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Abstract

In this thesis, different wavefronts have been generated with a phase-only spatial light
modulator and reconstructed with different methods. Both single optical aberrations and
combinations of optical aberrations are addressed to the spatial light modulator. First,
the wavefront is measured with a Shack-Hartmann sensor. This device measures the
spot displacement of a lens array with respect to the local origin. From these, the local
derivatives of the wavefront can be calculated. We compare the obtained Zernike co-
efficients of three wavefront sensor reconstruction methods. First, we use the recently
developed analytical algorithm of Janssen [1]. Second, an iterative integration algorithm
is used. Last, they are compared with the Zernike coefficients given by the software of the
Shack-Hartmann sensor. The wavefronts will also be measured with a Michelson interfer-
ometer as an independent measurement. All four methods appeared to be well capable
of measuring the wavefront. After normalization, the retrieved Zernike coefficients agree
with the input of the aberrations addressed to the spatial light modulator. The coeffi-
cients given by the software of the Shack-Hartmann sensor have the highest RMS-error
with respect to the input. The runtime of the algorithm of the analytical method is the
shortest.
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List of Abbreviations

For convenience, some abbreviations are used throughout the thesis. In table 1 below,
these are listed in alphabetical order.

Table 1: List of abbreviations used in this thesis

Abbreviation Meaning Short description

AS Faculty of Applied Sciences This faculty offers the bachelor Applied
Physics. Optics is a research group within
this faculty.

Ast. 0∘ Astigmatism 0∘ This is an optical aberration, which cor-
responds to the fifth Zernike aberration
according to the ISO-convention.

Ast. 45∘ Astigmatism 45∘ This is an optical aberration, which cor-
responds to the sixth Zernike aberration
according to the ISO-convention.

CCD Charged-coupled device This chip converts electromagnetic radi-
ation into electrical charge.

Interf. Interferometer This set-up can be used to reconstruct
the phase of light.

ISO International Organization
for Standardization

This organization standardizes various
norms and conventions.

LCoS Liquid crystal on silicon It is a kind of a microdisplay, which is able
to modulate the phase of incoming light.

RMS Root-mean-square This means the square root of the mean
of the squares. This particular type of
mean is often used in error analysis.

SHS Shack-Hartmann Sensor This is a type of wavefront sensor.

SLM Spatial Light Modulator This is a device, which is able to mod-
ulate the phase of the incoming light
beam.

WFS Wavefront sensor This is a device, which can measure a
wavefront.

5





1
Introduction

Nowadays, we cannot imagine a world without lenses. They are used worldwide in many
different fields. Think for example of the camera of your smartphone, the contact lenses
or glasses you may wear and the telescope or other advanced optical set-ups that are
used to discover new life in the universe. As you probably know, lenses could be either
concave or convex. Theoretically, they have an ideal shape and size. However, due to
manufacturing processes the actual shape and size could differ from the ideal design,
which influences the refraction of light. This will result in deviations in the wavefront. In
optics, these deviations are called optical aberrations. Due to the wide variety of usage
of lenses it is quite important to quantify in detail what kind of aberrations a certain lens
or optical system causes.

In this research, a so-called spatial light modulator will be used. This device could
construct any wavefront, to a certain extent. A Shack-Hartmann wavefront sensor will be
used to measure this wavefront. It consists of a lens array which focus the incoming light
on a CCD. An aberrated wavefront does not focus in the ideal focal point. Hence, from the
focus points, the displacements with respect to the ones corresponding to a perfectly flat
wavefront could be determined. These spot displacements could be converted to deriva-
tives of the local wavefront. Recently, Janssen found a new way to retrieve the wavefront
from these derivatives [1]. He used an analytical approach to relate the derivatives of the
wavefront with the so called Zernike polynomials [2]. These polynomials are a complete
orthogonal set on the unit circle which therefore can describe any circular wavefront. The
advantage of the use of Zernike polynomials, apart from their mathematical properties, is
that they each have a physical meaning. We are going to compare Janssen’s method with
the coefficients given by the Shack-Hartmann sensor, which uses an iterative integration
method to calculate the Zernike coefficients. This iterative integration method is also im-
plemented in a Matlab script. These retrieved coefficients will as well be compared with
the ones obtained by Janssen’s method. Moreover, as an independent measurement,
we compare the wavefronts obtained through these three methods with the wavefront
retrieved from a Michelson interferometer.

In short, the goal of this research is to find out whether it is possible to measure a
wavefront qualitatively and quantitatively with a wavefront sensor by using Janssen’s re-
cently found analytical algorithm. The results will be compared with the results obtained
with the commercially used and conventional wavefront reconstruction methods.

For this research the algorithms of the students Ruud Bokdam, Leendert van Veen,
Ike Mulder, Joost Wooning and Michel van der Kaay are used. Besides, some scripts of
Sven van Haver, Hassan Al Mahmoedi and Luca Cisotto are used. Some of them have
been modified by us and some scripts have been rewritten.

The thesis will be structured as follows. First, some theory necessary to understand
the experiment will be provided. We will briefly introduce the theory behind Janssen’s

7



8 1. Introduction

method, the iterative method, the Shack-Hartmann wavefront sensor, the Michelson in-
terferometer and the spatial light modulator. Thereafter, two chapters are devoted to
the experimental set-up and methods in order to let you understand how the experiment
is done and why we made some choices regarding the analysis of the data. After that,
the results will be presented for the various measurements and some discussion on these
will be given. Finally, conclusions are made and recommendations for future research
are given.



2
Theory

In this chapter of the thesis, some theory needed to understand the research will be
presented. Light can be considered both as a particle and as a wave. A wave has an
amplitude, a phase and a direction in which it propagates. In this research the wavefront
will be measured and thus we are interested in the wave-like characteristics of the light.

2.1. Zernike theory
A wavefront is a surface of points in ℝኽ corresponding to waves with the same phase.
They can be represented by a wavefront function 𝑊(𝑥, 𝑦).

Frits Zernike, winner of the Nobel Prize in 1953 [3], published in 1934 an article about
the so-called Zernike polynomials [2]. They form an orthogonal set of functions on the unit
circle [4] (i.e. {(𝑥, 𝑦) ∈ ℝኼ ∶ 𝑥ኼ+𝑦ኼ ≤ 1}), which means that the integral of the product of
two different Zernike polynomials over the unit circle equals zero. Because these functions
form a complete set, every surface on the unit circle (𝑊 ∶ {(𝑥, 𝑦) ∈ ℝኼ ∶ 𝑥ኼ+𝑦ኼ ≤ 1} → ℝ)
can be written as an infinite linear combination of Zernike polynomials1, just like every
function 𝑓 ∶ ℝ → ℝ can be written as a linear combination of sines and cosines1, which is
known as Fourier series representation. A Zernike polynomial consists of a radial and an
angular component. When 𝑛 and 𝑛 − |𝑚| are both any non-negative integer including 0,
then the following holds:

𝑍፦፧ (𝜌, 𝜃) = {
𝑅|፦|፧ (𝜌) cos (𝑚𝜃) if 𝑚 ≥ 0
𝑅|፦|፧ (𝜌) sin (|𝑚| 𝜃) if 𝑚 < 0 (2.1)

𝑅|፦|፧ (𝜌) is defined as:

𝑅|፦|፧ (𝜌) =

ᑟᎽ|ᑞ|
Ꮄ

∑
፤዆ኺ

(−1)፤(𝑛 − 𝑘)!
𝑘! (፧ዄ፦ኼ − 𝑘)! (፧ዅ፦ኼ − 𝑘)!𝜌

፧ዅኼ፤ (2.2)

Since light beams often pass circular apertures, wavefronts are therefore often func-
tions on a disk. These could be scaled to the unit circle and hence they could be written
as a Zernike polynomial expansion. Let 𝑍፦፧ (𝑥, 𝑦) be the same function as (2.1), but with
substitutions 𝜌 = √𝑥ኼ + 𝑦ኼ and 𝜃 = arctan ፲፱ . We should use the proper definition of the
arctan such that 𝜃 will correspond to the azimuthal angle [5]. This means that the range
will be [−𝜋, 𝜋]. So, if we scale our wavefront to the unit circle, the wavefront 𝑊(𝑥, 𝑦)
could be written in the following form, with 𝛼፦፧ yet undetermined coefficients:

𝑊(𝑥, 𝑦) =∑
፧,፦

𝛼፦፧ 𝑍፦፧ (𝑥, 𝑦) (2.3)

1This is valid if certain convergence criteria are satisfied. The surface ፖ(፱, ፲) should at least be piecewise
continuous.
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10 2. Theory

Table 2.1: The first eleven Zernike polynomials according to the ISO-convention (from [6])

𝑛 𝑚 𝑍፦፧ Name

0 0 1 Piston
1 1 𝜌 cos 𝜃 Tilt X
1 -1 𝜌 sin 𝜃 Tilt Y
2 0 2𝜌ኼ − 1 Defocus
2 2 𝜌ኼ cos 2𝜃 Astigmatism 0∘
2 -2 𝜌ኼ sin 2𝜃 Astigmatism 45∘
3 1 (3𝜌ኼ − 2𝜌) cos 𝜃 Coma X
3 -1 (3𝜌ኼ − 2𝜌) sin 𝜃 Coma Y
4 0 6𝜌ኾ − 6𝜌ኼ + 1 Spherical aberration
3 3 𝜌ኽ cos 𝜃 Trefoil 0∘
3 -3 𝜌ኽ sin 𝜃 Trefoil 30∘

A list of the first eleven Zernike polynomials is given in table 2.1. Note that there
are many different conventions on how to order the Zernike polynomials. Because of
consistency, this table follows the so called ISO-convention, since this is the convention
used by the software of the wavefront sensor.

2.2. Wavefront sensor
The wavefront sensor used in this research is a Shack-Hartmann sensor. It consists of
an array of lenses and a CCD camera. The focal plane of these lenses coincides with the
CCD. The principle behind this kind of wavefront sensor is that they measure the local,
i.e. at the location of such a lens, slope of the wavefront. From basic geometrical optics,
it is known that a plane wave perpendicular to the optical axis, after refraction due to a
lens, will converge to the point where the focal plane and the optical axis intersect. This
can be seen in the left part of figure 2.1. In the right part, it becomes clear that a local
slope will cause this point to move away from the optical axis. This deviation from the
optical axis will be called from now on a spot displacement. This spot displacement has
𝑥- and 𝑦-components.

Figure 2.1: Left: a plane wave hits the wavefront sensor. Right: a spherical wave hits the wavefront sensor.

In the right side of figure 2.1, it seems that the wavefront at each lens is locally a
plane wave. Actually, even if we are considering a simplified model, it is locally a smooth
curved wavefront instead of a plane wave. This means that there won’t be just one
single point where the light focuses. The way the wavefront sensor determines the spot
displacement is actually by calculating the ’center of mass’. Since there are many more
pixels on the CCD than there are lenses, the wavefront sensor could identify the precise
spot displacement. It is possible to calculate the local average wavefront from these
determined spot displacements.

Using the Eikonal equations of optics, Pythagoras’ theorem and some basic mathe-



2.2. Wavefront sensor 11

Figure 2.2: Dependency of the spot displacements on the local slope of the wavefront (from [7])

matics, the following equation could be obtained [7].

𝜕𝑊
𝜕𝑥 = 𝜎፱

√𝑓ኼ + 𝜎፱ኼ + 𝜎፲ኼ
(2.4)

𝜕𝑊
𝜕𝑦 =

𝜎፲

√𝑓ኼ + 𝜎፱ኼ + 𝜎፲ኼ
(2.5)

For the interested reader, the precise derivation can be found in the Technical Manual
of the SHS [7]. When the spot displacements 𝜎፱ and 𝜎፱ are very small in comparison
with the focal length 𝑓, then is it valid to approximate (2.4) and (2.5) with the following
expressions:

𝜕𝑊
𝜕𝑥 = 𝜎፱

𝑓 (2.6)

𝜕𝑊
𝜕𝑦 =

𝜎፲
𝑓 (2.7)

The following two paragraphs will explain two different algorithms, which will be used
to reconstruct the wavefront from the partial derivatives with respect to 𝑥 and 𝑦.

2.2.1. Janssen’s analytical method
A detailed description of the whole method can be found [1], but we will emphasize what
is relevant for our purposes.

It turns out that is convenient, in accordance with formulas for derivatives presented
in [8], to combine the partial derivatives with respect to 𝑥 and 𝑦 as follows: ᎧፖᎧ፱ +i

Ꭷፖ
Ꭷ፲ and

Ꭷፖ
Ꭷ፱ −i

Ꭷፖ
Ꭷ፲ . These expressions can be considered to be known, since the partial derivatives

with respect to 𝑥 and 𝑦 can be obtained from the measurements done with the SHS. Both
expression can be written as a Zernike expansion:

𝜕𝑊
𝜕𝑥 + i

𝜕𝑊
𝜕𝑦 =∑

፧,፦
(𝛽ዄ)፦፧ 𝑍፦፧ (𝑥, 𝑦) (2.8)

𝜕𝑊
𝜕𝑥 − i

𝜕𝑊
𝜕𝑦 =∑

፧,፦
(𝛽ዅ)፦፧ 𝑍፦፧ (𝑥, 𝑦) (2.9)

These Zernike coefficients, (𝛽ዄ)፦፧ and (𝛽ዅ)፦፧ , can be calculated by a least squares Zernike
polynomial fit of the left-hand sides of (2.8) and (2.9). According to Janssen, the following
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estimator for the coefficients 𝛼፦፧ of (2.3) is valid, using the coefficients (𝛽±)፦፧ :

𝛼̂፦፧ = 1
𝑛𝜖ᑟᎽ|ᑞ|

Ꮄ

(12(𝛽ዄ)
፦ዄኻ
፧ዅኻ +

1
2(𝛽ዅ)

፦ዅኻ
፧ዅኻ ) −

1
(𝑛 + 2)𝜖ᑟᎽ|ᑞ|

Ꮄ
+ 1 (

1
2(𝛽ዄ)

፦ዄኻ
፧ዄኻ +

1
2(𝛽ዅ)

፦ዅኻ
፧ዄኻ )

(2.10)
where

𝑛 = { 2, 4, ... if |𝑚| = 0
|𝑚| , |𝑚| + 2, ... if |𝑚| ≠ 0 (2.11)

and

𝜖፤ = {
1 if 𝑘 = 0
2 if 𝑘 > 0 (2.12)

2.2.2. Iterative method
There is also a second reconstruction method we will use. A more detailed description
of the derivation of this method can be found in the Technical Manual of the wavefront
sensor [7].

By using the definition of a derivative, we can estimate the wavefront at the position
(𝑥 + ℎ, 𝑦). If ℎ is small enough, the following expression holds:

𝑊(𝑥 + ℎ, 𝑦) ≈ 𝑊(𝑥, 𝑦) + ℎ𝜕𝑊𝜕𝑥 (𝑥, 𝑦) (2.13)

From measurements, the derivatives at all points are known. Therefore, a better estima-
tion could be made:

𝑊(𝑥 + ℎ, 𝑦) ≈ 𝑊(𝑥, 𝑦) + ℎ2 (
𝜕𝑊
𝜕𝑥 (𝑥, 𝑦) +

𝜕𝑊
𝜕𝑥 (𝑥 + ℎ, 𝑦)) =∶ 𝑊(𝑥, 𝑦) + Δ፱(𝑥, 𝑦) (2.14)

𝑊(𝑥 − ℎ, 𝑦) ≈ 𝑊(𝑥, 𝑦) − ℎ2 (
𝜕𝑊
𝜕𝑥 (𝑥 − ℎ, 𝑦) +

𝜕𝑊
𝜕𝑥 (𝑥, 𝑦)) =∶ 𝑊(𝑥, 𝑦) − Δ፱(𝑥 − ℎ, 𝑦)

(2.15)

This leads to:

𝑊(𝑥, 𝑦) ≈ 𝑊(𝑥 + ℎ, 𝑦) − Δ፱(𝑥, 𝑦) (2.16)
𝑊(𝑥, 𝑦) ≈ 𝑊(𝑥 − ℎ, 𝑦) + Δ፱(𝑥 − ℎ, 𝑦) (2.17)

The same reasoning can also be applied to the 𝑦-direction. By doing so, we have 𝑛
expressions for 𝑊(𝑥, 𝑦), where 𝑛 represents the number of adjacent sampling points.
Normally, 𝑛 = 4. See figure 2.3. Hence, we could take an average of the four expressions
of𝑊(𝑥, 𝑦). This will lead to the following estimation of𝑊(𝑥, 𝑦), depending on the values
of the wavefront of adjacent points and the values of the partial derivatives with respect
to 𝑥 and 𝑦 at the sampling points:

𝑊(𝑥, 𝑦) ≈ 1
𝑛 (𝑊(𝑥 + ℎ, 𝑦) +𝑊(𝑥 − ℎ, 𝑦) +𝑊(𝑥, 𝑦 + ℎ) +𝑊(𝑥, 𝑦 − ℎ)

−Δ፱(𝑥, 𝑦) + Δ፱(𝑥 − ℎ, 𝑦) − Δ፲(𝑥, 𝑦) + Δ፲(𝑥, 𝑦 − ℎ)) (2.18)

When the relevant point is on the boundary of the domain, this point won’t have
four adjacent sampling points. For example, when there is no sampling point at left, the
calculation of𝑊(𝑥, 𝑦) by (2.18) will be done without these missing values of the wavefront
and the partial derivatives (i.e. 𝑊(𝑥 − ℎ, 𝑦) and Δ፱(𝑥 − ℎ, 𝑦)). Needless to say, 𝑛 equals
three in that case.

In (2.18) we see that the wavefront at (𝑥, 𝑦) depends on the wavefront at adjacent
points. Since the wavefront is unknown, we use an iterative method, with iteration num-
ber 𝑖 ∈ {1, 2, ..., 𝐼}, to obtain 𝑊(𝑥, 𝑦). Here 𝐼 represents the number of the last iteration.

𝑊(።ዄኻ)(𝑥, 𝑦) ≈ 1
𝑛 (𝑊

(።)(𝑥 + ℎ, 𝑦) +𝑊(።)(𝑥 − ℎ, 𝑦) +𝑊(።)(𝑥, 𝑦 + ℎ) +𝑊(።)(𝑥, 𝑦 − ℎ)

−Δ፱(𝑥, 𝑦) + Δ፱(𝑥 − ℎ, 𝑦) − Δ፲(𝑥, 𝑦) + Δ፲(𝑥, 𝑦 − ℎ)) (2.19)
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As in the beginning the values of the wavefront of the adjacent sampling points as well as 
those of the sampling point of interest are not known, an iterative method has to be used. 
With it the values  W(i)(xl,yl) of one iteration are calculated from the values W(i-1)(xl,yl) of 

the previous iteration, where in the iteration i=1 all values W(0)(xl,yl) are set equal to zero: 
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(34) 

The number I of iterations that is needed for a sufficient convergence depends on the size 
and complexity of the wavefront to be reconstructed. It is of the order of 2N iterations, 
where N is the number of sampling points (/Southwell/). 
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Fig. 8: Connection between two adjacent values of the 
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Fig. 9: Connection between a sampling point with 

its nearest neighbors Figure 2.3: Relation between adjacent sampling points (from [7])

In order to perform the first iteration, 𝑖 = 1, we set all values of 𝑊(ኻ)(𝑥, 𝑦) equal to zero:
∀(𝑥, 𝑦) ∈ ℝኼ ∶ 𝑊(ኻ)(𝑥, 𝑦) = 0.

2.3. Interferometry
When you drop two stones in a lake, waves will arise in the water from the points where
the stones hit the water, going outward. Those two waves will interfere with each other.
Constructive interference will occur when both waves have a maximum at the same time
and at the same place. The phase difference between those two waves will be an even
multiple of 𝜋. Destructive interference will occur when one wave has a maximum and
the other a minimum at the same time and at the same place. In that case the phase
difference is an odd multiple of 𝜋. This concept holds as well for light waves.

In this thesis a Michelson interferometer (figure 2.4) will be used to measure the phase
of the wave and thus determine the wavefront using interferometry. It is based upon the
principle of interference: differences in optical path length will result in constructive and
destructive interference.

Figure 2.4: Michelson Interferometer (from [9])

The light source 𝑆 emits a coherent light beam. A coherent light beam consists of
waves of the same frequency (monochromatic) which propagate synchronized through
the medium. This means that there is no phase difference between them. A laser is a
well-known example of a light source which can emit a coherent light beam. 𝑀ኺ is a
beam splitter: the light from 𝑆 is partially reflected in the direction of 𝑀ኼ and partially
transmitted in the direction of 𝑀ኻ. 𝑀ኻ and 𝑀ኼ are mirrors, which reflect the beams
propagating in their direction. The reflected light from 𝑀ኻ and 𝑀ኼ propagates back in
the direction of the beam splitter and will there be respectively reflected and transmitted
to the screen or the detector. An interference pattern of the two light beams is formed at
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the detector. By moving 𝑀ኻ, the optical path length of the ray coming from 𝑀ኻ changes.
This will result in a different phase difference between the two rays hitting the screen or
the detector, which will cause a different interference pattern. From all these different
interference patterns corresponding to different displacements of 𝑀ኻ, a wavefront can be
reconstructed.

2.4. Spatial light modulator
To construct a certain wavefront, we use a spatial light modulator. In this section the
principle upon which a spatial light modulator is based will be explained briefly.

The SLM is being illuminated by a coherent collimated light beam. It will reflect this
beam with a modified phase profile, which is caused by the image that is addressed to
the SLM.

Figure 2.5: Schematic representation of a spatial light modulator (from [10])

The spatial light modulator used in this research is a LCoS-SLM. It means that a liquid
crystal layer is placed on a silicon substrate. On top of it there is a layer containing many
pixels made by aluminium. Each of these pixels can be controlled separately. Adjusting
the voltage will cause the electric field to change. This change of electric field will result
in a different tilt angle of the molecules of the liquid crystal layer. The tilt of the molecules
effects the refractive index of the liquid crystal layer. Light going through the liquid crystal
layer containing molecules with different alignments will experience different refractive
indices and will thus experience an optical path difference. This optical path difference
results in a phase difference after reflection at the silicon substrate and subsequently
leaving the SLM. The polarization of light must be in the same direction as the alignment
of the molecules. A schematic representation is shown in figure 2.5.



3
Experimental set-up

In this chapter of the thesis the experimental set-up will be explained in detail. In this
research we used two set-ups, one for measuring the spot displacements with the wave-
front sensor and the other for the interferometric measurements. These two set-ups
don’t differ a lot from each other. They, including all different used optical elements, will
be discussed in this chapter. Besides, the choices we made with respect to the set-up
will be justified. Moreover, a picture and a sketch of the set-up will be presented.

3.1. Measuring using a Shack-Hartmannwavefront sen-
sor

Figure 3.1 shows a picture of the set-up where a wavefront is being measured by a
wavefront sensor. From 1, light from a laser travelling through an optical fiber is colli-

Figure 3.1: Experimental set-up with the spatial light modulator and the wavefront sensor

mated (𝑓ፋᎳ = 20 cm) and sent downward. It is a coherent light beam with 𝜆 = 633 nm
(HeNe laser). After the collimator, an approximately flat wavefront is formed. Next, there

15
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is a linear polarizer (2). As explained in paragraph 2.4, the polarization axis should be
in the same direction as the alignment of the molecules of the liquid crystal of the SLM,
which is 5 in the picture. After being polarized, the beam gets split by the beam splitter
at 3. One beam goes to the SLM. The other beam, which goes to the right in figure 3.1,
gets blocked because no reference beam is needed in this part of the experiment. The
reference mirror will be used for the interferometric measurements. A certain wavefront
is formed after reflection at the SLM, which is 5 in the figure. At the beam splitter the
beam gets split again. One part of it will propagate to the left direction and passes a
telescopic system with lenses 𝐿ኼ and 𝐿ኽ (𝑓ኼ = 40 cm and 𝑓ኽ = 25 cm). Due to practical
reasons, there are two mirrors placed at 6 and 7. Finally, the wavefront of the beam will
be measured with the wavefront sensor at 8.

The distances between the lenses, the SLM, and the wavefront sensor are important.
In order to be able to measure the wavefront created by the SLM as well as possible,
the wavefront at 5 needs to be (almost) the same as the wavefront at 8. From Fourier
optics it is known that a lens performs a Fourier transform of the object plane one focal
length behind the lens. In order to avoid aberrations due to propagation, we use a 4f-
lens system, which is shown schematically in figure 3.2. The two mirrors at 6 and 7 are
omitted in 3.2.

Figure 3.2: Schematic sketch of a 4f-lens system with an object plane (OP), a Fourier plane (FP), an image
plane (IP) and two lenses (ፋᎴ and ፋᎵ) with corresponding focal lengths ፟Ꮄ and ፟Ꮅ (from [11], modified)

Thus, the SLM is positioned in the object plane, one focal length away from 𝐿ኼ. The
wavefront sensor is positioned in the image plane, one focal length away from 𝐿ኽ. The
distance between the two lenses equals the two focal lengths summed. Between the
two lenses, the Fourier transform is performed by 𝐿ኼ. The second lens reconstructs the
wavefront from the Fourier transform.

When positioning the SLM, it is important to adjust the tilt in such a way that the
impinging beam is perpendicular to the SLM. In this way we try to avoid extra aberrations
due to misalignment.

3.2. Measuring using an interferometer
When the wavefront is being measured using interferometry, almost exactly the same set-
up is used as just discussed in paragraph 3.1. However, there are two differences. First,
the reference beam, at the right hand side of the beam splitter, doesn’t get blocked any
more, because it is needed for interferometry. At 4 a flat mirror is positioned, which can be
moved by a piezoelectric translation stage. Second, at 8 a CCD camera is placed instead of
a wavefrontsensor. In order to obtain the phase of the wavefront we record the intensity
of the interference signal at the CCD camera for various positions of the piezoelectric
translation stage within one wavelength. Afterwards, a five-step phase shifting algorithm
is applied [12].



4
Experimental methods

In this chapter there will be a detailed explanation of the experimental methods and the
way the data and their corresponding results have been analyzed. In paragraph 4.1,
some description is given on how the input images of the spatial light modulator are
generated. Thereafter, a short paragraph is devoted to how the orientation of the set-
up should be verified. In paragraphs 4.3 and 4.4, some parts of the analysis, which
apply to both the wavefront sensor data and the interferometric data, are explained.
Finally, in paragraphs 4.5 and 4.6 the method specific analysis of the wavefront sensor
and respectively the interferometer is described.

4.1. Addressing an aberration to the spatial light mod-
ulator

The liquid crystal display of the SLM has a rectangular shape. The resolution is 1920x1080
pixels. Each pixel is a square with sides of 8 µm. The SLM is an 8-bit device, so it could
maximally address 256 different grey levels, which correspond to 256 different phase
levels. In this experiment, a so-called 5-5 configuration is used. This means that there
are only 192 different grey values, but the liquid crystal is more stable and therefore
there is less flickering in the measurements. The input of the spatial light modulator are
BMP-images.

A brief description of the steps in the Matlab script follows. First, a certain mesh grid
is made with 𝑥 from -960 to 959 and 𝑦 from -540 to 539, both with steps equal to one.
These Cartesian coordinates are being transformed to polar coordinates:

𝜌 = √𝑥ኼ + 𝑦ኼ (4.1)
𝜃 = atan2(𝑦, 𝑥) (4.2)

In (4.2), atan2 is a modified version of the arctan function. The angle will be 0 at the
positive 𝑥-axis. In the first and second quadrant 𝜃 changes counterclockwise from 0 to 𝜋.
In the third and fourth quadrant, 𝜃 goes clockwise from 0 to −𝜋. A pupil with a certain
radius will be cut out and the 𝜌-matrix will be normalized such that 𝜌 = 1 holds at the
edge of the pupil. This should be done, because the Zernike polynomials are a complete
set of orthogonal functions on the unit circle only, as stated before.

For example, when a wavefront consisting of Zernike aberrations coma X and coma Y
should be addressed, we add these particular aberrations and normalize them with the
Euclidean norm, as done below.

𝑊 = 1
√2

((3𝜌ኽ − 2𝜌) cos 𝜃 + (3𝜌ኽ − 2𝜌) sin 𝜃) (4.3)

In figure 4.1 there is an example of an image containing an aberration consisting of
coma X and coma Y which could be used as input for the SLM.

17
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Figure 4.1: Example of an image of a combination of the aberrations coma X and coma Y

4.2. Orientation
Because lenses have the property to invert images, it is quite important to check the
orientation of the image addressed to the SLM, the SLM itself, the wavefront sensor and
the camera. This could be done by addressing an asymmetric image to the SLM and
notice how it is displayed upon the wavefront sensor and the camera. To check the
orientation of the camera, the character 𝐿 is used for this purpose, see figure 4.2. For
the wavefront sensor, we used a modified version of 4.2. In fact, we cannot allow this
image to have jump discontinuities at its boundaries, because the wavefront sensor is
not able to measure them, since the device is only able to measure spot displacements,
which are approximately proportional to the partial derivatives. As a jump discontinuity
corresponds to an infinitely large partial derivative, then it should be evident that the SLM
will not see these discontinuities. Therefore, a smooth edged character 𝐿 is addressed to
the SLM to check the orientation of the wavefront sensor.

Figure 4.2: This image was addressed to the SLM to check the orientation of the camera. In order to check
the orientation of the wavefront sensor, a smooth edged ፋ is used.

If we don’t carefully check the orientation of all the components we are dealing with,
it is possible that the wrong aberration is being measured. For example, if there is a
rotation of 90∘ between the image addressed to the SLM and the wavefront sensor, then
coma Y will be measured when coma X is addressed to the SLM and vice versa.

4.3. Omitting piston, tilt X and tilt Y
As stated earlier, the wavefront is measured with a wavefront sensor and with a camera
using interferometry. It is very difficult to place the camera or the wavefront sensor
perfectly perpendicular to the light beam. So the camera or wavefront sensor will always
be under a little angle with respect to the horizontal or vertical direction. Moreover, it is
practically impossible to place the camera and the wavefront sensor in exactly the same
position. There will always be a little angle between them. Therefore, it is convenient
to leave out the first three Zernike aberrations, i.e. piston, tilt X (horizontal direction)
and tilt Y (vertical direction), in our analysis. They are irrelevant for the purpose of this
research and will therefore not be taken into consideration.
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4.4. Normalization
The manual of the wavefront sensor does not clearly state what the units of the spot
displacements and the Zernike coefficients are. In the next chapter, it will be clear that,
indeed, the order of magnitude of the coefficients is different for the various wavefront
reconstruction methods. Nevertheless, in order to be able to compare the results of the
different methods with each other, the obtained Zernike coefficients will be normalized
with the corresponding Euclidean norm, which is defined as follows.

||𝛼|| = √∑
፧,፦

(𝛼፦፧ )ኼ (4.4)

Here, 𝛼፦፧ are the coefficients corresponding to the aberration 𝑍፦፧ . See again table
2.1. The summation is over all evaluated aberrations. This amount must be the same for
both methods. Note that we don’t consider the Zernike aberrations piston, tilt X and tilt
Y, as just explained in paragraph 4.3.

4.5. Wavefront sensor
4.5.1. Centering the SLM
When we want to measure an aberration addressed to the spatial light modulator using
the wavefront sensor, the alignment of the set-up is quite important. The wavefront
sensor is connected to a computer and is controlled by the software program SHSWorks.
Within this application there is a real time display of the camera, as can be seen in
figure 4.3.

Figure 4.3: Window of the real-time spot displacements of the wavefront sensor

The software program SHSWorks does a Zernike polynomial fit of the data inside
the circle with the white border. Moreover, when we are only interested in the spot
displacement, we can export the measured spot displacements inside the circle. The
radius and the center of this circle could be adjusted. It is very important that this circle
perfectly coincide with the circular aperture made in the input file of the SLM (e.g. figure
4.1). After all, the area of the data which will be analysed and will be fit with Zernike
polynomials, should coincide with exactly that area in which the Zernike aberrations are
made. Only then, it is justifiable to compare the outcome with the input. In order to
center the SLM, it is helpful to address a cross to the SLM. This cross cannot have a jump
discontinuity at its boundaries, as explained earlier. Therefore a cross with a cosine-like
intensity profile is made, see figure 4.4.
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Figure 4.4: Image addressed to the SLM, in order to be able to recognize the center of the SLM in the display
of the wavefront sensor

4.5.2. Reference measurement
Aberrations in the wavefront which will be measured at the location of the wavefront
sensor are not only caused by the image addressed to the SLM. After all, it is likely that
the optical elements used in the experiment, like the lenses and the mirrors, could also
cause some aberrations. Moreover, it is also possible that the SLM itself, without any
aberration addressed, is responsible for aberrations in the measured wavefront. How-
ever, we are interested whether we could measure the aberrations, which are actually
addressed to the SLM and which are not caused by any undesirable properties of the
used optical elements or the SLM itself. To achieve this, a reference measurement was
done by addressing a black screen to the SLM. The wavefront of this measurement, i.e.
the Zernike coefficients, should be subtracted from the wavefront of the measurement
with the desired aberration addressed to the SLM. In this way, they will be corrected for
unwanted irrelevant aberrations. Note that it is important that the normalization with the
Euclidean norm will be done after the correction with the reference measurement.

4.5.3. Zernike coefficients given by the wavefront sensor
The software of the Shack-Hartmann wavefront sensor itself also executes an iterative
integration algorithm to calculate the Zernike coefficients from the spot displacements.
These Zernike coefficients will also be subtracted by the coefficients corresponding to
the reference measurement with a black screen addressed to the SLM, calculated and
given by the software of the Shack-Hartmann sensor. After this correction, they will be
normalized as well.

4.6. Interferometer
4.6.1. Alignment
The pupil of the image addressed to the SLM should be entirely visible on the display
of the CCD camera. This could be done by addressing a cross (figure 4.5) to the SLM
(not necessarily a smooth edged one). In this case it is even better to address a thin
and sharp edged cross, in order to be able to see the cross. For this purpose it is more
convenient to block the reference beam.

When the cross is centered and after verifying that it is not shown at an angle on the
screen, this image should be saved. We will need it later on to determine the center of
the cut out pupil, i.e. the center of the cross. A certain aberration is addressed to the SLM
and for interferometric measurements the reference beam needs to be unblocked. An
interference pattern with bright and dark fringes could be seen at the screen. In theory, a
very bright spot, where maximum constructive interference occurs, should get less bright
when the mirror moves in any direction. However, it is possible that the display of the
CCD is saturated. Therefore the saturation should be checked. If this is the case, then
the exposure time needs to be decreased until the image is not saturated anymore.

The tilt of the reference mirror should be adjusted in order to try to center the fringes
around the center of the camera. Moreover, as regards the algorithm used later on, it is
necessary that there are not too many fringes formed on the display for more accurate
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Figure 4.5: Image addressed to the SLM, in order to be able to recognize the center of the SLM in the display
of the camera for the interferometric measurements

phase retrieval.

4.6.2. Measuring the aberration
As stated earlier in this thesis, the voltage applied to the piezoelectric translation stage,
which drives the reference mirror, is approximately proportional to the displacement of
the mirror. For this experiment it is sufficient to take images with the camera each 0.02V
starting at 45.50 V until 49.50 V. This range corresponds to a displacement of approx-
imately a few wavelengths. The time between each measurement should be around
800 ms.

4.6.3. Reference measurement
As stated earlier in this chapter, aberrations measured by the interferometer are not only
caused by the image addressed to the SLM. The optical elements, the SLM itself and
last but not least, the reference arm including its mirror could cause aberrations as well.
These can be corrected by taking a reference measurement with a black image addressed
to the SLM. The range of the voltage applied to the piezoelectric translation stage remains
the same as with the measurement of the aberrations. The Zernike coefficients obtained
by the analysis of the reference measurement should be subtracted from the measure-
ment of the aberration itself. In order to be able to compare these results with the results
of the measurements with the wavefront sensor, the Zernike coefficients will be normal-
ized with the Euclidean norm after the correction with the reference measurement. See
paragraph 4.4.

4.6.4. Algorithm
The analysis of the interferometric data is done with Matlab and a C++ compiler of Mi-
crosoft Visual Studio. In this paragraph the steps taken in the algorithm will be explained.

Cut out pupil
The pupil, which can be seen for example in figure 4.1, needs to be cut out as well in the
images taken by the camera. The center of the pupil can be determined with the image
of the cross, which was taken earlier. The radius of this pupil can be calculated using the
ratio between the focal lengths of the two lenses of the interferometer. Looking at figure
3.1, the magnification of the optical system is:

𝑀 =
𝑓ፋᎵ
𝑓ፋᎶ

(4.5)

To calculate the radius of the pupil in pixels of the CCD of the camera (𝑅CCD), we need
the pixel size of the SLM (𝑑SLM), the pixel size of the CCD (𝑑CCD) and the radius of the
pupil in pixels of the SLM (𝑅SLM), which is known.

𝑅CCD =
𝑑SLM ⋅ 𝑅SLM ⋅ 𝑀

𝑑CCD
(4.6)
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An example of an image taken by the CCD camera, where the pupil has been cut, can be
seen in figure 4.6.

Figure 4.6: Image shot by the camera on which an interference pattern can be seen, when coma X was
addressed to the SLM

Correlation
In order to retrieve the wavefront, the correlation between the first image 𝐼ኻ, correspond-
ing to a voltage of 45.50 V applied to the piezoelectric translation stage, and the other
images 𝐼፣ should be calculated. The following correlation coefficient could be calculated
with Matlab:

𝑟፣ =
∑
፦
∑
፧
(𝐼፣(𝑚, 𝑛) − ̄𝐼፣) (𝐼ኻ(𝑚, 𝑛) − ̄𝐼ኻ)

√∑
፦
∑
፧
(𝐼፣(𝑚, 𝑛) − ̄𝐼፣)

ኼ (𝐼ኻ(𝑚, 𝑛) − ̄𝐼ኻ)
ኼ

(4.7)

𝐼፣(𝑚, 𝑛) is the intensity matrix of the 𝑗-th image with pixel positions (𝑚, 𝑛). The mean of
𝐼፣ is defined as ̄𝐼፣. In figure 4.7 the correlation coefficient, obtained by the interferometric
data, is plotted against the voltage applied to the piezoelectric translation stage.
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Figure 4.7: Correlation coefficient against the voltage
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Phase reconstruction
For the phase reconstruction, only five images are necessary. First, a whole period of
the cosine-shaped correlation graph needs to be analyzed. It is convenient to choose a
period starting at a maximum or a minimum. As an example, consider now the part of
the graph of figure 4.7 which starts with a minimum. We denote the five images with
𝐼፣Ꮃ , 𝐼፣Ꮄ , 𝐼፣Ꮅ , 𝐼፣Ꮆ and 𝐼፣Ꮇ . They correspond respectively to the locations within the period
with relative phase Φ፫ ∈ {0, ᎝ኼ , 𝜋,

ኽ᎝
ኼ , 2𝜋}, which means respectively the first minimum,

the first intersection with the 𝑥-axis, the maximum, the second intersection with the 𝑥-
axis and the second minimum. These locations are highlighted in figure 4.7. The two
minima, Φ፫ = 0 and Φ፫ = 2𝜋, and the maximum Φ፫ = 𝜋 are determined by choosing
the lowest or respectively the highest correlation within the specific part of the period
of the cosine-shaped graph. Thereafter, the first intersection with the 𝑥-axis, Φ፫ = ᎝

ኼ , is
determined by choosing from the data points between Φ፫ = 0 and Φ፫ = 𝜋 that point
which corresponds to a correlation closest to zero. The second intersection with the 𝑥-
axis, Φ፫ = ኽ᎝

ኼ , is determined in the same way: the data point between Φ፫ = 𝜋 and
Φ፫ = 2𝜋, which corresponds to a correlation closest to zero.

The phase 𝜙 can be reconstructed with the following five-step algorithm [13]:

tan𝜙 = 2(𝐼ኼ − 𝐼ኾ)
𝐼ኻ − 2𝐼ኽ + 𝐼኿

(4.8)

The result of this algorithm is a phase profile, as can be seen in figure 4.8. Due to the
range of the atan2 function, there are jump discontinuities in the reconstructed phase
profile. This can be seen in the transition from blue to yellow and vice versa.
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Figure 4.8: Reconstructed phase profile in radians, where the aberration addressed to the SLM was coma X
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Filtering and unwrapping the phase profile
In order to get rid of the jump discontinuities in the phase, the phase profile needs to
be unwrapped, as described in reference [14]. Before that, the data gets filtered, which
eases the unwrapping. In short, this filtering does a Fourier transform and filters out the
high frequencies. In figure 4.9 and 4.10 the filtered phase profile and respectively the
unwrapped phase profile are shown. Eventually, a least squares Zernike polynomial fit is
done.
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Figure 4.9: Filtered phase profile in radians, where the aberration addressed to the SLM was coma X
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Figure 4.10: Unwrapped phase profile in radians, where the aberration addressed to the SLM was coma X



5
Results

In this chapter the results of the experiments will be presented. First, some examples
will be shown to illustrate how the Zernike coefficients are being corrected and being
normalized. After that, the runtime of the algorithms will be considered.

In paragraph 5.3, only the measurements done with the wavefront sensor will be
considered. Thus, the following Zernike coefficients will be compared:

• The Zernike coefficients obtained from the spot displacements by following Janssen’s
analytical method, from now on abbreviated as analytical.

• The Zernike coefficients obtained from the spot displacements by following the It-
erative method, from now on abbreviated as iterative.

• The Zernike coefficients given by the software of the SHS, from now on abbreviated
as SHS.

• The Zernike coefficients which where the input of the images addressed to the SLM,
from now on abbreviated as input.

In the second part, paragraph 5.4, the measurements done with both the wavefront
sensor and the interferometer will be considered. This means that the following Zernike
coefficients will be compared:

• The Zernike coefficients obtained through the analysis of the images from interfer-
ometry, from now on abbreviated as interferometer.

• Analytical

• Iterative

• SHS

• Input

In table 5.1, all the measurements are listed with corresponding reconstruction meth-
ods. The second column show which aberrations where addressed to the SLM. In the
third column is indicated whether there is measured only with the wavefront sensor (WFS)
or also with the interferometer (Interf.).
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Table 5.1: This table shows the different measurements with their corresponding input aberrations. The last
columns show which method is used to evaluate the measurement.

Measurement Input Measured with Methods

WFS Interf. Analytical Iterative SHS Interf.

1 Defocus • • • •
2 Ast. 0∘ • • • •
3 Ast. 45∘ • • • •
4 Coma X • • • •
5 Coma Y • • • •
6 Combination • • • •
7 Combination • • • •
8 Combination • • • •
9 Combination • • • •
10 Combination • • • •
11 Coma X • • • • • •
12 Combination • • • • • •

5.1. Example of calculation of Zernike coefficients
Table 5.2 on page 28, corresponding to measurement 11, serves as an example of how the
corrected and normalized Zernike coefficients are calculated for the various reconstruction
methods. The Zernike aberration of the image addressed to the SLM was coma X, see
table 5.2a. Regarding table 5.2b to 5.2e: the reference measurement, i.e. a black screen
addressed to the SLM, is analyzed by every method separately. The obtained raw Zernike
coefficients, in units of 𝜆, are listed in the second column. The third column shows the raw
Zernike coefficients, again in units of 𝜆, of the measurement when input was addressed
to the SLM. The fourth column equals the third subtracted by the second column. As can
be seen in the table, the input of coma X was 0.5𝜆. The analytical method, the iterative
method, the SHS and the interferometer measured a coefficient of respectively 0.254𝜆,
0.239𝜆, 0.578𝜆 and 0.554𝜆 for coma X, see figure 5.1.

The coefficients of the SHS and the interferometer have approximately the same order
of magnitude as the input. However, the coefficients obtained through the analytical and
iterative method don’t have the same order of magnitude as the input. It seems like there
is a factor two difference between them. Maybe there is some ambiguity regarding the
units used by the software of the wavefront sensor. Nevertheless, in order to be able to
compare the coefficients either way, we normalized them by their Euclidean norm. The
results can be seen in the last columns of table 5.2a to 5.2e. After normalization, the input
coefficient of coma X equals 1 and the normalized coefficients of the four reconstruction
methods agree quite well with the input (0.998, 0.998, 0.998 and 0.999). In the next
paragraphs, the normalized coefficients will be compared with each other. The calculation
of the results of measurements 1 to 10 and 12 are shown in appendix A.
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Figure 5.1: Bar plot of the corrected Zernike coefficients, in units of ᎘, corresponding to measurement 11.
Note that they are not normalized.



28 5. Results

Table 5.2: Calculation of corrected and normalized Zernike coefficients of measurement 11

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0 0
Ast. 0∘ 0 0
Ast. 45∘ 0 0
Coma X 0.5 𝟏
Coma Y 0 0

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.016 −0.002 −0.015 0.059
Ast. 0∘ 0.084 0.087 0.003 0.012
Ast. 45∘ 0.043 0.048 0.006 0.022
Coma X 0.014 0.268 0.254 𝟎.𝟗𝟗𝟖
Coma Y −0.006 −0.009 −0.003 −0.012

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.017 −0.005 0.012 0.050
Ast. 0∘ 0.084 0.079 −0.005 −0.023
Ast. 45∘ 0.043 0.050 0.007 0.030
Coma X 0.013 0.252 0.239 𝟎.𝟗𝟗𝟖
Coma Y −0.007 −0.008 −0.001 −0.005

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.041 −0.010 0.031 0.054
Ast. 0∘ 0.201 0.201 0.000 0.001
Ast. 45∘ 0.103 0.122 0.019 0.033
Coma X 0.034 0.612 0.578 𝟎.𝟗𝟗𝟖
Coma Y −0.019 −0.014 0.005 0.009

(e) Interferometer

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.036 0.056 0.020 0.037
Ast. 0∘ 0.162 0.163 0.001 0.002
Ast. 45∘ 0.183 0.181 −0.002 −0.004
Coma X 0.000 0.554 0.554 𝟎.𝟗𝟗𝟗
Coma Y 0.012 0.016 0.004 0.008
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Table 5.3: The runtime of the algorithms corresponding to the different wavefront reconstruction methods

Method Runtime (s)
Interferometer 53.6481
Analytical 0.0876
Iterative 0.4293

5.2. Runtime
Apart from the RMS-error of the Zernike coefficients with respect to the input, the runtime
of the different algorithms is also important to be considered. In this paragraph some
attention will be given to this subject. We can subdivide this issue into two parts. The
first one is the amount of time a measurement takes. The second part is the amount of
time the analysis of the retrieved data takes, i.e. executing the different algorithms.

First, we did not measure the precise amount of time of measuring the Zernike aberra-
tions. However, a simple insight could be given. When measuring with the interferome-
ter, an image should be taken with multiple different voltages applied to the piezoelectric
translation stage. The voltage goes from 45.5V to 49.5V with steps of 0.02V, each taking
a time of 800 ms. It should be evident that this will take a few minutes. As regards the
wavefront sensor, measuring the spot displacements will definitely not take that long.

Second and more important, we will consider the runtime of the different algorithms
of the wavefront reconstruction methods. Because the software given by the SHS gives
the Zernike coefficients directly on the screen, we will only consider the runtime of the
algorithms of the interferometer, the analytical method and the iterative method, which
is implemented by us. Regarding the interferometer, we will only consider the time it
takes to obtain the raw, i.e. not yet corrected and normalized, Zernike coefficients out of
the images taken with the CCD camera. Regarding the analytical and iterative method,
we consider the time it takes to retrieve the raw Zernike coefficients out of the spot
displacements. In table 5.3, we evaluated these times for measurement 11 (figure 5.4a),
where only coma X was addressed as input to the SLM.

5.3. Comparison of wavefrontsensor methods
This paragraph will present the results of the comparison of the different wavefront sensor
reconstruction methods. The figures 5.2a up to and including 5.2e show the outcome
when only single aberrations were addressed to the SLM. Remember that they have
already been corrected for any undesired aberrations caused by optical elements in the
set-up. Afterwards they have been normalized. We see that the SHS itself and both
the analytical and the iterative method are quite well capable of measuring all the five
different Zernike aberrations, which were addressed to the SLM. However, sometimes a
small coefficient of a certain aberration is measured while the input was zero for that
aberration. For example, a little bit defocus is measured, as can be seen in figures 5.2c
up to and including 5.2e, while there was actually no defocus addressed to the SLM.
Further error analysis will be discussed in paragraph 5.5.

Figures 5.3a to 5.3e show the bar plots of the Zernike coefficients obtained through the
different wavefront reconstruction methods, when a combination of Zernike aberrations
were addressed as input to the SLM. Note that only the wavefront sensor was used to
measure. All the three methods agree quite well with the input, although the Zernike
coefficients given by the software of the SHS does show a greater error with respect
to the input for some measurements, for example the coefficient of astigmatism 0∘ of
measurements 6 and 10 in figures 5.3a and 5.3e.
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(a) Measurement 1
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(b) Measurement 2
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(c) Measurement 3
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(d) Measurement 4
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(e) Measurement 5

Figure 5.2: Bar plots of the normalized Zernike coefficients of different wavefront reconstruction methods, i.e.
analytical, iterative and SHS. Note that they have already been corrected with the reference measurement.
The measurements were done with the wavefront sensor. The images addressed to the SLM contained a

single Zernike aberration, which is presented as Input.
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(a) Measurement 6
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(b) Measurement 7
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(c) Measurement 8
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(d) Measurement 9
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(e) Measurement 10

Figure 5.3: Bar plots of the normalized Zernike coefficients of different wavefront reconstruction methods, i.e.
analytical, iterative and SHS. Note that they have already been corrected with the reference measurement.
The measurements were done with the wavefront sensor. The images addressed to the SLM contained a

combination of Zernike aberrations, which is presented as input.
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5.4. Comparison between interferometer and wavefront
sensor methods

In this paragraph the results of the comparison between interferometry and wavefront
sensor reconstruction methods will be presented. The results are shown in figure 5.4a
and 5.4b. We see that all the methods are able to measure the Zernike aberrations,
which were addressed to the SLM. However, also here, the Zernike coefficients given by
the software of the SHS have greater relative errors with respect to the input than the
other methods. This will become visible in the following paragraph.
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(a) Measurement 11
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(b) Measurement 12

Figure 5.4: Barplots of the normalized Zernike coefficients of different wavefront reconstruction methods, i.e.
interferometer, analytical, iterative and SHS. Note that they have already been corrected with the reference

measurement. The measurements were done with the wavefront sensor and with the camera using
interferometry. The images addressed to the SLM contained (a) a single Zernike aberration and (b) a

combination of two Zernike aberrations, which is presented as input.

5.5. Error analysis
In this paragraph the error of the retrieved Zernike coefficients will be analysed. The
root-mean-square-error of a given method of a given measurement with respect to the
input is defined as follows:

RMS = √
1
5∑

።
(𝛼method። − 𝛼input። )

ኼ
(5.1)

We are only evaluating the first five Zernike aberrations, without including piston, tilt X
and tilt Y. That explains the factor ኻ኿ within the square root. It is possible to calculate
the RMS-error for all measurements for every method. Figure 5.5 shows the outcome.
In this figure it can be seen that the RMS-errors of the Zernike coefficients given by the
software of the SHS is clearly higher than the errors of other wavefront reconstruction
methods. This means that SHS is less accurate than the other methods. The analytical
method is as accurate as the iterative method is. Eventually, the interferometer is clearly
the most accurate method. However, it should be noted that only two measurements
have been made using interferometry, which is in contrast with the other methods.
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Figure 5.5: The RMS-error with respect to the corresponding input calculated for all measurements and every
wavefront reconstruction method





6
Conclusions and future work

6.1. Conclusions
In this thesis we measured a wavefront through various methods. The goal was to find
out whether it is possible to measure a wavefront qualitatively and quantitatively with
Janssen’s recently developed analytical algorithm [1]. We used the spot displacements
given by the wavefront sensor to relate the derivatives of the wavefront with respect to 𝑥
and 𝑦 with the Zernike coefficients of the wavefront itself. We compared the results with
some conventional and commercially used methods: an iterative integration method of
the SHS, which we also implemented ourselves in a Matlab script. Moreover, we compared
some of them with the reconstructed wavefront obtained through interferometry.

We constructed the wavefront to be measured by addressing certain aberrations to a
spatial light modulator. First, we addressed single Zernike aberrations to the spatial light
modulator. These were measured with the wavefront sensor only. Both the analytical and
iterative algorithm were capable of measuring these aberrations. That is also valid for the
Zernike coefficients given by the SHS, but they showed a higher error with respect to the
input of the Zernike coefficients addressed to the spatial light modulator in comparison
with the analytical and iterative method. Apart from single aberrations, combinations of
Zernike aberrations were as well addressed to the spatial light modulator and all results
of all different methods showed a high degree of agreement with the input. The results
obtained through interferometry were actually most precise, i.e. they had the lowest
RMS-error with respect to the input addressed to the spatial light modulator. However,
it should be noted that the runtime of the algorithm corresponding to the interferometer
is much higher in comparison to the runtime of the algorithms of the analytical and
iterative method and the set-up is more complicated since it requires several exposures
and a reference mirror. In short, Janssen’s analytical algorithm is a good, reliable and
fast wavefront reconstruction method to qualify of which aberrations a certain wavefront
consists.

6.2. Recommendations for future work
First of all, only a few measurements were done with the interferometer. In future work
more measurements could be done to investigate whether the error of the obtained
Zernike coefficients with respect to the input remains low when varying the Zernike aber-
rations addressed to the spatial light modulator. Moreover, the correlation curve of the
interferometric data (figure 4.7) should have a smoother cosine-like shape without irreg-
ular fluctuations, like in [12]. They may be caused by the so-called 5-5 configuration
of the spatial light modulator. Another configuration may lead to less flickering of the
display of the SLM. Besides, these irregular fluctuations of the correlation curve may also
be caused by the fact that the SLM might have been unstably positioned. This could be
explored in future research.
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It needs to be mentioned that the Zernike coefficients, before normalization, didn’t
have the same order of magnitude for all different methods. The analytical and itera-
tive method did have the same order of magnitude with respect to each other, but they
didn’t agree with the coefficients given by the software of the SHS and the ones obtained
through interferometry before normalization. Thus, all the methods are capable of mea-
suring the aberrations qualitatively, but not quantitatively. This could have something to
do with the units of the spot displacements exported by the software of the SHS or the
conventions used by the SHS. This could be subject to further investigation.

Finally, in further research more Zernike polynomials could be evaluated instead of
just five, i.e. defocus, astigmatism 0∘, astigmatism 45∘, coma X and coma Y.



A
Calculation of results of the

measurements

In this appendix, the numerical values of Zernike coefficients of the measurements are
shown in tables. Note that the calculation of the results of measurement 11 is already
shown in table 5.2.

For every measurement, the first table refers to the input addressed to the SLM. The
subsequent tables contain the results corresponding to the different wavefront recon-
struction methods. The reference measurement, i.e. a black screen addressed to the
SLM, is analyzed by every method separately. The obtained raw Zernike coefficients, in
units of 𝜆, are listed in the second column. The third column shows the raw Zernike co-
efficients, again in units of 𝜆, of the measurement when input was addressed to the SLM.
The fourth column equals the third subtracted by the second column. The last column
equals the fourth divided by the Euclidean norm.
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A.1. Measurement 1

Table A.1: Calculation of results of measurement 1

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0.5 1
Ast. 0∘ 0 0
Ast. 45∘ 0 0
Coma X 0 0
Coma Y 0 0

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.047 0.261 0.214 0.999
Ast. 0∘ 0.115 0.110 −0.004 −0.021
Ast. 45∘ −0.068 −0.065 0.003 0.0140
Coma X 0.007 −0.003 −0.010 −0.046
Coma Y −0.015 −0.016 0.000 −0.001

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.047 0.258 0.211 0.999
Ast. 0∘ 0.112 0.107 −0.005 −0.022
Ast. 45∘ −0.067 −0.063 0.004 0.017
Coma X 0.008 −0.001 −0.009 −0.042
Coma Y −0.016 −0.017 −0.001 −0.005

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.119 0.683 0.564 0.998
Ast. 0∘ 0.303 0.293 −0.009 −0.017
Ast. 45∘ −0.177 −0.167 0.010 0.017
Coma X 0.021 0.025 0.004 0.007
Coma Y −0.024 −0.052 −0.028 −0.049
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A.2. Measurement 2

Table A.2: Calculation of results of measurement 2

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0 0
Ast. 0∘ 0.5 1
Ast. 45∘ 0 0
Coma X 0 0
Coma Y 0 0

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.047 0.048 0.001 0.006
Ast. 0∘ 0.115 0.311 0.196 0.998
Ast. 45∘ −0.068 −0.078 −0.010 −0.051
Coma X 0.007 0.003 −0.004 −0.022
Coma Y −0.015 −0.013 0.002 0.012

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.047 0.049 0.002 0.012
Ast. 0∘ 0.112 0.309 0.197 0.998
Ast. 45∘ −0.067 −0.077 −0.010 −0.052
Coma X 0.008 0.004 −0.004 −0.022
Coma Y −0.016 −0.014 0.003 0.013

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.119 0.127 0.008 0.015
Ast. 0∘ 0.303 0.826 0.523 0.998
Ast. 45∘ −0.177 −0.206 −0.029 −0.056
Coma X 0.021 0.019 −0.002 −0.003
Coma Y −0.024 −0.014 0.011 0.020
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A.3. Measurement 3

Table A.3: Calculation of results of measurement 3

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0 0
Ast. 0∘ 0 0
Ast. 45∘ 0.5 1
Coma X 0 0
Coma Y 0 0

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.047 0.055 0.009 0.046
Ast. 0∘ 0.115 0.113 −0.001 −0.006
Ast. 45∘ −0.068 0.119 0.187 0.999
Coma X 0.007 0.007 0.000 0.002
Coma Y −0.015 −0.012 0.003 0.017

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.047 0.057 0.010 0.055
Ast. 0∘ 0.112 0.103 −0.008 −0.044
Ast. 45∘ −0.067 0.123 0.190 0.997
Coma X 0.008 0.009 0.001 0.007
Coma Y −0.016 −0.021 −0.004 −0.023

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.119 0.145 0.027 0.052
Ast. 0∘ 0.303 0.283 −0.020 −0.039
Ast. 45∘ −0.177 0.329 0.506 0.998
Coma X 0.021 0.026 0.005 0.010
Coma Y −0.024 −0.034 −0.010 −0.019
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A.4. Measurement 4

Table A.4: Calculation of results of measurement 4

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0 0
Ast. 0∘ 0 0
Ast. 45∘ 0 0
Coma X 0.5 1
Coma Y 0 0

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.047 0.067 0.021 0.089
Ast. 0∘ 0.115 0.110 −0.004 −0.018
Ast. 45∘ −0.068 −0.066 0.002 0.009
Coma X 0.007 0.240 0.233 0.996
Coma Y −0.015 −0.012 0.003 0.013

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.047 0.069 0.022 0.097
Ast. 0∘ 0.112 0.106 −0.006 −0.026
Ast. 45∘ −0.067 −0.064 0.003 0.012
Coma X 0.008 0.231 0.223 0.995
Coma Y −0.016 −0.017 0.000 −0.001

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.119 0.144 0.025 0.040
Ast. 0∘ 0.303 0.253 −0.050 −0.082
Ast. 45∘ −0.177 −0.140 0.037 0.061
Coma X 0.021 0.626 0.606 0.994
Coma Y −0.024 −0.031 −0.007 −0.011
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A.5. Measurement 5

Table A.5: Calculation of results of measurement 5

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0 0
Ast. 0∘ 0 0
Ast. 45∘ 0 0
Coma X 0 0
Coma Y 0.5 1

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.047 0.057 0.010 0.045
Ast. 0∘ 0.115 0.107 −0.007 −0.032
Ast. 45∘ −0.068 −0.056 0.012 0.052
Coma X 0.007 0.010 0.003 0.014
Coma Y −0.015 0.213 0.229 0.997

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.047 0.058 0.011 0.052
Ast. 0∘ 0.112 0.103 −0.009 −0.041
Ast. 45∘ −0.067 −0.055 0.012 0.057
Coma X 0.008 0.012 0.004 0.018
Coma Y −0.016 0.198 0.214 0.996

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.119 0.168 0.049 0.087
Ast. 0∘ 0.303 0.261 −0.041 −0.073
Ast. 45∘ −0.177 −0.174 0.003 0.005
Coma X 0.021 0.037 0.016 0.029
Coma Y −0.024 0.541 0.566 0.993
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A.6. Measurement 6

Table A.6: Calculation of results of measurement 6

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0.299 0.707
Ast. 0∘ 0 0
Ast. 45∘ 0 0
Coma X 0 0
Coma Y 0.299 0.707

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.007 0.121 0.128 0.726
Ast. 0∘ 0.129 0.118 −0.011 −0.063
Ast. 45∘ −0.158 −0.151 0.007 0.038
Coma X 0.013 0.013 0.001 0.003
Coma Y −0.004 0.117 0.121 0.684

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.007 0.122 0.129 0.732
Ast. 0∘ 0.126 0.122 −0.004 −0.021
Ast. 45∘ −0.157 −0.151 0.006 0.035
Coma X 0.013 0.016 0.003 0.018
Coma Y −0.005 0.116 0.120 0.680

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.021 0.298 0.319 0.743
Ast. 0∘ 0.303 0.262 −0.042 −0.097
Ast. 45∘ −0.375 −0.373 0.001 0.003
Coma X 0.029 0.025 −0.003 −0.008
Coma Y −0.006 0.278 0.284 0.662
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A.7. Measurement 7

Table A.7: Calculation of results of measurement 7

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0 0
Ast. 0∘ 0.354 0.707
Ast. 45∘ 0.354 0.707
Coma X 0 0
Coma Y 0 0

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.007 −0.005 0.002 0.011
Ast. 0∘ 0.129 0.272 0.143 0.699
Ast. 45∘ −0.158 −0.012 0.146 0.714
Coma X 0.013 0.006 −0.007 −0.035
Coma Y −0.004 0.000 0.004 0.019

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.007 −0.004 0.003 0.014
Ast. 0∘ 0.126 0.271 0.145 0.698
Ast. 45∘ −0.157 −0.009 0.148 0.716
Coma X 0.013 0.007 −0.006 −0.029
Coma Y −0.005 −0.002 0.003 0.013

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.021 −0.015 0.007 0.013
Ast. 0∘ 0.303 0.647 0.343 0.698
Ast. 45∘ −0.375 −0.023 0.351 0.715
Coma X 0.029 0.011 −0.018 −0.037
Coma Y −0.006 0.003 0.009 0.019
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A.8. Measurement 8

Table A.8: Calculation of results of measurement 8

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0.281 0.686
Ast. 0∘ 0.141 0.343
Ast. 45∘ 0.211 0.514
Coma X 0.141 0.343
Coma Y 0.070 0.171

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.007 0.110 0.118 0.664
Ast. 0∘ 0.129 0.184 0.055 0.310
Ast. 45∘ −0.158 −0.057 0.101 0.568
Coma X 0.013 0.071 0.058 0.327
Coma Y −0.004 0.029 0.033 0.185

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.007 0.111 0.118 0.660
Ast. 0∘ 0.126 0.186 0.060 0.333
Ast. 45∘ −0.157 −0.055 0.102 0.571
Coma X 0.013 0.069 0.056 0.314
Coma Y −0.005 0.025 0.030 0.168

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.021 0.252 0.273 0.669
Ast. 0∘ 0.303 0.427 0.124 0.303
Ast. 45∘ −0.375 −0.139 0.235 0.575
Coma X 0.029 0.154 0.126 0.307
Coma Y −0.006 0.072 0.077 0.190
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A.9. Measurement 9

Table A.9: Calculation of results of measurement 9

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0.281 0.686
Ast. 0∘ 0.141 0.343
Ast. 45∘ −0.211 −0.514
Coma X −0.141 −0.343
Coma Y 0.070 0.171

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.007 0.109 0.116 0.684
Ast. 0∘ 0.129 0.182 0.053 0.312
Ast. 45∘ −0.158 −0.251 −0.093 −0.550
Coma X 0.013 −0.040 −0.053 −0.312
Coma Y −0.004 0.028 0.032 0.187

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.007 0.110 0.117 0.681
Ast. 0∘ 0.126 0.184 0.058 0.339
Ast. 45∘ −0.157 −0.253 −0.095 −0.553
Coma X 0.013 −0.038 −0.051 −0.294
Coma Y −0.005 0.024 0.029 0.169

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.021 0.272 0.293 0.676
Ast. 0∘ 0.303 0.461 0.158 0.364
Ast. 45∘ −0.375 −0.607 −0.232 −0.535
Coma X 0.029 −0.105 −0.133 −0.308
Coma Y −0.006 0.069 0.075 0.173
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A.10. Measurement 10

Table A.10: Calculation of results of measurement 10

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0.191 0.447
Ast. 0∘ 0.191 0.447
Ast. 45∘ 0.191 0.447
Coma X 0.191 0.447
Coma Y 0.191 0.447

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.007 0.075 0.083 0.475
Ast. 0∘ 0.129 0.197 0.068 0.390
Ast. 45∘ −0.158 −0.067 0.090 0.518
Coma X 0.013 0.086 0.073 0.417
Coma Y −0.004 0.070 0.074 0.425

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.007 0.074 0.082 0.461
Ast. 0∘ 0.126 0.198 0.071 0.405
Ast. 45∘ −0.157 −0.066 0.091 0.516
Coma X 0.013 0.088 0.075 0.425
Coma Y −0.005 0.070 0.074 0.421

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.021 0.162 0.184 0.469
Ast. 0∘ 0.303 0.422 0.118 0.302
Ast. 45∘ −0.375 −0.173 0.202 0.515
Coma X 0.029 0.204 0.176 0.448
Coma Y −0.006 0.179 0.185 0.472
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A.11. Measurement 12

Table A.11: Calculation of results of measurement 12

(a) Input

Aberration Raw (𝜆) Normalized

Defocus 0.299 0.707
Ast. 0∘ 0 0
Ast. 45∘ 0 0
Coma X 0 0
Coma Y 0.299 0.707

(b) Analytical

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.026 0.104 0.131 0.707
Ast. 0∘ 0.086 0.071 −0.015 −0.08
Ast. 45∘ 0.017 0.035 0.018 0.098
Coma X 0.014 0.014 0.000 −0.003
Coma Y −0.007 0.122 0.129 0.696

(c) Iterative

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.026 0.104 0.130 0.707
Ast. 0∘ 0.086 0.072 −0.014 −0.077
Ast. 45∘ 0.018 0.037 0.019 0.101
Coma X 0.015 0.015 0.000 −0.003
Coma Y −0.007 0.122 0.128 0.696

(d) SHS

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus −0.058 0.239 0.298 0.730
Ast. 0∘ 0.178 0.110 −0.068 −0.167
Ast. 45∘ 0.041 0.056 0.015 0.038
Coma X 0.031 0.029 −0.002 −0.005
Coma Y −0.007 0.263 0.270 0.662

(e) Interferometer

Aberration Reference Measurement

Raw (𝜆) Raw (𝜆) Corrected (𝜆) Normalized

Defocus 0.036 0.328 0.292 0.691
Ast. 0∘ 0.162 0.154 −0.007 −0.017
Ast. 45∘ 0.183 0.204 0.020 0.047
Coma X 0.000 0.009 0.009 0.020
Coma Y 0.012 0.317 0.305 0.721



B
Matlab scripts:

wavefrontsensor

B.1. MethodsComparison
%MethodsComparison
% Reads data(derivatives) given by the SHS and runs it trhough the
scipts of
% the Janssen method and the itearive integration method. Also reads
the Zernike
% coefficients given by SHS itself based on those data.
% prints out the vectors containing the coefficients and can give
barplot or
% plot of pupil distribution based on the calculated Zernikes.

reading data
folder_to_analyze = (’/Users/jellesalverda/Documents/MATLAB/Data’);
addpath(folder_to_analyze)

%Read spotdisplacements given by SHS
[datax,xm,ym]=readzernikedata(’black_spot_x.txt’);
[datay,xm,ym]=readzernikedata(’black_spot_y.txt’);

%Recorrect matrices if they are not a square
[M,N]=size(datax);
if M<N

ym(1:M)=ym(N-M+1:N); ym(M+1:N)=[];
end

Read coeffcients given by SHS
SHScoef=readSHScoef(’black_zernike.txt’);

rotation of 90 degrees clockwise
datax=datax*(-1);
datay=datay*(-1);

%Mirror data wih respect to x-axix, because of different conventions
datax=flipud(datax);
datay=flipud(datay);

datax2=datax;
datay2=datay;
datay=rot90(datax2,-1);

49
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datax=rot90(datay2,-1);
datay=datay*(-1);
datax=datax*(1);

xm2=xm;
ym2=ym;
xm=ym2;
ym=xm2;

Normalizing to unit circle
%variables specifying some properties of the data. These are needed to
run
%the scipts of both methods
s=length(xm);
kmax=length(SHScoef);

%some variables that might be needed to correct the data to the right
units
lambda = 635e-9;
pixel_sz = 11e-6;
f = 4.63; %focal length

%normalizing to the unit disk
x=xm/max([max(abs(xm)) max(abs(ym))]);
y=ym/max([max(abs(xm)) max(abs(ym))]);

spotdisp to derivative
dWdx = datax./sqrt(f^2+datax.^2+datay.^2);
dWdy = datay./sqrt(f^2+datax.^2+datay.^2);

Possible to remove tilt
tiltx=mean2(dWdx(find(1-isnan(dWdx)))); tilty=mean2(dWdy(find(1-isnan(dWdy))));
dWdx=dWdx-tiltx; dWdy=dWdy-tilty;

further analysis
%Janssen
[Alpha_est] = EstimateAlphasFromDerivatives_flipud(dWdx, dWdy, x, y,
kmax)./(2*pi);

%It-Int
[Alpha_est2] = AlphasFromDerivativesItInt_flipud(dWdx, dWdy, x, y,
kmax)./(2*pi);

Coef=[Alpha_est’, Alpha_est2’, SHScoef’];

%Leave out piston and tilt X and Y
SHScoef(1:3)=0;
Alpha_est(1:3)=0;
Alpha_est2(1:3)=0;
SHScoef(9)=0;
Alpha_est(9)=0;
Alpha_est2(9)=0;

%nomalizing the vectors containing the given Zernikes
SHScoef=SHScoef/norm(SHScoef);
Alpha_est=Alpha_est/norm(Alpha_est);
Alpha_est2=Alpha_est2/norm(Alpha_est2);

%print out coefficients
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Coef_norm_notilt=[Alpha_est’, Alpha_est2’, SHScoef’];

Plots
%Plot comparison
figure;bar([SHScoef; Alpha_est; Alpha_est2].’);
xlabel(’Zernike’); ylabel(’coefficient’);legend(’SHS’,’Analytic’ ,
’Iterative Int’ );

%plotting the pupil
%pints of axis be plotted
[X,Y]=meshgrid(x,y);
[th,p]=cart2pol(X,Y);

%cenverting Zrnikes from single index to double index convention
%needed to use Alpha2pupil
A1=Zk2BetaSet(Alpha_est);
A2=Zk2BetaSet(Alpha_est2);
S=Zk2BetaSet(SHScoef);

%calculate pupil distribution
pupilA1=Alpha2Pupil(A1,p,th);
pupilA2=Alpha2Pupil(A2,p,th);
pupilS=Alpha2Pupil(S,p,th);

%plots
figure;
subplot(2,2,1)
surf(X,Y,angle(pupilA1));
title(’analytic method’);

subplot(2,2,2)
surf(X,Y,angle(pupilA2));
title(’Iterative integration’);

subplot(2,2,3)
surf(X,Y,angle(pupilS));
title(’SHS’);

B.2. Readzernikedata
%----modified version of the one given by Ruud Bokdam, Leendert van
Veen,
%---Ike Mulder, Joost Wooning and Michel van der Kaay
% Loads data in file specified by filename from Shack Hartmann sensor
% into matlab. Also includes the x and y values specified by the
sensor.
%
% Example:
% [data, x, y] = readzernikedata(’datax.txt’)

Function declaration
function [data, x, y] = readzernikedata(filename)
% read file
file = fileread(filename);

% preprocess filedata
strrep(file, ’”’, ’’);
strrep(file, ’UNDEFINED’, ’NaN’);
rows = strsplit(file, ’\n’);
rows = rows(7:end-3); % strip metadata
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% declare variables with sizes
data = zeros(length(rows)-1, length(strsplit(cell2mat(rows(1)),
’;’))-2);
y = zeros(1, length(strsplit(cell2mat(rows(1)), ’;’))-2);

% read first row as x positions
row = strsplit(cell2mat(rows(1)), ’;’);
x = str2double(row(2:end-1));

% read actual data and y postions
for i=2:length(rows)

row = strsplit(cell2mat(rows(i)), ’;’);

y(i-1) = str2double(row(1));
data(i-1, :) = str2double(row(2:end-1));

end

data = flipud(data);
y = fliplr(y);

B.3. ReadSHScoef
Reads the Zernike coefficeints from a .txt file format given by the SHS.

Input:

filename = file given by SHS whic conatins coefficients

output:

coef = row vector with the read coefficients

function [coef]=readSHScoef(filename)

file=fileread(filename);

rows = strsplit(file, {’\n’,’:’});
rows=rows(22:end-1);
rows=str2double(rows);
rows=rows(2:2:18);
coef=rows;

B.4. EstimateAlphasFromDerivatives
%By Sven van haver
%Phase retrieval method by A.J.E.M. Janssen
% DEv script WF reconstruction from cartesian derivatives via Zernikes
function [out] = EstimateAlphasFromDerivatives_flipud(dWdx, dWdy,
x_list, y_list, kmax)

[X, Y] = meshgrid(x_list, y_list);
Y=flipud(Y);
[THETA, RHO] = cart2pol(X, Y);

Kmax = power(ceil(sqrt(kmax)),2);
k=2:Kmax;
[n, m] = ZernikeNumber2NM(k);
Kmax = max(NM2ZernikeNumber(n+1,abs(m)+1));

%Get complex Zernikes from the pupil
Betap = Pupil2Zernike(dWdx + 1i.*dWdy, RHO, THETA, Kmax);
Betam = Pupil2Zernike(dWdx - 1i.*dWdy, RHO, THETA, Kmax);
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Bsz = size(Betap);
Asz = [2,max(n)+1,max(abs(m)+1)];
Alpha_est = zeros(Asz);

%apply formula from Janssen
Alpha_est(sub2ind(Asz,1+(m<0), n+1, abs(m)+1)) = ((Betap(sub2ind(Bsz,1+((m+1)<0),
n, abs(m+1)+1))./2) + ...
(Betam(sub2ind(Bsz,1+((m-1)<0), n, abs(m-1)+1))./2))
./(n.*NeumannSymbol((n-abs(m))/2)) - ...
((Betap(sub2ind(Bsz,1+((m+1)<0), n+2, abs(m+1)+1))./2) + ...
(Betam(sub2ind(Bsz,1+((m-1)<0), n+2, abs(m-1)+1))./2))
./((n+2).*NeumannSymbol((n+2-abs(m))/2));

% Convert from complex to classical
Alphas(k(m==0)) = Alpha_est(sub2ind(Asz,1+(m(m==0)<0), n(m==0)+1,
abs(m(m==0))+1));
Alphas(k(m>0)) = Alpha_est(sub2ind(Asz,1+(m(m>0)<0), n(m>0)+1,
abs(m(m>0))+1)) + ...

Alpha_est(sub2ind(Asz,2+(m(m>0)<0), n(m>0)+1, abs(m(m>0))+1));
Alphas(k(m<0)) = -1i.*Alpha_est(sub2ind(Asz,1+(m(m<0)<0), n(m<0)+1,
abs(m(m<0))+1)) + ...

1i.*Alpha_est(sub2ind(Asz,(m(m<0)<0), n(m<0)+1, abs(m(m<0))+1));

out = real(Alphas(1:kmax));

function [out] = NeumannSymbol(k)

out = 1 + double(k~=0);

B.5. AlphasFromDerivativesItInt
%AlphasFromDerivativesItInt
% function that calculates the Zernikes coefficients from a set of
derivatives,
% using the iterative integraion method.
%
% Input:
%
% dWdx = matrix containing x-derivatives
% dWdy = matrix containing y-derivatives
% x-list = vector containing the x points
% y-list = vector containing the y points
%
% Output:
%
% out = vector containing the calculated Zernikes coefficients.

function [out] = AlphasFromDerivativesItInt_flipud(dWdx, dWdy, x_list,
y_list, kmax)

addpath(’NewImplementationBySvH’);
addpath(’studenten’);

[X, Y] = meshgrid(x_list, y_list);
Y=flipud(Y);

[THETA, RHO] = cart2pol(X, Y);

Kmax = power(ceil(sqrt(kmax)),2);
k=2:Kmax;
[n, m] = ZernikeNumber2NM(k);
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Asz = [2,max(n)+1,max(abs(m)+1)];

%Construct wavefront using iterative integration
wavefront = iterativeIntegration(dWdx, dWdy, x_list, y_list, 10^(-5));
WaveFront=wavefront(:);

%Delete Nans
nans=isnan(WaveFront);
WaveFront(nans)=[];
THETA(nans)=[];
RHO(nans)=[];

%Calculate complex Zernikes from wavefront
Beta=Pupil2Zernike(WaveFront,RHO,THETA,kmax);

% Convert from complex to classical
Alphas(k(m==0)) = Beta(sub2ind(Asz,1+(m(m==0)<0), n(m==0)+1,
abs(m(m==0))+1));
Alphas(k(m>0)) = Beta(sub2ind(Asz,1+(m(m>0)<0), n(m>0)+1,
abs(m(m>0))+1)) + ...

Beta(sub2ind(Asz,2+(m(m>0)<0), n(m>0)+1, abs(m(m>0))+1));
Alphas(k(m<0)) = -1i.*Beta(sub2ind(Asz,1+(m(m<0)<0), n(m<0)+1,
abs(m(m<0))+1)) + ...

1i.*Beta(sub2ind(Asz,(m(m<0)<0), n(m<0)+1, abs(m(m<0))+1));

out = real(Alphas(1:kmax));

B.6. Zk2BetaSet
function [out] = Zk2BetaSet(Zk)
% BETASET2ZK
%
% This function converts a single index Zernike set, Zk, into a double
% index BetaSet (or AlphaSet) in 3 dimensional matrix notation:
%
% Z(k) -> BetaSet(s,n+1,|m|+1)
%
% Syntax: [BetaSet] = Zk2BetaSet(Zk)
%
% Sven van Haver 20131010
%

if max(size(Zk)) ~= numel(Zk)
error(’Input argument should be a Z(k) vector!’)

end

k = find(Zk);
BetaSet = zeros(2,2,2);

if ~isempty(k)
[n,m] = ZernikeNumber2NM(k);
sZk = [2 max([2 n(end) + abs(m(end))+1]) max([2 1+(n(end) +

abs(m(end)))/2])];
BetaSet = zeros(sZk);
BetaSet(sub2ind(sZk,1+(m<0),n+1,abs(m)+1))=Zk(k);

end

if ~(isreal(Zk) ~= isreal(BetaSet))
out = (BetaSet);

else
out = complex(BetaSet);
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end

B.7. Alpha2Pupil
Generate Phase-only pupil from classical set of Zernike coefficients

This function generates the pupil defined by a set of classical Zernike
coefficients (Alpha’s). It thus assumes the pupil amplitude to be
uniform and valued One. The function generates pupil values for the
specified radial and azymuthal coordinates.

Syntax:
[Pupil] = Alpha2Pupil(Alpha,RHO,THETA)

Input:

Alpha = Matrix of 3 dimensions containing standard Zernike
coefficients.

Matrix element Alpha(s,n+1,m+1) pertains to a Zernike
polynomial

of degree, n, and order, \ensuremath{|}m\ensuremath{|}.
Parameter s indicates the angular

dependance of the Zernike polynomial, where s=1 pertains to a
Cosine and s=2 to a Sine dependance. [Radians]

RHO = Matrix with radial positions in circular coordinate space of
all pupil positions for which the field distribution should be
generated. [length normalized to pupil radius]

THETA = Matrix with azymuthal positions in circular coordinate space of
all pupil positions for which the field distribution should be
generated. [Radians]

Output:

Pupil = Scalar eletric field distribution in the pupil, with uniform
amplitude of magnitude one and phase dsitribution defined by the
classical Zernike expansion Alpha.

Example(s):

Generate a pupil with trefoil aberration
>> Alpha=zeros(2,4,4);Alpha(1,4,4)=0.25;
>> rho=0:0.5:1; theta=0:pi/2:2*pi;
>> [RHO,THETA]=meshgrid(rho,theta);
>> P=Alpha2Pupil(Alpha,RHO,THETA)

Output:
P =

1.0000 0.9995 + 0.0312i 0.9689 + 0.2474i
1.0000 1.0000 - 0.0000i 1.0000 - 0.0000i
1.0000 0.9995 - 0.0312i 0.9689 - 0.2474i
1.0000 1.0000 + 0.0000i 1.0000 + 0.0000i
1.0000 0.9995 + 0.0312i 0.9689 + 0.2474i

Dependencies:
Name: Version: Author: Toolbox:
Zernike.m 1.1 S. van Haver NONE

Author: Dr. Ir. S. van Haver
Email: svenvanhaver@gmail.com

Project: Extended Nijboer-Zernike theory
Keywords: Classical Zernike coefficients, Phase aberration,

Phase only pupil, generate pupil

Version: v2.0 (26-07-2012)
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Change-log
v1.0 (19-06-2010) * First operational version. v1.1 (08-11-2010) * Function has been fully docu-
mented v2.0 (26-07-2012) * The internal meshgrid command has been removed for compatibility
reasons. If the function is now called with a vector input, the output is now also a vector. * Now
using more efficient DCT recipe to calculate Zernikes

Function declaration
function [out] = Alpha2Pupil(arg1,arg2,arg3)

Function description
This function generates and plots the pupil distribution defined by a set of classical Zernike-
coefficents (Alpha’s) and coordinate data.

Syntax: [E] = Zernike2Pupil(Alpha,rho,theta)

Alpha is a 3D matrix containing the values of the non-zero Zernike
coefficients Alpha(s,n+1,|m|+1). The indices of the various matrix
elements are given by the degree and order of the Zernike coefficients.
n and m are the degree and order, respectively, and s indicates whether
the coefficient belongs to the cosine (s=1) or sine (s=2) version of
the Zernike function.

rho and theta are the sampling points in the radial and azymuthal
directions, respectively.
Sven van Haver (June 2010).

Function Input Handling
% Check number of input arguments
if nargin~=3

error(’Wrong numer of input arguments!’)
end

% Check if arg2 and 3 are the same size
if isequal(size(arg2),size(arg3))==1

% Assign computation variables:
Alpha = arg1; % Zernike coefficients
RHO=arg2; % Matrix with radial postions [normalized]
THETA=arg3; % Matrix with azimuthal postitions [radians]

if isvector(Alpha)
Alpha = Zk2BetaSet(Alpha);

end

else

% Display error if arg2 and arg3 are not the same size
error(’Argument 2 and 3 should be the same size!’)

end

Function Part1: Analyze input
Extract additional info from input arguments

sB = size(Alpha); % Determine size of 3D matrix Alpha. Size of the
% dimensions give the maximum degree and order of
% Zernike values included.
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nmax = sB(1,2)-1; % Determine maximum value of n (Zernike degree) for
% which a Zernike coefficient is included in Alpha.

mmax = sB(1,3)-1; % Determine maximum value of m (Zernike order) for
% which a Zernike coefficient is included in Alpha.

Function Part2: Prepare calculation variables
Compute all Zernike functions needed for the execution of this function and allocate memory for
output quantity

ZerDCT = ZernikeDCT(nmax,RHO(:)); % Generate all required Zernike
polynomials in

% polynomial form.

PHI=zeros(size(RHO)); % Allocate memory

Function Part3: generate pupil distribution
Calculate individual contributions of Zernike coefficients to phase function and sum them.

% Loop over all possible Zernike terms:
for n=0:nmax

for m=min(n,mmax):-1:0
if sum(abs(Alpha(:,n+1,abs(m)+1))) ~= 0

% Select required Zernike polynomial, angular dependence
and

% corresponding coefficient. Add their combined
contribution to

% the total field E.
PHI(:) = PHI(:) + (Alpha(1,n+1,abs(m)+1).*cos(m*THETA(:)) +

...
Alpha(2,n+1,abs(m)+1).*sin(m*THETA(:))).*...
squeeze(ZerDCT(n+1,abs(m)+1,:));

end
end

end

E = exp(1i*PHI); % Compute Pupil field from phase distribution

Output handling
The output is a matrix containing the electric field at all positions [RHO,THETA] in the pupil.

out = E; % The electric field distribution in the pupil as defined
by

% the input Beta coefficients. Output is a 2D matrix where
% every element E(x1,x2) gives the field at position
% [RHO(x1,x2), THETA(x1,x2)] in circular coordinate space.

B.8. ZernikeNumber2NM
Convert Zernike single index, j, into double index, n and m.

This function converts the Zernike function numbering according to the
FRINGE convention into a double index based numbering according to the
radial and azymuthal orders, n and m, of the Zernike function [1]. We
distinguish between Zernike functions having a cosine or sine
dependence by adressing them a positive or negative azymuthal index, m,
respectively.



58 B. Matlab scripts: wavefrontsensor

[1] Handbook of Optical Systems, Vol 2, by Herbert Gross, WILEY-VCH
2005, page 215.

Syntax:

[n,m] = ZernikeNumber2NM(j)
[n,m] = ZernikeNumber2NM(j,option)

Input:

j = Vector with Single indices defining Zernike functions
according

to the FRINGE convention.
Option = A string defining which algorithm to use:

- ’DEFAULT’ Recent, most efficient algorithm
- ’LEGACY’ Algorithm used in previous toolbox version

Output:

n = Corresponding degrees of the Zernike function pertaining to
the

input indices j.

m = Corresponding orders of the Zernike function pertaining to the
input indices j. Note that positive m values pertain to

Zernike
functions having a cosine angular dependence and negative m a
sine dependence.

Example(s):
[n,m] = ZernikeNumber2NM([1 7 36 94 12345])

n =
0 3 10 15 122

m =
0 1 0 3 -100

Dependencies: NONE

Author: Dr. Ir. S. van Haver
Email: svenvanhaver@gmail.com

Project: Extended Nijboer-Zernike (ENZ) theory
Keywords: Zernike polynomial numbering, FRINGE convention, single index

double index, conversion.

Version: v2.0 20131010

Change-log
v1.0 (23-12-2010)

* First operational version.
* Full documentation added

v2.0 20131010
* Faster algorithm implemented
* Old algorithm available under option ’legacy’

Function declaration
function [out1,out2] = ZernikeNumber2NM(arg1,arg2)

Function description
No additional information available.
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Input handling
Assign input variables to computation variables and check if they are consistant.

switch nargin

case 2
index = arg1; % FRINGE single index numbering
option = arg2; % string defining which algorithm to

use

case 1
index = arg1; % FRINGE single index numbering
option = ’DEFAULT’; % string defining which algorithm to

use

otherwise
error(’Wrong number of input arguments!’)

end

% Check if index only contains integers larger than Zero
if numel(index(index<1))>0 || numel(index(~(round(index)==index)))

error(’Input arg1 should be a vector with positive integers’)
end

switch upper(option)

case ’DEFAULT’

k = index;

q = floor(sqrt(k-1));
p = floor((k-q.^2-1)./2);
r = k-q.^2-2.*p;

n = q+p;
m = power(-1,r+1).*(q-p);

case ’LEGACY’

Function Part1: Convert index to n and m
First intermediate quantities p and q are determined after which n and m are derived.

n=0*index;
m=0*index;
for t = 1:numel(index)

k = index(t);

% Determine p = (n+|m|)/2 :
tmp1 = 0;
p = 0;
while tmp1 < k-1

p = p+1;
tmp1 = max(cumsum(1:2:(2*p+1)))-1;

end

% Determine q = (n-|m|)/2 :
tmp2 = tmp1;
q = p;
while tmp2 > k-1
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q = q-1;
tmp2 = tmp1 - 2*(p-q);

end

% Derive n and m
n(t) = p + q;
if tmp2 == k-1

m(t) = p - q;
else

m(t) = q - p;
end

end

otherwise
error(’Unknown ”option” provided as second argument!’)

end

Output handling
Sent the desired output data to the output variables

out1 = n; % Zernike degree
out2 = m; % Zernike order

B.9. NM2ZernikeNumber
Convert double Zernike index, n and m, into a single index, j.

This function converts the Zernike function numbering according to the
Zernike degree and order, n and m, into a single index number according
to the FRINGE convention [1]. Note that we distinguish between Zernike
functions having a cosine or sine dependence by adressing them a
positive or negative azymuthal index, m, respectively.

[1] Handbook of Optical Systems, Vol 2, by Herbert Gross, WILEY-VCH
2005, page 215.

Syntax:

[j] = NM2ZernikeNumber(n,m)
[j] = NM2ZernikeNumber(n,m,option)

Input:

n = Degree of the Zernike function for which the index j should be
generated.

m = Order of the Zernike function for which the index j should be
generated. Positive or negative values of m adress the cosine
and sine dependence respectively.

Option = A string defining which algorithm to use: - ’DEFAULT’ Recent, most efficient algorithm -
’LEGACY’ Algorithm used in previous toolbox version

Output:

j = Single index defining a Zernike function according to the
FRINGE convention.

Example(s):
\ensuremath{>}\ensuremath{>} n = [0 3 10 15 122];
\ensuremath{>}\ensuremath{>} m = [0 1 0 3 -100];
\ensuremath{>}\ensuremath{>} [j] = NM2ZernikeNumber(n,m)
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j =
1 7 36 94 12345

Dependencies: NONE

Author: Dr. Ir. S. van Haver
Email: svenvanhaver@gmail.com

Project: Extended Nijboer-Zernike (ENZ) theory
Keywords: Zernike polynomial numbering, FRINGE convention, single index

double index, conversion.

Version: v2.0 20131010

Change-log
v1.0 (23-12-2010)

* First operational version.
* Full documentation added

v2.0 20131010
* Faster algorithm implemented
* Old algorithm available under option ’legacy’

Function declaration
function [out] = NM2ZernikeNumber(arg1,arg2,arg3)

Function description
No additional information available.

Input handling
Assign input variables to computation variables and check if they are consistant.

switch nargin

case 3
n = arg1; % Zernike degree
m = arg2; % Zernike order
option = arg3; % string defining which algorithm to use

case 2
n = arg1; % Zernike degree
m = arg2; % Zernike order
option = ’DEFAULT’; % string defining which algorithm to

use

otherwise
error(’Wrong number of input arguments!’)

end

if numel(n(n<0))>0 || numel(n(~(round(n)==n)))>0
error(’Input arg1 should be a vector with positive integers’)

elseif numel(m) ~= numel(n) || numel(m(abs(m)>n))>0 ||
numel(m(~(round(abs(m))==abs(m))))>0

error(’Input arg2 should be of same lentgh as arg1, and |arg2| >=
arg1 for all elements’)
elseif numel(n((rem(n+abs(m),2)==1)))

error(’Wrong combination of n and m, (n + m) should be even!’)
end
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Function Part1: Convert n and m to FRINGE index
switch upper(option)

case ’DEFAULT’
p = (n+abs(m))./2;
index = p.^2 + n - abs(m) + 1 + (m<0);

case ’LEGACY’
index = 0*n;
for t = 1:numel(n)

index(t) = max(cumsum(1:2:(n(t)+abs(m(t))+1)))
-(2*abs(m(t)))+((m(t)<0));

end

otherwise
error(’Unknown ”option” provided as second argument!’)

end

Output handling
Sent the desired output data to the output variables

out = index; % Zernike degree

B.10. Pupil2Zernike
Represent a given pupil distribution (scalar) as a Zernike expansion

This function is used to generate the Zernike expansion coefficients
(Beta’s) representing a given (scalar) pupil distribution. It thus
provides the inverse operation of the function ”Zernike2Pupil.m”. For
more info see Eq.(3.10) subsection 3.2.1 of Ph.D. Thesis Sven van Haver
(http://www.nijboerzernike.nl/\_PDF/Thesis\_S\_vanHaver\_optimized.pdf)

Note that for vector distributions in the pupil one can use this
function for every field component seperately.

Syntax:

[Beta] = Pupil2Zernike(Pupil,RHO,THETA,nmax,mmax,option)

[Beta] = Pupil2Zernike(Pupil,RHO,THETA,nmax,mmax)

[Beta] = Pupil2Zernike(Pupil,RHO,THETA,kmax)

[Beta] = Pupil2Zernike(Pupil,RHO,THETA,tol)

[Beta] = Pupil2Zernike(Pupil,RHO,THETA)

Input:

Pupil = Field distribution in the pupil which should be represented as
a Zernike expansion.

RHO = Matrix with radial positions in circular coordinate space of
all pupil positions for which the field distribution should be
generated. [length normalized to pupil radius]

THETA = Matrix with azymuthal positions in circular coordinate space of
all pupil positions for ehich the field distribution should be
generated. [Radians]

nmax = Maximum Zernike degree used in the expansion (Integer)
[Dimensionless]
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mmax = Maximum Zernike order used in the expansion (Integer)
[Dimensionless]

kmax = Maximum single Zernike index used in the expansion (Integer)
[Dimensionless]

option = optional string (value = ’force one’) that can be used to
automatically rescale the amplitude, and shift the phase, such
that the Zernike expansion representing the distribution has
Beta^0_0 equal to One.

tol = Maximum difference allowed between the input pupil field and
the Zernike representation constructed by this function.

Output:

Beta = Matrix of 3 dimensions containing the complex Zernike
coefficients describing the input pupil distribution. Matrix
element Beta(s,n+1,m+1) pertains to a Zernike polynomial
of degree, n, and order, \ensuremath{|}m\ensuremath{|}.

Parameter s indicates the sign of
parameter m, where s=1 corresponds to positive m and s=2 to
negative m. [Radians]

Example(s):

Generate a pupil with astigmatic aberration
>> [RHO,THETA]=meshgrid(0:0.05:1,0:pi/10:2*pi);nmax=6;mmax=2;
>> Pupil = exp(0.25i.*(RHO.^2));
>> Beta=Pupil2Zernike(Pupil,RHO,THETA,nmax,mmax,’force one’);
>> squeeze(Beta(1,:,:))

Output:
ans =

1.0000 - 0.0000i 0 0
0 0.0000 - 0.0000i 0

0.0000 + 0.1251i 0 -0.0000 + 0.0000i
0 0.0000 - 0.0000i 0

-0.0052 + 0.0000i 0 -0.0000 + 0.0000i
0 -0.0000 + 0.0000i 0

-0.0000 - 0.0001i 0 0.0000 - 0.0000i

Dependencies:
Name: Version: Author: Toolbox:
Sol2Beta.m 1.1 S. van Haver NONE
Pupil\_inversion\_Matrix.m 1.1 S. van Haver NONE

Author: Dr. Ir. S. van Haver, Axel Wiegmann
Email: svenvanhaver@gmail.com, axel.wiegmann@web.de

Project: Extended Nijboer-Zernike (ENZ) theory
Keywords: Pupil fitting, Zernike expansion, Transmission function,

Pupil representation, Zernike coefficients

Version: v2.0 (26-07-2012)

Change-log
v1.0 (19-06-2010) * First operational version. v1.1 (27-09-2010) * Function has been fully docu-
mented v1.2 (16-11-2010) * Allow function to run without specification of nmax and mmax v1.3
(13-12-2010) * NaN values in the Input values are ignored v2.0 (26-07-2012) * Added the option
to specify the upper Zernike single index used in the expansion

Function declaration
function [Beta] = Pupil2Zernike(varargin)
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Function description
This m-file calculates the Beta coefficients that represent the input pupil using a Least-Square fit.

[Beta] = Pupil2Beta(Pupil,r,th,nmax,mmax)

By: S. van Haver (May 2010).

Adjusted 07/2010 to force Beta(1,1,1) to be One!

Input handling
Assign input variables to computation variables and check if they are consistant.

switch nargin

case 6

% Assign arguments to calculation variables:
Pupil = cell2mat(varargin(1)); % Input (scalar) pupil

distribution
RHO = cell2mat(varargin(2)); % Radial coordinate of pupil

points
THETA = cell2mat(varargin(3)); % Azymuthal coordinate of

pupil points
nmax = cell2mat(varargin(4)); % Maximum Zernike degree used

in the
% expansion
mmax = cell2mat(varargin(5)); % MAximum Zernike order used

in the
% expansion
option = cell2mat(varargin(6)); % Optional parameter

indicating if
% distribution should be scaled in order to
% have Beta^0_0 == 1. (either: ’no scaling’
% or ’force one’)

case 5

% Assign arguments to calculation variables:
Pupil = cell2mat(varargin(1)); % Input (scalar) pupil

distribution
RHO = cell2mat(varargin(2)); % Radial coordinate of pupil

points
THETA = cell2mat(varargin(3)); % Azymuthal coordinate of pupil

points
nmax = cell2mat(varargin(4)); % Maximum Zernike degree used

in the
% expansion

mmax = cell2mat(varargin(5)); % MAximum Zernike order used in
the

% expansion
option = ’no scaling’; % Optional parameter set to

Default:
% NO SCALING

case 4

% Assign arguments to calculation variables:
Pupil = cell2mat(varargin(1)); % Input (scalar) pupil

distribution
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RHO = cell2mat(varargin(2)); % Radial coordinate of pupil
points

THETA = cell2mat(varargin(3)); % Azymuthal coordinate of
pupil points

arg4 = cell2mat(varargin(4));
if arg4 < 1

tol = arg4; % Maximum Error tolerance in
the Zernike

% fit of the pupil
distribution

else
kmax = arg4; % Maximum Zernike single

index to
end % use in the reconstruction

option = ’no scaling’; % Optional parameter set to
Default:

% NO SCALING

case 3

% Assign arguments to calculation variables:
Pupil = cell2mat(varargin(1)); % Input (scalar) pupil

distribution
RHO = cell2mat(varargin(2)); % Radial coordinate of pupil

points
THETA = cell2mat(varargin(3)); % Azymuthal coordinate of

pupil points
tol = 1e-3; % Default Error tolerance in

the Zernike
% fit of the pupil

distribution
option = ’no scaling’; % Optional parameter set to

Default:
% NO SCALING

otherwise

error(’Wrong number of input arguments!!!’)

end

% Check consistancy:
if nargin>4

if nmax<mmax
error(’Nmax should always be equal or larger than mmax!’)

end
end

if (numel(RHO)~=numel(THETA)) || (numel(Pupil)~=numel(RHO))
error(’Number of elements in E, RHO and Theta are not consistant!’)

end

% Remove all points where a coordinate or the pupilvalue is NaN and
convert
% input parameters to vectors
RHO=RHO(:);
THETA=THETA(:);
Pupil=Pupil(:);
idx=isnan(RHO+THETA+Pupil);
RHO(idx)=[];
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THETA(idx)=[];
Pupil(idx)=[];

if nargin > 4 || exist(’kmax’)

Function Part1: generate fitting matrix
We start by generating a linear system of equations, one for every point in the pupil, that upon
solving provides the best-fit Zernike expansion in a Least-Square (LS) sense.

% Generate fitting matrix:
if nargin > 4

[LSFM] = Pupil_inversion_Matrix(RHO,THETA,mmax,nmax);
else

[LSFM] = Pupil_inversion_Matrix(RHO,THETA,kmax);
end

Function Part2: determine Zernike expansion
Solve linear system of equation and write solution vector in the formar of a standard set of Zernike
coefficients.

% Solve lineair system:
Sol= LSFM\Pupil;

% Write solution as Beta’s:
%Beta=Sol2Beta(mmax,nmax,Sol);
Beta=Sol2Beta(Sol);

% Generate temp pupil from Beta’s
Pupiltemp = Zernike2Pupil(Beta,RHO,THETA);

% Determine maximum error
toltemp = max(abs(Pupil-Pupiltemp));

Function Part3: Rescale results
If the option ’force one’ is specified, we rescale our input Pupil distribution such that the recon-
structed Betaˆ0_0 Zernike coefficients has value One.

if strcmp(’force one’,option)

% Scale Pupil and again solve linear system:
Sol= LSFM\(Pupil./Beta(1,1,1));

% Write solution as scaled Beta’s
Beta=Sol2Beta(Sol);

end

else

Function Part4: Adaptive Zernike fit
When no upper bound for the Zernikes is specified, increase kmax step by step until the resulting
Zernike expansion satisfies the specified or default fitting tolerance.

% Set initial values for conditional loop
toltemp = 99;
nmax=0;

% Determine Zernike expansion iteratively
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while tol < toltemp

% Adjust adaptive parameters:
nmax=nmax+2;
kmax = NM2ZernikeNumber(nmax,0);

% Generate fitting matrix:
[LSFM] = Pupil_inversion_Matrix(RHO,THETA,kmax);

% Solve lineair system:
Sol= LSFM\Pupil;

% Write solution as Beta’s:
Beta=Sol2Beta(Sol);

% Generate temp pupil from Beta’s
Pupiltemp = Zernike2Pupil(Beta,RHO,THETA);

% Determine maximum error
toltemp = max(abs(Pupil-Pupiltemp));

end

Function Part5: remove non-significant coefficients
Set all Beta coefficients that are too small to contribute to zero, and adjust the min and max size
of the 3D Beta matrix accordingly

% Only execute this part of the function when number of coeffients
is

% variable

% Set all coefficients too small to contribute to zero
Beta(abs(Beta)<tol/10)=0;

% check if dimensions of Beta can be reduced (Remove dimensions
% containing only zeros
redo=1;
while redo==1 % Repeat while redo==1

redo=0;

% Check if mmax can be reduced by one
temp1=squeeze(max(max(abs(Beta(:,:,:)))));

% Check if nmax can be reduced by one
temp2=squeeze(max(max(abs(permute(Beta(:,:,:),[1 3 2])))));

% reduce mmax contained in Beta by one
if (temp1(end)<tol/10) && (size(Beta,3)>2)

Beta=squeeze(Beta(:,:,1:end-1));
redo=1;

end

% reduce nmax contained in Beta by one
if temp2(end)<tol/10 && (size(Beta,2)>2)

Beta=squeeze(Beta(:,1:end-1,:));
redo=1;

end
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end

end

Output handling
Sent the desired output data to the output variables

% Provide exactly the subset of coefficients that was requested
if nargin > 4

Beta = Beta(:,1:nmax+1,1:mmax+1);
end

% Provide output to user:
%display([’The maximum error between ’ inputname(1) ’ and its Zernike
fit is: ’ num2str(toltemp)])

% The Output Beta is a Matrix of 3 dimensions containing the complex
% Zernike coefficients describing the input pupil distribution.
% Matrix element Beta(s,n+1,m+1) pertains to a Zernike
% polynomial of degree, n, and order, |m|. Parameter s
% indicates the sign of parameter m, where s=1 corresponds
% to positive m and s=2 to negative m. [Radians]

B.11. IterativeIntegration
%----modified version of the one given by Ruud Bokdam, Leendert van
Veen,
%---Ike Mulder, Joost Wooning and Michel van der Kaay
% Calculates waveFront in the same way the SHS does, using iterative
% integration.
%
% Syntax:
%
% * [waveFront] = iterativeIntegration(datax, datay, xVals, yVals)
% * [waveFront] = iterativeIntegration(datax, datay, xVals, yVals,
errorMargin)
%
% Input:
%
% * datax = matrix specifying x derivatives at positions
% * datay = matrix specifying y derivatives at positions
% * xVals = x components of positions
% * yVals = y components of positions
% * (errorMargin)= optional argument, specifying the maximum absolute
total
% difference between waveFront and the optimal solution
%
% Output:
%
% * waveFront = matrix containing function values at positions, whose
x
% and y derivatives should match datax and datay
respecively

Function declaration
function [waveFront] = iterativeIntegration(datax, datay, xVals, yVals,
errorMargin)
if (nargin < 5)

errorMargin = 10^(-3);
end
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% synchronize NaN values for safety
[datax, datay] = syncNans(datax, datay);
[ny, nx] = size(datax);

% Creating appropriate scaling factor
P = xVals(2) - xVals(1);

% To get the value of higher x/y, we need to circshift back
% Rows are y-coordinates
yUp = [-1, 0];
yDown = [1,0];
% Columns are x-coordinates
xUp = [0, -1];
xDown = [0,1];

% We need to store which values are relevant
hasValue = ~isnan(datax);
hasXUp = circshift(hasValue,xUp);
hasXDown = circshift(hasValue,xDown);
hasYUp = circshift(hasValue,yUp);
hasYDown = circshift(hasValue,yDown);

% circshift causes an unwanted jump, which we manually remove
hasXUp(:,nx)=false;
hasXDown(:,1)=false;
hasYUp(ny,:)=false;
hasYDown(1,:)=false;

% We also need to know how many relevant values each position has
divisor = (hasXUp+hasXDown+hasYUp+hasYDown).*hasValue;

% Starting the iteration
waveFrontPrev = zeros(ny,nx);
waveFrontPrev(~hasValue) = NaN;
a1=P/2*(circshift(datax,xUp)+datax);
a2=P/2*(circshift(datax,xDown)+datax);
a3=P/2*(circshift(datay,yUp)+datay);
a4=P/2*(circshift(datay,yDown)+datay);
while true

% Each adjacent position’s value and corresponding derivative are
an

% estimate for the actual value
estimXUp = circshift(waveFrontPrev,xUp) - a1;
estimXDown = circshift(waveFrontPrev,xDown) + a2;
estimYUp = circshift(waveFrontPrev,yUp) - a3;
estimYDown = circshift(waveFrontPrev,yDown) + a4;

% Filtering out the irrelevant values (mostly NaNs)
estimXUp(~hasXUp) = 0;
estimXDown(~hasXDown) = 0;
estimYUp(~hasYUp) = 0;
estimYDown(~hasYDown) = 0;

% Making the estimate using all relevant values
waveFront =(estimXUp + estimXDown + estimYUp + estimYDown)./divisor;

% Checking break conditions
if(nansum(nansum(abs(waveFront-waveFrontPrev))) < errorMargin)

break;
end
if(exist(’waveFrontPrevPrev’, ’var’))
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if(nansum(nansum(abs(waveFront-waveFrontPrevPrev))) <
errorMargin)

break;
end

end

% Shifting values
waveFrontPrevPrev = waveFrontPrev;
waveFrontPrev = waveFront;

end
end
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