
Fit2Crash:
Specialising Fitness Functions for

Crash Reproduction

Master’s Thesis

Shang Xiang

Fit2Crash:
Specialising Fitness Functions for

Crash Reproduction

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Shang Xiang
born in Hubei, China

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c©2020 Shang Xiang. All rights reserved.

Fit2Crash:
Specialising Fitness Functions for

Crash Reproduction

Author: Shang Xiang
Student id: 4702522
Email: S.Xiang@student.tudelft.nl

Abstract

Software applications inevitably crash, and it is time-consuming to recreate the
crash conditions for debugging. Recently, researchers have developed frameworks re-
lying on genetic algorithms, e.g. Botsing, for automated crash reproduction. However,
the existing approaches process exceptions of different types as if they were the same.
In this thesis, we study how the four most common types of Java exceptions are thrown
and define specialised fitness functions for them. We have extended Botsing and car-
ried out an evaluation against 52 real-world crashes from seven various open-source
software applications. Our results show that our proposed fitness functions influence
both the effectiveness and efficiency, negatively or positively depending on the type
of the target exception. This thesis demonstrates how tailoring the fitness functions
according to the exception type can improve search-based crash reproduction.

Thesis Committee:

Chair: Prof. Dr. A. Zaidman Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. A. Zaidman Faculty EEMCS, TU Delft
Committee Member: Dr. A. Panichella Faculty EEMCS, TU Delft

Dr. J. Cockx Faculty EEMCS, TU Delft
Dr. X. Devroey Faculty EEMCS, TU Delft

P. Derakhshanfar Faculty EEMCS, TU Delft

S.Xiang@student.tudelft.nl

Preface

It feels like yesterday when I landed my feet on Mekelweg for the first time. Having never
been outside of my home country, I had no idea what lay in store for me. Nearly three years
have flown by, and I cannot believe that this journey is coming to an end now. It has always
been a ride full of adventures, excitements as well as challenges and not-so-bright moments.

I am especially grateful to Professor Andy Zaidman for giving me the opportunity to
work on this thesis project under his supervision and shedding light on me when I was
at the darkest moment of my life. I would also like to thank my fellow countrywoman
Qianqian for introducing me to Professor Zaidman. Without the tremendous help from my
two brilliant mentors, Xavier, who may or may not have telepathic superpowers, and Pouria,
who loves Rick and Morty as much as I do, it would not have been possible for me to finish
the project.

During the one thousand days of being an expatriate, my homesickness can always
be cured by Jasper and Xiaodong’s emotional support and Xin’s fantastic cooking skill of
Chinese food. Gijs’ volunteering to be my mental coach and academic counsellor Susanne’s
professional help pulled me back from an abyss. Thank you all. Last but not least, I want to
thank my parents for the upright upbringing, unconditional love and support, and Silviu for
simply existing in my life.

And finally, I dedicate this report to my two stolen bikes. I hope you enjoy reading it.

Shang Xiang
Delft, the Netherlands

March 8, 2020

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Challenges in Highly-Reliable Software Development 1
1.2 Crash Reproduction . 2
1.3 Research Questions . 3
1.4 Thesis Outline . 3

2 Background 5
2.1 Search-Based Optimisation Algorithms 5
2.2 Search-Based Software Testing . 9
2.3 Automated Crash Reproduction for Debugging 19
2.4 Botsing . 24
2.5 Limitation . 26

3 Common Runtime Exceptions 27
3.1 ArrayIndexOutOfBoundsException . 27
3.2 StringIndexOutOfBoundsException 30
3.3 IllegalStateException and IllegalArgumentException 32
3.4 NullPointerException . 34

4 Crash-Specific Fitness Functions 37
4.1 Adapting Integration Testing Fitness Function for Indexed Access 37
4.2 Many-Objectivisation with Helper Objectives for Branching Variables . . . 41
4.3 Summary . 47

v

CONTENTS

5 Evaluation and Results 49
5.1 Experiment Set-up . 49
5.2 Results . 53
5.3 Discussion . 58
5.4 Threats to Validity . 66

6 Conclusions and Future Work 69
6.1 Contributions . 69
6.2 Conclusions . 70
6.3 Future Work . 70

Bibliography 73

A Glossary 79

vi

List of Figures

2.1 Example Function f . 5
2.2 Random Search . 5
2.3 Hill Climbing . 6
2.4 Overview of a Genetic Algorithm . 7
2.5 Crossover . 8
2.6 Crossover Operation Example [1] . 12
2.7 Malformed Crossover Offsprings [1] . 13
2.8 Control Flow Graph of checkTriangleType() Method in the Triangle Class 15
2.9 Weighted Sum versus Many-Objective . 18
2.10 Overview of EvoCrash . 20

3.2 Operand Stack When Loading . 28
3.3 Operand Stack When Storing . 28
3.1 Accessing Array Elements in Java . 29

4.1 Related Components to Indexed Access in Botsing 37
4.2 dexception (blue dashed line) versus d∗exception (red dotted line) 38
4.3 Instrumentation Before Executing a Loading Instruction 40
4.4 Related Components to Branching Variable Diversity in Botsing 42
4.5 BranchingVariableDiversityObjective Class 44

5.1 Reproduction Status on the Case Level . 54
5.2 Reproduction Status on the Application Level 55

vii

List of Tables

2.1 Test Cases . 14
2.2 Approach Levels of the Test Cases . 16
2.3 Distance Formulae [2] . 16
2.4 Fitness Values of the Test Cases . 17
2.5 Crash Cases Composition of JCrashPack [3] 23

3.1 Bytecode Instructions for Array Access . 29
3.2 Causes of StringIndexOutOfBoundsException Crashes in JCrashPack . . . 30
3.3 Different Types of Methods That Throws StringIndexOutOfBoundsException 31

4.1 Diversity Objectives for Different Types of Variables 43

5.1 Detailed Composition of the Picked Crash Cases 50
5.2 Complexity Statistics of Crashes Used . 51
5.3 Odds Ratio Between [IA] and [IA-control] 56
5.4 Odds Ratio Between [BV] and [BV-control] 57
5.5 Vargha and Delaney’s Â12 Measure Between [IA] and [IA-control] 57
5.6 Vargha and Delaney’s Â12 Measure Between [BV] and [BV-control] 58
5.7 Effect Size of LANG-19b . 62

viii

Chapter 1

Introduction

As ICT applications infiltrate our daily activities more and more, the reliability of software
that we use has become of crucial importance to the quality of our lives and the functioning
of the society.

Unreliable software implies high costs on various aspects of the life-cycle of a software
product. For the owner of the product, it means high maintenance cost. In 2002, the es-
timated labour cost of unreliable software was forty billion US dollar per year [4]. The
number has only gone up after that. A 2015 survey showed that maintenance takes 60% of
the resources of the total cost of the software [5]. Furthermore, that number can surge up to
90% when the software is extremely unreliable.

For consumers of the software, unreliability costs user satisfaction. In 2012, Apple
faced massive backlash for replacing the built-in Maps application of iOS with its buggy
software.

For the general public, it means threats to life or access to food and shelter. Malfunc-
tioning software in the Boeing 737 Max resulted in the death of hundreds in two consecutive
aeroplane accidents in 2019 [6]. Previously, Ko et al. collected news reports about software
failures of three decades, from 1980 to 2012, and showed that every month there has been
on average one news report about casualties due to unreliable software [7].

The academics and the industry have put an enormous amount of efforts into coming up
with theories and best practices to develop reliable software systems to avoid the high costs.

1.1 Challenges in Highly-Reliable Software Development

In essence, we can break down the procedure to develop more reliable software systems into
three aspects [8]. The first one is to adopt a thoughtful design methodology that leads to a
highly-reliable product. The second one is to test thoroughly before shipping. The last one
is to make hard efforts to debug the software when issues do emerge. Developing reliable
software poses many challenges.

We are yet to find a design methodology that could, in theory, eliminate all the threats
to reliability. Let alone implementing such a design in the real world. Meanwhile, well-
designed software can at most be issue-resistant, but not issue-proof.

1

1. INTRODUCTION

When a software product reaches the hand of an end-user, environment and behaviours
of the user are challenging to predict. Therefore, the developer can test only a small fraction
of all possible execution scenarios, making the unreliability of software not able to be solved
sufficiently by testing.

As for debugging, typically a crash report, containing a certain amount of run-time
information of the software when the issue happened, is presented to the developer. It is
often a stack trace fragment. The information within is considerably limited and far away
from being enough to disclose the nature of the issue behind the crash. It takes empirical
knowledge and trial-and-error attempts of the developer to locate the bug and then to solve
it, which can usually be time-consuming.

1.2 Crash Reproduction

Glenford and Myers [9] defined debugging as:

The process of diagnosing the precise nature of a known error and then cor-
recting it.

Crash reproduction, i.e. to create a test case that causes the program to crash in the way
specified by the report, is helpful for debugging. As pointed out by Zeller [10], the sig-
nificance of reproducing the crash is twofold: (i) to bring the crash under control, such
that the deficiency of the software can be observed; and (ii) to verify the success of the fix
afterwards.

To ease the process of crash reproduction, the software engineering research community
has developed automation techniques. One category of methods to automate crash repro-
duction is record-replay, which relies on program run-time data [11, 12, 13, 14, 15, 16].
It records the program execution data in order to use it for identifying the program states
and execution path that have led to the crash. Record-replay systems either incur high
run-time overhead due to monitoring, or require specialised hardware that is not widely
available [17, 18]. Another concern is the potential infringement to privacy protection reg-
ulations [19].

Another direction is post-failure approaches, which collect information from the crash
itself and take action after the crash [20, 21, 22, 23]. One of the innovative techniques in the
post-failure area that researchers have been exploring recently is to use search-based opti-
misation algorithms like genetic algorithms, for crash reproduction [24]. EvoCrash/Bots-
ing [25, 26] is such a framework. It uses EvoSuite [27] to instrument code and implements
a guided genetic algorithm to search for the inputs and the call sequence that caused the
crash.

A crucial component of genetic algorithms is the fitness function, which quantifies the
distance between the generated test cases and the optimal test case that is able to reproduce
the given crash. Current researches evaluate generated test cases for different kinds of
crashes with the same fitness function, ignoring the type of the actual exception causing the
crash. And a binary exception distance penalty is imposed on the fitness value depending
only on whether the target exception is thrown.

2

1.3. Research Questions

1.3 Research Questions

RuntimeExceptions in Java are extended into various sub-classes according to the nature
of the exceptions. For example, an ArrayIndexOutOfBoundsException is thrown when
accessing an array with an illegal index. The information beneath is clearly characterised
differently from that of a NullPointerException, which is thrown when dereferencing
a null reference. That information is ignored as a result of the binary definition of the
exception distance used in the fitness functions of Botsing.

We hypothesise that by taking the type of the target exception into account, fitness
functions can be specialised. By collection additional information according to the type, we
can make the fitness values of the generated test cases more granular, and whence improve
the search process. Therefore we formulate the following research questions:

RQ1 How to define a distance between the execution flow of a test case and the execution
flow throwing a specific type of exception?

RQ2 How to include the additional information provided by this distance in a fitness func-
tion to improve the guidance of the search process?

RQ3 What is the impact of the new fitness function in terms of the effectiveness and effi-
ciency of search-based crash reproduction?

To answer those research questions, we first studied how the most common types of
Java exceptions are typically thrown, and defined fitness functions with specialised excep-
tion distances. Then we integrated the fitness functions into Botsing, a search-based crash
reproduction framework, and extended the underlying bytecode instrumentation to provide
adequate information to those fitness functions. Eventually, we evaluated our new fitness
functions with 52 crashes coming from various real-world open-source software applica-
tions. Our results show that including the additional information in the search process
influenced both the effectiveness and efficiency, negatively or positively depending on the
type of the target exception.

1.4 Thesis Outline

In Chapter 2, we discuss background knowledge needed and previous work about crash
reproduction. In Chapter 3, we study four of the most common types of Java exceptions,
detailing how they are typically thrown. In Chapter 4, we present the implementation details
of our solution to the situation. In Chapter 5, we describe how the evaluation experiments
were carried out and analyse the results of the experiments. Finally, in Chapter 6, we con-
clude and reflect on future improvements to be done.

3

Chapter 2

Background

In this chapter, we discuss the background knowledge that we base our project on and the
current state of the art of automated crash reproduction.

2.1 Search-Based Optimisation Algorithms

In a typical optimisation problem, one is faced with a function f that given a set of input
arguments x0,x1,x2, . . . generates a value y as output:

y = f (x0,x1,x2, . . .)

The goal of the optimisation is to find certain input arguments, x0′,x1′,x2′, . . . that make f
generate the maximal or minimal output. The domain of definition of f is referred to as the
input domain or search space. See Figure 2.1 for an example function f , where there is only
one input argument for the simplicity of writing, and the goal of the optimisation is to find
the maximum.

Figure 2.1: Example Function f Figure 2.2: Random Search

2.1.1 Random Search

The most easy-to-implement search algorithm is Random Search. As its name suggests,
inputs are randomly generated until the goal of optimisation is achieved. As can bee seen

5

2. BACKGROUND

in Figure 2.2, random search fumbles through the input domain without any guidance and
thus can be highly inefficient to reach the specific goal.

2.1.2 Hill Climbing

Hill Climbing still starts at a random point in the input domain, but it seeks guidance from
the nearby area. When a neighbouring point has a more desirable output value, hill climbing
switches to the new point and re-evaluates the neighbouring points. It repeats until no
neighbouring points have a better output value. However, this means that hill climbing is
vulnerable to local optima, as shown in Figure 2.3a. Typically, the algorithm is restarted
certain times to counter that situation. When lucky enough, the algorithm will initialise at a
random point that can lead it to the global optimum, as shown in Figure 2.3b.

(a) Stuck at a local optimum (b) Restart and get to the global optimum

Figure 2.3: Hill Climbing

2.1.3 Simulated Annealing

A further improved version of hill climbing is called Simulated Annealing [28]. It simulates
the metallurgic process when a melted solid is slowly cooled down to a particular shape by
controlling the temperature.

The significant difference between hill climbing and simulated annealing is that the
former is strictly restricted to only moving towards neighbouring points that have better
outputs. As for simulated annealing, the direction of moving is probabilistic. The proba-
bility is related to the parameter temperature. At the beginning, the temperature is hot, and
there is a higher chance for the search process to move to a neighbouring point with a worse
output. As the search goes on, temperature drops and the chance gets lower. Eventually,
the temperature reaches a threshold called the freezing point, and from there on simulated
annealing behaves the same as hill climbing. The existence of temperature makes simulated
annealing relatively more robust against local optima.

The aforementioned search algorithms are considered as local search approaches as
they consider merely one point at a time and evaluate only the local neighbours of that
point.

6

2.1. Search-Based Optimisation Algorithms

2.1.4 Genetic Algorithms

Genetic Algorithms (GA), proposed by Holland et al. back in the 1970s [29], are a type of
global search approaches. Inspired by Darwin’s theory of evolution, the algorithm simu-
lates the process of natural selection. The main loop of a genetic algorithm is shown in
Figure 2.4.

Evolution CycleEvolution Cycle

Start

End

Initialisation

Fitness
Evaluation

Selection Crossover

MutationReinsertion

Initial Generation

Optimal
Individual

Figure 2.4: Overview of a Genetic Algorithm

At the initialisation phase, a certain number of points from the input domain are ran-
domly selected to form the Initial Generation. A single input point is referred to as an
individual or a chromosome. The number of individuals is called the population size.

Then the initial generation goes through the evolution cycle to produce offspring gener-
ations. The first step in the cycle is to evaluate the fitness value of each individual with the
fitness function. Fitness value should be problem-specific and numerically describe how
far an individual is away from being the optimal solution to the problem. In the previous
example to find the maximum of function f , f itself is the fitness function.

The selection process selects a portion of individuals to breed the offspring generation.
According to the “Survival of the fittest” principle, individuals with better fitness values are
more likely to pass their chromosomes onto the next generation. Therefore, fitter individuals
are more likely to be selected. However, to avoid local optima, the selection process cannot
be merely ranking and selecting individuals with the best fitness values.

The next step is the crossover, depicted in Figure 2.5. A cut-point in the chromosome
is randomly picked for each parent individual. Chromosome fragments after the point are
swapped among the two parents, resulting in two new offspring individuals. The cut-points
are not necessarily the same in two parent chromosomes, and there can be multiple cut-
points in one crossover operation.

Followed by one or more mutations, during which the gene at a randomly selected
location in the chromosome mutates. Mutation operators are specific to the representation of
the chromosome. One example mutation is that an integer input parameter to the component
under test is replaced with its inverse code or even a random number.

7

2. BACKGROUND

Parent
1

Parent
2

Offspring
1

Offspring
2

Cut-point

Figure 2.5: Crossover

The reinsertion process is there to ensure that the population size in the new generation
stays the same as its parent generation. If not enough offspring have been created, the new
generation consists of all the offspring individuals and some selected parent individuals.

The algorithm terminates under two conditions: (1) the optimisation goal has been
achieved; or (2) the searching budget, such as the number of generations and execution
time, has been used up. The optimal individual is the outcome of the genetic algorithm.

Compared with local search approaches, genetic algorithms consider multiple inputs at
the same time, and they are sparsely located within the input domain. While the selection
progress ensures that the overall specimen is becoming fitter and fitter with each generation,
the two genetic operations, crossover and mutation, add extra randomness and variety to the
pool to avoid local optima.

Exploration versus Exploitation

Exploration and exploitation are two fundamental concepts in search-based optimisation
algorithms. Črepinšek et al. [30] defined them as follows:

Exploration is the process of visiting entirely new regions of a search space,
while exploitation is the process of visiting those regions of a search space
within the neighbourhood of previously visited points.

Striking a balance between these two during the search process is of essential importance
to the success of any search-based algorithm.

Each component of genetic algorithms is vital in achieving them. Random initialisation
is the starting point of exploration as it should be a good sampling of the overall search
space. Crossover, with the hypothesis that two fit parents will produce better offspring,
exploits existing individuals and creates vastly different new individuals at the same time.
Therefore, it contributes to both exploitation and exploration. Mutation mainly contributes
to exploitation as the introduced changes are within the nearby area of existing individuals
in the search space. The selection process, concerning fitness values, drives the search
towards the regions of the best individuals, hence is a means of exploitation.

8

2.2. Search-Based Software Testing

2.2 Search-Based Software Testing

Search-based optimisation algorithms have been applied to many fields, including software
testing. The first work in search-based software testing (SBST) was presented by Miller
and Spooner in 1976 [31]. Automated test data generation techniques back then focused
on constraint solving and symbolic execution. Their work utilised optimisation algorithms
instead. Each group of generated data is evaluated by a cost function (i.e. fitness function).
And those that lead the execution closer to the desired path result in lower cost values while
high-cost data are dropped. Eventually, the search algorithm outputs test data that execute
the exact path desired.

Their work later caught widespread attention in the 1990s and inspired researchers to
apply algorithms like GA to more aspects and levels of software testing. To adapt it, the
most critical two tasks are:
• to find the proper individual chromosome representation that is suitable for the two

genetic operations, crossover and mutation;
• to formulate a fitness function that accurately describes how good a solution to the

problem is.
Both are problem-specific and following are some examples of the adaptation.

2.2.1 Input Vector Representation

Some components can be easily isolated from the surrounding system and environments. A
pure function, for example, is a method of which the output only depends on the inputs, and
that has no observable side effects. When testing against such components, an individual
chromosome can be encoded as an n-dimensional input vector where n is the number of
input arguments the component takes. The search domain is the n-dimensional space where
the vector is valid for the component.

Crossover Operation

The crossover operation is straightforward swapping corresponding elements of the two
parent vectors.

Mutation Operation

The mutation operation is a set of mutation operators, which are different according to the
type of the element. For example, it can be {++,−−,� 1,� 1} for an integer, or {!} for
a boolean.

2.2.2 Call Sequence Representation

The input vector representation does not suffice for more complex software testing pur-
poses. For example, when the component under test is a class, it must be tested against its
constructors and methods. Each of the constructors and methods is parametrised differently.

9

2. BACKGROUND

Moreover, the sequence of calling them contributes to the variance of a test case as well.
Tonella [1] proposed the syntax to represent the test case of a call sequence, see Listing 2.1.

1 <chromosome > ::= <actions > @ <values >
2 <actions > ::= <action > {: <actions >}?
3 <action > ::= $id = constructor({<parameters >}?)
4 | $id = class # null
5 | $id . method ({<parameters >}?)
6 <parameters > ::= <parameter > {, <parameters >}?
7 <parameter > ::= builtin -type {<generator >}?
8 | $id
9 <generator > ::= [low; up]

10 | [genClass]
11 <values > ::= <value > {, <values >}?
12 <value > ::= integer
13 | real
14 | boolean
15 | string

Listing 2.1: Syntax of chromosomes [1]

A chromosome consists of two parts, the 〈actions〉 and the 〈values〉 joined by the “@”
sign. The first part 〈actions〉 is made of a sequence of invocations of constructors or meth-
ods, connected by “:”. And the second part 〈values〉 contains the actual values of the argu-
ments to each invocation, separated by “,”.

For the first part of the chromosome: $id denotes a variable. Therefore an 〈action〉
can be: (i) to instantiate an object and assign it to a variable (line 3); (ii) to assign null to a
variable (line 4); or (iii) to call a method on a variable (line 5). Invocations of constructors or
methods are parameterised with 〈parameters〉, and one 〈parameter〉 can either be a built-in
type value (line 7) or a variable (line 8). A built-in type value can be optionally generated
from a 〈generator〉 by either randomly choosing (line 9) within the range [low;up] or an
external class (line 10).

For the second part, each 〈value〉 belongs to a built-in type, therefore, having the form
of an integer, a real number, a boolean value or a constant string. With the defined syntax,
the Java code in Listing 2.2 can be represented as a chromosome shown in Listing 2.3.

A a = new A();
B b = new B();
b.f(2);
a.m(5, b);

Listing 2.2: Example Test Case [1]

$a=A():$b=B():$b.f(int):$a.m(int, $b) @ 2,5

Listing 2.3: Example Chromosome [1]

10

2.2. Search-Based Software Testing

For the two genetic operations, we first introduce the mutation operation as some of the
mutation operators are re-used in the crossover operation.

Mutation Operation

The following four kinds of mutation operators have been introduced by Tonella [1].

Mutation of Input Value The first mutation operator is to replace a 〈value〉 with a ran-
domly generated one of the same type. See Listing 2.4 for example, where the int value
passed to the constructor of class B is changed from 9 to 5.

$a=A():$b=B(int):$b.f():$a.m(int,$b) @ 9,7
⇓

$a=A():$b=B(int):$b.f():$a.m(int,$b) @ 5,7

Listing 2.4: Mutation of Input Value [1]

Constructor Change The second mutation operator is to randomly change one of the
constructors in an 〈action〉. The previously used constructor is replaced by one with a
different signature. If new values or variables are required, they are inserted accordingly.
See Listing 2.5 for example, where the constructor of class B is changed from one that takes
an int to one that takes a class C object. The instantiation action of variable c is inserted,
and the value 1 is dropped.

$a=A():$b=B(int) :$b.f():$a.m(int, $b) @ 1,5
⇓ ⇓

$a=A():$c=C():$b=B($c):$b.f():$a.m(int ,$b) @ 5

Listing 2.5: Constructor Change [1]

Insertion of Method Invocations The third mutation operator is to insert new 〈action〉s
of method invocations of existing variables. See Listing 2.6 for example. Variable b is
randomly chosen, and method invocation b.g(int) is inserted. As b.g(int) takes an int pa-
rameter, integer 4 is inserted to the values at the corresponding location.

$a=A():$b=B(int): $b.f():$a.m(int, $b) @ 1 ,5
⇓ ⇓

$a=A():$b=B(int):$b.g(int):$b.f():$a.m(int, $b) @ 1,4,5

Listing 2.6: Insertion of Method Invocations [1]

11

2. BACKGROUND

Removal of Method Invocations The last mutation operator is to randomly select and
remove 〈action〉s. In the example of Listing 2.7, the action $b.h($c) is randomly chosen to
be removed. As this is the only usage of variable c, it is removed as well as its initial value
4.

$a=A():$b=B(int):$c=C(int):$b.h($c):$b.f():$a.m(int, $b) @ 1,4,5
⇓ ⇓

$a=A():$b=B(int): $b.f():$a.m(int, $b) @ 1 ,5

Listing 2.7: Removal of Method Invocations [1]

Crossover Operation

The general idea of a crossover is to randomly pick a cut-point (see dashed lines between
line 2 and line 3 in Figure 2.6) and then to swap the fragments after the point. Notice that
in the chromosome representation, the crossover should be done in both the 〈actions〉 and
the 〈values〉 parts at corresponding locations.

1 A a = new A();
2 B b = new B(1);

3 b.f();
4 a.m(5, b);

(a) Parent 1

A a = new A(0, 3);
B b = new B();

b.g();
a.m(4, b);

(b) Parent 2

1 A a = new A();
2 B b = new B(1);
3 b.g();
4 a.m(4, b);

(c) Offspring 1

A a = new A(0, 3);
B b = new B();
b.f();
a.m(5, b);

(d) Offspring 2

Figure 2.6: Crossover Operation Example [1]

The crossover shown in Figure 2.6 is straightforward as after the operation, all variables
involved have been defined before their first usage, no unused variable exists, and there is
no conflict among variables. This is, however, not often the case because cut-points are
randomly picked, and the call sequences of two parent chromosomes are of variable-length.

Take the two offspring, (b) and (e), in Figure 2.7 for example. After the crossover
operation, the variable c (line 3) is never used in offspring 1. Meanwhile, in offspring 2
at line 3, an undeclared variable c is referred to as the argument in the method invocation
b.h().

To resolve this, a specific clean-up needs to be done after the crossover operation. With
the already defined removal mutation operator, the redundant actions related to the variable
c in offspring 1 can be removed. And with the insertion mutation operator, a necessary

12

2.2. Search-Based Software Testing

1 A a = new A();
2 B b = new B(1);
3 C c = new C(4);

4 b.h(c);
5 b.f();
6 a.m(5, b);

(a) Parent 1

A a = new A();
B b = new B(1);
C c = new C(4);

a.m(6, b);

(b) Offspring 1

1A a = new A();
2B b = new B(1);

/C///c///=//////new/////////C(4);

3a.m(6, b);

(c) Fixed Offspring 1

1 A a = new A(0, 3);
2 B b = new B();

3 a.m(6, b);

(d) Parent 2

A a = new A(0, 3);
B b = new B();

b.h(c);
b.f();
a.m(5, b);

(e) Offspring 2

1A a = new A(0, 3);
2B b = new B();

3C c = new C(1);
4b.h(c);
5b.f();
6a.m(5, b);

(f) Fixed Offspring 2

Figure 2.7: Malformed Crossover Offsprings [1]

constructor invocation of the variable c can be inserted to offspring 2. See the last column
of Figure 2.7 for examples of the fixed offspring. Notice that it is not simply moving the
instantiation action from offspring 1 to offspring 2 as the initial value of the variable c in
offspring 2 is newly randomly generated.

2.2.3 Fitness Functions

Fitness functions should be of high specificity to the characteristics of the problem to be
solved. In this sub-section, we introduce a few different types of software testing and their
corresponding fitness functions when to be solved with genetic algorithms.

Temporal Testing

Temporal testing against a component aims at finding the worst-case and best-case execu-
tion times (i.e. WCET and BCET respectively). The optimisation goal is to achieve the
maximal execution time for WCET and minimal execution time for BCET. Intuitively, the
fitness value is the execution time of the component under test.

Functional Testing

Functional testing is a type of black-box testing, i.e. the internal implementation of the
component under test is not given. Focusing on testing the functionality, the optimisation
goal is often to generate input vectors that make the component malfunction, and the fitness
function describes how far it is away from malfunctioning.

Buehler and Wegener [32] present an application of SBST to test a standalone controller
in an automated car parking system. A parking scenario is an individual chromosome in this

13

2. BACKGROUND

case, which is represented as a series of geometric data describing what area of the parking
lot the car can enter. The search-based algorithm generates parking scenarios with the
optimisation goal of leading the system to collide into the parking scene. The fitness value
is the shortest distance to collision points during the parking process.

Structural Testing

Unlike the previous type, structural testing is a kind of white-box testing, which means the
details of the internal implementation are available. Moreover, the internal structures and
control flows within a component are exactly what structural testing is interested in, with
the aim to cover a particular part of the component or achieve maximal overall coverage.

It is also the area that has attracted the most attention when it comes to search-based
software testing. Previous researchers have developed fitness functions for branch coverage,
path coverage and data flow coverage [33]. We introduce the two metrics, approach level
and branch distance, and the popular fitness function for search-based structural testing that
uses these two.

Take the Triangle class in Listing 2.8 for example [34]. It is a simple class containing
four fields, with a, b and c denoting the lengths of the three sides and type storing the
type of the triangle. The only method of the class is checkTriangleType(), which checks
whether the triangle is equilateral, isosceles, or scalene. The control flow graph (CFG) of
that method is depicted in Figure 2.8. Each if-statement corresponds to a diamond node
in the CFG, and such nodes are called control dependent nodes as the flow of the execution
departs there into separate paths.

If the coverage target is to reach line 10, by combining the line number of if-statements
it visits to reach there, the target path t can be denoted as pt = 〈6,7,9,10〉. Consider the
four random generated test cases shown in Table 2.1.

Table 2.1: Test Cases

Test Case Type Path Notation
x1 = (5,5,5) Equilateral px1 = 〈6,13,14〉
x2 = (5,6,5) Isosceles px2 = 〈6,7,8〉
x3 = (5,6,4) Scalene px3 = 〈6,7,9,12〉
x4 = (5,6,3) Scalene px4 = 〈6,7,9,12〉

t Isosceles pt = 〈6,7,9,10〉

Intuitively, pathx3 and pathx4 are closer to the target path t as they cover the deepest
if-statement at line 9, while pathx1 is further away from t as it covers only the very first
if-statement at line 6. The approach level is defined to numerically describe this distance:

Definition 1 (Approach Level). Given the execution path px obtained by running the pro-
gram with the generated test case x, the approach level AL(px) is the minimum number of
control dependent nodes between an executed statement and the coverage target t [33].

14

2.2. Search-Based Software Testing

1 class Triangle {
2 int a, b, c; // sides
3 String type = null;
4

5 void checkTriangleType() {
6 if (a != b)
7 if (a == c)
8 type = "Isosceles";
9 else if (b == c)

10 type = "Isosceles";
11 else
12 type = "Scalene";
13 else if (b == c)
14 type = "Equilateral";
15 else
16 type = "Isosceles";
17 }
18 }

Listing 2.8: The Triangle class [34]

Start

End

a!=b?false

b==c?

Equil
ateral

true

Isosc
eles

false

true

a==c?

Isosc
eles

true

false

b==c?

Isosc
eles

Scale
ne

true

false

Figure 2.8: Control Flow Graph of checkTriangleType() Method in the Triangle Class

15

2. BACKGROUND

Table 2.2: Approach Levels of the Test Cases

Test Case x1 x2 x3 x4

Approach Level 2 1 0 0

With the above definition, we have the approach levels for each test case listed in Ta-
ble 2.2. However, we still need to decide whether test case x3 or x4 is closer to the target
path t. Hence the branch distance is defined:

Definition 2 (Branch Distance). Given the first control dependent node where the execution
px diverges from the target t, the predicate at such node is converted to a distance d() (from
taking the desired branch), normalised between 0 and 1, therefore, the branch distance
BD(px) [33]:

BD(px) = norm(d(px))

For the computation of d(), different distance formulae are applied, depending on the
relational operator of the control dependent node. Tracey et al. [2] presented a full list of
formulae for different relational operators, see Table 2.3.

Table 2.3: Distance Formulae [2]

Relational Operator Distance d()
boolean 0 if true; K if f alse

a = b 0 if a = b; otherwise abs(a−b)+K
a 6= b 0 if a 6= b; otherwise K
a < b 0 if a < b; otherwise a−b+K
a 6 b 0 if a 6 b; otherwise a−b+K
a > b 0 if a > b; otherwise b−a+K
a > b 0 if a > b; otherwise b−a+K
a∨b min(d (a) ,d (b))
a∧b d (a)+d (b)
¬a negation is propagated inside a

Definition 3 (Fitness Function for Structural Testing). With the two metrics, approach level
and branch distance, defined, the widely used fitness function for statement coverage in
search-based structural testing is defined as follows [33]:

f (x) = AL(px)+BD(px)

With the fitness function, Table 2.2 can be updated with additional values. For nor-
malisation, Arcuri [35] evaluated different normalisation methods and suggested to use
norm(a) = a

a+1 , which is what has been used to calculate the branch distance in Table 2.4.
As can be seen, test case x3 is closer to reach the target t and therefore, it is favoured

among the other cases in the selection process of GA to produce offspring.

16

2.2. Search-Based Software Testing

Table 2.4: Fitness Values of the Test Cases

Test Case x1 x2 x3 x4

Approach Level 2 1 0 0
Branch Distance 0.50 0.50 0.67 0.75

Fitness Value 2.50 1.50 0.67 0.75

2.2.4 EvoSuite

EvoSuite1 is a popular SBST tool that automatically generates test suites for Java programs,
proposed by Fraser and Arcuri [27]. It is also one of the bedrocks of this thesis project. Sev-
eral characteristics of EvoSuite make it stand out among other tools, and they are discussed
here.

Whole Test Suite Optimisation

A typical SBST generation tool for white-box testing generates test cases to satisfy one
single coverage goal at a time (e.g., to cover a particular program branch or to follow a
specific control flow path). This strategy is, however, flawed as not all goals are equally
difficult or important to reach, and some are dependent on each other.

Instead, EvoSuite works on the level of a whole test suite, where the individual chromo-
some is a collection of test cases. The crossover operation is hence to exchange randomly
chosen test cases among the two parents, and the mutation operation is to add, remove
or alter single test cases. The search-based optimisation process integrates state-of-the-art
techniques like hybrid search and dynamic symbolic execution to generate appropriate data
and improve the generations through evolution. The individual chromosome fitness is eval-
uated against a set of coverage criteria instead of single coverage goals.

Mutation-Based Assertion Generation

An automated oracle can easily detect faults in the program when executing the test cases
if they lead to crashes, deadlocks, or violate some formal specifications. It, however, fails
to capture the functional incorrectness when the program runs smoothly. It is feasible to
generate assertions to the program as manual oracles, but it is hard to control the proper
amount of assertions so that they do not over-specify the test case.

EvoSuite makes use of mutation testing to determine the importance and effectiveness
of an assertion. In mutation testing, mutants, which are artificial defects, are seeded into
the program, and a test case is evaluated whether it can detect the mutants from the original
program. On the one hand, if a mutant stays undetected, it means that the test suite is
not thorough enough and that new test cases should be added, or there should be better
assertions for existing ones. On the other hand, if an assertion captures no mutants, it is
probably irrelevant to the test case and therefore, can be removed.

1http://www.evosuite.org

17

http://www.evosuite.org

2. BACKGROUND

Many-Objective Sorting Algorithms

With the whole test suite strategy, the different coverage criteria are still integrated into a
single fitness function to evaluate the fitness of individuals. Previous works in the field of
numerical optimisation [36] have shown that reformulating a single-objective optimisation
problem into a many-objective one reduces the probability for the search process to be stuck
at a local optimum and boosts the efficiency.

B

A

C

E

D

F

(a) Individuals

B

A

C

E

D

F

(b) Weighted Sum

B

A

C

E

D

F

(c) Many-Objective

Figure 2.9: Weighted Sum versus Many-Objective

Imagine an optimisation task with two distance metrics d1 and d2. Distance values of
six example individuals are shown in Figure 2.9a. To evaluate these individuals with a
weighted sum of d1 and d2 is equivalent to project the points onto a line according to the
weights, shown in Figure 2.9b. Points, the projections of which are closer to the origin,
result in better fitness values. In the example, individual B is the fittest. Individual D is
considered poorly fit, even though it has the best d2 value. The way different distance
metrics are integrated plays a huge role and sometimes may cause diversity loss.

In many-objective algorithms, an individual t1 is said to dominate another individual
t2 if and only if: (i) for all objectives, t1 results in no worse distance values than t2; and
(ii) for at least one objective, t1 has a better distance value than t2. On the other hand,
t2 is called a dominated individual. If an individual gets 0 for all distance metrics, it is
called the optimal individual. While the end goal is still to find the optimal individual,
many-objective algorithms treat all non-dominated individuals as equally fit. In the example
shown in Figure 2.9c, A, B and D are therefore the non-dominated individuals, and they
have an equal chance to pass their chromosomes onto the next generation.

EvoSuite provides a many-objective GA named Many-Objective Sorting Algorithm
(MOSA), proposed by Panichella et al. [37]. Viewing all the branch distances in the class
under test (CUT) as the many objectives to optimise, it is highly scalable and can handle
hundreds of objectives at the same time. Panichella et al. further proposed DynaMOSA,
the improved version of MOSA that dynamically selects optimisation objectives based on
the control dependency hierarchy [38]. With MOSA, all objectives are considered since the
initial generation. However, some latter objectives can only be satisfied if certain precedent

18

2.3. Automated Crash Reproduction for Debugging

objectives have already been satisfied. DynaMOSA tackles this and has seen improvements
in coverage and especially efficiency, when given a limited search budget.

Java Bytecode Instrumentation Infrastructure

Built upon the ASM 2 library, EvoSuite provides a handy instrumentation framework to ex-
tend for our study. With customisable ClassVisitors and MethodVisitors, the CUT can
be instrumented on the bytecode level easily. And EvoSuite provides a centralised single-
ton ExecutionTracer to store all the run-time information retrieved by the instrumentation
when executing one generated test case.

2.3 Automated Crash Reproduction for Debugging

Proper testing and debugging are essential to developing reliable software [39]. The evo-
lution of integrated development environments (IDEs) has made it easy for developers to
spot predetermined errors, like missing ’;’ at the end of a Java statement or undefined vari-
ables, that are language-specific before compilation. There have also been empirical studies
on how to use debugging tools like debuggers, assertions [40, 41], and breakpoints [42]
better to locate the bugs more efficiently.

However, in order to use these tools, one first needs to be able to reproduce the crash so
that it can be observed, and the fix can be verified afterwards. Researchers have studied ways
to automate crash reproduction, and one novel direction is to utilise SBST technologies.
They are discussed in this section.

2.3.1 Different Approaches

Approaches for automated crash reproduction can be grouped into two main categories:
(1) record-replay approaches, and (2) post-failure approaches.

Record-replay approaches record run-time execution data of the software program.
When a crash happens, they use the recorded data to identify the states and the execution
path of the program that lead to the crash. Earliest work in crash production, like jRap-
ture [11], Bugnet [12] and Saff et al. [13], and later research [14, 15, 16] all fall into this
category. In order to record the run-time data, the program is instrumented, and therefore,
it implies performance overhead and may raise privacy concerns of the user.

Post-failure approaches, on the other hand, try to reproduce the crash by using data
derived from the crash itself or provided by the operating system. As those data are all
available after the crash, there is no need to instrument the program that is delivered to
the user [20, 21]. STAR [22] takes only the stack trace and applies backwards symbolic
execution for the computation of crash conditions. Some researchers also make use of
SBST techniques to generate test cases for crash reproduction. For example, Rößler et al.
proposed RECORE [23], which generates method sequences with information from core
dumps with the help of search-based algorithms.

2https://asm.ow2.io/

19

https://asm.ow2.io/

2. BACKGROUND

2.3.2 EvoCrash

EvoCrash [25] is a post-failure crash reproduction framework, extending EvoSuite. It ad-
dresses some challenges that previous post-failure approaches have been facing, like path
explosion and inability to handle environmental dependencies. See Figure 2.10 for the
overview of EvoCrash.

Stack trace

Software
Under Test

Minimised
Test CaseSelection

Guided
Initialisation

Guided
Mutation

Guided
Crossover

Pre-
processing

Post-
processing

JUnit Test Case

Figure 2.10: Overview of EvoCrash

The input to EvoCrash contains a stack trace generated by the crash itself and all the
related jar files of the original software under test (SUT). After pre-processing of the stack
trace, it utilises a novel genetic algorithm called Guided Genetic Algorithm (GGA). When
the crash is reproduced, the GGA outputs a JUnit test case. Afterwards, the post-processing
optimises the test case. The final output of the whole process is a concise executable JUnit
test case that triggers the crash for the engineer, or an info message if it fails to converge
with the given search budget.

Empirical evaluations showed that the GGA in EvoCrash addresses the path explosion
problem and the mocking strategies in EvoSuite help to partially tackle the environment
dependency challenge [26]. Each component in the framework is tailored for crash repro-
duction, and they are explained in this sub-section.

Pre-Processing

As shown in Listing 2.9, a typical Java crash stack trace contains the type of thrown excep-
tion (line 1), and a list of frames in the stack at the time of the crash (line 2 to 11). While
each frame tells the class name, method name and the line number where the exception is
propagated, the inner-most frame (line 2) is where the exception is thrown.

The pre-precessing of EvoCrash notes down the classes and methods in the stack trace
as its “interests”. The inner-most frame is the devoted target frame hereafter, and the class

20

2.3. Automated Crash Reproduction for Debugging

1 java.lang.ArrayIndexOutOfBoundsException: 4
2 at org.apache.commons.lang3.time.FastDateParser.toArray(FastDateParser.

java:413)
3 at org.apache.commons.lang3.time.FastDateParser.getDisplayNames(

FastDateParser.java:381)
4 at org.apache.commons.lang3.time.FastDateParser$TextStrategy.addRegex(

FastDateParser.java:664)
5 at org.apache.commons.lang3.time.FastDateParser.init(FastDateParser.

java:138)
6 at org.apache.commons.lang3.time.FastDateParser.<init >(FastDateParser.

java:108)
7 at org.apache.commons.lang3.time.FastDateFormat.<init >(FastDateFormat.

java:370)
8 at org.apache.commons.lang3.time.FastDateFormat$1.createInstance(

FastDateFormat.java:91)
9 at org.apache.commons.lang3.time.FastDateFormat$1.createInstance(

FastDateFormat.java:88)
10 at org.apache.commons.lang3.time.FormatCache.getInstance(FormatCache.

java:82)
11 at org.apache.commons.lang3.time.FastDateFormat.getInstance(

FastDateFormat.java:165)

Listing 2.9: Crash Stack Trace Example (LANG-9b from JCrashPack [3])

from it is the main CUT to be instrumented later.

Fitness Function

To numerically evaluate how good a generated test case is, EvoCrash defines its fitness func-
tion based on three conditions: (1) the line number in the target frame should be covered;
(2) an exception of the same type with the target exception should be thrown; and (3) the
generated stack trace should be as similar to the given one as possible.

The two well-established metrics, approach level and branch distance introduced in
Definition 1 and 2, are used to represent the line distance dline (x) of a generated test case
x for the first condition. For the second condition, the exception distance dexception (x) is
defined in Definition 5.

Definition 4 (Line Distance).

dline (x) = AL(x)+BD(x)

Definition 5 (Exception Distance). dexception (x) is a binary value as it is zero if and only if
the given exception is thrown, otherwise it is one:

dexception (x) =

{
0 if the target exception is thrown;
1 otherwise.

For the third condition, to calculate the trace distance is a bit more complicated. A stack
trace frame is denoted as ei = (Ci,mi, li) where i is the frame level, Ci is the class name of

21

2. BACKGROUND

that level, mi the method name and li the line number. First, we have the frame distance
defined in Definition 6. Thereafter, the trace distance dtrace (x) is defined in Definition 7.

Definition 6 (Frame Distance). The distance between an actual frame e j and a frame from
the target stack trace e∗i is:

di f f (e∗i ,e j) =


3 if C∗i 6=C j;
2 if C∗i =C j and m∗i 6= m j;
ϕ
(∣∣l∗i − l j

∣∣) ∈ [0,1] otherwise.

where ϕ() is the often used normalisation function ϕ(x) = x
x+1 .

Definition 7 (Trace Distance). The distance between the generated stack trace S and the
target stack trace S∗ is:

dtrace (x) =
n

∑
i=1

min
{

di f f (e∗i ,e j) : e j ∈ S
}

where n is the number of frames in S∗ and e j is the closest frame in S to e∗i from S∗.

Definition 8 (Weighted Sum Fitness Function). The final fitness function of a test case x is
a weighted sum of the norms of the aforementioned three distances:

f (x) = ω1ϕ(dline (x))+ω2dexception (x)+ω3ϕ(dtrace (x))

where 〈ω1,ω2,ω3〉 are the weights. In the implementation, the weight vector is set to
〈3,2,1〉. Therefore, the fitness function can be broken down into:

f (x) =


3×ϕ(dline (x))+2×1+1 if the target line is not reached;
3×0+2×dexception (x)+1 if the target line is reached;
3×0+2×0+ϕ(dtrace (x)) if the target exception is thrown.

Distance dexception (x) is not normalised as we already have dexception (x) ∈ {0,1}.

Guided Genetic Algorithm

Unlike traditional genetic algorithms used in SBST that target all methods in the CUT, the
GGA used by EvoCrash is modified in such a way that it prioritises methods involved in the
target crash. The idea is to create test cases that always exercise the target method in order
to increase the chance of leading to the target crash.

Initial Population The main difference in initialisation between EvoSuite and EvoCrash
is that the former tries to maximise the number of methods from the CUT being covered,
while the latter tries to include at least one invocation of the target method in all test cases.
If the target method is public or protected, it is ensured to be called at least once in
each test case in the initial population. However, if it is private, EvoCrash makes sure to
indirectly call it at least once in each test case in the initial population. Non-target methods
are invoked based on a probability or if they help to decrease the fitness value.

22

2.3. Automated Crash Reproduction for Debugging

Guided Crossover With the traditional crossover operation, there is a possibility that one
of the offspring may lose the invocation to the target method due to the randomness in
choosing the cut-point. If this indeed happens after the crossover operation, the GGA drops
the offspring with no target method invocation and substitute it with a copy of one of the
parent test cases. Necessary constructor invocations are inserted so that the offspring test
case is well-formed.

Guided Mutation Similar to the crossover operation, an offspring test case may lose the
invocation to the target method while mutating as well, specifically with the removal-of-
method-invocations operator. When that indeed happens, the GGA keeps mutating the said
offspring until at least one target method invocation is re-inserted back into the test case.

2.3.3 JCrashPack

Soltani et al. [3] proposed a benchmark named JCrashPack3 for evaluating search-based
crash reproduction techniques. The benchmark consists of selected size-varying software
applications with openly accessible binaries, source code and actively maintained issue trac-
ers. The authors have collected 200 stack traces of crashes from 7 real-world Java applica-
tions, including Apache Commons Lang4, Apache Commons Math5, mockito6, Joda Time7,
JFreeChart8, XWiki9, and Elasticsearch10. See Table 2.5a for the number of crashes from
each software application and Table 2.5b for the number of crashes of each Java exception
type.

Table 2.5: Crash Cases Composition of JCrashPack [3]

(a) versus Software Projects

Application Crashes
commons-lang 22
commons-math 27

mockito 14
Joda Time 8
JFreeChart 2

XWiki 51
Elasticsearch 76

Total 200

(b) versus Exception Types

Exception Type Crashes
NullPointer 49

IllegalArgument 24
ArrayIndexOutOfBounds 14

ClassCast 10
StringIndexOutOfBounds 9

IllegalState 7
Other 87
Total 200

3https://github.com/STAMP-project/JCrashPack
4https://commons.apache.org/lang/
5https://commons.apache.org/math/
6https://site.mockito.org/
7https://www.joda.org/joda-time/
8http://www.jfree.org/jfreechart/
9https://www.xwiki.org/

10https://www.elastic.co/

23

https://github.com/STAMP-project/JCrashPack
https://commons.apache.org/lang/
https://commons.apache.org/math/
https://site.mockito.org/
https://www.joda.org/joda-time/
http://www.jfree.org/jfreechart/
https://www.xwiki.org/
https://www.elastic.co/

2. BACKGROUND

“Other” in Table 2.5b includes exceptions that only occur very few times or customised
exceptions defined by the software applications.

2.4 Botsing

When EvoCrash was first implemented, it contained a full clone of EvoSuite. EvoSuite
itself as a popular open-source project has many active contributors and has been updated
frequently. Due to the fact that EvoCrash was deeply dependent on EvoSuite, it became
difficult to maintain and update EvoCrash, and it was then deprecated [43].

The follow-up development of EvoCrash moved towards Botsing11. Botsing means
“crash” in Dutch. While it fully re-implements the functionality of EvoCrash, it only takes
EvoSuite as a maven dependency. Additionally, Botsing comes with an extensive test suite
to further ease future developments and expansion. Furthermore, Botsing has also brought
new techniques to the original EvoCrash, two of which are the integration testing fitness
function and many-objective optimisation. They are discussed in this section.

Limitations of the Weighted Sum Fitness Function

The weighted sum fitness function (see Definition 8) from EvoCrash views the stack trace
from a top-down perspective. Giving dline the highest weight 3, it prioritises on making sure
that the line number of the target frame is covered. Then dexception is given the weight 2 to
focus on throwing the target exception. And eventually, it checks the similarity between the
generated stack trace and the target stack trace. A huge penalty is given to the candidate
when the first two conditions are not covered. Moreover, EvoCrash only treats the class in
the target frame as the CUT, and only instruments that class.

SomeTypeOfException:
at ClassA.method1(ClassA.java:435)
at ClassB.method2(ClassB.java:156)
at ClassC.method3(ClassC.java:851)

Listing 2.10: Dummy Stack Trace

Imagine a task to reproduce the third frame from the dummy stack trace shown in List-
ing 2.10, and in the source code, method3 can invoke method1 both directly or indirectly via
method2. Both method1 and method4 have the potential to throw SomeTypeOfException.

SomeTypeOfException:
at ClassA.method4(ClassA.java:652)
at ClassC.method3(ClassC.java:851)

Listing 2.11: Resulting Stack Trace of x1

method1:422, ClassA
method2:156, ClassB
method3:851, ClassC

Listing 2.12: Program Stack of x2

11https://stamp-project.github.io/botsing/

24

https://stamp-project.github.io/botsing/

2.4. Botsing

Dummy test case x1 throws the exception, the resulting stack trace is shown in List-
ing 2.11. While dummy test case x2 does not throw any exception, shown in Listing 2.12 is
the program stack.

With the weighted sum fitness function, x1 is favoured as dline (x1) = dexception (x1) = 0,
while x2 might be dropped because no exception is thrown. However, x2 is able to invoke
method1 via the desired path and should be considered more likely to reproduce the crash.
Therefore, the search process is possibly misled to a local optimum. In essence, the nested
nature of stack traces should have been respected throughout the search process.

2.4.1 Integration Testing

Inspired by RECORE [23], Botsing provides an integration testing scheme, which views
the stack trace bottom-up. Classes from all frames inner to the target frame are treated as
CUTs and instrumented. The integration testing fitness function gives the highest priority to
reconstruct the stack trace frame by frame with its different definition of the trace distance:

Definition 9 (Integration Testing Trace Distance).

d∗trace (x) = |S∗|− |lcp|+ϕ(dline (x,rlcp))

where lcp is the longest common prefix between S and S∗, |S∗| − |lcp| means the number
of stack trace frames yet to reach. rlcp denotes the first diverging stack trace frame, and
dline (x,rlcp) is the line distance for test case x to reach the line number of that frame.

Definition 10 (Integration Testing Fitness Function).

f (x) = d∗trace (x)+dexception (x)

The search process thus strives to maximise stack trace similarity, starting from the outer-
most frame. The definition can also be broken down into:

f (x) =

{
n+dlinen (x) if the line number of the n-th frame is not covered;
dexception (x) if the line number of all frames are covered.

where n is the level of the current frame and n ∈ [1, total number o f f rames].

method1:435, ClassA
method2:156, ClassB
method3:851, ClassC

Listing 2.13: Program Stack of x3

SomeTypeOfException:
at ClassA.method1(ClassA.java:435)
at ClassB.method2(ClassB.java:156)
at ClassC.method3(ClassC.java:851)

Listing 2.14: Stack Trace of x4

Consider two additional dummy cases x3 and x4 shown in Listing 2.13 and 2.14. Notice
that x3 does not throw any exception. Now with the integration testing fitness function, we
have f (x1) ∈ (2,3) as the second frame is not covered, and f (x2) ∈ (1,2] as the second

25

2. BACKGROUND

frame is covered but not the first one. We have f (x3) = 1 because it covers all three frames
but throws no exception. And f (x4) = 0 as all three frames are covered and the same type
of exception is thrown.

In this way, the search process respects the nested nature of the stack trace, and fitness
values decrease more smoothly.

2.4.2 Many-Objective Optimisation

Soltani et al. [44] applied a multi-optimisation technique for evolutionary crash reproduc-
tion. Instead of summing up dline, dexception, and dtrace with weights, each of them is set
to be an objective of NSGA-II [45]. Their experiments show that by modifying the fitness
function and loosing the constraints, it improves the efficiency, especially when reproduc-
ing non-trivial crashes which take several generations of evolution [44]. The limitation of
NSGA-II is that it is not effective when solving problems with more than three objectives.
Therefore, Botsing implemented the guided version of the MOSA in EvoSuite in addition
to the original GGA from EvoCrash.

2.5 Limitation

We have stated how important the fitness function is to the applications of genetic algo-
rithms. However, in existing search-based crash reproduction techniques, the exploitation
power of the genetic algorithm is shackled by the underlying fitness function. Used in both
the weighted sum fitness function and the integration testing fitness function, the exception
distance dexception (Definition 5) is a binary value. When the fitness value reaches 3.0 in
the case of weighted sum, or 1.0 in the case of integration testing, the search process has to
wander around a plateau without further guidance to decrease the fitness value.

To address the limitation and to adjust and improve the fitness function, our study is
carried out with the following steps:

1. Studying how common run-time exceptions in Java are triggered;
2. Defining distances for different kinds of exceptions to break the plateau; and
3. Implementing additional instrumentation to retrieve information necessary to the

computation of the distances and thereafter the new fitness functions.

26

Chapter 3

Common Runtime Exceptions

There are numerous types of Java exceptions defined in the JDK. The package java.lang
alone has seventeen types of RuntimeExceptions already, making it infeasible to specialise
fitness functions against each one of them within this thesis project.

However, some types are more ubiquitous in Java programs. Soltani et al. [26] sum-
marised that the most commonly examined exception types in automatic crash reproduction
studies are: (1) NullPointer, 74%; (2) ArrayIndexOutOfBounds, 9%; (3) IllegalState
and IllegalArgument, 3%. A survey about debugging Java applications on the Android
platform also confirms that these types, along with ClassCast exception, have been re-
ported more often than others [46].

Considering the stack traces provided in JCrashPack (see Table 2.5b), we have de-
cided to focus on ArrayIndexOutOfBoundsExceptions, StringIndexOutOfBounds-
Exceptions, IllegalArgumentExceptions and IllegalStateExceptions. How each
one of them is typically thrown is discussed in this chapter. And the reason why Null-
PointerExceptions are not included is explained at the end.

3.1 ArrayIndexOutOfBoundsException

Arrays are stored as a series of consecutive bytes in memory. Each element can be accessed
with the address of the start of the array, an index indicating the offset, and the type of stored
elements. In languages like C, malicious parties can exploit the index to access any address
in the memory, raising safety concerns.

The Java virtual machine (JVM) performs boundary checks for array accesses at run-
time to intercept any illegal memory access to ensure the security and functionality of the
program. The lower bound of an array is always zero, and the upper bound is the length
of the array minus one. If the index falls out of this range, an ArrayIndexOutOfBounds-
Exception is thrown. In the JDK documentation, it is defined as follows:

Documentation (ArrayIndexOutOfBoundsException). Thrown to indicate that an array
has been accessed with an illegal index. The index is either negative or greater than or
equal to the size of the array [47].

27

3. COMMON RUNTIME EXCEPTIONS

In Java, arrays are a special type of built-in data structure, for which there are bytecode
instructions in the JVM to directly operate on them. Accessing an element of an array
happens on the bytecode level. Therefore, the exception is mainly thrown by the JVM
itself, and seldomly thrown explicitly from the source code.

Two sets of bytecode instructions are involved. One set of instructions read an element
from an array and push its value onto the top of the operand stack. And the other set of
instructions store a value that is on the top of the operand stack to an array. Within each
set, there is a unique instruction for each primitive type (see Table 3.1, each instruction is
followed by its hexadecimal code).

3.1.1 Loading

……

arrayref

index

……

arrayref

index

Figure 3.2: Operand Stack When
Loading

Consider the example of loading an array element in
Figure 3.1. Java source code in Figure 3.1a has been
transcompiled into bytecode in Figure 3.1c. At the
time when IALOAD is called (line 11 of the bytecode),
there are two relevant values in the operand stack. The
lower one is the result of ALOAD 1, which is the ref-
erence to the local variable array. The upper one is
the integer constant 5, which is the index of the ele-
ment we are trying to access as indicated in line 3 of
the source code.

3.1.2 Storing

……

arrayref

index

element

……

arrayref

index

element

Figure 3.3: Operand Stack When
Storing

The bytecode for storing an element in an array is very
similar to loading, as shown in Figure 3.1b and 3.1d.
The only difference is that now there are three relevant
values in the operand stack when calling IASTORE (line
12 of the bytecode). The lower one ALOAD 1 is the
reference to the local variable array. The middle one
ICONST M1 is the index -1 that is indicated in line 3 of
the source code. The upper one BIPUSH 7 is the value
of the element to be stored in the array.

If 0 6 index < length stands, the index is legal.
Otherwise, the exception is thrown. The exception dis-
tance can, therefore, be defined to reflect how far the
index is away from 0 or the length.

28

3.1. ArrayIndexOutOfBoundsException

Table 3.1: Bytecode Instructions for Array Access

Type Loading Storing
int IALOAD 2E IASTORE 4F
long LALOAD 2F LASTORE 50
float FALOAD 30 FASTORE 51
double DALOAD 31 DASTORE 52

reference AALOAD 32 AASTORE 53
boolean BALOAD 33 BASTORE 54
char CALOAD 34 CASTORE 55
short SALOAD 35 SASTORE 56

1 void loadingExample() {
2 int[] array = new int[5];
3 int i = array[5];
4 }

(a) Loading Example (Source Code)

void storingExample() {
int[] array = new int[5];
array[-1] = 7;

}

(b) Storing Example (Source Code)

1 loadingExample()V
2 L0
3 LINENUMBER 2 L0
4 ICONST_5
5 NEWARRAY T_INT
6 ASTORE 1
7 L1
8 LINENUMBER 3 L1
9 ALOAD 1

10 ICONST 5
11 IALOAD
12 ISTORE 2
13 L2
14 LINENUMBER 4 L2
15 RETURN
16 L3
17 LOCALVARIABLE array [I L1 L3 1
18 LOCALVARIABLE i I L2 L3 2
19 MAXSTACK = 2
20 MAXLOCALS = 2

(c) Loading Example (Bytecode)

storingExample()V
L0

LINENUMBER 2 L0
ICONST_5
NEWARRAY T_INT
ASTORE 1

L1
LINENUMBER 3 L1
ALOAD 1
ICONST M1
BIPUSH 7
IASTORE

L2
LINENUMBER 4 L2
RETURN

L3
LOCALVARIABLE array [I L1 L3 1
MAXSTACK = 3
MAXLOCALS = 1

(d) Storing Example (Bytecode)

Figure 3.1: Accessing Array Elements in Java

29

3. COMMON RUNTIME EXCEPTIONS

3.2 StringIndexOutOfBoundsException

In Java, strings are represented as instances of the String class. The class wraps several
fields and utility methods around a char array. For the same reason mentioned at the be-
ginning of the previous section, any illegal access to strings should not be allowed either.
Therefore a StringIndexOutOfBoundsException is thrown when the access to a string is
illegal.

Documentation (StringIndexOutOfBoundsException). Thrown by Stringmethods to
indicate that an index is either negative or greater than the size of the string. For some
methods such as the charAt method, this exception also is thrown when the index is equal
to the size of the string [48].

However, unlike arrays, String is a typical Java class. To operate on a String ob-
ject, one needs to invoke corresponding methods. Furthermore, as said in the above doc-
umentation, StringIndexOutOfBoundsExceptions are explicitly thrown from the source
code and mostly from methods related to the String class. JCrashPack collected 9 crashes
where a StringIndexOutOfBoundsException is thrown. The String method causing the
exception for each crash is shown in Table 3.2.

Table 3.2: Causes of StringIndexOutOfBoundsException Crashes in JCrashPack

Crash Causing String Method
Lang-6b

String.charAt(int)
Lang-19b
Lang-44b
Lang-51b
Lang-27b

String.substring(int, int)
Lang-45b
Math-101b
XWIKI-14152
ES-22997

In JDK1.8, there are 46 places where a StringIndexOutOfBoundsException is
thrown. It involves 24 public and protected methods from 3 classes, including
AbstractStringBuilder, String and StringBuffer. The 24 methods can be cate-
gorised into several types, see Table 3.3. Notice that ‘*’ in the table means that there are
multiple matching types of the argument. And Conditions indicate the situation where no
StringIndexOutOfBoundsException is thrown, instead of the opposite.

The methods are categorised mainly based on the arguments they take, and the con-
ditions they have to meet to not throw the exception. For methods that fall into the same
category, at the time of them being called, the operand stacks have the same combination of
values. Those values have to go through the same checks. And similar to ArrayIndexOut-
OfBoundsExceptions, the exception distance can be defined to reflect how far the relevant
values like the index or the offset are away from 0 or the length.

30

3.2. StringIndexOutOfBoundsException

Ta
bl

e
3.

3:
D

iff
er

en
tT

yp
es

of
M

et
ho

ds
T

ha
tT

hr
ow

s
St

ri
ng

In
de

xO
ut

Of
Bo

un
ds

Ex
ce

pt
io

n

Si
gn

at
ur

es
C

on
di

tio
ns

M
et

ho
ds

in
t

in
de

x

0
6

in
de

x
<

le
ng

th

St
ri

ng
.c

ha
rA

t(
in

t)
St

ri
ng

.c
od

eP
oi

nt
At

(i
nt

)
St

ri
ng

Bu
ff

er
.c

ha
rA

t(
in

t)
Ab

st
ra

ct
St

ri
ng

Bu
il

de
r.

ch
ar

At
(i

nt
)

Ab
st

ra
ct

St
ri

ng
Bu

il
de

r.
co

de
Po

in
tA

t(
in

t)
Ab

st
ra

ct
St

ri
ng

Bu
il

de
r.

de
le

te
Ch

ar
At

(i
nt

)

1
6

in
de

x
6

le
ng

th
+

1
St

ri
ng

.c
od

eP
oi

nt
Be

fo
re

(i
nt

)
Ab

st
ra

ct
St

ri
ng

Bu
il

de
r.

co
de

Po
in

tB
ef

or
e(

in
t)

0
6

in
de

x
6

le
ng

th
St

ri
ng

.s
ub

st
ri

ng
(i

nt
)

in
t

in
de

x,
ch

ar
c

0
6

in
de

x
<

le
ng

th
St

ri
ng

Bu
ff

er
.s

et
Ch

ar
At

(i
nt

,
ch

ar
)

Ab
st

ra
ct

St
ri

ng
Bu

il
de

r.
se

tC
ha

rA
t(

in
t,

ch
ar

)

in
t

in
de

x,
*

st
r

0
6

in
de

x
6

le
ng

th
Ab

st
ra

ct
St

ri
ng

Bu
il

de
r.

in
se

rt
(i

nt
,

St
ri

ng
)

Ab
st

ra
ct

St
ri

ng
Bu

il
de

r.
in

se
rt

(i
nt

,
ch

ar
[]

)
in

t
ne

wL
en

gt
h

0
6

ne
w

L
en

gt
h

Ab
st

ra
ct

St
ri

ng
Bu

il
de

r.
se

tL
en

gt
h(

in
t)

in
t

st
ar

t,
in

t
en

d
0
6

st
ar

t6
en

d
6

le
ng

th
St

ri
ng

.s
ub

st
ri

ng
(i

nt
,

in
t)

Ab
st

ra
ct

St
ri

ng
Bu

il
de

r.
su

bs
tr

in
g(

in
t,

in
t)

0
6

st
ar

t6
en

d
Ab

st
ra

ct
St

ri
ng

Bu
il

de
r.

de
le

te
(i

nt
,

in
t)

in
t

st
ar

t,
in

t
en

d,
*[

]
ds

t,
in

t
be

gi
n

0
6

st
ar

t6
en

d
6

le
ng

th
St

ri
ng

.g
et

By
te

s(
in

t,
in

t,
by

te
[]

,
in

t)
St

ri
ng

.g
et

Ch
ar

s(
in

t,
in

t,
ch

ar
[]

,
in

t)
Ab

st
ra

ct
St

ri
ng

Bu
il

de
r.

ge
tC

ha
rs

(i
nt

,
in

t,
ch

ar
[]

,
in

t)
in

t
st

ar
t,

in
t

en
d,

St
ri

ng
st

r
0
6

st
ar

t6
le

ng
th

,
st

ar
t6

en
d

Ab
st

ra
ct

St
ri

ng
Bu

il
de

r.
re

pl
ac

e(
in

t,
in

t,
St

ri
ng

)

*[
]

va
lu

es
,

in
t

of
fs

et
,

in
t

co
un

t
0
6

of
fs

et
,0

6
co

un
t,

of
fs

et
+

co
un

t6
va

lu
es

.le
ng

th
St

ri
ng

(c
ha

r[
],

in
t,

in
t)

St
ri

ng
(i

nt
[]

,
in

t,
in

t)

in
t

in
de

x,
ch

ar
[]

va
lu

es
,

in
t

of
fs

et
,

in
t

co
un

t

0
6

in
de

x
6

le
ng

th
,

0
6

of
fs

et
,0

6
co

un
t,

of
fs

et
+

co
un

t6
va

lu
es

.le
ng

th
Ab

st
ra

ct
St

ri
ng

Bu
il

de
r.

in
se

rt
(i

nt
,

ch
ar

[]
,

in
t,

in
t)

31

3. COMMON RUNTIME EXCEPTIONS

3.3 IllegalStateException and
IllegalArgumentException

Documentation (IllegalStateException). Signals that a method has been invoked at
an illegal or inappropriate time. In other words, the Java environment or Java application
is not in an appropriate state for the requested operation [49].

Documentation (IllegalArgumentException). Thrown to indicate that a method has
been passed an illegal or inappropriate argument [50].

IllegalStateExceptions and IllegalArgumentExceptions are only explicitly
thrown from the source code, similar to StringIndexOutOfBoundsExceptions. However,
these two are more omnipresent compared with the previous two types of exceptions we
have discussed. In JDK1.8 itself, 583 instances of IllegalStateExceptions are thrown
and 3,367 for IllegalArgumentExceptions. Numerous classes and methods are involved.
Their usage is more general as well.

According to the documentation quoted above, an IllegalStateException is thrown
when the environment state is inappropriate, and an IllegalArgumentException is
thrown when the passed argument is inappropriate. The code snippet shown in Listing 3.1
is an example. The variable hooks at line 6 is a static field of the class. When it is null,
an IllegalStateException is thrown. And hook at line 8 is a passed argument. When it
violates the logic of the program, an IllegalArgumentException is thrown.

1 /**
2 * Add a new shutdown hook. Checks the shutdown state and the hook
3 * itself, but does not do any security checks.
4 */
5 static synchronized void add(Thread hook) {
6 if (hooks == null)
7 throw new IllegalStateException("Shutdown in progress");
8 if (hook.isAlive())
9 throw new IllegalArgumentException("Hook already running");

10 // ... rest of the program
11 }

Listing 3.1: add method from class ApplicationShutdownHooks from JDK1.8

However, this convention is not always true. Sometimes an IllegalStateException
is thrown when only the argument violates the logic and sometimes it is hard to draw a line
between the illegal arguments and illegal states. Take the code snippet in Listing 3.2 for
example, the variables comp1 and comp2 are only related to the arguments, not any state
outside this method, but IllegalStateExceptions are thrown at both line 14 and 16.

Unlike the first two types of exception, the usage of which is tied up with indexed
access to a sequential data structure, the usage of IllegalStateExceptions and Illegal-
ArgumentExceptions is difficult to characterise. The only pattern is that those are typically
thrown within an if-statement checking the status of a variable.

32

3.3. IllegalStateException and IllegalArgumentException

1 /**
2 * If arr1 and arr2 are both arrays of the same component type,
3 * return an array of that component type that consists of the
4 * elements of arr1 followed by the elements of arr2.
5 * Throws IllegalArgumentException otherwise.
6 */
7 public static Object concatenateArrays(Object arr1, Object arr2) {
8 Class comp1 = arr1.getClass().getComponentType();
9 Class comp2 = arr2.getClass().getComponentType();

10 int len1 = Array.getLength(arr1);
11 int len2 = Array.getLength(arr2);
12

13 if ((comp1 == null) || (comp2 == null))
14 throw new IllegalStateException("Arguments must be arrays");
15 if (!comp1.equals(comp2))
16 throw new IllegalStateException(
17 "Arguments must be arrays with the same component type");
18 // ... rest of the program
19 }

Listing 3.2: concatenateArrays method from class ObjectUtility from JDK1.8

3.3.1 Jump Instructions

Two types of bytecode instructions are involved in if-statements. The first type is jump in-
structions including: (1) IF ICMPEQ, IF ICMPNE, IF ICMPLT, IF ICMPGE, IF ICMPGT, and
IF ICMPLE; (2) IFEQ, IFNE, IFLT, IFGE, IFGT, and IFLE; (3) IF ACMPEQ, and IF ACMPNE;
(4) IFNULL and IFNONNULL.

In the JVM, values of type byte, char, short, int, boolean or their wrapper classes
are all represented as integers. While instructions in group (1) compare two integer values
against each other, instructions in group (2) compare one integer value against zero. In-
structions in group (3) check whether two references are the same and the ones in group (4)
check whether one reference is null or not.

After the comparison, the flow of execution directly jumps into one of the branches of
the if-statement.

3.3.2 Compare Instructions

The other type of bytecode instructions is normal instructions that perform the comparison
task, including LCMP, FCMPL, FCMPG, DCMPL and DCMPG.

The first instruction compares two long values against each other, while the next two
compare float values. The last two compare double values to each other.

After the comparison, the instruction returns an integer indicating the result of the com-
parison. That integer is then compared to zero by calling one instruction from group (2).
The flow of execution jumps into a certain branch in the end.

33

3. COMMON RUNTIME EXCEPTIONS

A previous study showed that reformulating a single-objective fitness function into a
many-objective one and loosing the constraints have a positive effect on search-based crash
reproduction [44]. Along with the fact that these two types of exceptions are mainly thrown
within if-statements, the new fitness function can look at the data diversity of branching
variables at if-statements. Instead of focusing on only guiding the execution path into a
certain branch, the many-objective fitness function can broaden the diversity of the context
(i.e. values of the different variables) in addition.

3.4 NullPointerException

Documentation (NullPointerException). Thrown when an application attempts to use
null in a case where an object is required. These include:

• Calling the instance method of a null object;
• Accessing or modifying the filed of a null object;
• Taking the length of null as if it was an array;
• Accessing or modifying the slots of null as if it was an array;
• Throwing null as if it was a Throwable value.

Applications should throw instances of this class to indicate other illegal uses of the null
object. NullPointerException objects may be constructed by the virtual machine as
if suppression were disabled and/or the stack trace was not writable [51].

As IllegalArgumentExceptions and IllegalStateExceptions have covered a
large portion of null checks in Java programs regarding use cases mentioned in the above
documentation, NullPointerExceptions are mainly thrown by the JVM at run-time. The
dereferenced object can either be null or not null. Therefore to throw the exception is a
dichotomous event, for which it is hard to describe the exception distance with continuous
values to specialise the fitness function.

a.b.c.d = 99;
n[i][j][k] = 99;
e.f = g.h;
x().y().m = 99;

Listing 3.3: Complex Situations for NullPointerExceptions

Additionally, Oracle Corporation and the OpenJDK Community 1 are aware that the
information contained in a NullPointerException stack trace is not informative nor help-
ful [52]. For statements shown in Listing 3.3, when a NullPointerException is thrown,
the JVM provides the filename and the line number where it is thrown from. However,
it is not possible to pinpoint down which object is null. The two parties, at the time of
writing this thesis report, have started working on computing the null-detail message to be
incorporated into NullPointerExceptions for the future releases of the JDK and the JVM.

1http://openjdk.java.net/

34

http://openjdk.java.net/

3.4. NullPointerException

Romano et al. [53] combined a static backward path-sensitive analysis with a search-
based algorithm to recreate NullPointerException crashes. However, their approach re-
quires manual intervention to initiate the search process, and the path analysing component
is computationally expensive, which makes it only feasible to target one specific object at a
time.

Therefore, NullPointerExceptions are out of the score of this thesis project.

35

Chapter 4

Crash-Specific Fitness Functions

In this chapter, we explain the design and implementation details of the crash-specific fit-
ness functions for the aforementioned four types of Java exceptions, based on the analyses
presented in Chapter 3.

4.1 Adapting Integration Testing Fitness Function for Indexed
Access

A StringIndexOutOfBoundsException is thrown in essence because of the illegal access
to the char[] that is wrapped around in the String class. Based on this similarity, Array-
IndexOutOfBoundsExceptions and StringIndexOutOfBoundsExceptions are grouped
together. For these two types of exception, we have implemented an instrumentation compo-
nent in EvoSuite and a fitness function in Botsing. See Figure 4.1 for the new components.
Unchanged components from Figure 2.10 are omitted.

Execution

Generated
Test Case

Execution
Tracer

ITFFFor
Indexed
Access

Software
Under Test

IndexAccess
Visitor

Instrument

Software
Under Test

IndexAccess
Visitor

Instrument

Selection

Collect run-time
information

Figure 4.1: Related Components to Indexed Access in Botsing

37

4. CRASH-SPECIFIC FITNESS FUNCTIONS

The overall process is the same as described in Sub-section 2.3.2. The input to Botsing
includes the crash stack trace and the relevant jar files. The pre-processing process logs
classes in the stack trace as CUTs and instruments the jar files with our IndexedAccess-
Visitor in addition to other necessary visitors from EvoSuite. The GGA then generates
the initial population of test cases made of direct or indirect invocations of methods and
constructors appearing in the stack trace. Each test case is executed, and the data acquired
by the instrumentation is stored into the ExecutionTracer, the singleton provided by Evo-
Suite for storing all run-time information. The information is used in the selection process
to calculate the fitness value with our proposed integration testing fitness function for in-
dexed access. With the guided crossover and guided mutation operators, the GGA evolves
the test cases with the goal of reducing the fitness value to zero. Eventually, the optimal test
case, i.e. the test case with a fitness value of zero, is found and minimised, and it is the final
output of Botsing. All new components are explained in detail in this section.

4.1.1 Exception Distance

We have formulated a new exception distance d∗exception (x) intending to describe how far the
accessed index is away from being negative or greater or equal to the length of the array. It
is defined as follows:

Definition 11 (Exception Distance for Indexed Access).

d∗exception (x) =


0 if index < 0;
1− |index−mid|

length−mid if 0 6 index < length;

0 if length 6 index

where x is the generated test case, length is the length of the array or String instance
at the target line, index is the queried index, and mid = length−1

2 is the median of all legal
indices.

−1 0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

index

ex
ce
pt
io
n 
di
st
an
ce

Figure 4.2: dexception (blue dashed line) versus d∗exception (red dotted line)

See Figure 4.2 for example. For an array of length 9, all integers from 0 to 8 are legal
indices. With the newly defined d∗exception, the median index, 4, results in a distance value

38

4.1. Adapting Integration Testing Fitness Function for Indexed Access

of 1 because it is the furthest to being either negative or greater or equal to 9. As the index
moves either left or right, the distance value decreases and turns 0 as soon as the index
becomes illegal. With the previously used dexception, distance values stay 1 for all legal
indices and immediately drop to 0 when illegal.

4.1.2 Instrumentation

To calculate d∗exception, two values are essential. One is the accessed index, and the other one
is the length of the array or String instance at the target line. To acquire the information
at run-time, we have added a customised MethodVisitor to EvoSuite’s instrumentation
infrastructure, which is called IndexedAccessVisitor. It adds bytecode instrumentation
to the CUT in pre-processing. When a generated test case is executed, the added instrumen-
tation will log desired information into the ExecutionTracer.

ArrayIndexOutOfBoundsException

As explained in section 3.1, indexed array accesses are performed directly by bytecode
instructions. Therefore at the target lines in the SUT, these related bytecode instructions are
instrumented.

1 DUP2
2 SWAP
3 ARRAYLENGTH
4 LDC layer++
5 LDC className
6 LDC methodName
7 INVOKESTATIC org/evosuite/testcase/execution/ExecutionTracer.

passedIndexedAccess (IIILjava/lang/String;Ljava/lang/String;)V

Listing 4.1: Bytecode Snippet Inserted Before Each Loading Instruction

For all loading related instructions, including IALOAD, LALOAD, FALOAD, DALOAD,
AALOAD, BALOAD, CALOAD and SALOAD, the bytecode snippet shown in Listing 4.1 is inserted
before the said instruction.

Figure 4.3 depicts the changes in the operand stack when executing the inserted byte-
code snippet. The instruction DUP2 duplicates the top two values of the operand stack.
SWAP switches the position of the top two values so later on arrayref can be consumed by
ARRAYLENGTH, and it gets the length of the array in return. The variables layer, class-
Name and methodName are all fields of the IndexedAccessVisitor. The field layer de-
notes how many indexed accesses on the target line have been visited so that situations like
a multi-dimensional array or multiple arrays on one line can be handled. The field method-
Name is the full method name with signature. The instruction LDC loads these three fields
onto the operand stack. INVOKESTATIC invokes a static method passedIndexedAccess
from the ExecutionTracer, which logs the top five values of the operand stack (namely
index, length, layer, className and methodName) into a nested map in the Execution-
Tracer.

39

4. CRASH-SPECIFIC FITNESS FUNCTIONS

DUP2 SWAP ARRAYLENGTH LDC INVOKESTATIC

……

arrayref

index

……

arrayref

index

……

arrayref

index

arrayref

index

……

arrayref

index

arrayref

index

……

arrayref

index

index

arrayref

……

arrayref

index

index

arrayref

……

arrayref

index

index

length

……

arrayref

index

index

length

……

arrayref

index

index

length

layer

className

methodName

……

arrayref

index

index

length

layer

className

methodName

……

arrayref

index

……

arrayref

index

Figure 4.3: Instrumentation Before Executing a Loading Instruction

For all storing related instructions, including IASTORE, LASTORE, FASTORE, DASTORE,
AASTORE, BASTORE, CASTORE and SASTORE, the instrumentation is similar to that for the
loading instructions. The only difference is that the element value at the top of the operand
stack (see Figure 3.3) should be temporarily saved to log the index and the length of the
array. Afterwards, it should be restored back to the top of the operand stack.

StringIndexOutOfBoundsException

Instead of by bytecode instructions, indexed String accesses are performed, and the excep-
tion is thrown, by a set of methods in the string related classes (see Table 3.3). Therefore at
the target lines in the SUT, invocations to these methods should be instrumented.

However considering that in JCrashPack there are only crashes caused by two meth-
ods from the String class (see Table 3.2), our effects have yet only included those two
methods together with the other seven methods from the String class. One addition is
CharSequence.charAt(int) as String.charAt(int) is an implementation of it. In to-
tal, there are ten methods.

Three bytecode instructions are involved in the invocation to those methods, including
INVOKEVIRTUAL, INVOKESPECIAL and INVOKEINTERFACE. The bytecode snippet is inserted
if the to-be-invoked method is one of the ten methods mentioned before. According to
different signatures and conditions listed in Table 3.3, different values need to be logged
into the ExecutionTracer. Therefore the bytecode snippet varies. It is largely similar
to that of indexed array accesses, with one major difference. Take String.charAt(int)
for example, the bytecode snippet for which is shown in Listing 4.2. On line 3, instead of
the bytecode instruction ARRAYLENGTH, an invocation to the method String.length() is
inserted to consume the stringref and get the length of the String instance back.

40

4.2. Many-Objectivisation with Helper Objectives for Branching Variables

1 DUP2
2 SWAP
3 INVOKEVIRTUAL java/lang/String.length ()I
4 LDC layer++
5 LDC className
6 LDC methodName
7 INVOKESTATIC org/evosuite/testcase/execution/ExecutionTracer.

passedIndexedAccess (IIILjava/lang/String;Ljava/lang/String;)V

Listing 4.2: Bytecode Snippet Inserted Before Invoking String.charAt(int)

One critical aspect of the instrumentation is that, after the execution of the insert code
snippet, the operand stack should return to its previous form (see Figure 4.3) so that the
original instructions can be executed without any error.

4.1.3 Integration Testing Fitness Function for Indexed Access

With the newly defined d∗exception from Definition 11 and bytecode instrumentation to collect
necessary information, we have extended the integration testing fitness function used in
Botsing (see Definition 10) for indexed access, defined as follows:

Definition 12 (Integration Testing Fitness Function for Indexed Access).

findexed access (x) =

{
n+dlinen (x) if the line number of the n-th frame is not covered;
d∗exception (x) if the line number of all frames are covered.

4.2 Many-Objectivisation with Helper Objectives for
Branching Variables

In previously used fitness functions, branch distance guides the search process to go strictly
into one specific branch of the if-statements. However in the context of crash reproduction,
we know that the flow has ended up at one point (i.e. the line where the exception is thrown),
but we do not know in which context (i.e. values of the different variables) it reaches there.
Soltani et al. [44] showed that relaxing the constraints and adapting a multi-objective ge-
netic algorithm can improve the results. Hence our improvement for IllegalArgument-
Exceptions and IllegalStateExceptions consists in loosing the branching constraints
and creating multiple diversity objectives for branching variables. For that purpose, we have
implemented an instrumentation component in EvoSuite, a static analysis component and a
set of fitness functions for different types of variables in Botsing. A simplified overview of
our work is shown in Figure 4.4, the detail of which is explained in this section.

4.2.1 Diversity Objectives

Clauses contained in an if-statement typically include checking whether a reference is
null, checking whether a Collection-like instance is empty, and comparison between

41

4. CRASH-SPECIFIC FITNESS FUNCTIONS

Execution

Generated
Test Case

Execution
Tracer

ITFF

SU
T

Branching
Variable

Instrumentation

Objective
Branching
Variable
Diversity
Factory

instrument

static analysis

ObjectiveObjective

generate objectives

Collect run-time
information

Figure 4.4: Related Components to Branching Variable Diversity in Botsing

values. Based on IOCoverageConstants 1 from EvoSuite, we have defined 20 objectives
for different types of variables, listed in Table 4.1.

4.2.2 Objective Factory

At run-time, the execution of one generated test case can only cover a particular path of
the program, because of which the instrumentation only logs information about variables
that it has run into within that specific path, leaving out variables on other paths. There-
fore it is necessary to get all the objectives set beforehand, and we have implemented the
BranchingVariableDiversityFactory to do that.

At the pre-processing phase, the BranchingVariableDiversityFactory collects all
the methods and constructors appearing in the input stack trace. When going through
the CFG of one method or constructor, the factory creates a set of BranchingVariable-
DiversityObjectives as helper objectives when it runs into an if-statement, according
to the types of the branching variables.

Take method toLocale in Listing 4.3 for example. At line 99, the local variable len
is compared against three constants, 2, 5, and 7. It is an int value; therefore, objectives
NUM POSITIVE, NUM ZERO and NUM NEGATIVE are created. At line 104, local variables ch0
and ch1 are compared against literals ’a’ and ’z’. They are char values; therefore, objec-
tives CHAR ALPHA, CHAR DIGIT and CHAR OTHER are created for each one of them. This is
done for each method or constructor that has appeared in the stack trace.

1https://github.com/EvoSuite/evosuite/blob/master/client/src/main/java/org/evosuite
/coverage/io/IOCoverageConstants.java

42

https://github.com/EvoSuite/evosuite/blob/master/client/src/main/java/org/evosuite/coverage/io/IOCoverageConstants.java
https://github.com/EvoSuite/evosuite/blob/master/client/src/main/java/org/evosuite/coverage/io/IOCoverageConstants.java

4.2. Many-Objectivisation with Helper Objectives for Branching Variables

Table 4.1: Diversity Objectives for Different Types of Variables

(Based on IOCoverageConstants from EvoSuite)
Type Objectives

Classes

REF NULL
REF NONNULL

Collection
List

LIST EMPTY
LIST NONEMPTY

Set
SET EMPTY
SET NONEMPTY

Array
ARRAY EMPTY
ARRAY NONEMPTY

Map
MAP EMPTY

Object
MAP NONEMPTY

String
STRING EMPTY
STRING NONEMPTY

Wrapper

Character
CHAR ALPHA
CHAR DIGIT
CHAR OTHER

Boolean
BOOL TRUE
BOOL FALSE

Number
NUM POSITIVE
NUM ZERO
NUM NEGATIVE

Primitive Types

char
CHAR ALPHA
CHAR DIGIT
CHAR OTHER

boolean
BOOL TRUE
BOOL FALSE

byte, short, int, long,
float, double

NUM POSITIVE
NUM ZERO
NUM NEGATIVE

43

4. CRASH-SPECIFIC FITNESS FUNCTIONS

94 public static Locale toLocale(String str) {
95 if (str == null) {
96 return null;
97 }
98 int len = str.length();
99 if (len != 2 && len != 5 && len < 7) {

100 throw new IllegalArgumentException("Invalid locale format: " + str);
101 }
102 char ch0 = str.charAt(0);
103 char ch1 = str.charAt(1);
104 if (ch0 < ’a’ ch0 > ’z’ ch1 < ’a’ ch1 > ’z’) {
105 throw new IllegalArgumentException("Invalid locale format: " + str);
106 }

// ... rest of the program
}

Listing 4.3: LocaleUtil.toLocale from Commons-lang

4.2.3 Diversity Distances

Each objective is, in essence, a fitness function (see Figure 4.5), hence we have also defined
a set of distance functions, inspired by InputCoverageTestFitness 2 from EvoSuite, to
calculate the fitness value to each objective.

<<class>>

BranchingVariable
DiversityObjective

<<class>>

BranchingVariable
DiversityObjective

<<abstract class>>

TestFitnessFunction

<<abstract class>>

TestFitnessFunction
extendsextendsclassName

lineNumber

variableName

objective

abstract getFitess()

Figure 4.5: BranchingVariableDiversityObjective Class

For objectives with a dichotomous nature, including REF NULL, REF NONNULL,
LIST NONEMPTY, SET NONEMPTY, ARRAY NONEMPTY, MAP NONEMPTY, STRING NONEMPTY,
BOOL TRUE and BOOL FALSE, the distance function remains binary:

Definition 13 (Diversity Distance for Binary Objectives).

dbinary (b) =

{
0 the b satisfies the objective;
1 otherwise.

2https://github.com/EvoSuite/evosuite/blob/master/client/src/main/java/org/evosuite
/coverage/io/input/InputCoverageTestFitness.java

44

https://github.com/EvoSuite/evosuite/blob/master/client/src/main/java/org/evosuite/coverage/io/input/InputCoverageTestFitness.java
https://github.com/EvoSuite/evosuite/blob/master/client/src/main/java/org/evosuite/coverage/io/input/InputCoverageTestFitness.java

4.2. Many-Objectivisation with Helper Objectives for Branching Variables

For objectives for a Collection-like variable to be empty, the more elements it con-
tains, the further it is away from being empty. Therefore the distance function is defined
with its size:

Definition 14 (Diversity Distance for Collection Being Empty).

dempty (x) =

{
x.length if x is an array or String instance;
x.size() if x is a List, Set or Map instance.

To calculate the distances for the rest of the objectives, the following distance functions
have been defined:

Definition 15 (Diversity Distance for Char Being Alphabet Letters).

dchar al pha (c) =


’A’ - c if c < ’A’;
min(c - ’Z’, ’a’ - c) if ’Z’ < c < ’a’;
c - ’z’ if ’z’ < c;
0 otherwise.

Definition 16 (Diversity Distance for Char Being Digits).

dchar digit (c) =


’0’ - c if c < ’0’;
0 if ’0’ 6 c 6 ’9’;
c - ’9’ if ’9’ < c.

Definition 17 (Diversity Distance for Char Being Neither Letter Nor Digits).

dchar other (c) =


min(c - ’0’, ’9’ - c) + 1 if ’0’ 6 c 6 ’9’;
min(c - ’A’, ’Z’ - c) + 1 if ’A’ 6 c 6 ’Z’;
min(c - ’a’, ’z’ - c) + 1 if ’a’ 6 c 6 ’z’;
0 otherwise.

Definition 18 (Diversity Distance for Number Being Positive).

dnum positive (n) =

{
1 - n if n 6 0;
0 otherwise.

Definition 19 (Diversity Distance for Number Being Zero).

dnum zero (n) = abs(n)

Definition 20 (Diversity Distance for Number Being Negative).

dnum negative (n) =

{
0 if n < 0;
1 + n otherwise.

45

4. CRASH-SPECIFIC FITNESS FUNCTIONS

4.2.4 Instrumentation

To compute the aforementioned diversity distances, the actual values of variables at run-
time is needed. For that purpose, an instrumentor component, BranchingVariable-
Instrumentation, has been added to EvoSuite.

Information about local variables is vital to the task because the instrumentation should
log the names of the variables to differentiate different objectives. The instrumentation
should also be able to tell the source of the operands in the comparison, for example,
whether one operand is a constant or a return value of a comparison instruction as explained
in Sub-section 3.3.2. However, related information is not available when checking bytecode
instruction by instruction. Therefore unlike IndexedAccessVisitor, which checks the
transcompiled bytecode on the instruction level, BranchingVariableInstrumentation
works on the level of method nodes. A MethodNode contains a list of all the bytecode
instructions and a table of local variable nodes in that method.

If one of the jump instructions or compare instructions mentioned in Sub-section 3.3.1
or 3.3.2 is spotted when going through the list of bytecode instructions, the instrumentor
goes backwards in the list to check the source of each operand. Based on the previous
instructions, six kinds of sources can be identified:

1. a local variable;
2. the return value of a method call;
3. a new object;
4. a field of the object or static field of the class;
5. a constant or literal;
6. the return value of a comparison instruction.

For operands of source 1, the bytecode snippet shown in Listing 4.4 is inserted after load-
ing the local variable. A new object is essentially the output of a constructor invocation;
therefore, those of source 2 and 3 can be addressed by the output coverage diversity op-
tion already existing in EvoSuite. Operands of source 4 are left for future work. Operands
of source 5 should be ignored as they are not variables. Operands of source 6 should be
ignored as well since the comparison instructions are already instrumented.

1 DUP
2 INVOKESTATIC java/lang/Integer.valueOf (I)Ljava/lang/Integer;
3 LDC className
4 LDC currentLine
5 LDC variableName
6 INVOKESTATIC org/evosuite/testcase/execution/ExecutionTracer.

passedBranchingVariable (Ljava/lang/Object;Ljava/lang/String;ILjava/
lang/String;)V

Listing 4.4: Bytecode Snippet Inserted After Loading Local Variable

46

4.3. Summary

1 LINENUMBER 99 L3
2 ILOAD 1
3 ICONST_2
4 IF_ICMPEQ L4
5 ILOAD 1
6 ICONST_5
7 IF_ICMPEQ L4
8 ILOAD 1
9 BIPUSH 7

10 IF_ICMPGE L4

Listing 4.5: Bytecode
of Line 99 of method
toLocale

The instruction DUP duplicates the top value of the
operand stack, which is the local variable just loaded. If the
local variable is of a primitive type, the valueOf method of
its corresponding wrapper class is called to turn it into an
object. Integer.valueOf(int) in the case of the example
shown. If it is already an object, the idle instruction NOP is
used here. The variables className and currentLine are
fields of the instrumentor, the latter of which denotes the line
number in the source code of the current bytecode instruction.
And the variableName is acquired by checking the local vari-
able table contained in the MethodNode. Eventually, the static
method passedBranchingVariable from the Execution-
Tracer is invoked to log the information into a nested map.

Take the example of LocaleUtil.toLocale again. The
transcompiled bytecode of line 99 of it is shown in Listing 4.5. At line 4, a jump instruction
IF ICMPEQ is spotted. The instrumentor goes backwards in search of operands of the com-
parison. First ICONST 2 is found, which loads the integer constant 2 onto the operand stack.
As it is a constant, it is ignored. Then ILOAD 1 is found, which loads the variable with
index 1 from the local variable table onto the operand stack. The instrumentor retrieve the
name len from the local variable table and insert the bytecode snippet shown in Listing 4.4
to the original list of bytecode.

4.2.5 Many-Objectivisation With Helper Objectives

Together with a typical integration testing fitness function, all the diversity objectives cre-
ated by the factory are used by MOSA to evaluate the generated test cases. The inserted
instrumentation collects the required information to calculate fitness values for each of the
objectives.

As described in Sub-section 2.2.4, while treating all non-dominated test cases equally,
original Guided MOSA still aims to find the optimal test case that fulfils all objectives. For
a specific variable, it is only possible to meet one diversity objective. Therefore, no optimal
test case exists.

Hence Guided MOSA is adjusted in our implementation. The integration testing fitness
function is set to be the primary objective, and all the diversity objectives are helper ob-
jectives. Once the primary objective is achieved, the optimisation goal is set to be reached.
The search process terminates, and post-processing starts.

4.3 Summary

4.3.1 Exception Distance (RQ1)

For ArrayIndexOutOfBoundsExceptions and StringIndexOutOfBoundsExceptions,
the exception distance is defined to numerically reflect how far the accessed index is away

47

4. CRASH-SPECIFIC FITNESS FUNCTIONS

from being out of bounds (i.e. being negative or larger than the length of the array or
String), see Definition 11.

And for IllegalArgumentExceptions and IllegalStateExceptions, based on
InputCoverageTestFitness from EvoSuite, a set of distance functions are defined to
broaden the diversity of values of branching variables, see Definition 13 to 20.

4.3.2 Fitness Function (RQ2)

For ArrayIndexOutOfBoundsExceptions and StringIndexOutOfBoundsExceptions, a
customised MethodVisitor named IndexedAccessVisitor is implemented in EvoSuite
to instrument CUTs. Index access information at run-time is logged into the Execution-
Tracer so that they can be used later to calculate the fitness value with the newly defined
integration testing fitness function for indexed access (see Definition 12).

And for IllegalArgumentExceptions and IllegalStateExceptions, the task is
many-objectivised. The BranchingVariableDiversityFactory checks the CFGs of
CUTs to create different diversity objectives for different types of branching variables as
helper objectives. A customised instrumentor BranchingVariableInstrumentation in-
struments CUTs so necessary information of the branching variables can be collected by
the ExecutionTracer. The helper objectives, together with an integration testing fitness
function as the primary objective, are then used by the adjusted Guided MOSA to evaluate
the generated test cases.

48

Chapter 5

Evaluation and Results

To evaluate the effectiveness and efficiency of our crash-specific fitness functions and to
answer RQ3, we performed an evaluation against real-world crashes from various open-
source applications with our customised implementation of EvoSuite and Botsing. We also
run the original Botsing to compare the results. We describe the experiment set-up and
analyse the outcome in this chapter.

5.1 Experiment Set-up

5.1.1 Experiment Protocol

Case Selection

We base our experiments on JCrashPack [3], the benchmark introduced in Sub-section 2.3.3.
As we focus on the four aforementioned types of exceptions, in total, 52 crashes have been
picked, consisting of crashes from all seven real-world Java software applications included
in JCrashPack. See Table 5.1 for the detailed composition of the 52 crashes.

For every selected crash, we have targeted Botsing at each frame which points to a class
of the application. Other frames have been discarded to avoid generating test cases for
external dependencies. For ArrayIndexOutOfBoundsExceptions and StringIndexOut-
OfBoundsExceptions, listed in the left half of Table 5.1, there are 128 valid frames from the
23 crashes. And for IllegalArgumentExceptions and IllegalStateExceptions, listed
in the right column of Table 5.1, there are 246 frames from the 29 crashes. To address the
random nature of the genetic algorithm, we repeated each execution 30 times, as suggested
by Arcuri and Briand [54].

Configuration Parameters

We run Botsing with four different configurations, namely:
[IA] indexed access;

[IA-control] the control group for indexed access;
[BV] branching variable; and

[BV-control] the control group for branching variable.

49

5. EVALUATION AND RESULTS

Table 5.1: Detailed Composition of the Picked Crash Cases

Exception Application Crash Exception Application Crash

ArrayIndex
OutOfBounds
Exception

ElasticSearch

19891

Illegal
Argument
Exception

JFreeChart 13b
21911

Elasticsearch

14457
22786 20045
23324 20333
24674 20479
25933 21457

Commons-lang
9b 21974

12b 23381

Commons-math

3b 26184
81b 26651
98b

Commons-lang
2b

100b 5b

Mockito
3b 54b

34b
Commons-math

90b

StringIndex
OutOfBounds
Exception

Elasticsearch 22997 95b

Commons-lang

6b 97b
19b

Joda-Time
2b

27b 8b
44b 20b
45b

XWiki

12667
51b 13196

Commons-math 101b 13546
XWiki 14152 13942

Illegal
State

Exception
Elasticsearch

19026
22119
23218
23675
25849
26513

For all four configurations, the population size of one generation is set to the default
value of EvoSuite, 50. And the search budget is set to 62,328 fitness evaluations. In addition
to that, an execution will be killed if it has been running for 15 minutes, which is roughly
the time needed for 62,328 evaluations. Botsing parameter -integration testing is set
to true so that all classes, having appeared in the stack trace, can be instrumented, and the
integration testing scheme introduced in Sub-section 2.4.1 can be used.

Configurations [IA] and [IA-control] are used against ArrayIndexOutOfBounds-
Exception and StringIndexOutOfBoundsException crashes. The fitness function
of [IA] is set to our customised ITFFForIndexedAccess, while for [IA-control] it is the
original IntegrationTestingFF from Botsing. All other configuration parameters are set

50

5.1. Experiment Set-up

to the default values of Botsing and EvoSuite.
Meanwhile, configurations [BV] and [BV-control] are used on IllegalArgument-

Exception and IllegalStateException crashes. The search algorithm of both config-
urations is set to Guided MOSA and both fitness functions to the integration testing fitness
function. For [BV] it has the property branching variable diversity set to true, be-
cause of which the integration testing fitness function will be used as the primary objective,
and our customised diversity factory will generate additional helper objectives. That prop-
erty is left out for [BV-control] so that the integration testing fitness function is the only
objective to be satisfied. Similarly, all other configuration parameters are set to the defaults.

Table 5.2 shows the complexity statistics of crashes used for the two groups of config-
urations. Cr denotes the number of crashes. f rm means the average number of frames per
stack trace. CYC is the average cyclomatic complexity [55], which is a metric that measures
the number of linearly independent paths of a software application, therefore describing its
complexity. And NCSS represents the average number of statements.

Table 5.2: Complexity Statistics of Crashes Used

(a) Crashes Used for [IA] and [IA-control]

Application Cr f rm CYC NCSS
Elasticsearch 7 11.00 1.82 135.15k
Commons-lang 8 2.75 3.28 13.65k
Commons-math 5 2.00 2.37 22.83k
Mockito 2 6.00 1.79 6.04k
XWiki 1 7.00 1.87 164.67k
Total 23 5.57 2.45 58.52k

(b) Crashes Used for [BV] and [BV-control]

Application Cr f rm CYC NCSS
JFreeChart 1 5.00 2.77 59.09k
Elasticsearch 15 12.73 1.80 118.81k
Commons-lang 3 1.00 3.32 14.20k
Commons-math 3 2.00 2.32 15.63k
Joda-Time 3 1.33 2.12 19.44k
XWiki 4 9.25 1.89 204.02k
Total 29 8.48 2.09 96.73k

5.1.2 Data Analysis Procedure

To check whether our customised implementation of Botsing and EvoSuite can improve
the crash reproduction effectiveness, we analyse the status of the search process after each
execution. We define the following five states:

#1 not started - the search process does not start due to failing to generate the initial
generation;

51

5. EVALUATION AND RESULTS

#2 crash location not reached - the target line of the inner-most frame is not covered;
#3 crash location reached - the target line of the inner-most frame is covered, but the

target exception is not thrown;
#4 reproduced - the target exception is thrown, and the given stack trace is reproduced

up to the target frame level; and
#5 unsatisfactory - the target exception is thrown, but the crash should not be considered

reproduced (for example, the crash is reproduced by an obvious mock object).

Notice that Botsing reports a successful reproduction for both state #4 and #5. An example
of why state #5 is defined and why those executions should not be considered reproduced is
explained in Sub-section 5.3.1.

Reproduction Rate Effect Size

The crash reproduction task is, in essence, a dichotomous problem that the target stack trace
is either reproduced or not in the end. Reproduction ratio is fundamental to our evaluation.
However, as pointed out by Arcuri and Briand [54], only comparing the reproduction ratio
is not statistically sufficient to address the random nature of genetic algorithms. Therefore,
we have used the odds ratio to measure the effect size of our proposed methods against the
original ones. It is computed with the following equation:

ψ =
a+ρ

n−a+ρ
/

b+ρ

n−b+ρ

where a is the number of executions where our proposed methods successfully reproduce
the target frame. And b is the number of executions where the control groups successfully
reproduce the target frame. For configuration [BV] and [BV-control], n is the number of
total executions, which is always 30. However for configuration [IA] and [IA-control], as
our adapted fitness function only kicks in after reaching the crash location, n, therefore, is
the number of executions of states #3, #4 and #5, i.e. having a fitness value smaller or equal
to 1.0. And ρ is a constant used to avoid the appearance of zeros in the denominator. In our
evaluation, it is set to ρ = 0.5.

ψ = 1 means that the two compared methods have identical performance. While ψ > 1
means that the former has a higher chance of success, ψ < 1 means that the latter outper-
forms the former.

In addition, we have applied Fisher’s exact test with α= 0.05 for Type I error to evaluate
the statistical significance of the observed data. As a statistical convention, a resulting p-
value of less than 0.05 is considered statistically significant enough to draw a conclusion
that one of the compared methods performs differently compared to the other.

Reproduction Efficiency Effect Size

For crashes that have been reproduced by both our proposed methods and the control groups,
we have collected the number of fitness evaluations having been performed before the search
process reaching the optimal test case. Those numbers are used to investigate the efficiency
of the compared methods. Again it is not statistically convincing to simply compare the

52

5.2. Results

numbers themselves. An effect size measurement is needed. As the number of fitness
evaluations is no longer dichotomous, we performed the Â12 analysis proposed by Vargha
and Delaney [56] (VD.A) instead. It is computed with the following equation:

Â12 =

(
R1

s1
− s1 +1

2

)
/s2

where s1 is the number of executions where our proposed methods successfully reproduce
the target frame, and s2 is the number of executions where the control groups successfully
reproduce the target frame. For configuration [BV], R1 is the rank sum of the number of
fitness evaluations that our proposed method uses to reproduce the target frame. Again for
configuration [IA], our adapted fitness function only starts to affect the search process once
fitness value 1.0 has been reached. R1, therefore, is the rank sum of the number of fitness
evaluations that our proposed method uses to reduce the fitness value from 1.0 to 0.0.

Â12 = 0.5 means that the two compared methods have an identical efficiency. While
Â12 < 0.5 means that the former takes fewer fitness evaluations to reach the optimal test
case, Â12 > 0.5 means the latter outperforms the former. The VD.A analysis also comes
with a magnitude measure, ranging from negligible, small, medium to large, categorising
the impact of the difference. Similarly, to evaluate the statistical significance, we have
applied the Wilcoxon Rank Sum test with α = 0.05 for Type I error.

For example, if our proposed method reproduces the target frame successfully three
times with {20,30,40} fitness evaluations, while the control group reproduces the tar-
get frame five times with {50,27,35,52,28} fitness evaluations, the rank of our proposed
method is therefore {1,4,6} and R1 = 11. The resulting effect size Â12 = 0.3333.

5.1.3 Evaluation Infrastructure

The evaluations have been performed on the BSR clusters [57] with 20 CPU-cores, 384
GB memory and 482 GB hard drive. With all 374 frames for our customised Botsing and
EvoSuite and the control group, we have executed a total of 22,440 independent runs. It has
taken about 11 days in total.

5.2 Results

In this section, we present the results of the evaluation for our proposed methods versus the
control groups.

5.2.1 Reproduction Rate

Figure 5.1 shows the reproduction status overview for all 52 crashes grouped by the con-
figurations. One crash is considered reproduced if one frame of its stack trace has been
successfully reproduced at least once by one of the configurations among the 30 repeated
executions.

Configurations [IA] and [IA-control] have been executed against JCrashPack crashes of
ArrayIndexOutOfBoundsExceptions and StringIndexOutOfBoundsExceptions. As

53

5. EVALUATION AND RESULTS

11 12
10 13

IA
IA−control

0% 25% 50% 75% 100%

(a) [IA] versus [IA-control]

17 12
14 15

BV
BV−control

0% 25% 50% 75% 100%

not reproduced reproduced

(b) [BV] versus [BV-control]

Figure 5.1: Reproduction Status on the Case Level

indicated in Figure 5.1a, [IA-control] has reproduced 10 crashes. [IA] has reproduced
one additional crash, which is ES-23324.

Figure 5.1b shows that 14 IllegalArgumentException and IllegalState-
Exception crashes have been reproduced by configuration [BV-control]. [BV] reproduces
three more crashes in addition to those, which are MATH-97b, TIME-20b and ES-14457.

Figure 5.2 shows the more detailed reproduction rate for all 22,440 runs grouped by the
software application and the configuration. For the first two configurations, with Commons-
lang crashes, there is a delta of 29 executions. [IA-control] has 31 more successes with
crash LANG-19b and [IA] has two more successes with the second frame of crash LANG-
12b. With Commons-math crashes, there is a delta of 12 executions. [IA] has 11 more
successes with crash MATH-81b and 1 more success with crash MATH-101b. For the
other software applications, the performance of our proposed method and that of the control
group are very similar.

The reproduction status shown in Figure 5.2b indicates that the two configurations per-
form very similar to each other. A significant difference is that a large number of executions
of our proposed method on Elasticsearch crashes fail to start the search process compared
to the control group, which is explained in Sub-section 5.3.1. For a few executions with
Commons-math and Joda-Time crashes, [BV] has resulted in less unsatisfactory ones and
more reproduced ones.

5.2.2 Odds Ratio

For all crashes that have been successfully reproduced at least once by at least one of the
configuration pairs, we have calculated the odds ratios and their corresponding p-values,
see Tables 5.3 and 5.4. Rows coloured blue are where our proposed methods outperform
the control groups, while rows coloured orange are where the control groups perform better.
Notice that for crashes with multiple frames reproduced, the outer-most reproduced frame
is selected to represent the crash. Even though the second frame of crash ES-22119 is

54

5.2. Results

42 245 192 61 120

34 274 172 60 120

30 120 69 51 30

31 108 86 45 30

360

360

188 1596 625

89 1589 632

210

210

lang
m

ath
m

ockito
es

xw
iki

0% 25% 50% 75% 100%

IA

IA−control

IA

IA−control

IA

IA−control

IA

IA−control

IA

IA−control

(a) [IA] versus [IA-control]

90

90

30 150

35 145

28 32 60

30 30 60

30 90 30

30 90 30

123209171 2000 3227

129209166 2944 2282

1 305 790 14

307 795 8

lang
m

ath
tim

e
chart

es
xw

iki

0% 25% 50% 75% 100%

BV

BV−control

BV

BV−control

BV

BV−control

BV

BV−control

BV

BV−control

BV

BV−control

not started location not reached location reached

reproduced unsatisfactory

(b) [BV] versus [BV-control]

Figure 5.2: Reproduction Status on the Application Level

55

5. EVALUATION AND RESULTS

only reproduced by [BV], the first frame is reproduced by both our proposed method and
the control group. Therefore, it is not illustrated as a delta crash in Figure 5.1b. And for
configuration [IA] and [IA-control], the number of executions, that have reached the crash
location, is included in the table as well.

Table 5.3: Odds Ratio Between [IA] and [IA-control]

Crash Frame IA IA-control
ψ p-value*

success line
reached success line

reached
ES-23324 1 1 1 0 2 15.0000 0.33333
MATH-101b 1 30 30 29 30 3.1017 1.00000
LANG-12b 2 29 30 27 30 2.5030 0.61195
MATH-81b all 6 60 129 49 135 1.5212 0.10460
LANG-27b 1 30 30 30 30 1.0000 1.00000
LANG-44b 1 30 30 30 30 1.0000 1.00000
LANG-45b 1 30 30 30 30 1.0000 1.00000
LANG-51b 1 30 30 30 30 1.0000 1.00000
LANG-9b 6 1 30 1 30 1.0000 1.00000
MATH-98b 1 30 30 30 30 1.0000 1.00000
LANG-19b 3 12 30 24 30 0.1793 0.00333
* Notice that it must have p 6 0.05 for the observed results of one crash to be statistically

significant.

From Table 5.3, we can see that the control group outperforms our proposed method
with the third frame of crash LANG-19b with a p-value of 0.00333, which means that it
is statistically significant. For the rest of the crashes, if Botsing is able to reach the crash
location, our proposed method performs no worse than the control group. With crashes
ES-23324, MATH-81b, MATH-101b and LANG-12b, the results even suggest that our
proposed method can reproduce the target frame of the crash more often, especially with the
first two where Botsing has difficulty in reaching the crash location. [IA] has a reproduction
rate of 100.00% and 46.51% respectively for ES-23324 and MATH-81b against 0.00%
and 36.30% with [IA-control]. However, the p-values are too high to draw statistically
significant conclusions. It is explained in Sub-section 5.3.1 why all six frames of MATH-
81b are grouped together.

Table 5.4 shows that configuration [BV] outperforms [BV-control] with the top five
crashes and falls behind with the bottom two crashes. However, none of the p-values is
small enough to draw any conclusion. For the remaining 10 crashes, there is no improve-
ment nor deterioration in terms of reproduction rate.

5.2.3 Vargha and Delaney’s Â12 Measures

Tables 5.5 and 5.6 contain the results of the VD.A analyses performed between configu-
rations. Rows coloured blue indicate that our proposed methods decrease the number of

56

5.2. Results

Table 5.4: Odds Ratio Between [BV] and [BV-control]

Crash Frame BV control ψ p-value*

MATH-97b 1 3 0 7.7636 0.23729
TIME-20b 1 2 0 5.3509 0.49153
ES-21457 1 1 0 3.1017 1.00000
ES-22119 2 1 0 3.1017 1.00000
ES-14457 3 11 6 2.2229 0.25157
CHART-13b 2 30 30 1.0000 1.00000
LANG-2b 1 30 30 1.0000 1.00000
LANG-54b 1 30 30 1.0000 1.00000
LANG-5b 1 30 30 1.0000 1.00000
MATH-90b 1 30 30 1.0000 1.00000
MATH-95b 4 30 30 1.0000 1.00000
TIME-8b 1 30 30 1.0000 1.00000
XWIKI-12667 2 30 30 1.0000 1.00000
XWIKI-13196 2 30 30 1.0000 1.00000
XWIKI-13546 2 30 30 1.0000 1.00000
XWIKI-13942 5 5 7 0.6758 0.74805
ES-21974 5 18 21 0.6540 0.58888

Table 5.5: Vargha and Delaney’s Â12 Measure Between [IA] and [IA-control]

Crash Frame Â12 p-value* Magnitude
LANG-19b 3 0.1771 0.00191 large
LANG-51b 1 0.3356 0.02847 small
LANG-27b 1 0.4372 0.40749 negligible
LANG-12b 2 0.4630 0.14604 negligible
LANG-45b 1 0.5000 1.00000 negligible
MATH-81b all 6 0.6194 0.03271 small
LANG-44b 1 0.6272 0.09189 small
MATH-101b 1 0.6351 0.07576 small
MATH-98b 1 0.6433 0.05687 small
LANG-9b 6 1.0000 1.00000 large
* Notice that it must have p 6 0.05 for the observed results

of one crash to be statistically significant.

fitness evaluations needed to reach the optimal test case, while rows coloured orange are
where the control groups were more efficient in reproducing the target frame of the crash.

10 crashes have been reproduced by both configuration [IA] and [IA-control]. With
p-values of 0.00191 and 0.02847, our proposed method is significantly more efficient in
reproducing frames LANG-19b-3 and LANG-51b-1. (For the convenience of writing, the
n-th frame of crash CR-XXX is denoted as frame CR-XXX-n in the following sections.)

57

5. EVALUATION AND RESULTS

However, the control group has done slightly more efficient against crash MATH-81b, with
a p-value of 0.03271. The general trend is that for Commons-lang crashes, our proposed
method improves the efficiency, while for Commons-math crashes, it slows the search pro-
cess down. Notice that even though frame LANG-9b-6 shows a large deterioration, the
frame has only been reproduced once by each of the two configurations.

Table 5.6: Vargha and Delaney’s Â12 Measure Between [BV] and [BV-control]

Crash Frame Â12 p-value* Magnitude
ES-21974 5 0.3095 0.04305 medium
XWIKI-13942 5 0.4286 0.74271 negligible
MATH-95b 4 0.4594 0.57056 negligible
CHART-13b 2 0.4711 0.70610 negligible
TIME-8b 1 0.4983 0.97734 negligible
ES-22119 1 0.5000 1.00000 negligible
LANG-2b 1 0.5000 1.00000 negligible
LANG-5b 1 0.5000 1.00000 negligible
MATH-90b 1 0.5000 1.00000 negligible
XWIKI-12667 2 0.5000 1.00000 negligible
XWIKI-13196 2 0.5000 1.00000 negligible
XWIKI-13546 2 0.5000 1.00000 negligible
ES-14457 3 0.5227 0.91965 negligible
LANG-54b 1 0.6800 0.01695 medium
* Notice that it must have p 6 0.05 for the observed results

of one crash to be statistically significant.

With [BV], five crashes have shown better efficiencies, judging by the Â12 measures
from Table 5.6. Only one of the five is statistically significant, which is crash ES-21974
with p = 0.04305. While two crashes have seen small increase in the number of fitness
evaluations needed. One of the two is statistically significant, which is crash LANG-54b
with p = 0.01695. All the other seven crashes have witnessed no difference in terms of the
efficiency between our proposed method and the control group.

5.3 Discussion

5.3.1 Manual Analyses

We try to understand and explain the results to answer RQ3 by looking into cases where
there is a significant difference.

Unsatisfactory Reproductions

For several executions, Botsing has terminated the search process and declares a successful
reproduction. However, after manual analyses, we decide to consider those generated test
cases as unsatisfactory. Frame LANG-6b-1 is one example. It has been reproduced exactly

58

5.3. Discussion

once by configuration [IA-control], but not by [IA]. The input stack trace of it is shown
in Listing 5.1, while the test case generated by the control group is shown in Listing 5.2.
Listing 5.3 contains the source code of the translate method from the first frame of the
stack trace.

The translate(CharSequence, int, Writer) method is stubbed at line 4 of List-
ing 5.2 to return 3663 for any parameter. Originally, it should return the count of codepoints
consumed with the invocation. Notice that this is neither the same translate method from
the first frame, nor the one from the second frame of the stack trace. However, it is invoked
at line 85 of the translate method from the first frame, see Listing 5.3. Later, at line 94,
the returned value is used as the boundary when accessing the CharSequence. The forged
value 3663, therefore, inevitably results in a StringIndexOutOfBoundsException being
thrown at line 95, reproducing the target frame.

Botsing treated it as a valid solution and terminated the search process. However, the
method would not return such a value if it was not stubbed. The generated test case is
far-fetched and does not reveal any information about the bug either. Therefore the crash
should not be considered reproduced.

We have identified 72 unsatisfactory reproductions for configuration [IA], 65 for [IA-
control] respectively out of 3,840 runs. With Fisher’s exact test, the resulting p-value is
0.5478. For configuration [BV], 182 unsatisfactory reproductions have been identified out
of 7,380 runs, and 194 for [BV-control]. With Fisher’s exact test, we have p = 0.5656.
Therefore, Botsing’s behaviour of generating unsatisfactory reproductions is not related to
our proposed methods, and it is out of the scope of this thesis project to investigate the reason
behind this behaviour. Relevant crashes and frames of those unsatisfactory reproductions
are logged in our replication package, see Sub-section 5.4.4.

MATH-81b

Crash MATH-81b has seen improvement in the reproduction rate, but a decrease in the
efficiency. Shown in Listing 5.4 is the input stack trace of it.

The interface EigenDecomposition defines methods to calculate the eigen decompo-
sition of a real matrix. The provided implementation of it, EigenDecompositionImpl,
translates an algorithm from a Fortran library LAPACK1 to fulfil the interface. During the
translation, several mistakes were made, resulting in the bug.

All inner five frames point to private methods, and the constructor <init> at frame
6 is the only public method in the stack trace. As described in Sub-section 2.3.2, the
GGA can only target frames of public or protected methods. When the target method
is private, it tries to invoke that method indirectly with public or protected methods.
In the source code, the methods from the inner five frames have only one public indirect
caller, which is the constructor from frame 6. Setting the target frame to any one of the
inner five frames is in effect the same as setting it to the sixth frame. Therefore, all the 180
executions are grouped together for our evaluation.

Because of the fact that the exception is thrown after several complicated mathematical
computations and it is buried six frames deep, to reproduce the crash, one needs to pro-

1http://performance.netlib.org/lapack/

59

http://performance.netlib.org/lapack/

5. EVALUATION AND RESULTS

java.lang.StringIndexOutOfBoundsException: String index out of range: 2
at org.apache.commons.lang3.text.translate.CharSequenceTranslator.

translate(CharSequenceTranslator.java:95)
at org.apache.commons.lang3.text.translate.CharSequenceTranslator.

translate(CharSequenceTranslator.java:59)
at org.apache.commons.lang3.StringEscapeUtils.escapeCsv(

StringEscapeUtils.java:556)

Listing 5.1: Stack Trace for LANG-6b

1 @Test(timeout = 4000)
2 public void test0() throws Throwable {
3 CharSequenceTranslator charSequenceTranslator0 = mock(

CharSequenceTranslator.class , CALLS_REAL_METHODS);
4 doReturn (3663).when(charSequenceTranslator0).translate(any(java.lang.

CharSequence.class), anyInt(), any(java.io.Writer.class));
5 StringWriter stringWriter0 = new StringWriter (609);
6 // Undeclared exception!
7 charSequenceTranslator0.translate((CharSequence) "261", (Writer)

stringWriter0);
8 }

Listing 5.2: Generated Test Case for LANG-6b-1

75 public final void translate(CharSequence input, Writer out) throws
IOException {

76 if (out == null) {
77 throw new IllegalArgumentException("The Writer must not be null");
78 }
79 if (input == null) {
80 return;
81 }
82 int pos = 0;
83 int len = input.length();
84 while (pos < len) {
85 int consumed = translate(input, pos, out);
86 if (consumed == 0) {
87 char[] c = Character.toChars(Character.codePointAt(input, pos));
88 out.write(c);
89 pos+= c.length;
90 continue;
91 }
92 // contract with translators is that they have to understand codepoints
93 // and they just took care of a surrogate pair
94 for (int pt = 0; pt < consumed; pt++) {
95 pos += Character.charCount(Character.codePointAt(input, pos));
96 }
97 }
98 }

Listing 5.3: Source code of the translate method from the first frame

60

5.3. Discussion

java.lang.ArrayIndexOutOfBoundsException: -1
at org.apache.commons.math.linear.EigenDecompositionImpl.

computeShiftIncrement(EigenDecompositionImpl.java:1544)
at org.apache.commons.math.linear.EigenDecompositionImpl.goodStep(

EigenDecompositionImpl.java:1071)
at org.apache.commons.math.linear.EigenDecompositionImpl.

processGeneralBlock(EigenDecompositionImpl.java:893)
at org.apache.commons.math.linear.EigenDecompositionImpl.

findEigenvalues(EigenDecompositionImpl.java:657)
at org.apache.commons.math.linear.EigenDecompositionImpl.decompose(

EigenDecompositionImpl.java:246)
at org.apache.commons.math.linear.EigenDecompositionImpl.<init >(

EigenDecompositionImpl.java:205)

Listing 5.4: Stack Trace of MATH-81b

vide two sophisticatedly composed double arrays to the constructor. With Integration-
TestingFF, no guidance regarding how the two arrays should be mutated is provided. With
ITFFForIndexedAccess, the distance of how far the accessed index is away from being
out of bounds, indeed leads the search process to the optimal test case more often, as sup-
ported by the results. However, the increment in the reproduction rate, with an odds ratio of
1.5212, comes with a decrement in the efficiency, with Â12 = 0.6194.

LANG-19b

Crash LANG-19b has seen differences in both the reproduction rate and efficiency. The
input stack trace of it contains 3 frames, as shown in Listing 5.5. And the VD.A measures
of all 3 frames are shown in Table 5.7.

java.lang.StringIndexOutOfBoundsException: String index out of range: 19
at org.apache.commons.lang3.text.translate.NumericEntityUnescaper.

translate(NumericEntityUnescaper.java:54)
at org.apache.commons.lang3.text.translate.CharSequenceTranslator.

translate(CharSequenceTranslator.java:86)
at org.apache.commons.lang3.text.translate.CharSequenceTranslator.

translate(CharSequenceTranslator.java:59)

Listing 5.5: Stack Trace of LANG-19b

The NumericEntityUnescaper extends the CharSequenceTranslator and over-
writes the translate method to translate an XML formatted numeric entity into a code-
point in a String. For example, “Coke ®” is translated into “Coke R©”. Each nu-
meric entity ends with a ‘;’, and NumericEntityUnescaper locates the semi-column with
the loop shown in Listing 5.6.

However, when a numeric entity is mal-formatted in the way that the closing semi-
column is missing, the loop continues increasing the local variable end till it is equal to
the length of the input when a StringIndexOutOfBoundsException is thrown at line

61

5. EVALUATION AND RESULTS

52 int end = start;
53 // Comment
54 while(input.charAt(end) != ’;’)
55 {
56 end++;
57 }

Listing 5.6: Bug of LANG-19b

Table 5.7: Effect Size of LANG-19b

Frame Â12 p-value Magnitude
3 0.1771 0.00191 large
2 0.2969 0.23737 medium
1 0.3229 0.04552 medium

54. Therefore, to reproduce the crash, one needs to call the translate method with a
mal-formatted XML numerical entity.

Taking the example of “®” again, one straightforward way that Botsing uses to
mutate it is to append another valid numeric entity to it, which results in “®­”
for example. During Botsing’s search process, with the original IntegrationTestingFF,
the two strings result in a fitness value of 1.0 as there is no exception thrown. Botsing keeps
mutating the input. Chances are that the ending ‘;’ will be removed and the crash will be
reproduced.

With ITFFForIndexedAccess, the length of “®” is 6 and the last visited index
is 5, which results in a fitness value of 0.2857. As for “®­”, it gets a length of
12 and the last visited index 11. The fitness value is then reduced to 0.1538. The decrement
in the fitness value is heavily favoured by the selection process, and Botsing tends to append
the well-formatted numeric entities longer and longer as the fitness value keeps decreasing.
In the end, the search process is lead to a local optimum, with fitness values as small as
3.202e−4, and may never try the correct mutation of removing the ending ‘;’.

When the search process is not trapped, VD.A measures in Table 5.7 show a significant
improvement for both the first frame and the third frame in terms of efficiency to reduce
fitness value from 1.0 to 0.0.

LANG-51b

Both [IA] and [IA-control] have a reproduction rate of 100% with crash LANG-51b, how-
ever our proposed method performs significantly more efficient, with Â12 = 0.3356 while
p = 0.02847. The input stack trace of it consists of one frame, as shown in Listing 5.7.

The method toBoolean converts a String object to a boolean value. The bug of the
method lies in line 682 of Listing 5.8 as there is no break to the switch clause. For example,
"tru" is of length 3. After failing the check for case 3, false should have already been
returned. However, it continues into the check for case 4 and there a StringIndexOut-
OfBoundsException is thrown at line 686 when accessing charAt(3).

java.lang.StringIndexOutOfBoundsException: String index out of range: 3
at org.apache.commons.lang.BooleanUtils.toBoolean(BooleanUtils.java

:686)

Listing 5.7: Stack Trace of LANG-51b

62

5.3. Discussion

649 public static boolean toBoolean(String str) {
// ...

662 switch (str.length()) {
// ...

670 case 3: {
671 char ch = str.charAt(0);
672 if (ch == ’y’) {
673 return
674 (str.charAt(1) == ’e’ str.charAt(1) == ’E’) &&
675 (str.charAt(2) == ’s’ str.charAt(2) == ’S’);
676 }
677 if (ch == ’Y’) {
678 return
679 (str.charAt(1) == ’E’ str.charAt(1) == ’e’) &&
680 (str.charAt(2) == ’S’ str.charAt(2) == ’s’);
681 }
682 }
683 case 4: {
684 char ch = str.charAt(0);
685 if (ch == ’t’) {
686 return
687 (str.charAt(1) == ’r’ str.charAt(1) == ’R’) &&
688 (str.charAt(2) == ’u’ str.charAt(2) == ’U’) &&
689 (str.charAt(3) == ’e’ str.charAt(3) == ’E’);
690 }
691 if (ch == ’T’) {
692 return
693 (str.charAt(1) == ’R’ str.charAt(1) == ’r’) &&
694 (str.charAt(2) == ’U’ str.charAt(2) == ’u’) &&
695 (str.charAt(3) == ’E’ str.charAt(3) == ’e’);
696 }
697 }
698 }
699 return false;
700 }

Listing 5.8: Bug of LANG-51b

Any String of size 3 not starting with ’y’ or ’Y’ and any String of size 4 starting
with ’t’ can reach line 686 easily. The original integration testing function cannot provide
any further guidance after reaching the line. However, with our proposed fitness function
outputting a more granular fitness value based on later accessed indices, it guides the search
process to compose a String starting with ’t’, then to "tR" or "tr", and eventually to
"tRU", "tRu", "trU", or "tru" and triggering the exception being thrown.

LANG-54b and ES-21974

Frame LANG-54b-1 and ES-21974-5 are the only two frames with p-values less than 0.05
in the VD.A analyses between [BV] and [BV-control].

Frame LANG-54b-1 is straightforward to reproduce as both configurations have a re-

63

5. EVALUATION AND RESULTS

production rate of 100% for frame LANG-54b-1. However, it has seen a significant effi-
ciency drop with our proposed method, as shown in Table 5.6. Part of the source code of
the method, where the exception is thrown, is already shown in Listing 4.3. On average, it
takes 344.33 fitness evaluations for [BV] to cover the target frame. However, fairly early in
the search process (7.3 fitness evaluations on average), 11 out of the 24 diversity objectives
are already covered. Afterwards, new diversity objectives are rarely covered. Frame ES-
21974-5 has seen a significant improvement in the efficiency. One observation is that new
diversity objectives have been covered throughout the search process.

Failure to Start the Search Process

As shown in Figure 5.2b, a large number of executions have failed to start the search process
with configuration [BV]. Notice that for those frames, the control group has not reached the
target line of the target frame either. These pre-processing failures can be grouped into two
categories.

Fail to Instrument JDK Classes The first category consists of crashes where there are
JDK classes in the stack trace. Crash ES-23218 is an example, of which the stack trace is
shown in Listing 5.9.

java.lang.IllegalStateException: No match found
at java.util.regex.Matcher.group(Matcher.java:536)
at org.elasticsearch.monitor.os.OsProbe.getControlGroups(OsProbe.java

:216)
at org.elasticsearch.monitor.os.OsProbe.getCgroup(OsProbe.java:414)
at org.elasticsearch.monitor.os.OsProbe.osStats(OsProbe.java:466)
at org.elasticsearch.monitor.os.OsService.<init >(OsService.java:45)
at org.elasticsearch.monitor.MonitorService.<init >(MonitorService.java

:45)
at org.elasticsearch.node.Node.<init >(Node.java:345)
at org.elasticsearch.node.Node.<init >(Node.java:232)
at org.elasticsearch.bootstrap.Bootstrap$6.<init >(Bootstrap.java:241)
at org.elasticsearch.bootstrap.Bootstrap.setup(Bootstrap.java:241)
at org.elasticsearch.bootstrap.Bootstrap.init(Bootstrap.java:333)
at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java

:121)

Listing 5.9: Stack Trace of ES-23218

Due to the frequently released updates of JDK, Botsing developers decide not to in-
strument any JDK class to avoid discrepancies between line numbers reported in the stack
trace and line numbers of the installed JDK. Therefore, when our BranchingVariable-
DiversityFactory queries the method node, a NullPointerException is thrown, inter-
rupting the pre-processing. [BV-control] ignores the exception; however, it cannot move
any further either without the necessary instrumentation.

64

5.3. Discussion

Fail to Instrument Synthetic Methods The second category consists of crashes where
the stack trace contains synthetic method frames. Crash ES-26184 is an example, of which
the stack trace is shown in Listing 5.10.

java.lang.IllegalArgumentException: invalid IP address [*] for [_ip]
at org.elasticsearch.cluster.node.DiscoveryNodeFilters.lambda$static$0(

DiscoveryNodeFilters.java:58)
at org.elasticsearch.common.settings.Setting$3.get(Setting.java:908)
at org.elasticsearch.common.settings.Setting$3.get(Setting.java:885)
at org.elasticsearch.cluster.metadata.IndexMetaData$Builder.build(

IndexMetaData.java:1026)
at org.elasticsearch.cluster.metadata.IndexMetaData$Builder.

fromXContent(IndexMetaData.java:1240)
at org.elasticsearch.cluster.metadata.IndexMetaData$1.fromXContent(

IndexMetaData.java:1302)
at org.elasticsearch.cluster.metadata.IndexMetaData$1.fromXContent(

IndexMetaData.java:1293)
at org.elasticsearch.gateway.MetaDataStateFormat.read(

MetaDataStateFormat.java:202)
at org.elasticsearch.gateway.MetaDataStateFormat.loadLatestState(

MetaDataStateFormat.java:322)

Listing 5.10: Stack Trace of ES-26184

The first frame points to a lambda expression, which is transcompiled into a synthetic
method in bytecode. EvoSuite does not provide CFG for synthetic methods or classes.
Hence, when our BranchingVariableDiversityFactory queries the method node, a
NullPointerException is thrown, interrupting the pre-processing. The exception is ig-
nored by [BV-control]. But it cannot proceed without the necessary instrumentation.

5.3.2 Summary

In this sub-section, we answer RQ3 with the analysed observations.

Adapting Integration Testing Fitness Function for Indexed Access

By providing a continuous exception distance in the calculation of fitness values, our pro-
posed method enhances the exploitation power of the search process when an individual
shows a likelihood of accessed indices being out of bounds.

With 22 out of the 23 selected crashes, our proposed method does not show any de-
terioration in terms of crash reproduction effectiveness. The results suggest improvement
with crashes where Botsing has difficulties in reaching the crash location, i.e. with crash
ES-23324 and MATH-81b. However, as the added exploitation power only kicks in after
reaching the crash location, the number of executions taken into consideration is massively
reduced and therefore cannot lead us to any solid conclusion. With the other crash, LANG-
19b, the additional power of exploitation within the search space actually leads it to local
optima and results in a worse reproduction rate.

65

5. EVALUATION AND RESULTS

In terms of crash reproduction efficiency, almost all the reproduced ArrayIndexOut-
OfBoundsException and StringIndexOutOfBoundsException crashes take less than ten
fitness evaluations to reproduce, making it hard to observe notable changes. As shown in
our manual analyses, with bugs of sophisticated logical errors, which require better-thought
composition of inputs to trigger, the efficiency is generally dragged down by our proposed
fitness function. On the other hand, bugs related to implementation mistakes that require
less complicated input to trigger have seen a tendency of improvements in efficiency with
the additional exploitation power.

Many-Objectivisation with Helper Objectives for Branching Variables

By reformulating the reproduction task into a many-objective optimisation with helper ob-
jectives problem, our approach tries to loose the constraints imposed on the search process
and to empower its exploration ability.

The 246 frames of 29 crashes of IllegalArgumentException and IllegalState-
Exception crashes have revealed no significant sign of improvement or deterioration in
terms of reproduction effectiveness. Several executions have failed to start the search pro-
cess due to technical difficulties in bytecode instrumentation with the provided framework
from EvoSuite.

Branches that the original Botsing is already able to cover are now entered with a more
diverse context (i.e. values of the branching variables). It results in a considerable improve-
ment in terms of reproduction efficiency for several complex Elasticsearch crashes. If the
coverage of diversity objectives goes in agreement with the search process, the number of
fitness evaluations needed is significantly reduced. However, if all the possible diversity ob-
jectives are covered at the beginning of the search process, they, as a matter of fact, impose
additional constraints and slow down the search process.

5.4 Threats to Validity

5.4.1 Internal Validity

We cannot guarantee that our extensions to Botsing and EvoSuite are defect-free, especially
with the instrumentation components, which is an established challenge [58]. We mitigate
this threat by unit testing the extensions and manually analysing the results.

Furthermore, to counteract the random nature of genetic algorithms, we have repeated
each execution 30 times. However, the p-values of the two effect size analyses still suggest
that it is not enough, especially with configuration [IA] and its control group, where our
proposed fitness function only kicks in after reaching the crash location. For instance, crash
ES-23324 has the potential to show improvements. However, only 1 execution of [IA] and
2 executions of [IA-control] have managed to reach the crash location, and therefore only 3
data samples have been taken into account, way less than the suggested minimum by Arcuri
and Briand [54].

66

5.4. Threats to Validity

5.4.2 External Validity

We cannot guarantee our results generalise to all crashes of the four studied types of excep-
tions. However, we have evaluated against all seven software projects included in JCrash-
Pack. The seven projects differ much in terms of their sizes, complexities and functions,
providing a wide variety, which mitigates this threat.

5.4.3 Conclusion Validity

The crashes used in our evaluation mostly result in two scenarios. One where the original
Botsing can quickly reproduce with less than one hundred fitness evaluations with a re-
production rate of 100%. The other one where the original Botsing struggles to make any
progress after initialisation. Because our proposed methods are extensions to the original
Botsing, this phenomenon makes it difficult to observe significant differences in perfor-
mance, threatening the conclusion validity. And some observations came out as counter-
intuitive because they are considerably affected by marginal samples.

A future evaluation should consider not only the variety of software applications but
also the variety of how easy it is for Botsing to solve. That is to say, not only crashes, that
can be reproduced easily by Botsing or cannot be reproduced at all, should be included, but
also crashes that Botsing can only reproduce with a possibility.

5.4.4 Replication Package

A replication package of our evaluation is available at https://github.com/CoolTomat
os/fit2crash-replication-package. Along with scripts to run the evaluation and to
analyse the outcome, the complete results and the full manual analyses are provided in this
package. Our extension to Botsing is available at https://github.com/stamp-project
/Botsing, and our extension to EvoSuite is available at https://github.com/STAMP-p
roject/evosuite-ramp.

67

https://github.com/CoolTomatos/fit2crash-replication-package
https://github.com/CoolTomatos/fit2crash-replication-package
https://github.com/stamp-project/Botsing
https://github.com/stamp-project/Botsing
https://github.com/STAMP-project/evosuite-ramp
https://github.com/STAMP-project/evosuite-ramp

Chapter 6

Conclusions and Future Work

To specialise fitness functions used in search-based crash reproduction, we studied the
four most common types of Java exceptions and grouped them into two categories. The
first category is made of ArrayIndexOutOfBoundsExceptions and StringIndexOutOf-
BoundsExceptions, while the second category consists of IllegalArgumentExceptions
and IllegalStateExceptions. In this chapter, by recalling the research questions, we
summarise the contributions of this thesis project and draw conclusions from the results of
our evaluation. After that, we discuss ideas for future work.

6.1 Contributions

The first research question is about specialising the exception distance according to the type
of the target exception. It is stated as follows:

RQ1 How to define a distance between the execution flow of a test case and the
execution flow throwing a specific type of exception?

For the first category of ArrayIndexOutOfBoundsExceptions and StringIndexOut-
OfBoundsExceptions, d∗exception (x) is defined to numerically represent how far an accessed
index is away from being out of the bounds, see Definition 11.

And for the second category of IllegalArgumentExceptions and IllegalState-
Exceptions, we have defined a set of branching variable diversity objectives to broaden
the diversity of values of branching variables, see Table 4.1. A set of diversity distances are
defined to calculate the distance of one variable to meet the objectives, see Definition 13
to 20.

The second research question asks how to incorporate the newly defined distances into a
fitness function. It is stated as follows:

RQ2 How to include the additional information provided by this distance in a
fitness function to improve the guidance of the search process?

69

6. CONCLUSIONS AND FUTURE WORK

For the first category of ArrayIndexOutOfBoundsExceptions and StringIndex-
OutOfBoundsExceptions, we have implemented a customised method visitor, Indexed-
AccessVisitor in EvoSuite to collect the information. We define the integration testing
fitness function for indexed access and replace the original binary exception distance with
our d∗exception (x), see Definition 12. We have implemented it in Botsing. After reaching
the crash location, the newly defined exception distance is used to make the fitness value
continuous.

For the second category of IllegalArgumentExceptions and IllegalState-
Exceptions, we have reformulated the fitness function into a many-objective one. We
have implemented BranchingVariableDiversityFactory in Botsing to create branch-
ing variable diversity objectives as helper objectives. The original integration testing fit-
ness function is used as the primary objective. We have added a customised instrumentor,
BranchingVariableInstrumentation, to EvoSuite to collect the information. And fi-
nally, we have adjusted the guided MOSA so that the search process will terminate once the
primary objective is met.

6.2 Conclusions

Based on JCrashPack, we have performed an evaluation of 11 days on 52 real-world crashes
from 7 various open-source Java applications to answer the third research question, which
is stated as follow:

RQ3 What is the impact of the new fitness function in terms of effectiveness and
efficiency of search-based crash reproduction?

For the first category of ArrayIndexOutOfBoundsExceptions and StringIndexOut-
OfBoundsExceptions, the result of our evaluation suggests that the additional exploitation
power brought by the integration testing fitness function for indexed access tends to improve
the effectiveness of crash reproduction, at the risk of getting trapped in local optima. We
have shown that the efficiency decreases when the crash requires sophisticated input to
trigger, while the efficiency increases when sophisticated inputs are not required.

For the second category of IllegalArgumentExceptions and IllegalState-
Exceptions, the result reveals no significant improvement nor deterioration in crash repro-
duction effectiveness by adding helper objectives to enforce the branching variable diversity.
However, it suggests a moderate enhancement in terms of efficiency.

6.3 Future Work

The project itself has much room for improvement, and the research in the field of auto-
mated crash reproduction with search-based optimisation algorithms still has much to be
discovered. In this section, we list some recommendations of possible directions for future
work.

70

6.3. Future Work

• As described in Sub-section 4.1.2, only methods of a subset of JDK classes that throw
StringIndexOutOfBoundsExceptions are instrumented. And as described in Sub-
section 4.2.4, currently comparison operands of fields of an object or static fields of
a class are ignored in the instrumentation. Future work of the project can extend the
added instrumentation components of EvoSuite to include the missing methods and
fields. To work the latter one out, one might need to incorporate mocking mechanisms
for the states of one object or class.

• Currently, with the integration testing fitness function for indexed access, the added
exploitation power only kicks in when the search process manages to reach the crash
location (i.e. the target line of the inner-most frame of the stack trace). However,
for many crashes, Botsing does not have the exploration power to reach the location
in the first place. Future work should, therefore, improve the exploration power. It
can be done by (i) relaxing the constraints [59]; (ii) combining different evolutionary
algorithms [30]; and (iii) defining new genetic operators [30].

• Currently, with the branching variable diversity factory, every single branching vari-
able in the CFG it runs into is instrumented. However, some variables are not relevant
to the throwing of the target exception, and some later diversity objectives can only
be achieved if a previous objective is met. Future work can incorporate backward
path-sensitive analysing [53] to identify more relevant variables and utilise Dyna-
MOSA [38] to add follow-up objectives dynamically based on the different paths
the generated test cases are taking. And the objective factory can take the constant
one branching variable is compared with into consideration for defining the diversity
objectives.

• The central idea of the project is to study the patterns how the four most common
types of Java run-time exceptions are thrown. To specialise fitness functions for other
exceptions, new patterns must be identified. However, human perception of program-
ming patterns can be limited. Future work in the field can utilise machine learning to
cluster different types of exceptions based on their throwing patterns and extract fea-
ture to be used in the exception distance dexception (x) for specialised fitness functions.

71

Bibliography

[1] Paolo Tonella. Evolutionary testing of classes. In ACM SIGSOFT Software Engineer-
ing Notes, volume 29, pages 119–128. ACM, 2004.

[2] Nigel Tracey, John Clark, Keith Mander, and John McDermid. An automated frame-
work for structural test-data generation. In Proceedings 13th IEEE International
Conference on Automated Software Engineering (Cat. No. 98EX239), pages 285–288.
IEEE, 1998.

[3] Mozhan Soltani, Pouria Derakhshanfar, Xavier Devroey, and Arie van Deursen. A
benchmark-based evaluation of search-based crash reproduction. Empirical Software
Engineering, pages 1–43, 2019.

[4] Strategic Planning. The economic impacts of inadequate infrastructure for software
testing. National Institute of Standards and Technology, 2002.

[5] Uttamjit Kaur and Gagandeep Singh. A review on software maintenance issues and
how to reduce maintenance efforts. International Journal of Computer Applications,
118(1), 2015.

[6] Andy Pasztor, Andrew Tangel, Robert Wall, and A Slider. How boeing’s 737 max
failed. The Wall Street Journal (Mar. 2019)(cit. on p. 11), 2019.

[7] Andrew J Ko, Bryan Dosono, and Neeraja Duriseti. Thirty years of software problems
in the news. In Proceedings of the 7th International Workshop on Cooperative and
Human Aspects of Software Engineering, pages 32–39, 2014.

[8] Hermann Kopetz et al. Software reliability. Macmillan International Higher Educa-
tion, 2016.

[9] J Myers Glenford and S Myers. Software reliability principles and practices, 1976.

[10] Andreas Zeller. Why programs fail: a guide to systematic debugging. Elsevier, 2009.

[11] John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. jRapture: A capture/re-
play tool for observation-based testing, volume 25. ACM, 2000.

73

BIBLIOGRAPHY

[12] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Continuously record-
ing program execution for deterministic replay debugging. In ACM SIGARCH Com-
puter Architecture News, volume 33, pages 284–295. IEEE Computer Society, 2005.

[13] David Saff, Shay Artzi, Jeff H Perkins, and Michael D Ernst. Automatic test fac-
toring for java. In Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering, pages 114–123. ACM, 2005.

[14] James Clause and Alessandro Orso. A technique for enabling and supporting de-
bugging of field failures. In 29th International Conference on Software Engineering
(ICSE’07), pages 261–270. IEEE, 2007.

[15] Shay Artzi, Sunghun Kim, and Michael D Ernst. Recrash: Making software failures
reproducible by preserving object states. In European conference on object-oriented
programming, pages 542–565. Springer, 2008.

[16] Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K Chang. Ocat: object capture-based
automated testing. In Proceedings of the 19th international symposium on Software
testing and analysis, pages 159–170. ACM, 2010.

[17] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. Core-
det: a compiler and runtime system for deterministic multithreaded execution. In
Proceedings of the fifteenth International Conference on Architectural support for pro-
gramming languages and operating systems, pages 53–64, 2010.

[18] Pablo Montesinos, Matthew Hicks, Samuel T King, and Josep Torrellas. Capo: a
software-hardware interface for practical deterministic multiprocessor replay. In Pro-
ceedings of the 14th international conference on Architectural support for program-
ming languages and operating systems, pages 73–84, 2009.

[19] Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofiène Tahar, and Alf Larsson.
Jcharming: A bug reproduction approach using crash traces and directed model check-
ing. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 101–110. IEEE, 2015.

[20] Andreas Leitner, Alexander Pretschner, Stefan Mori, Bertrand Meyer, and Manuel
Oriol. On the effectiveness of test extraction without overhead. In 2009 International
Conference on Software Testing Verification and Validation, pages 416–425. IEEE,
2009.

[21] Cristian Zamfir and George Candea. Execution synthesis: a technique for automated
software debugging. In Proceedings of the 5th European conference on Computer
systems, pages 321–334. ACM, 2010.

[22] Ning Chen and Sunghun Kim. Star: Stack trace based automatic crash reproduction
via symbolic execution. IEEE transactions on software engineering, 41(2):198–220,
2014.

74

Bibliography

[23] Jeremias Rößler, Andreas Zeller, Gordon Fraser, Cristian Zamfir, and George Candea.
Reconstructing core dumps. In 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, pages 114–123. IEEE, 2013.

[24] Fitsum Meshesha Kifetew, Wei Jin, Roberto Tiella, Alessandro Orso, and Paolo
Tonella. Sbfr: A search based approach for reproducing failures of programs with
grammar based input. In 2013 28th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 604–609. IEEE, 2013.

[25] Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. A guided genetic al-
gorithm for automated crash reproduction. In Proceedings of the 39th International
Conference on Software Engineering, pages 209–220. IEEE Press, 2017.

[26] Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. Search-based crash re-
production and its impact on debugging. IEEE Transactions on Software Engineering,
2018.

[27] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-
oriented software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages 416–419. ACM,
2011.

[28] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated
annealing. science, 220(4598):671–680, 1983.

[29] John Henry Holland et al. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT press,
1992.

[30] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation in
evolutionary algorithms: A survey. ACM Computing Surveys (CSUR), 45(3):35, 2013.

[31] Webb Miller and David L. Spooner. Automatic generation of floating-point test data.
IEEE Transactions on Software Engineering, (3):223–226, 1976.

[32] Oliver Buehler and Joachim Wegener. Evolutionary functional testing of an automated
parking system. In Proceedings of the International Conference on Computer, Com-
munication and Control Technologies (CCCT’03) and the 9th. International Confer-
ence on Information Systems Analysis and Synthesis (ISAS’03), Florida, USA, 2003.

[33] Joachim Wegener, André Baresel, and Harmen Sthamer. Evolutionary test environ-
ment for automatic structural testing. Information and software technology, 43(14):
841–854, 2001.

[34] Phil McMinn. Search-based software test data generation: a survey. Software testing,
Verification and reliability, 14(2):105–156, 2004.

75

BIBLIOGRAPHY

[35] Andrea Arcuri. It does matter how you normalise the branch distance in search based
software testing. In 2010 Third International Conference on Software Testing, Verifi-
cation and Validation, pages 205–214. IEEE, 2010.

[36] Joshua D Knowles, Richard A Watson, and David W Corne. Reducing local optima
in single-objective problems by multi-objectivization. In International conference on
evolutionary multi-criterion optimization, pages 269–283. Springer, 2001.

[37] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformulating
branch coverage as a many-objective optimization problem. In 2015 IEEE 8th in-
ternational conference on software testing, verification and validation (ICST), pages
1–10. IEEE, 2015.

[38] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated test
case generation as a many-objective optimisation problem with dynamic selection of
the targets. IEEE Transactions on Software Engineering, 44(2):122–158, 2017.

[39] Brent Hailpern and Padmanabhan Santhanam. Software debugging, testing, and veri-
fication. IBM Systems Journal, 41(1):4–12, 2002.

[40] David S Rosenblum et al. Towards a method of programming with assertions. In 14th
International Conference on Software Engineering: Proceedings, page 92. Associa-
tion for Computing Machinery, 1992.

[41] David S. Rosenblum. A practical approach to programming with assertions. IEEE
Transactions on software engineering, 21(1):19–31, 1995.

[42] Deborah S Coutant, Sue Meloy, and Michelle Ruscetta. Doc: A practical approach to
source-level debugging of globally optimized code. ACM SIGPLAN Notices, 23(7):
125–134, 1988.

[43] STAMP-project. Background of botsing — crash reproduction made easy! https:
//stamp-project.github.io/botsing/pages/background.html, 2019.

[44] Mozhan Soltani, Pouria Derakhshanfar, Annibale Panichella, Xavier Devroey, Andy
Zaidman, and Arie van Deursen. Single-objective versus multi-objectivized optimiza-
tion for evolutionary crash reproduction. In International Symposium on Search Based
Software Engineering, pages 325–340. Springer, 2018.

[45] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary
computation, 6(2):182–197, 2002.

[46] Roberta Coelho, Lucas Almeida, Georgios Gousios, and Arie van Deursen. Unveiling
exception handling bug hazards in android based on github and google code issues. In
2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pages
134–145. IEEE, 2015.

76

https://stamp-project.github.io/botsing/pages/background.html
https://stamp-project.github.io/botsing/pages/background.html

Bibliography

[47] Arrayindexoutofboundsexception (java plateform se 8). https://docs.oracle.co
m/javase/8/docs/api/java/lang/ArrayIndexOutOfBoundsException.html.

[48] Stringindexoutofboundsexception (java plateform se 8). https://docs.oracle.co
m/javase/8/docs/api/java/lang/StringIndexOutOfBoundsException.html.

[49] Illegalstateexception (java plateform se 8). https://docs.oracle.com/javase/8/
docs/api/java/lang/IllegalStateException.html.

[50] Illegalargumentexception (java plateform se 8). https://docs.oracle.com/java
se/8/docs/api/java/lang/IllegalArgumentException.html.

[51] Nullpointerexception (java plateform se 8). https://docs.oracle.com/javase/8/
docs/api/java/lang/NullPointerException.html.

[52] Goetz Lindenmaier and Ralf Schmelter. Jep 358: Helpful nullpointerexceptions. ht
tps://openjdk.java.net/jeps/358, 2019.

[53] Daniele Romano, Massimiliano Di Penta, and Giuliano Antoniol. An approach for
search based testing of null pointer exceptions. In 2011 Fourth IEEE International
Conference on Software Testing, Verification and Validation, pages 160–169. IEEE,
2011.

[54] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering. Software Testing, Verification and
Reliability, 24(3):219–250, 2014.

[55] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineer-
ing, (4):308–320, 1976.

[56] András Vargha and Harold D Delaney. A critique and improvement of the cl com-
mon language effect size statistics of mcgraw and wong. Journal of Educational and
Behavioral Statistics, 25(2):101–132, 2000.

[57] 3tu: Big software on the run. http://www.3tu-bsr.nl/.

[58] Gordon Fraser and Andrea Arcuri. Evosuite: On the challenges of test case generation
in the real world. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, pages 362–369. IEEE, 2013.

[59] Carlos A Coello Coello. Constraint-handling techniques used with evolutionary al-
gorithms. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pages 675–701, 2017.

77

https://docs.oracle.com/javase/8/docs/api/java/lang/ArrayIndexOutOfBoundsException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ArrayIndexOutOfBoundsException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/StringIndexOutOfBoundsException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/StringIndexOutOfBoundsException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/IllegalStateException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/IllegalStateException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/IllegalArgumentException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/IllegalArgumentException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
https://openjdk.java.net/jeps/358
https://openjdk.java.net/jeps/358
http://www.3tu-bsr.nl/

Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

AL: Approach Level

BCET: Best-Case Execution Time

BD: Branch Distance

CFG: Control Flow Graph

CUT: Class Under Test

FF: Fitness Function

GGA: Guided Genetic Algorithm

IDE: Integrated Development Environment

ITFF: Integration Testing Fitness Function

ITFFForIndexedAccess: Integration Testing Fitness Function for Indexed Access

JDK: Java Development Kit

JVM: Java Virtual Machine

MOSA: Many-Objective Sorting Algorithm

NSGA-II: Elitist Non-dominated Sorting Genetic Algorithm

SBST: Search-Based Software Test

SUT: Software Under Test

VD.A: Vargha and Delaney’s Â12 Measure

WCET: Worst-Case Execution Time

79

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Challenges in Highly-Reliable Software Development
	Crash Reproduction
	Research Questions
	Thesis Outline

	Background
	Search-Based Optimisation Algorithms
	Search-Based Software Testing
	Automated Crash Reproduction for Debugging
	Botsing
	Limitation

	Common Runtime Exceptions
	ArrayIndexOutOfBoundsException
	StringIndexOutOfBoundsException
	IllegalStateException and IllegalArgumentException
	NullPointerException

	Crash-Specific Fitness Functions
	Adapting Integration Testing Fitness Function for Indexed Access
	Many-Objectivisation with Helper Objectives for Branching Variables
	Summary

	Evaluation and Results
	Experiment Set-up
	Results
	Discussion
	Threats to Validity

	Conclusions and Future Work
	Contributions
	Conclusions
	Future Work

	Bibliography
	Glossary

