especially in a field like agriculture, remains invaluable. The objective is to inte-
grate farmer feedback into the learning process, creating a synergy between human knowl-
edge and algorithmic insights. An experiment in this direction would involve collecting
and implementing human feedback during model training. The assessment would then
gauge improvements in the model’s practical applicability and overall performance.

4. Ethical and Sustainable Farming Practices: With growing concerns about the environ-
ment and ethical farming, it’s essential for models to factor in these considerations. The
intent is to ensure that the model’s reward function aligns with sustainable and ethical
farming standards. To validate this approach, models trained with varying ethical consid-
erations could be compared. The evaluation would focus on both economic performance
and key sustainability metrics, ensuring a balance between profitability and ethical con-
siderations.
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Appendix A

Appendix A

A list of input and output files that are used in Cycles simulations. Further information can be
found in psumodeling.github.io/Cycles

Input files:

• *.ctrl - This control file sets the overall parameters for the simulation, including the
simulation duration and other settings.

• *.operation - This file outlines the agricultural practices and operations to be applied
throughout the simulation, such as planting and harvesting dates.

• *.soil - This file describes the soil profile, including the properties of each soil layer.

• *.crop - This file provides information about the crop species being simulated.

• *.weather - This file supplies daily weather data for the simulation, such as min/max
temperature, precipitation, wind and humidity.

Output files:

• environ.txt - Contains daily environmental data, such as temperature, vapor pressure
deficit, and precipitation, which impact crop growth and soil processes.

• [crop].txt - Provides information on crop growth, including phenological stage, ther-
mal time, biomass accumulation, and nitrogen content.

• annualSoilProfileC.txt - Reports annual carbon dynamics in the soil profile, includ-
ing residue biomass input, carbon decomposition, and humified carbon.

• AnnualSOM.txt - Shows annual carbon concentration and saturation ratio in the soil pro-
file, reflecting soil carbon storage capacity.

• annualN.txt - Summarizes annual nitrogen fluxes in the soil profile, including fertiliza-
tion, fixation, leaching, and denitrification.
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• soilC.txt - Details carbon dynamics in the soil profile, including microbial biomass
carbon, humified carbon, and soil organic carbon.

• N.txt - Describes nitrogen dynamics in the soil profile, including soil organic nitrogen,
nitrate, ammonium, and nitrogen mineralization.

• Residue.txt - Provides information on residue biomass and nitrogen content on the soil
surface and in the soil profile.

• Water.txt - Reports water balance components, including irrigation, runoff, infiltration,
drainage, and soil moisture content.

• Season.txt - Summarizes crop harvest data, including total biomass, root biomass, grain
yield, forage yield, and nitrogen content.

• soilLayersCN.txt - Provides outputs needed to calculate selected C and N pool sizes or
elemental concentrations by soil layer.

• Summary.txt - Provides a summarized output of total C inputs over the duration of the
simulation and average annual rates for N cycling processes.
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Appendix B

Monotonicity plots for NHTXx can be found in Figure B.1 and B.2
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Figure B.1: Performance of each NHTXx-trained agents in each of the NHTXx tasks
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Figure B.2: Performance of each RSTXx-trained agents in each of the RSTXx tasks
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