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One of the most direct preparations of a Gottesman-Kitaev-Preskill (GKP) qubit in an oscillator uses a tunable
photon-pressure (also called optomechanical) coupling of the form q̂b̂†b̂, enabling us to imprint the modular
value of the position q̂ of one oscillator onto the state of an ancilla oscillator. We analyze the practical feasibility
of executing such modular quadrature measurements in a parametric circuit-QED realization of this coupling.
We provide estimates for the expected GKP squeezing induced by the protocol and discuss the effect of photon
loss and other errors on the resulting squeezing.
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I. INTRODUCTION AND MOTIVATION

Bosonic quantum error correction encoding quantum infor-
mation into oscillator space(s) has gained much experimental
interest in the past few years (e.g., Refs. [1–6]). A good
reason to use a single oscillator instead of multiple qubits
to encode quantum information redundantly is that control,
manipulation, and fabrication of a single oscillator can be
easier than that of multiple oscillators or qubits. In other
words, bosonic error correction can be a hardware-efficient
way [7] of producing novel qubits, which we hope have longer
coherence versus gate times than current popular members of
the qubit family, such as the transmon qubit in superconduct-
ing devices. A promising code encoding a qubit into a single
oscillator is the so-called GKP code, named after the proposal
by Gottesman, Kitaev, and Preskill in 2001 [8]. This code has
the ability to correct small shifts in phase space, but has also
been shown to be very competitive, as compared to other code
contenders, with respect to photon loss errors [9,10]. For an
encoded qubit such as the GKP qubit, important aspects of
its performance will be determined by the ability to reliably
prepare or measure the qubit in the Z and X bases, perform
single- and two-qubit gates on it (controlled-NOT [C-NOT],
Hadamard, and T gates), as well as execute quantum error
correction in a fault-tolerant manner. Theoretical methods and
circuits to obtain these components have been discussed, for
example, in Refs. [8,11–13].

In particular, as the GKP qubit states are highly nonclassi-
cal “grid” states, one can ask about the best method to prepare
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such states from the vacuum, given a coupling with an ancilla
system which is subsequently measured. The original GKP
paper [8] briefly suggested that a photon-pressure coupling
between the target oscillator—in which the state is to be
prepared—and an ancilla oscillator would be useful in this
respect. Through such an interaction, the ancilla oscillator
acquires a frequency shift which depends on the quadrature
q̂T = 1√

2
(b̂T + b̂†T ) of the target oscillator T . Instead of mea-

suring this frequency shift, the aim is then to measure just
the effective rotation that it induces on an initial state in the
ancilla oscillator after a specific interaction time. Eigenvalues
for q̂ which differ in the ancilla oscillator state being rotated
by a full period are thus not distinguished. This means that
the interaction can be used to realize modular measurements
of q̂ and p̂. Such modular quadrature measurements commute
when the product of the moduli is a multiple of 2π . It is
precisely these modular quadrature measurements which are
required to prepare a GKP qubit: they can also be used to
stabilize a GKP qubit [4] or perform quantum error correction.

Modular quadrature measurements [14] are of fundamental
interest since commuting quadrature measurements allow one
to measure both quadratures without the fundamental Heisen-
berg uncertainty, with possible applications in displacement
sensing in the microwave domain [15]. The use of such
modular variables directly gives rise to a mixed position-
momentum representation of a state in phase space: Zak first
formulated this idea, giving a mixed momentum-position state
of electrons in solids; see the review [16] and references
therein.

In this paper, we present a circuit-QED setup for coupling
two (close to harmonic) oscillators via a tunable photon-
pressure coupling with the aim of realizing a modular quadra-
ture measurement in one of the oscillators; see Sec. II.
This measurement requires a full measurement of the ancilla
oscillator state, which in circuit QED can be obtained by
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releasing this state, via a lossy oscillator, to a transmission
line, where the signal gets amplified and finally read out at
room temperature. In Sec. II C, we briefly discuss previous
work on such release or “switch” mechanism, which can be
turned on and off to high approximation. Prior to this, we
provide an overview of our modular quadrature measurement
scheme in Sec. II B. Other and related means to obtain a
photon-pressure coupling in circuit QED are reviewed in
Sec. II A.

In Sec. III, we estimate the expected performance of the
modular quadrature measurement: This is expressed in terms
of how much squeezing in a GKP qubit can be obtained
through this measurement. The squeezing effectively captures
how close a state is to an eigenstate of the operator which is
measured. The aim here is to do a strong modular quadrature
measurement, unlike some of the previous work [3,4,12] in
which the measurement is built up from a sequence of weak
measurements via coupling to ancilla qubits. In the latter
approach, the strong measurement—which is effectively a
phase estimation or eigenvalue measurement of a unitary
displacement operator—is obtained through a sequence of
weak ancilla qubit measurements, each contributing at most 1
bit of phase information. The strength of the modular quadra-
ture measurement proposed in this paper will be governed
by the number of photons in the ancilla oscillator used to
perform the measurement: the more photons, the stronger the
measurement.

We will compare our proposal with the sequential qubit
measurement scheme [12] using a transmon qubit [4] or Kerr-
cat-state qubit [5,17] in Sec. IV B, also with respect to error
feedback to the target oscillator. As the preparation protocol
will inevitably suffer from imperfections, we discuss several
noise mechanisms and their effect in Sec. IV. We end the
paper with a conclusion and a discussion, summarizing our
findings, in Sec. V.

A. Preliminaries

This section collects a few conventions and the definition
of the GKP code. We use q̂ = 1√

2
(â + â†) and p̂ = i√

2
(â† −

â) so that [q̂, p̂] = i1.1 Phase space displacements (transla-
tions) are denoted, in standard form, as D(α) = exp(αâ† −
α∗â).

The (square) GKP code is defined by two commuting
code stabilizers equal to Sq = exp(i2

√
π q̂) and Sp =

exp(−i2
√

π p̂). These operators act as shift or displacement
operators in phase space, that is, Sq |p〉 = |p + 2

√
π〉

and Sp |q〉 = |q + 2
√

π〉. States which have eigenvalue 1
with respect to these operators are thus invariant under
these translations in phase space. There are two operators
X = exp(−i

√
π p̂) and Z = exp(i

√
π q̂) which both commute

with Sp and Sq, while XZ = −ZX , and hence they are the
logical Pauli operators—equal to half-stabilizer shifts—of

1In some texts, the quadrature operators are defined as X̂ = 1
2 (â +

â†) and P̂ = i
2 (â† − â) instead; see e.g., Ref. [18]. The latter con-

vention has the advantage of connecting directly to the real and
imaginary part of a coherent state |α〉, while our choice is used by
Ref. [8] so we adhere to this convention.

the encoded qubit. Note that the operators Sp, Sq, Z , and X
only square to the identity in the code space. Measuring
the eigenvalue of a unitary operator such as Sq is equivalent
to measuring the value for q modulo

√
π , as all values

q = qmeas + k
√

π for k ∈ Z give the same eigenvalue
exp(i2

√
πqmeas) for Sq. Said differently, a modular quadrature

measurement is the measurement of the eigenvalue of a
unitary displacement operator.

Since the eigenvalue of a unitary operator is a phase, the
phase variance of the postmeasurement state captures how
precisely the eigenvalue is measured. This phase variance or
uncertainty is expressed by effective squeezing parameters,
one for the measurement of Sp and one for the measurement of
Sq. These squeezing parameters can be chosen (see details and
relation with Holevo phase and regular quadrature variance in
Ref. [15]) as

�p = �p(ρ) =
√

1

2π
ln

(
1

|TrSpρ|2
)

,

�q = �q(ρ) =
√

1

2π
ln

(
1

|TrSqρ|2
)

.

(1)

To get some intuition, note that 0 � |TrSqρ| � 1 in general.
If ρ is an eigenstate with a particular eigenvalue for Sq, we
have |TrSqρ| = 1. If ρ is a superposition of many eigenvalues
of Sq, e.g., a momentum eigenstate |p〉, we have |TrSqρ| = 0.
Thus, |TrSqρ| expresses the sharpness or concentration of ρ

around an Sq eigenstate.
Classically, the topic of circular statistics is well estab-

lished, see, e.g., Ref. [19]: For a probability distribution P (θ )
over an angle θ ∈ [0, 2π ), the circular standard deviation
is defined as

√
−2 ln (| ∫ dθ P (θ ) exp(iθ )|). The squeezing

parameters in Eqs. (1) are thus a direct application of the
circular standard deviation. With the convention in Eqs.
(1), the vacuum state has �p = �q = 1, showing that it
is not squeezed. A �-squeezed vacuum state (in q) has
variance 〈sq.vac.| (q − 〈q〉)2 |sq.vac〉 = �2�2

vac with � = �q

and �vac = 1
2 .2 For a Gaussian model, wave function of an

approximate GKP state holds that n̄ ≈ 1
2�2 − 1

2 [8,12]. In this
model, an approximate GKP state equals

|ψ̃〉 = E |ψ〉 ,

E = 1√
π�2

∫∫
R2

du dv exp

(−(u2 + v2)

2�2
− iup̂ + ivq̂

)
,

where |ψ〉 is a perfect GKP code state, i.e., a +1 eigenstate of
Sp and Sq.

B. Overview of measurement protocol

We will refer to the oscillators as target and ancilla os-
cillators, with resonance frequencies ωT , respectively ωA and
ωA � ωT . The reason for this choice of frequencies is that

2We remark that Ref. [4] uses a standard deviation σ as the absolute
standard deviation of a squeezed peak while the � parameter is the
relative enhancement of the standard deviation as compared to the
vacuum state. This implies that we have the correspondence σ 2 =
�2/2 since the vacuum has variance 1/2 by definition.
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TABLE I. Targeted parameters of the two oscillators, strength of the photon-pressure coupling g, and various error terms. The resonance
frequency of the oscillators is dependent on the external flux, it is maximal for xext = π and minimal for xext = 0. All frequencies except
the frequency range fmax– fmin are given as mean values, i.e., for xext = π/2. The capacitance CJ of the Josephson junction is not particularly
important, as long as it is small compared to the capacitance of the ancilla oscillator CA, which is the case, e.g., for the junction designs
of the transmon and charge qubits. The photon-pressure coupling strength g is obtained by fixing the resonance frequency, inductance, and
Josephson energy for the two oscillators, choosing the capacitance accordingly and using Eq. (7). The capacitance of the Josephson junction
was neglected, because it is several orders of magnitude smaller than the capacitance of both oscillators. The nonlinear terms (third-order,
self-, and cross-Kerr) are given as a fraction of the coupling strength g, because they are only relevant while the drive is on. Note that the listed
values of the self- and cross-Kerr terms are the maximal values in time (not the echoed-out values). In our modeling it is assumed that all losses
on the ancilla oscillator are due to coupling to the transmission line. We denote the closed decay rate of the ancilla oscillator as κc and the open
decay rate as κopen, while the decay rate of the target oscillator is denoted as κT . This choice of parameters meets the condition κctcoupl|α|2 	 1,
ensuring low photon loss during the modular quadrature measurements easily for n̄ ≈ 2–4.

Ancilla oscillator Target oscillator

Resonance frequency f (GHz) 10 0.5
Frequency range fmax − fmin (MHz) 500 5–10
Capacitance Cm (pF) 0.1–1 50–1000
Charging energy ECm/(2π ) (MHz) 20–200 0.02–0.4
Inductance Lm (nH) 0.2–3 0.2–3
Inductive energy ELm/(2π ) (GHz) 50–400 50–400
Third-order nonlinearity (∼q̂3/g) negl. 10−3–10−2

Self-Kerr (∼(â†â)
2
, (b̂†b̂)

2
/g) 50%–100% 10−3–10−2

Targeted oscillator life time 1/κ 100 μs (closed), 1 μs (open) 100 μs

EJ/(2π ) (GHz) 5–40
Capacitance CJ CJ 	 CA

Photon-pressure coupling g/(2π ) (MHz) 3–15
Cross-Kerr (∼â†â b̂†b̂/g) 2%–5%
Interaction time tcoupl (μs) 0.2–1

the instantaneous potential of the ancilla oscillator depends on
the current state of the target oscillator while the potential of
the target oscillator is unchanged, which enables the photon-
pressure interaction.

We will use â, â† (respectively, b̂, b̂†) as annihilation and
creation operators of the ancilla (respectively, target oscil-
lator). Targeted values of coupling strengths and oscillator
decay rates are summarized in Table I. The aim is to describe
a setup allowing for the measurement of both stabilizers Sp, Sq

and/or the logical shifts X, Z . For example, one can prepare
a GKP grid state in the target oscillator from the vacuum
by performing a modular measurement of both p̂ and q̂, i.e.,
measure Sp and Z in sequence.

The sequence of events to enact a single modular quadra-
ture measurement of, say Sq, is shown in Fig. 1. We start both
oscillators in the vacuum state. First, we create a coherent
state |α〉 in the ancilla oscillator by driving this oscillator
with a short [O(10) ns] pulse. Now we turn on a strong
photon-pressure coupling between target and ancilla oscillator
for time tcoupl: We discuss this in detail in Sec. II B. In the
rotating frame of both oscillators (ancilla oscillator at ωA and
target oscillator at ωT ), we thus turn on the Hamiltonian

HPP = gâ†â(b̂† + b̂) =
√

2gâ†âq̂T , (2)

for some time tcoupl. Here, and throughout the rest of this
paper, we use the convention h̄ = 1. From now on, we will
drop the subscript T in the stabilizers Sq,T , Sp,T , the logicals
ZT , XT and the quadrature operators q̂, p̂ as all these operators
always act on the target oscillator. We note that the fact that
this Hamiltonian is time independent in the rotating frame of

target oscillator is nontrivial: A parametric drive by a classical
field, i.e., a pump or a flux drive is required to accomplish
this. By changing the phase of this classical field, we can
change the coupling to be proportional to â†â p̂, enabling us
to perform a modular measurement of p̂ (or any other rotated
quadrature).

If the interaction in Eq. (2) is turned on for the time tcoupl =√
2π/g, it implements the following unitary between target

and ancilla oscillator:

UPP = exp(i2
√

π q̂â†â) = Sâ†â
q , (3)

where Sq is a stabilizer of the GKP code acting on the target
oscillator.

FIG. 1. Timeline of the measurement protocol. First, the ancilla
oscillator is initialized to a coherent state |α〉. Then, the parametric
drive is turned on for time tcoupl, coupling the target and ancilla
oscillators with the unitary UPP. Finally, the parametric drive is turned
off and the ancilla oscillator is coupled to a lossy oscillator. From this
lossy oscillator, the state is released into a transmission line, where it
is amplified and measured.

053840-3
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FIG. 2. Wigner functions of states in the target and ancilla oscillators and probability distribution P (β ) over measurement results of
the heterodyne measurement of the ancilla oscillator mode. The initial state of the ancilla oscillator is the coherent state |α = √

3〉. The
measurement result is the one with maximum likelihood with respect to P (β ) (marked by a yellow cross). Top row: Starting with a vacuum
state (�q = �p = 1) in the target mode, a measurement of Sq results in an effective squeezing of the final state of �q = 0.18, while �p = 1 is
unchanged. The final state is most like the GKP |−〉 state for the following reason: We start with a vacuum state—which is closest to the +1
eigenstate of X . Besides, the measurement result gives an eigenvalue of Sq close to +1 so we are in the GKP code space. In order to center the
outgoing state, we apply an additional unconditional displacement equal to Z−3 which changes the initial eigenvalue +1 of X to −1. Bottom
row: the initial state in the target mode is a squeezed vacuum state with �q = 3 and �p = 1/3. The effective squeezing of the final state
�p = 1/3 is again unchanged, while �q = 0.18 for the outgoing state. The resulting state is squeezed with respect to both quadratures. Now
the final state is close to a GKP |−〉 displaced by half a logical, i.e., X −1/2, for the following reason. Again, we started with a squeezed vacuum
state, which is closest to the +1 eigenstate of X and the unconditional displacement is Z−3, which changes the eigenvalue to −1. However, the
measurement result now gives an eigenvalue of Sq close to −1, indicating that the state is shifted out of the code space, by half a logical X .

It follows that the coherent state |α〉 in the ancilla oscillator
rotates by an amount which depends on the eigenvalue phase
of Sq. Thus, measuring the angle over which the state |α〉
rotates corresponds to measuring the eigenvalues of Sq. A
coherent state |α〉 naturally has an angle uncertainty which
gets larger with smaller amplitude |α|, putting an α-dependent
bound on the accuracy with which one can project onto an
eigenstate of Sq. Clearly, as the coherent amplitude increases,
one can better resolve its phase and thus the more bits of infor-
mation one gets about the eigenvalue phase of the measured
operator Sq.

After the photon-pressure interaction is turned off and
the oscillators no longer interact, the state of the ancilla
oscillator has to be converted to a traveling signal so
that the quadratures of the rotated coherent state can be
read out via the standard “heterodyne” measurement chain
[20], allowing one to determine the phase of the coherent
state. We do not claim any original contribution for such
a release mechanism, but discuss known previous work in
Sec. II C.

In Sec. III A, we formally model the effect of the whole
measurement protocol: In Fig. 2, we show the effect of the
protocol using a coherent state with mean photon number n̄ =
3. If we integrate the Wigner function of the outgoing state
over the p coordinate, we obtain the probability distribution
over q which is clearly peaked, with periodicity 2

√
π .

Note that the support of these peaks lies within the uncer-
tainty of the original vacuum state: The measurement of Sq

does not enlarge the q support of the input wave function; it
only applies a modular structure to it. The measurement of Sq

does enlarge the p support of the input wave function as is
visible from the Wigner function of the outgoing state. Thus,
if we were to follow the measurement of Sq by a measurement
of Sp, we would obtain the signature gridlike Wigner function
of an approximate GKP state. Alternatively, we start with a
squeezed state (squeezing in p) and only measure Sq (see
the bottom row in Fig. 2) to obtain a gridlike GKP Wigner
function.

1. GKP qubit readout

The preparation of a GKP grid state should also be ac-
companied by a mechanism for measuring the GKP qubit in
the Z or X basis. A useful fault-tolerant Z-measurement is a
measurement in which the quadrature q is measured so that
finding the quadrature q closer to an even (respectively, odd)
multiple of

√
π leads to inferring the state |0̄〉 (respectively,

|1̄〉). A simple method is to use the photon-pressure coupling
and replace Sq by the logical operator Z to nondestructively
measure Z . If tcoupl is turned on for half the time, such that
the ancilla oscillator is either not rotated (Z ≈ 1) or rotated
by π (Z ≈ −1), then subsequent release and measurement of

053840-4



REALIZING MODULAR QUADRATURE MEASUREMENTS VIA … PHYSICAL REVIEW A 101, 053840 (2020)

the state of the ancilla oscillator reveals the eigenvalue of Z .
Readout of the Pauli X operator could proceed analogously.

2. Why probing the ancilla oscillator’s frequency reveals the
wrong information

Our scheme is demanding in requiring a high-Q ancilla
oscillator (low κc) whose state should be measured through
a tunable release or switch mechanism (switching to higher
κopen) followed by a circuit-QED heterodyne measurement.
The photon-pressure coupling induces a frequency shift in the
ancilla oscillator which depends on the quadrature of the tar-
get oscillator. We could imagine measuring such a frequency
shift by probing the ancilla oscillator with a microwave tone as
is done in the standard dispersive measurement in circuit-QED
[21], without switching the effective decay rate of the ancilla
oscillator from low to high for state release. Here we briefly
comment on the fact that this method will not work, as we will
obtain direct rather than modular information about the target
oscillator quadrature q̂T .

Imagine we would weakly apply a microwave drive to the
ancilla oscillator (decay rate κ) at some frequency ω, starting
at some initial time t = 0. Also at time t = 0, we have turned
on the photon-pressure coupling so that the resulting Hamilto-
nian of ancilla and target oscillator is HPP = (ωA + gq̂)â†â in
the rotating frame of the target oscillator at angular frequency
ωT . We can thus view the photon-pressure coupling as an
effective change in the resonance frequency of the ancilla
oscillator, which leads to a phase change of the outgoing field
as compared to the incoming field. For simplicity, we take
the weak drive to be modeled by a plane-wave input field
bin[ω] at frequency ω. The input-output formalism (see, e.g.,
Refs. [22,23]) gives the phase of the reflected output field as

b̂out[ω] = eiϕ(q̂,ω)b̂in[ω],

exp(iϕ(q̂, ω)) = κ/2 + i(ωA + gq̂ − ω)

κ/2 − i(ωA + gq̂ − ω)
.

If we choose ω = ωA, i.e., drive the ancilla oscillator at its
resonant frequency, then we see that the phase shift ϕ(q̂, ωA)
goes from −π at large negative eigenvalues q of q̂ to π at
large positive eigenvalues q and displays no periodicity in q
since ϕ = 2 arctan(2gq̂/κ ). These considerations imply that
the modular measurement of q̂ should take place in a very
non-steady-state regime where the ancilla resonator is first
excited to create the state |α〉 and decay of this state should be
strongly suppressed during the photon-pressure interaction, as
this decay will leak information about q̂. We discuss the effect
of photon loss in the ancilla oscillator during the interaction
in Sev. IV A.

II. CIRCUIT-QED SETUP

In this section, we discuss how a modular quadrature
measurement can be realized. We start with a short review of
previous work that realizes a photon-pressure or longitudinal
coupling. We then introduce and analyze an electric circuit
that achieves strong coupling. Finally, we discuss how the
state in the ancilla oscillator can be released into a transmis-
sion line for readout.

A. Previous circuit-QED work on photon-pressure
and longitudinal coupling

When the â mode of a photon-pressure coupling of the
form q̂â†â is very anharmonic and is used to represent a qubit,
the photon-pressure coupling can be recognized as a longitu-
dinal coupling q̂(I − Z )/2 with Pauli Z of the qubit. In this
incarnation, the qubit induces a state-dependent displacement
on the target oscillator which can be used for (improved) qubit
readout [24–26]. Note that in such settings the roles of ancilla
and target are reversed as compared to the setting of the GKP
code, i.e.,the target oscillator is used for information gathering
about the qubit instead of the target oscillator being used to
store a GKP state.

In optomechanical systems, the coupling q̂â†â, with q̂ the
position of the mechanical oscillator and â the annihilation
operator of an optical cavity field, is arrived at naturally. In
the rotating frame of these oscillators, this coupling averages
out without further time-dependent driving. In a linearized
regime, where one expands around a driven optical field 〈â〉 =
α(t ), the coupling can be used to generate an effective beam
splitter interaction with a strength depending on |α|2 [27,28].
Although there has been a wide range of experimental setups
and studies, the so-called single-photon coupling regime, g �
κA, κT , i.e., the bare coupling strength exceeds the photon loss
rate of both oscillators, has so far not been achieved [27]. One
difficulty is that in a traditional optomechanical setting, the
loss rate of the optical oscillator is relatively large, while the
mechanical oscillator, being low in frequency, is susceptible
to thermal excitations. Working with two oscillators both
at some middling frequency (GHz range) can resolve this
conundrum.

A good candidate to achieve a single-photon coupling at
microwave frequencies is the so-called simulated optome-
chanical coupling, where a loop with two Josephson junctions
is used to couple two oscillators. The coupling of two coplanar
waveguide resonators via such a loop has been analyzed by
Johansson et al. [29], and two lumped element circuit variants
have been implemented experimentally [28,30].

We note that the experimental coupling achieved in
Ref. [28] is not in the so-called single-photon regime, i.e.,
the photon loss rate of the ancilla oscillator is larger than the
coupling strength, κ � g. It will be necessary to be in this
regime for our use of this coupling.

B. Circuit analysis and approximations

To achieve the desired photon-pressure coupling, we start
with the electric circuit shown in Fig. 3, neglecting the switch-
able coupling to the external world. The GKP state will be
encoded in the (low-frequency) target oscillator, shown on the
right in the figure. It is coupled via a Josephson junction to
an ancilla oscillator shown in the left. The two oscillators are
almost harmonic, with the parameters chosen such that the
instantaneous potential of the ancilla oscillator depends on the
current state of the target oscillator while the potential of the
target oscillator is unchanged. The ancilla oscillator dynamics
is thus tracking the lower frequency, slow and “heavy,” target
oscillator dynamics. The change of potential changes the
resonance frequency of the ancilla oscillator depending on
the state of the target oscillator, enabling the photon-pressure
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FIG. 3. Electric circuit realizing the photon-pressure coupling.
The target oscillator (label T , right) is coupled to the ancilla oscillator
(label A, left) via a Josephson junction. The coupling between the
ancilla oscillator and the readout line is tunable, and only turned on
during readout. The loop formed by the Josephson junction and the
inductances LA, LT is threaded by an external flux ext (t ), which is a
classical, time-dependent variable. Possible implementations of the
readout switch are discussed in Sec. II C.

coupling. The concept is similar to the approach used by
Johansson et al., where the effective length of the ancilla slit
line resonator depends on the state of the target oscillator [29].

After the interaction between ancilla and target oscillators
is turned off, we envision that a coupling between trans-
mission line and ancilla oscillator is turned on, enabling
fast readout. We note that this electric circuit has also been
analyzed (operated in a different regime with very different
parameters as compared to those in Table I) in Ref. [31], with
the aim to control individual Fock states as a qubit.

We envision that this circuit is realized as a supercon-
ducting lumped element circuit, using, for example, plate
capacitances for getting a large CA and CT , and wire structures
made of superconducting material as inductance (similar to
the circuits in Refs. [28,30]).

Following a standard circuit analysis, see Appendix A, we
find that the system Hamiltonian is approximately

H ≈ T + U,

T = 4ECA

(
1 − ECA

ECJ

)
ŷ2

A + 4ECT

(
1 − ECT

ECJ

)
ŷ2

T ,

U = ELA x̂2
A

2
+ ELT x̂2

T

2
− EJ cos(x̂T − x̂A − xext (t )).

Here, we defined dimensionless conjugate variables x̂i =
2π̂i
0

, ŷi = 0Q̂i

2π
, with [x̂i, ŷi] = iδi j and a dimensionless

variable

xext (t ) = 2πext (t )

0
,

for the flux drive. We have also defined the charging energies
ECm = e2/(2Cm) and inductive energies ELm = 1/(4e2Lm) for
m = T, A, where e is the elementary charge. The only approx-
imation taken to derive the Hamiltonian is ECJ � ECA , ECT :
Terms involving the charging energy of the Josephson junc-
tion are only taken into account up to the first order. We note
that the effect of the time-dependent flux drive xext (t ) can also
be realized with a microwave drive, see details in Table I. We
also note that this Hamiltonian acts in the same way on the
target and ancilla oscillators (as can also be seen from the
circuit itself). This can be solved with a suitable choice of
system parameters; see Table I.

In order to obtain the desired photon-pressure interac-
tion, we expand the potential energy U (x̂A, x̂T ). Because we
envision inductive and capacitive parameters such that the
charging energies ECA 	 ELA and ECT 	 ELT (see Table I),
both x̂A and x̂T will be close to the minimum of their respec-
tive potentials. Furthermore, because the inductive energies
ELA , ELT � EJ , these minima will be close to zero and we can
expand the potential U (x̂A, x̂T ) around (x̂A, x̂T ) = (0, 0). Note
that this expansion is used for different values of xext (t ) for
which the minimum of the cos() potential does not occur at
x̂A = 0, x̂T = 0. We discuss this approximation in more detail
in Appendix B.

Following the circuit analysis further, we introduce cre-
ation and annihilation operators â†, â (b̂†, b̂) for the ancilla
and target modes respectively. We also introduce a dimension-
less constant

ξm =
(

2ẼCm

ẼL j

)1/4

,

where ẼCj is the charging energy with a correction due to
the capacitance CJ of the Josephson junction and ẼLm is the
inductive energy including the flux dependence; see Eq. (A4)
for the details.

In order to achieve the desired asymmetric coupling, we
assume that ξA � ξT . Because the inductance of both systems
is assumed to be comparable, this implies that ωA � ωT ; see
Table I. In the rotating frame of both oscillators (at their
frequencies ωm) we use the rotating-wave approximation; i.e.,
we only keep terms which are inherently time independent
or which are flux dependent and oscillate with frequency ωT

(compare the end of Appendix A):

HRWA = EJ cos(xext (t ))
{

ξ 2
Aξ 2

T

2
(â†â + b̂†b̂ + 2â†âb̂†b̂) + ξ 4

A

4
[â†â + (â†â)

2
] + ξ 4

T

4
[b̂†b̂ + (b̂†b̂)

2
]

}

+ EJ sin(xext (t ))
{
ξT

(
1 − ξ 2

A

2
− ξ 2

Aâ†â

)
(b̂†eiωT t + b̂e−iωT t ) − ξ 3

T

6
[b̂†eiωT t + b̂†b̂(b̂†eiωT t + 2b̂e−iωT t ) + H.c.]

}
. (4)

We then approximate this Hamiltonian using ξA, ξT 	 1, dropping all fourth-order terms in ξi. We also assume that the system
parameters are chosen such that ξA � ξT , allowing us to also omit the ξ 3

T term. Because the inductance of both systems is
assumed to be comparable, this implies that ωA � ωT ; see Table I. With these approximations, the Hamiltonian coupling on the
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target and ancilla oscillators with the drive turned on is given by

HRWA ≈ EJ sin(xext (t ))
[
ξT

(
1 − ξ 2

A

2

)
(b̂†eiωT t + b̂e−iωT t ) − ξT ξ 2

Aâ†â(b̂†eiωT t + b̂e−iωT t )

]
. (5)

Although the prefactor ξ 3
T is small, this term is still relevant because it will be made resonant by any drive that enables a

photon-pressure coupling in the rotating frame. In Sec. IV D, we will explicitly discuss the effect of the ξ 3
T term. Modulo its

time dependence, the first term of this final Hamiltonian is a known displacement that commutes with the photon-pressure
coupling, the second is the traditional photon-pressure coupling Hamiltonian ∼â†â(b̂†eiωt + b̂e−iωt ) similar to the coupling in
Refs. [28,29].

If the external flux is set to some constant xext,0, only the time-independent terms remain in Eq. (4) and the resulting
Hamiltonian is given by

Hoff ≈ EJ cos(xext,0)

{
ξ 2

Aξ 2
T

2
(â†â + b̂†b̂ + 2â†âb̂†b̂) + ξ 4

A

4
[â†â + (â†â)

2
] + ξ 4

T

4
[b̂†b̂ + (b̂†b̂)

2
]

}
. (6)

We note that there is no photon-pressure coupling between
the two modes if the external flux is constant; the only

remaining nonlinear terms are self-Kerr [∼(â†â)
2
, (b̂†b̂)

2
] and

cross-Kerr (∼â†âb̂†b̂). The dependence of the Hamiltonian on
xext,0 means that these unwanted interactions can be turned off
by setting xext,0 = π/2, i.e., ext = 0/4. When the photon-
pressure coupling should be on and xext is changing over time,
we do not wish to have these self-Kerr and cross-Kerr terms.
We will take a flux drive so that xext (t ) oscillates periodically
around π/2 and this then directly leads to the terms propor-
tional to cos(xext (t )) averaging out; see Appendix C 1 and
Fig. 6.

To turn the photon-pressure coupling on, we assume a drive
such that sin(xext (t )) = cos(ωT t ). At first glance, such a drive
seems to be difficult to achieve, as it would require a steadily
increasing flux. However, one can use the symmetry of the
sine around π/2 to obtain an oscillating function. The drive is
in fact a triangle wave with frequency ωT /2 ∼ 250 MHz, an
excellent approximation can easily be generated with standard
equipment; see details in Sec. C 1. We insert this drive choice
in Eq. (5) and drop all terms which remain time dependent to
obtain the desired Hamiltonian

Hon ≈ EJ

2
ξT

(
1 − ξ 2

A

2

)
(b̂† + b̂) − gâ†â(b̂† + b̂). (7)

where we defined the photon-pressure coupling strength g =
1
2 EJξT ξ 2

A . We note that, besides the photon-pressure coupling,
the Hamiltonian contains an additional displacement on the
target oscillator. Since the displacement commutes with the
coupling, it does not alter the effect of the coupling and a
systematic error on the target oscillator can be seen which can
be undone by a counterdisplacement.

The Hamiltonian in Eq. (7) can be easily adjusted to
a photon-pressure coupling with any rotated quadrature by
choosing an appropriate offset between external flux and the
target oscillator. For example, the choice xext,sin(t ) = xext (t +

π
2ωT

) generates a Hamiltonian of the form H ∼ iâ†â(b̂† − b̂).

The Hamiltonian Hon realizes UPP = Sâ†â
q (modulo the un-

conditional displacement), where the photon number operator
only has non-negative eigenvalues. Therefore, if we view this
interaction as an ancilla-oscillator-dependent displacement
on the target oscillator, all displacements Sâ†â

q point in the
same direction, and the postmeasurement state in the target

oscillator will be off-center in phase space and contain an
unnecessarily high number of photons.

In order to reduce the photon number, one can apply a
displacement drive such that the unconditional displacement
during the interaction is S−〈â†â〉/2

q = Z−〈â†â〉. The idea is the
same as for phase estimation when using qubits as ancillas;
see Ref. [12]. We use such a counterdisplacement in all
numerical simulations in this paper.

One thing to observe is that the frequency of the ancilla
(and to a lesser amount the target) oscillator depends on the
flux drive through Eq. (A5). Hence, we are working in a flux-
dependent rotating frame which has to be carefully tracked
(in order to read out the phase of the ancilla oscillator and do
additional counterdisplacements on the ancilla oscillator).

In some settings, it might be desirable to use a drive
sin(xext )(t ) = 1 − δ + δ cos(ωT t ), 0 < δ � 1. It is possible to
do so, and a drive with δ < 1 is easier to generate, but this
costs some coupling strength; see Appendix C 1 for details.
In the main text, we will use the maximal possible coupling
strength, i.e., δ = 1 unless mentioned otherwise.

The values for resonance frequency, coupling strength, and
the leading-order error terms for a typical setup are given
in Table I. In order to maximize the coupling strength, it
is beneficial to reduce the Josephson energy while simulta-
neously increasing the inductances of both circuits in order
to keep EJ 	 ELm . Furthermore, it is beneficial to make the
inductance of the target oscillator smaller than that of the an-
cilla oscillator: The ratio between the third-order nonlinearity
and the photon-pressure coupling strength is proportional to
the ratio of the inductances. For a Josephson energy around
10 GHz and an inductance of the ancilla oscillator around
2 nH, a coupling strength g/(2π ) well above 10 MHz can be
achieved. Note that the Kerr and cross-Kerr effects on both
oscillators might be large during the interaction due the cos()
term in Eq. (4); however, the term oscillates in sign due to the
drive and will therefore be echoed out (see Appendix C 1).

C. Release of ancilla oscillator state

In order to meet both the demands of fast read-out and low
photon loss, it is desirable to be able to effectively turn the
ancilla oscillator decay rate from low to high. There are a few
ways to achieve this, for example, with a tunable inductive
coupling [32], a frequency tunable oscillator [33], a pump-

053840-7



DANIEL J. WEIGAND AND BARBARA M. TERHAL PHYSICAL REVIEW A 101, 053840 (2020)

tunable beam splitter to a lossy oscillator [34], or a parametric
coupler [35]. Note that most of these references work toward
catch-and-release schemes; hence, if the tunable coupling is
simply used for readout the achieved fidelities can be expected
to be larger. In particular, the Q-switch scheme in Ref. [34] in
which a pump mode is used to temporally frequency-match
the ancilla oscillator with a lossy oscillator seems attractive.
In this work, the ratio between the closed and open decay
rates is about 1000: The authors decrease the effective lifetime
of an oscillator from about 0.5 ms to 0.5 μs, with efficiency
exceeding 98%. The paper reports that the coherence and
phase of oscillator states with up to five photons can be well
resolved.

In the protocol presented here, it is also possible to use
the fact that the ancilla oscillator has a tunable frequency. If
a lossy fixed-frequency oscillator is placed between transmis-
sion line and ancilla mode, the ancilla mode can be brought
into resonance with it, increasing its decay rate. Note that
this idea is as in Ref. [33], but reversing the roles of the
frequency-tunable and fixed-frequency oscillator. The lossy
oscillator thus needs to be off-resonant with ancilla mode,
effectively acting as a Purcell filter, except during readout.
An advantage of this approach is that it does not require
any further circuit elements. As an example, consider an
ancilla oscillator with properties as in Table I. In this case,
the resonance frequency is between f (xext = 0) = 9.75 GHz
and f (xext = π ) = 10.25 GHz. If the lossy resonator has
resonance frequency 9.75 GHz and we want lossy oscillator
and ancilla oscillator to be separated by at least 250 MHz,
we require that π/2 � xext � π . This can be achieved by
modifying the drive during the interaction; see Appendix C 1.
After the interaction time, we set the external flux to xext = 0
in order to bring the ancilla oscillator into resonance with the
lossy oscillator.

III. MODELING THE MODULAR QUADRATURE
MEASUREMENT

In this section, we derive the effective squeezing due to
the measurement protocol, averaged over all possible mea-
surement outcomes, as a function of the number of photons
in the ancilla oscillator. Our measurement model could be
made more precise by including a description of the release
mechanism discussed in Sec. II C, but this does not change the
main idea as long as the coherent state is heterodyne measured
at the end. In Appendix E, we look at another aspect of the
actual measurement as it is performed in the circuit-QED
laboratory; namely the measurement outcome is only obtained
as a time-integrated process on outgoing radiation which is
leaking out of the lossy oscillator (which is in turn coupled
to oscillator A via the switch discussed in Sec. II C). We
verify that using the correct time-integration filter leads to no
additional noise, resulting in the same effective squeezing.

A. Effective squeezing

We will analyze a measurement of the Sq stabilizer using
the photon-pressure interaction UPP in Eq. (3). A similar
measurement of Sp will commute with the measurement of
Sq and will have identical features.

After the photon-pressure interaction with the target oscil-
lator, the goal is to measure the Husimi Q function Q(β ) =
1
π

〈β| ρ |β〉 of the ancilla oscillator in single-shot fashion
[20]. Such a heterodyne measurement of an oscillator can
be modeled as a projective measurement in the overcomplete
basis of coherent states [22]. The resulting coherent amplitude
β has a real Re(β ) (∝ I) and imaginary part Im(β ) (∝ Q)
and will leave some target oscillator state ρβ . Using this
measurement outcome β = |β| exp(iϕ), one infers that the
eigenvalue of Sq is exp(iϕ). The uncertainty in this phase is
captured by the phase variance which relates directly to the
effective squeezing of Sq.

We assume that the initial state of the ancilla oscillator
is a coherent state |α〉 with α ∈ R. If we would apply a
heterodyne measurement directly to a coherent state |α〉, we
expect that its outcome β ∈ C will be concentrated around
α. In our scenario, when we apply such a measurement after
the interaction UPP, we obtain a measurement operator Mβ ≡
Mβ (α) corresponding to measurement result β as

Mβ (α) = 1√
π

〈β|A UPP |α〉A .

We can evaluate the measurement operator explicitly, using
that 〈β| α〉 = exp(− 1

2 |α − β|2) exp[ 1
2 (β∗α − βα∗)], giving

Mβ = 1√
π

〈β| αei2
√

π q̂T 〉

= 1√
π

exp

[
α

2
(β∗ei2

√
π q̂ − βe−i2

√
π q̂)

− 1

2
|αei2

√
π q̂ − β|2

]
.

When we apply this to an initial input state ρin in the tar-
get oscillator, the output state will be ρβ = MβρinM†

β/P (β ).
The probability for outcome β with the state ρin =∫∫

R2 dq dq′ ρin(q, q′)|q〉〈q′| as input is given by

Pρin (β ) = Tr(M†
βMβρin )

=
∫
R

dq ρin(q, q) exp(−|αei2
√

πq − β|2), (8)

showing that β is concentrated around the rotated α. Figure 2
shows this probability Pvac(β ), starting with n̄ = |α|2 = 3 and
ρin, the vacuum state. It also shows the Wigner function of
the resulting state ρβ for which Pvac(β ) is maximal. Using the
definition ϕ ≡ arg(β ), an alternative way of writing Mβ is

Mβ = 1√
π

e− 1
2 (|α|2+|β|2 ) exp

(
K|β|

2
ei(2

√
π q̂−ϕ)

)
, (9)

defining the concentration parameter

K|β| = 2|αβ|. (10)

This leads to

M†
βMβ = 1

π
e−|α|2−|β|2 exp[K|β| cos(2

√
π q̂ − ϕ)]. (11)

Because the measurement outcome is random, we are inter-
ested in the mean effective squeezing of the final state ρβ , av-
eraged over all possible outcomes β. This is hard to compute
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FIG. 4. Purple: We numerically simulate the average amount of
squeezing �q [see Eqs. (1)] obtained using a coherent state |α〉 with
n̄ = |α|2 photons to measure Sq on a vacuum input state. In more
detail, we generate a β and ρβ and calculate �q(ρβ ); the error bars
indicate the standard deviation over different measurement results
β. Blue: Mean effective squeezing estimate according to Eq. (13),
using the Villain approximation to evaluate the expectation value
for the sharpness on a vacuum state. Green: A simple approximate
expression for the mean effective squeezing is 〈�q〉 ≈ 1/

√
4π |α|2.

Yellow: A lower bound on the green curve which replaces the average
value 〈|β|〉 by

√〈|β|2〉. Overall, the mean squeezing parameter goes
down as 1/

√
n̄, where n̄ is the average number of photons in the

ancilla state used to implement the modular q measurement.

in the general case, although it can easily be evaluated numer-
ically; see Fig. 4. The details of the numerical simulations and
an error analysis are presented in Appendix D. Analytically,
even for a vacuum state input, the computation of the mean
effective squeezing 〈�q〉 = ∫

C
d2β �q(ρβ ) is nontrivial. For

this reason, we consider the mean or average sharpness which
equals |TrSqρβ | averaged over different outcomes β, that is,
we focus on estimating

〈|TrSq|〉 ≡
∫
C

d2β P (β )|TrSqρβ |. (12)

It should be observed that
∫
C

d2β |TrSqρβ | �= | ∫
C

d2β

TrSqρβ | = |TrSqρin| as TrSqρβ is complex.
For the special case where the initial state is the vacuum

state, it is possible to evaluate Eq. (12) explicitly. In this case,
we have

〈|TrSq|〉 ≈
∫ ∞

|β|c
d|β| e−π

π
√

2K|β|π
e−(|α|−|β|)2

×
∫ π

−π

dϕ

∣∣∣ϑ3(iπ − ϕ

2
, e−π−1/(2K|β| ) )

∣∣∣; (13)

see Appendix F for the derivation. Combining this result
with the expression for �q, we obtain the blue curve in
Fig. 4.

B. Measurement squeezing strength

If the initial state in the target oscillator is arbitrary, it is
not possible to analytically evaluate the mean sharpness in
Eq. (12). Moreover, we are interested in a quality measure
of the measurement protocol which is independent of the
initial state. To address this, we can use that the parameter
K|β| has a very simple relation to the effective squeezing.
If we assume an (unphysical) uniform distribution over q
as initial state, then the final state of the protocol will be
of the form |ψβ〉 ∝ ∫

R
dq Mβ |q〉. Using Eq. (11), we see

that the outgoing wave function has probability distribution
P (q) ∝ M†

βMβ , proportional to a von Mises probability den-
sity PV M (x) with angle variable x = 2

√
πq mod 2π , mean

ϕ, and concentration K|β|. The variance of the von Mises
distribution is approximately 1/K|β| for large K|β|. If we
convert this to an effective squeezing in q, we therefore have
�q ≈ √

1/(2πK|β|).
Because the average concentration is given by 〈K|β|〉 =

2α〈|β|〉 due to Eq. (10), computing the expected value for
|β| gives a measure of how effectively squeezed the outgo-
ing state will be. Not surprisingly, one can show (see the
mathematical details in Appendix G), that 〈|β|〉 ≈ |α| so that
�q ≈ 1/

√
4π |α|2. Since 〈|β|〉 �

√
〈|β|2〉, we can also use

a squeezing lower bound which reads
√

1/(4π |α|
√

1 + |α|2)
using that 〈|β|2〉 = 1 + |α|2 (see Appendix G). Figure 4
shows that these state-independent bounds are in good agree-
ment with numerics as well as our analytical approximation
when the input state is the vacuum state. In conclusion,
the amplitude of the measurement result |β| correlates with
the accuracy of the measurement: the phase gets more pre-
cisely resolved the larger the measured coherent state is.
Thus, the expectation value 〈|β|〉 gives an indirect but easily
accessible way to estimate the effective squeezing by the
measurement.

IV. NOISE AND IMPERFECTIONS

As compared to a perfect heterodyne measurement of the
rotated coherent state in the ancilla oscillator, there will be
several sources of loss and imperfections in the modular
quadrature measurement. In the sections below, we discuss
the effect of photon loss on the ancilla and target oscillators
as a change in the effective squeezing parameters. Impor-
tantly, photon loss on the ancilla oscillator during the photon-
pressure coupling is an immediate cause for feedback dephas-
ing errors, similar as when preparing a grid state via coupling
to a transmon ancilla qubit [12]. Loss during read-out in the
heterodyne measurement chain simply reduces the effective
α that is used in the protocol, diminishing the strength of the
measurement.

After the discussions on photon loss, we investigate the
leading nonlinear term acting on the target oscillator in
Sec. IV D. As the nonlinear term only acts during the interac-
tion of the target and ancilla oscillators, it acts as an additional
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unitary operation. We discuss and numerically simulate its
effect as a change of the effective squeezing parameters.

Finally, we investigate the effect of flux noise during the
interaction, as the coupling Hamiltonian between the tar-
get and ancilla oscillators depends on an external flux. A
small, quasistatic flux offset has the effect that the measured
quadrature is slightly rotated, i.e., a flux offset ε means
that the photon-pressure Hamiltonian is changed to H̃PP ∼
â†â(cos(ε)q̂ ± i sin(ε) p̂). We will see that the parametric
drive already provides a first-order correction to this type
of noise because the sign in the modified Hamiltonian H̃PP

changes with frequency ωT , which is large compared to
1/tcoupl.

A. Photon loss in ancilla oscillator during
photon-pressure interaction

Imagine that prior to the heterodyne measurement to mea-
sure Sq, but during the action of the photon-pressure cou-
pling UPP, photon loss occurs from the ancilla resonator at
rate κc. This error will feed back to the target oscillator
as a dephasing error in the |q〉 basis and such a dephasing
error will affect �p. In addition, photon loss affects the
quality of the Sq measurement itself by effectively reducing
the amplitude of the coherent state which is used in the
measurement.

We assume that we are in the targeted regime, in which
there is at most a single photon loss error in a time tcoupl, or
κctcoupl|α|2 	 1. Let γ = κctcoupl. The no-photon loss opera-
tor E0 = 1 − γ n̂/2 ≈ exp(−γ n̂/2) commutes with the evo-
lution of HPP, but the single-photon loss operator E1 = √

γ a
does not. Hence, the state of ancilla and target oscillator at

time t is

ρ(t ) = e−γ n̂/2−i2
√

π q̂n̂ρin ⊗ |α〉〈α| e−γ n̂/2+i2
√

π q̂n̂

+ κc

∫ tcoupl

0
dt A(t )ρin ⊗ |α〉〈α| A†(t ),

A(t ) = e−i(2
√

π−t
√

2g)q̂n̂ae−it
√

2g q̂n̂. (14)

When we apply the heterodyne measurement to the ancilla
oscillator and obtain outcome β, we thus transform ρin as

ρin → ρβ = (1 − α2γ )Mβ (αe−γ )ρinM†
β (αe−γ )

+ α2γ

tcoupl
Mβ (α)

[∫ tcoupl

0
dt e−i

√
2gq̂tρinei

√
2gq̂t

]
M†

β (α).

The last term can be viewed as applying, with probability
∼α2γ , a mixture of shift errors with an average shift of
strength

√
2gtcoupl/2 = √

π . This dephasing feedback error
tends to localize the q quadrature, hence affecting the extent
to which the state can be an eigenstate of Sp or X . The average
feedback shift error upon photon loss is a logical shift Z ,
immediately leading to the loss of the logical information. We
can explicitly look at the effect of photon loss when ρin =
|vac〉 〈vac|. Since the expression for TrSqρβ for any input
state ρin only involves diagonal terms |q〉〈q|, the dephasing
in the q basis due to photon loss has no effect. This means
that we can view such loss as occurring after the interaction,
simply leading to |α〉 → |α exp(−γ /2)〉. This loss affects the
measurement quality in the same way as any readout loss;
see Sec. IV C. We can consider the effect of the feedback
error on the effective squeezing in p̂, �p as follows. After the
Sq measurement with outcome β, we consider the expected
eigenvalue sharpness of Sp (or, similarly X ). For this, we need
to evaluate

∫
C

d2β |TrSpρβ | =
∫
C

d2β

∣∣∣∣(1 − α2γ )TrSpM†
β (αe−γ )M†

β (αe−γ )ρin

+ α2γ Tr

[
1

tcoupl

∫
dt exp(i

√
2gq̂t )Sp exp(−i

√
2gq̂t )

]
M†

β (α)Mβ (α)ρin

∣∣∣∣. (15)

The commutation relation exp(iuq̂) exp(−i2
√

π p̂) =
exp(−i2

√
π p̂) exp(iuq̂) exp(i2

√
πu) can be used to do

the averaging integral over t which leads to the contribution
from the single-photon loss term to be zero. This essentially
means that upon the loss of an actual photon the eigenvalue
of Sp is fully randomized. The expected value for X , i.e.,∫
C

d2β |Xρβ | suffers similarly; i.e., upon the actual loss of
a photon, the eigenvalue of X gets fully randomized. The
randomization leads to∫

C

d2β |TrSpρβ |

= (1 − α2γ )
∫
C

d2β |TrSpM†
β (αe−γ )M†

β (αe−γ )ρin|

= (1 − α2γ )|TrSpρin|,
where the last equality follows immediately when the wave
function of ρin is real in the q basis (as is the case for a

vacuum state). One can also observe that | ∫
C

d2β Spρβ | =
(1 − α2γ )|TrSpρin|, since Sp no longer commutes with the Sq

measurement due to the photon loss.
In conclusion, if we started the modular measurement of q

with a state with squeezing parameter �p < 1, the feedback
error due to photon loss will reduce the effective squeezing to

�̃p ≈
√

α2γ

π
+ �2

p > �p.

B. Comparison with sequential-qubit phase estimation
measurement and photon loss on target oscillator

Previous work has analyzed how to measure the eigenvalue
of Sq (or Sp) via coupling the target oscillator with a sequence
of qubits, using a qubit-controlled displacement interaction,
followed by qubit measurement. In this scheme, each qubit
measurement (via a readout oscillator) provides at most 1 bit
of information. For this sequential qubit readout, one can use
a tunable longitudinal interaction between transmon qubit and
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storage cavity of the form
√

2gI−Z
2 q̂. This form of the coupling

implies that the interaction time tcoupl is the same value as
in the photon-pressure protocol with a large coherent state.
If the ancilla oscillator is harmonic, one can use the vacuum
state |0〉 and Fock state |1〉 as the two-qubit states. Hence,
the longitudinal interaction is merely the photon-pressure
coupling applied to these Fock states. However, the input state
of this sequential scheme and the subsequent measurement of
the qubits cannot be directly mapped onto the photon-pressure
scheme using a coherent state.

To compare the sequential qubit scheme with the proposed
modular quadrature measurement, we have to separately dis-
cuss the two dominant sources of error, photon loss on the
ancilla oscillator, and photon loss on the target oscillator. With
respect to photon loss on the ancilla oscillator, an important
possible advantage of the photon-pressure scheme proposed
is that a single oscillator measurement is used instead of a
sequence of qubit measurements, making it possible that the
photon-pressure scheme is much faster. This would lead to
lower photon loss error rate on the target oscillator (as it is
waiting while the ancillary system is being measured). To
compare times, in Ref. [34] the release and measurement
take time O(1) μs, while in the same setup the high-fidelity
single transmon qubit measurement took a similar amount
of time. If we use a coherent state with n̄ = 3, Fig. 4 shows
that one can obtain �q ≈ 0.18 assuming no losses. Data from
Ref. [15] show that one needs at least M = 12 rounds to get
to �q = 0.2. Also, in Ref. [4], a grid state was stabilized
after about 20 rounds of qubit measurements of duration
600 ns (including losses) to σ = 0.16, which corresponds to
� = 0.22 here.

With respect to photon loss on the ancilla qubit or oscilla-
tor, one can make the following observations. First, note that
in the sequential execution of a protocol using ancilla qubits,
arguments can be made that the squeezing parameter �q will
decrease as 1/

√
M, where M is the number of rounds in phase

estimation protocol [12,15]. Then, as in the photon-pressure
protocol, there is a probability γ = κctcoupl for amplitude
damping (i.e., photon loss) and hence a feedback error which
fully randomizes the eigenvalue of Sp or X for each qubit
measurement. Hence, after M such rounds, the probability for
a Z error scales as ∼γ M ∼ γ /�2. In our proposed strong
measurement scheme, the error probability is γ n̄ ∼ γ /�2,
showing that both schemes effectively have the same tradeoff.
It is thus a matter for what n̄ one has κctcoupln̄ 	 1 which
determines whether a strong measurement with n̄ > 1 is more
effective.

In this context, it should also be noted that it is not the aim
for a GKP state preparation protocol to necessarily prepare the
highest possible �. Photon loss on the target oscillator during
the protocol and during measurement of the ancillary system
will lead to drift and diffusion of the coordinates of the Wigner
function W (q, p): A GKP state with smaller � has more
photons, incurring a larger error probability due to photon
loss. Based on the interplay between these two mechanisms,

Appendix S4.1 in Ref. [4] suggests that σ = 1
2

√
κcT

2 , with T
the total duration of the Sp and Sq measurement protocol, is
a target value for squeezing (in our convention corresponding
to � = 1

2

√
κcT ). A shorter cycle time T can thus allow for a

smaller �, leading to a GKP qubit with a lower logical error
rate.

We can compare our scheme with the proposed fault-
tolerant syndrome detector of a GKP qubit in Ref. [17]. In that
paper, it is proposed that a Kerr-cat-state qubit with |0〉 ≈ |α〉
and |1〉 ≈ |−α〉 is used for sequentially extracting bits of
phase information of Sq instead of a transmon ancilla qubit
as in Ref. [4]. The advantage of using a Kerr-cat-state qubit
is that unlike the transmon qubit or the scheme proposed
here, there is little feedback error since the X -error rate on
the Kerr-cat-state qubit is purposefully low, with photon loss
leading only to Z errors, which do not feed back. Note also
that in Ref. [17] the required coupling between the Kerr-cat-
state qubit and the target (GKP) oscillator is not directly a
photon-pressure coupling but a tunable beam-splitter interac-
tion ∼â†b̂ + âb̂†.

C. Readout loss

After the interaction of the target and the ancilla
oscillator—during the release and heterodyne measurement of
the state of the ancilla oscillator—one expects losses, and pos-
sibly thermalization, due to coupling to extraneous modes in
the coplanar or coaxial waveguide, circulators or the amplifier,
affecting the total coherent amplitude of the ancilla oscillator
state to be read out. Since these losses result from various
(partially unknown) sources, a common approach to model
them is as a process mapping the coherent amplitude α onto
αeff < α, i.e., Uloss |α〉A |0〉env → |cos(θ )α〉A |sin(θ )α〉env with
cos2(θ )α2 = α2

eff , where |γ 〉env is some environment mode.
We thus assume that these losses do not further influence
the phase of the state |α〉. The cumulative effect of losses is
not expected to be small; for example, in Ref. [34] ηeff =
(αeff/α)2 ≈ 0.43. It should be noted that it is crucial that a
near quantum limited amplifier is used; the readout efficiency
with transistor-based amplifiers is much lower. We also note
that photon loss and thermal noise are used as interchangeable
effective models in the literature: The amplifier design used
in Ref. [34], for example, was previously characterized by
a noise temperature TN about 125 mK [36]. The following
analysis is based on a model of photon loss during readout;
however, a model of two-mode squeezing with an idler in a
thermal state (see, for example, Ref. [37]) is analogous and
gives the same results.

The effect of these losses is that some of the information
about Sq ends up in the environment and is not observed,
leading to noise. We can simply modify the analysis in
Sec. III A by inserting Uloss after UPP of Eq. (3) and prior to
the heterodyne measurement action with outcome β, tracing
over the environment mode. We get

ρin → ρβ = 1

π

∫∫
R2

dq dq′ 〈αSq′
√

1 − ηeff |αSq

√
1 − ηeff〉

× 〈β|αeff Sq〉〈αeffSq′ |β〉 〈q| ρin |q′〉 |q〉〈q′| , (16)

where Sq and Sq′ are understood to be phases, not operators.
Let us again analyze the two possible effects of loss. First, for
the diagonal elements of ρin in the |q〉 basis, the effect of the
measurement is to apply the measurement operator Mβ (αeff ).
Since the expected value for �q only depends on the diagonal
elements 〈q| ρin |q〉, this results in a higher expected value for
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�q simply due to α → αeff : It is as if one executes the Sq

measurement with a smaller coherent state with amplitude
αeff . Second, is there additional dephasing effect in the q
basis? Note that the measurement with subsequent loss in the
ancilla oscillator still commutes with the operator X or Sp,
similar as the ideal measurement that we examined previously.
This directly means that |TrSp

∫
C

d2β ρβ | = |TrSpρin| and the
same for X , i.e., the average state has the same sharpness.
We can also examine the sharpness averaged over different
outcomes, that is,

∫
C

d2β |TrXρβ |. Using that 〈q| X |q′〉 =
〈q| q′ + √

π〉 = δ(q − q′ − √
π ) and that Sq is

√
π periodic

(corresponding to the commutation of Sq with X and Sp), we
can write∫

C

d2β |TrXρβ |

=
∫
C

d2β

∣∣∣∣
∫
R

dq |〈β|αeff Sq〉|2 〈q| ρin |q − √
π〉

∣∣∣∣
=

∫
C

d2β

∫
R

dq |〈β|αeffSq〉|2 〈q| ρin |q − √
π〉

= TrXρin,

whenever 〈q| ρin |q−√
π〉�0. Similarly, when

〈q| ρin |q−2
√

π〉 � 0, the mean sharpness
∫
C

d2β |TrSpρβ | =
TrSpρin is also unchanged by the Sq measurement. These
conditions are clearly fulfilled for the vacuum state.

The upshot of these considerations is that noise further
down in the measurement chain only changes the effective
strength of the coherent state that is used: if the measurement
efficiency is such that ηeff = 50% and we use n̄ = 4, we
effectively get the squeezing as if n̄ = 2, but there is no
other extra noise or feedback error affecting the quality of the
squeezing with respect to Sp and Sq.

D. Third-order nonlinearity

In this section, we examine what happens when we include
a leading-order correction in the Hamiltonian obtained from
the circuit analysis from Sec. II B and Appendix A. The
most important term neglected in the circuit analysis is ∝
ξ 3

T (b̂†eiωT t + b̂e−iωT t )
3

as this term is partially made resonant
by the drive xext (t ).

In this section, we will see that it is crucial that any device
fulfills ξ 2

T /ξ 2
A 	 1 (which can be approximated as ECT ELA 	

ECA ELT ) because this ratio sets the strength of the unwanted
unitary operation due to the leading-order correction com-
pared to the desired unitary evolution UPP.

We start with the original Hamiltonian in the rotating
frame, see Eq. (4), but also keep the terms in the sin()
part ∝ ξ 3

T :

H̃on ≈ EJ

2

[
−ξT ξ 2

Aâ†â(b̂† + b̂) + ξ 3
T

6
((b̂† + b̂)

3−(b̂†)
3−b̂3)

]

= EJ√
2

[
−ξT ξ 2

Aâ†âq̂ + ξ 3
T

6
√

2
(2

√
2q̂3 − (b̂†)

3 − b̂3)
]
.

This Hamiltonian acts for a fixed time tcoupl = 2
√

2π

EJξT ξ 2
A
. If

we also drop the unconditional displacement, the target and
ancilla oscillators are coupled by the modified unitary

operator

ŨPP = exp

{
i2

√
π â†âq̂ + i

√
π

3
√

2

ξ 2
T

ξ 2
A

[2
√

2q̂3 − b̂3 − (b̂†)
3
]

}
.

(17)

For ε =
√

πξ 2
T

3ξ 2
A

√
2

	 1, we can rewrite and approximate this

unitary as

ŨPP ≈ UPP exp(i2
√

2εq̂3) exp[−iε(b̂3 + (b̂†)
3
)]

× exp(
√

πεâ†â[q̂, (b̂3 + (b̂†)
3
)])

= UPP exp(i2
√

2εq̂3) exp[−iε(b̂3 + (b̂†)
3
)]

× exp

[
3
√

πε√
2

a†a ((b̂†)
2 − b̂2)

]
. (18)

where we have neglected the commutators ∝ ε2 and used that

[q̂, b̂3 + (b̂†)
3
] = 3√

2
[(b̂†)

2 − b̂2]. We observe two effects.
First, the incorrect unitary induces a systematic (third-

order) error of strength ∼ε on the target oscillator, indepen-
dent of the ancilla oscillator, and hence does not affect the
outcome of the Sq measurement itself. This systematic error
does, however, cause a deformation of the Wigner function
of a GKP code state. Namely, if one applies to an approxi-
mate GKP state a unitary of the form exp(iδq3) with some
parameter δ, it will not change its squeezing �q, but it does
lead to enhanced �p. Also, if we apply a unitary of the form

V = exp[iδ(b̂3 + (b̂†)
3
)] to a GKP state, it negatively affects

the squeezing �q as V does not commute with Sq. Both effects
are more pronounced if the GKP state has more photons.

Second, we observe that Eq. (18) contains an additional

coupling of the form exp[δâ†â((b̂†)
2 − b̂2)] between target

and ancilla oscillator.3 We can see this as squeezing induced
by the ancilla oscillator on the target oscillator which gets
stronger the more photons the ancilla oscillator contains.
Alternatively, the heterodyne measurement statistics will be
slightly altered by the presence of this additional term.

This photon-number-dependent squeezing limits the num-
ber of photons that can be used in the ancilla oscillator. To
alleviate this issue and ensure that the effective squeezing
�q is unchanged, one could apply a modified, two-tone drive
such that sin[xext (t )] ≈ cos(3ωT ) + cos(ωT ), which has the
effect of making b̂3 and (b̂†)

3
terms resonant again. With the

modified drive, the unitary time evolution only depends on q:

Ũ corr
PP = exp(i2

√
π â†âq̂ + i2

√
2εq̂3) = UPPei2

√
2εq̂3

. (19)

This corrected unitary transformation will then not affect the
measurement statistics of Sq as the additional term commutes
with q̂. The effective squeezing �q of the measured state
will be unchanged as compared to using UPP. The effective
squeezing �p is still affected by the exp(iδq̂3) deformation.
The deformation can be seen as a displacement that has
a quadratic dependence on the q̂ quadrature, leading to a

3If we had kept the unconditional displacement interaction in
Eq. (7), we would also get some ancilla oscillator-independent
squeezing.

053840-12



REALIZING MODULAR QUADRATURE MEASUREMENTS VIA … PHYSICAL REVIEW A 101, 053840 (2020)

FIG. 5. Wigner functions and probability distribution P (β ) over measurement results using the heterodyne measurement of the ancilla
oscillator, including the leading nonlinear term. The initial states are a squeezed vacuum state with �q = 3 and �p = 1/3 in the target
oscillator and the coherent state |α = √

3〉 in the ancilla oscillator. The measurement result is the one with the maximum likelihood with

respect to P (β ). The strength of the third-order term is set to
ξ2

T
ξ2

A
= 10−3; compare Table I. Top: Original third-order nonlinearity according

to Eq. (17). The effective squeezing of the final state is �p = 0.42, �q = 0.2. Bottom: Third-order nonlinearity with a modified drive; see
Eq. (19). The effective squeezing of the final state is �p = 0.41, �q = 0.18, demonstrating that �q is unchanged compared to the ideal
measurement in Fig. 2.

parabola of displacements acting on the final state of the target
oscillator; see Fig. 5.

The upshot is that with additional drive engineering one
can mitigate the effect of the third-order nonlinearity. The
numerics in Fig. 5 show that for sufficiently small corrections
the effect on the squeezing parameters is moderate.

E. Flux noise

Because an external flux drive is used to enable the cou-
pling, the setup will be susceptible to flux noise. (Quasi)static
flux noise acts as a constant offset on the drive in Eq. (C1).
Thus, with a constant flux offset ε, i.e., x̃ext (t ) = xext,±(t ) + ε

with xext,±(t ) chosen as in Eq. (C1) and maximal coupling
strength (δ = 1), the interaction Hamiltonian (in the rotating
frame) is given by

H̃RWA ≈ EJ cos(ε ± (−1)kωT )

[
ξT

(
1−ξ 2

A

2

)
(b̂†eiωT t+be−iωT t )

− ξT ξ 2
Aâ†â(b̂†eiωT t + be−iωT t )

]

= EJ

2

{
ξT

(
1 − ξ 2

A√
2

)
[q̂ cos(ε) ∓ (−1)k p̂ sin(ε)]

− ξT ξ 2
Aâ†â(q̂ cos(ε) ∓ (−1)k p̂ sin(ε))

}
,

where the sign ± depends on the chosen drive and k = �ωT t
2π

�
indicates the number of periods ωt/(2π ) that has passed
by the time 0 < t < tcoupl. This Hamiltonian is still of the

photon-pressure type, but it no longer couples the q̂ quadrature
to the number of photons in the ancilla oscillator but a
slightly rotated quadrature. However, we can also see that
this rotation is time dependent due to its dependence on k
and changes direction with frequency ωT . This means that
the drive Eq. (C1) already provides some protection against
such static flux noise. In the case where a drive with reduced
amplitude δ < 1 (see Appendix C 1) is used, the situation
is more complicated. We discuss flux noise for δ < 1 in
Appendix C 2.

Another effect of flux noise is the following. The resonance
frequency of both oscillators also depends on the external flux
drive xext (t ); see Appendix A and Table I. In the presence
of static flux noise, it means that the rotating frame will
be slightly out of sync with respect to the true resonance
frequency of the oscillators, leading to inaccuracy in the
phase of the oscillator state. Typically, flux noise is small
compared to 0 [which is the amplitude of the flux drive
xext (t )], suggesting that the difference between the expected
and true resonance frequencies can be neglected.

V. DISCUSSION AND CONCLUSION

In this paper, we have proposed to use a simple coherent
state ancilla to get more than 1 bit of information about
the eigenvalue of a unitary displacement operator, effectively
realizing a modular quadrature measurement. These measure-
ments can be used to prepare or read out a GKP code state.
We have presented and analyzed an electric circuit which
generates a strong photon-pressure coupling needed to imprint

053840-13



DANIEL J. WEIGAND AND BARBARA M. TERHAL PHYSICAL REVIEW A 101, 053840 (2020)

the eigenvalue information onto the coherent state of the
ancilla oscillator. As we have seen, a large coherent amplitude
α makes for a higher precision stabilizer measurement, but
in the presence of photon loss or unwanted nonlinearities, α

should be chosen moderately. Our results and numerics show
that circuit parameters can be chosen which demonstrate good
performance at |α|2 ≈ 3.

It should be noted that the circuit presented in Sec. II B is
not the only way to implement a sufficiently strong photon-
pressure coupling to be able to use the GKP stabilizer mea-
surements presented here. In fact, any experimental setup
that is sufficiently far in the single-photon regime can be
employed to this end; however, the circuit we analyze is
particularly well suited for the task. One major advantage is
that we only require a single Josephson junction in the loop:
This eliminates the experimentally challenging requirement of
symmetric junctions found in more traditional circuit designs.

Although the protocol is susceptible to photon loss in the
ancilla oscillator, we still expect an advantage compared to
schemes using a transmon qubit as ancilla, because the loss
rate of the ancilla oscillator compared to the interaction time
is much more favorable than the amplitude damping rate of
a transmon qubit over multiple measurement rounds, while
the error mechanism of the two approaches is comparable.
Furthermore, concatenation with an error-correcting code in
the ancilla oscillator is straightforward: If a rotationally sym-
metric code [38] is used as initial state of the ancilla oscillator,
it is possible to correct photon loss without increasing the
number of photons in the oscillator or reducing the effective
squeezing.

As with most implementations of the GKP code, single-
qubit Pauli and Hadamard gates can easily be done by a
displacement acting on the target oscillator or a change of
rotating frame, respectively [8]. The photon-pressure coupling
Hamiltonian is very versatile; with a simple modification of
the flux drive, it can also be used to enable a beam splitter
between the target and ancilla oscillators [27–29]. If the
circuit is extended such that an ancilla oscillator is shared by
two target oscillators, such a beam splitter could, for example,

be used to swap encoded states. Similar to swapping to distant
qubits via an ancilla qubit, such a scheme would require a
sequence of three beam splitting operations: First between
target mode 1 and ancilla mode, then between ancilla mode
and target mode 2, and finally between the ancilla mode
and the first target mode. With other configurations of the
drive, it is possible to enable either a bosonic controlled-NOT

(C-NOT) gate, or a two-mode squeezing between the target and
ancilla oscillators. The latter operation is of special interest,
because it enables to use the GKP-two-mode-squeezing en-
coding [39]. In this encoding, an arbitrary state in the ancilla
oscillator can be protected against Gaussian noise in both
quadratures, using a GKP state in the target oscillator as a
resource.
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APPENDIX A: CIRCUIT ANALYSIS

In this Appendix, we will analyze the circuit proposed
in Sec. II B in detail. Consider the circuit in Fig. 3. The
Lagrangian of the circuit in terms of node flux variables and
their time derivatives is

L = CA
˙̂2

A

2
+ CT

˙̂2
T

2
+ CJ

2
[ ˙̂A + ̇ext (t ) − ˙̂T ]

2

− ̂2
A

2LA
− ̂2

T

2LT
+ EJ cos

(
2π

0
[̂T − ̂A − ext (t )]

)
.

Here 0 is the magnetic flux quantum and ext (t ) is a clas-
sical, time-dependent flux due to an external field. Deriving
the Hamiltonian from the Lagrangian in the standard way, one
arrives at

H = 1

2

CT Q̂2
A + CAQ̂2

T + CJ (Q̂A + Q̂T )
2 − CJ̇ext (t )[2CT Q̂A − 2CAQ̂T + CACT ̇ext (t )]

CJCT + CJCA + CACT

+ ̂2
A

2LA
+ ̂2

T

2LT
− EJ cos

(
2π

0
[̂T − ̂A − ext (t )]

)
, (A1)

When we quantize this Hamiltonian, we have conjugate-variable commutation relations [̂i, Q̂ j] = iδi j (with i, j = T, A)
between the flux and charge variables of the target and ancilla systems. Both flux and charge operators have eigenvalues in R.

In the following, we use that the capacitances of both oscillators are much larger than the capacitance of the Josephson
junction, i.e., CT ,CA � CJ . Up to first order in CJ , the Hamiltonian is then given by

H = Q̂2
A

2CA
+ Q̂2

T

2CT
− CJ

2

(
Q̂A

CA
− Q̂T

CT

)2

− CJ̇ext (t )

(
Q̂A

CA
− Q̂T

CT
+ ̇ext (t )

2

)

+ ̂2
A

2LA
+ ̂2

T

2LT
− EJ cos

(
2π

0
[̂T − ̂A − ext (t )]

)
.

We will neglect the terms ∝ ̇ext (t ) from now on, as they will
be dropped with the rotating-wave approximation:

With the drive of interest, see Appendix C 1, ̇ext (t ) ∼
(−1)�

ωT t
2π

�, such that both Q̂A, Q̂T will oscillate quickly and
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can be neglected, even with a time-dependent drive. The
time derivative of the external flux is simply an energy shift
and will also be neglected as it does not change the system
dynamics. To simplify notation, we define dimensionless con-
jugate variables x̂i = 2π̂i

0
, ŷi = 0Q̂i

2π
, with [x̂i, ŷi] = iδi j and

a dimensionless variable

xext (t ) = 2πext (t )

0

for the flux drive. We also define the charging energies ECm =
e2

2Cm
and inductive energies ELm = 1

4e2Lm
for m = T, A, where e

is the elementary charge, so that

H = 4ECA

(
1 − ECA

ECJ

)
ŷ2

A + 4ECT

(
1 − ECT

ECJ

)
ŷ2

T + U (x̂A, x̂T ),

(A2)

with

U (x̂A, x̂T ) = ELA x̂2
A

2
+ ELT x̂2

T

2
− EJ cos [x̂T − x̂A − xext (t )].

(A3)
We note that the effect of the time-dependent flux drive xext (t )
can also be realized with a microwave drive; see details in
Appendix C 3.

Next, we expand the potential Hamiltonian, using that both
x̂A and x̂T will be close to the minimum of their respective
potentials, because ECA 	 ELA and ECT 	 ELT (see Table I).
Furthermore, these minima will be close to zero, (x̂A, x̂T ) =
(0, 0), because the inductive energies ELA , ELT � EJ . Note
that the minimum of the cos() potential is not exactly at
x̂A = 0, x̂T = 0, as the exact location of the minimum depends
on xext (t ). We discuss this approximation in more detail in
Appendix B. This expansion up to fourth order yields

U (x̂A, x̂T ) ≈ ELA x̂2
A

2
+ ELT x̂2

T

2
+ EJ sin[xext (t )]

(
x̂T − x̂A + x̂2

T x̂A − x̂2
Ax̂T

2
+ x̂3

A − x̂3
T

6

)

+ EJ cos[xext (t )]

(
x̂Ax̂T − x̂2

T + x̂2
A

2
+ x̂2

Ax̂2
T

4
− x̂3

Ax̂T + x̂Ax̂3
T

6
+ x̂4

T + x̂4
A

24

)
.

We can already see the desired coupling term,
EJ sin[xext (t )]x̂2

Ax̂T /2. However, there are multiple undesired
additional interactions. In addition, it is obvious (from the
electric circuit itself) that the Hamiltonian acts the same way
on the target and ancilla oscillator. As will be seen in the
following, a suitable choice of parameters addresses both
these questions. We first define effective (flux-dependent)
inductive and capacitive energies for both systems:

ẼLm (xext (t )) = ELm − EJ cos[xext (t )],
(A4)

ẼCm = ECm

(
1 − ECm

ECJ

)
≈ ECm ,

where the approximation comes about as CJ 	 Cm for m =
A, T . In addition, we define the flux-dependent frequency
and creation and annihilation operators for the two coupled
oscillators:

ωm(xext (t )) =
√

8ẼCj ẼLm (xext (t )), ξm =
(

2ẼCm

ẼL j

)1/4

,

x̂A = ξA(â† + â), x̂T = ξT (b̂† + b̂),

ŷA = i
1

2ξA
(â† − â), ŷT = i

1

2ξT
(b̂† − b̂). (A5)

All uncoupled quadratic terms in H in Eq. (A2) can be put
together to give a term proportional to ωAâ†â + ωT b̂†b̂, setting
the oscillator frequencies.

In order to achieve the desired asymmetric coupling, we
assume that ξA � ξT . Because the inductance of both systems
is assumed to be comparable, this implies that ωA � ωT ;
see Table I. In the final step, we also go to the rotating
frame of both oscillators (at their frequencies ωm) and use the
rotating-wave approximation; i.e., we only keep terms which
are inherently time independent or which are flux dependent

and oscillate with frequency ωT :

HRWA = EJ cos(xext (t ))
{

ξ 2
Aξ 2

T

2
(â†â + b̂†b̂ + 2â†âb̂†b̂)

+ ξ 4
A

4
[â†a + (â†â)

2
] + ξ 4

T

4
[b̂†b̂ + (b̂†b̂)

2
]

}
.

+ EJ sin(xext (t ))
{
ξT

(
1 − ξ 2

A

2
− ξ 2

Aâ†â

)
× (b̂†eiωT t + b̂e−iωT t )

−ξ 3
T

6
[b̂†eiωT t + b̂†b̂(b̂†eiωT t + 2b̂e−iωT t ) + H.c.]

}
.

The ξ 3
T term comes about by writing x̂3

T in terms of annihila-
tion and creation operators, and neglecting the parts rotating
at frequency 3ωT .

APPENDIX B: EXPANSION OF THE CIRCUIT
HAMILTONIAN

In the circuit analysis in Sec. II B and Appendix A, we
expand the potential part of the circuit Hamiltonian Eq. (A3)
around the approximate minimum x̂A = x̂T = 0 of the poten-
tial term. In this section, we discuss this approximation in
more detail as this point is not exactly the minimum of the
potential.

Although the minimum of Eq. (A3) is not soluble analyti-
cally, we can find an upper bound on the errors made. We do
this by investigating the maximal possible shift in the position
of the minimum as a function of xext (t ). First, we expand the
potential exactly using the addition formula of the cosine:

EJ cos [x̂T − x̂A − xext (t )] = EJ sin[xext (t )] sin (x̂T − x̂A)

− EJ cos[xext (t )] cos (x̂T − x̂A).
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Because EJ < ELT , ELA , we can see that the potential always
has a unique minimum, and because the cosine is an even
function, the location of that minimum only depends on the
sine part of the equation. Therefore, the maximal shift of
the position of the minimum away from x̂T = x̂A = 0 occurs
at xext (t ) = ±π/2. That is, we can upper bound the error
made by expanding the potential around x̂A = x̂T = 0 by
investigating the case where xext (t ) = ±π/2.

If we set xext = π/2 and expand the potential to first order
around x̂A = x̂T = 0, we have

U (x̂A, x̂T ) ≈ ELA x̂2
A

2
+ ELT x̂2

T

2
+ EJ (x̂T − x̂A)

= ELA

2

(
x̂A − EJ

ELA

)2

+ ELT

2

(
x̂T + EJ

ELT

)2

− E2
J

2ELT

− E2
J

2ELA

. (B1)

Thus, for xext (t ) = ±π/2, the minimum of the potential term
Eq. (A3) is located around x̂T = ∓ EJ

ELT
and x̂T = ± EJ

ELT
. By

defining x̂′
T = x̂T ± EJ

ELT
, x̂′

A = x̂A ± EJ
ELT

we can absorb this
correction into the external flux drive xext (t )

U (x̂′
A, x̂′

T , xext (t ) = ±π/2)

= ELA x′2
A

2
+ ELT x′2

T

2
− EJ cos

(
x̂′

T − x̂′
A ± 2

EJ

ELT

∓ π/2

)
,

where the minimum of the potential is now to first order given
by x̂′

A = x̂′
T = 0. Because the sine is monotone between 0 and

π/2, we know that the location of the true minimum of the
potential is also monotone between 0 < xext (t ) < π/2. From
the structure of Eq. (B1), we can also see that the shift of the
minimum for x̂T is also always opposite to that of x̂A and that
the sign of this minimum changes for −π/2 < xext (t ) < 0:

U (x̂′
A, x̂′

T ) = ELA x′2
A

2
+ ELT x′2

T

2

− EJ cos[x̂′
T − x̂′

A + 2ε + xext (t )],

where |ε| � EJ
ELT

is the true location of the minimum of

U (x̂′
A, x̂′

T ) and the sign of ε depends on the sign of sin[xext (t )].
The expansion around x̂A = x̂T = 0 made in Sec. II B is there-
fore similar to the effect of oscillating flux noise. Furthermore,
just like for flux noise, there is an echo effect reducing any
contributions from this offset because the offset changes sign
with frequency ∼ωT .

In summary, the problem that arises is that the external
drive changes the potential for both variables, which follow
the change of minimum, with some delay. Because of this
delay, the instantaneous potential is not quite what we expect,
but the error is small, as it scales as EJ/EL 	 1. Note that this
effect is deterministic, so it could be counteracted by a change
in the external drive.

APPENDIX C: DETAILS OF THE FLUX DRIVE

A key component to achieve a photon-pressure coupling
in the rotating frame is a suitable flux drive that cancels

the time dependence of a Hamiltonian in the rotating frame.
In the following subsections, we discuss how this drive can
be achieved, discuss details on flux noise, and show how a
microwave drive could be used instead of a flux drive.

1. Parametric flux drive

To achieve the desired photon-pressure coupling from Eq.
(2), it is necessary to design an appropriate time dependence
of xext (t ) in Eq. (5) such that the phases e±iωT t in that equation
cancel. The idea is similar to the case of qubit readout [24–26],
but here we can use that the frequency of the target oscillator
is relatively small in order to maximize the coupling strength,
which is not the case for qubit readout. Furthermore, we
can use a flux drive with an amplitude of 2π , canceling
the anharmonicity of both oscillators (something which is
undesired in the case of qubit readout).

To this end, we consider a flux drive such that sin[xext (t )] =
(1 − δ) + δ cos(ωT t ), where 0 < δ < 1 is a freely chosen
constant which serves to reduce the amplitude of the flux
drive. Scenarios where this is desirable are, for example, if a
lossy resonator is used to implement the tunable coupling, or
if the range of resonance frequencies should be limited. One
can easily verify that either drive

xext,±(t ) = π

2
± (−1)�

ωT t
2π

� arcsin[1 − δ + δ cos(ωT t )]

(C1)

satisfies that condition. For δ = 1, we can also see
that cos[xext,±(t )] = ±(−1)�

ωT t
2π

�| sin(ωT t )|, corroborating the
claim that the even order terms in Eq. (5) cancel. Although this
drive seems to be very complex, this function can be easily
synthesized with a small number of harmonics. In fact, the
most complex possible drive (using the full flux range for
maximal coupling strength, δ = 1) yields a triangular wave
which rolls off with the inverse harmonic number squared:

xext,+(t ) = π

2
− 8

π

∞∑
n=0

(−1)n

(2n + 1)2 sin

(
2n + 1

2
ωT t

)
.

Although the Fourier series of the drive does not have such a
simple solution for δ < 1, it can be well approximated numer-
ically, using xext,±(t ) = π/2 ± ∑∞

n=0 bn sin [(2n + 1)ωT t/2].
The amplitude |bn| of the Fourier series of the drive is shown
in Fig. 7. As can be seen there, the roll off is fast, such that
two harmonics are in many cases a sufficient approximation.
In addition, the period 4π

ωT
of this drive is rather long, as the

resonance frequency ωT is typically in the regime ≈500 MHz;
see Table I. Because of the requirement that the resonance fre-
quency of the ancilla oscillator should not exceed ≈10 GHz,
while there needs to be a separation of scales ωA � ωT and
ωT should not be too small to avoid thermal excitations, this
frequency range is not expected to change much for different
setups. As an estimate for the most complex case with δ = 1,
the total error for a standard arbitrary wave-form generator
with 2.4 G samples/s without any corrections to the signal is
expected to be around 0.5%. Using either drive from Eq. (C1),
neglecting all terms rotating with frequency ωT or above,
the effective Hamiltonian from Eq. (5) yields the desired
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FIG. 6. Top: The external drive xext (t ) required to obtain a
photon-pressure coupling in the rotating frame; see Eq. (C1). As
can be seen, the lowest frequency component of xext (t ) is ωT /2. The
starting point of xext (t = 0) = π/2 corresponds to the “off” setting
where the target and ancilla oscillators are completely decoupled.
The solid and dashed lines correspond to choosing the drive with a
positive or negative sign, xext,±(t ), respectively. Bottom: The pref-
actor cos[xext (t )] of the self- and cross-Kerr terms in Eq. (4). The
function is periodic and changes sign with frequency ωT . Purple:
Drive required to obtain the maximum coupling strength i.e., δ = 1.
The drive corresponds to a triangular wave. Green: the coupling
strength is reduced to δ = 0.5. In this case, the drive is close to a
simple cosine.

interaction:

Hon ≈ δEJξT

2
(b̂† + b̂) − g(b̂† + b̂)(2â†â + 1), (C2)

with the coupling strength g = δ
2 EJξT ξ 2

A .

FIG. 7. Amplitude |bn| of the first four harmonics with frequency
ωn of the Fourier series of either drive xext,±(t ); see Eq. (C1). Purple:
Maximal coupling strength (δ = 1). Blue: δ = 0.5. Green: δ = 0.1.
For δ = 0.5, it is sufficient to use only two harmonics in order to
achieve a relative error below 1%.

2. Flux noise with reduced drive amplitude

We have discussed flux noise for the case with maximal
coupling strength (δ = 1) in Sec. IV E of the main text.
Following the discussion there, we now discuss flux noise in
the case where the drive strength is reduced (δ < 1). In this
case, the prefactor in the coupling Hamiltonian is given by

sin(xext,±(t ) + ε)

= [1 − δ + δ cos(ωT t )] cos(ε)

± (−1)�
ωT t
2π

�
√

1 − [1 − δ + δ cos(ωT )]2 sin(ε). (C3)

Again, there is some built-in correction for the additional
phase; the term ∝ sin(ε) will approximately cancel over
multiple periods (recall that the ideal drive is with zero flux
offset ε = 0). However, there is an additional effect that the
amplitude of the drive also changes over time, and the change
of amplitude is on resonance with the change of the phase; i.e.,
the rotation of the measured quadrature no longer completely
cancels. In order to alleviate this issue, one could use a similar
strategy as the CZ gate used for transmon qubits [40], using
the fact that the equation sin[xext,±(t )] = 1 − δ + δ cos(ωT t )
has two alternating solutions, xext,+ and xext,−; see Eq. (C1).
Because the undesired term due to flux noise for the two
drives always has opposite sign, see Eq. (C3), it is possible
to restore the echo effect by alternating between the two
drives. Although this transition is not smooth (see Fig. 6), it
is continuous for all choices of δ. Furthermore, the quick roll
off with high harmonics is preserved, the most complex drive
that could be obtained with the strategy is a triangle wave at
frequency ωT ; see Fig. 6.
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3. Use of a microwave drive

In most experimental settings, it is preferable to use a
microwave drive instead of a time-dependent flux. Here, we
show how such a microwave drive can be used, employing a
similar method as Touzard et al. in Ref. [24].

Consider again the Hamiltonian from Eq. (A2), with the
potential from Eq. (A3) and a classical field yext (t )eiωd t ca-
pacitively coupled to the ancilla oscillator. Here, the phase
eiωd t indicates the lowest frequency term of the external drive;
see Appendix C 1 for details. The system Hamiltonian is then
given by

HCC = 4ECA

(
1 − ECA

ECJ

)
ŷ2

A + 4ECT

(
1 − ECT

ECJ

)
ŷ2

T

+ i

2
ŷAIm[yext (t )eiωd t ]

+ ELA x̂2
A

2
+ ELT x̂2

T

2
− EJ cos (x̂T − x̂A − π/2),

where the flux xext has been set to a constant value of π/2. If
we express this in terms of annihilation and creation operators,
and collect all uncoupled quadratic terms into the harmonic
part of the Hamiltonian, we have

HCC = ωAâ†â + ωT b̂†b̂ − EJ ˜cos(ξT (b̂† + b̂)

− ξA(â† + â) − π/2)

− 1

4ξA
(â† − â)(y∗

ext (t )e−iωd t − yext (t )eiωd t ).

Here, we use a notation analogous to Touzard et al. [24] and

˜cos indicates that the second order terms ξ 2
A (b̂† + b̂)

2
/2 and

ξ 2
T (b̂† + b̂)

2
/2 of the cosine have already been absorbed in the

harmonic part of the Hamiltonian. Using the substitution â′ =
â + 1

4ωAξA
yext (t )eiωd t , we get

HCC = ωAâ′†â′ + ωT b̂†b̂ − 1

4ξA
[â′†y∗

ext (t )e−iωd t + â′yext (t )eiωd t ]

− EJ ˜cos

(
ξT (b̂† + b̂) − ξA(â′† + â′) − π/2 − 1

2ωA
Re[yext (t )eiωd t ]

)
.

The potential is again of the same form as Eq. (A3) (if we were
to write HCC in terms of x̂m, ŷm again), where the microwave
drive Re[yext (t )eiωd t ]/(2ωA) takes the role of the flux drive
xext (t ). Note that there is an additional displacement acting on
the ancilla oscillator (â′†, â′). If we go to a rotating frame and
use the rotating-wave approximation, this drive will vanish
because it is very far off resonant (see Appendix C 3). Note
that this step means that a microwave drive can only be used
to obtain an oscillating drive; in order to obtain a constant
offset, it is still necessary to use a (constant) flux drive, which
is why we set xext = π/2 in the beginning.

APPENDIX D: DETAILS OF NUMERICAL SIMULATIONS

The numerical simulations were implemented using the
Qutip PYTHON package [41]. In the numerics, we apply a
counterdisplacement drive Z−n̄, where n̄ is the mean photon
number of the initial state of the ancilla oscillator, in order
to minimize the photon number of the state in the target
oscillator. The Hamiltonian for the interaction between target
and oscillator in the ideal case is then

Hnum := g|α|2
2

(b̂† + b̂) − gâ†â(b̂† + b̂),

where |α|2 is the number of photons in the initial state of the
ancilla oscillator and the Hamiltonian is turned on for time
tcoupl = √

2π/g; see the end of Sec. II B.
All simulations model a direct, perfect heterodyne mea-

surement by projecting the ancilla oscillator onto a coher-
ent state. The measurement result is chosen by sampling
from the Husimi-Q function, using 200 randomly chosen
samples unless mentioned otherwise. Because this model
of measurement is very strong, the photon numbers of the

postmeasurement state may be very large, with some events
exceeding 100 photons; see Fig. 8 on the left. Note that for
GKP states, the distribution of the photon number is very
wide, with the standard deviation equal to the expected photon
number. Therefore, the Hilbert spaces of the target and ancilla
oscillators were approximated using 500 and 20 Fock states,
respectively.

To estimate the accuracy of the simulations, we use that
the effective squeezing �p of the vacuum state should stay
constant in the case of a noiseless protocol. The results are
shown in Fig. 8 on the right. As shown there, errors are neg-
ligible up to an initial ancilla state with n̄ = 3.5 photons, and
the relative error for n̄ = 4 photons is still below 1% in most
cases. For these reasons, and because the effective squeezing
achieved with |α = 2〉 as initial ancilla state is already very
strong, we restrict the simulations to n̄ = 1, . . . , 4.

APPENDIX E: HETERODYNE MEASUREMENT
VIA RELEASE OF COHERENT OSCILLATOR STATE

INTO A TRANSMISSION LINE

Here we model the gradual release of the cavity state
into a mobile wave packet traveling over a one-dimensional
(1D) transmission line or waveguide by an effective model.
Our goal is to verify that the integration of a heterodyne
measurement signal on small coherent states released over
time can effectively give the same measurement operator
as the direct heterodyne measurement of Sec. III A. This is
not immediately obvious. Given a long enough measurement
time tmeas, even if all photons in the oscillator are eventually
measured to determine the angle, there are two combining
features which could make such a measurement fundamen-
tally more noisy than a direct heterodyne measurement and
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FIG. 8. Box-and-whisker plot of the expected number of photons (left) and the effective squeezing �p (right) of the final state after a
measurement of Sq. The target oscillator starts in the vacuum state, and the ancilla oscillator with the coherent state |α = √

n̄〉 (compare
Fig. 4). For every α, a total of 200 samples was simulated. The orange line indicates the median, the box indicates the 25 and 75 percentiles,
the whiskers indicate the 5 and 95 percentiles, and events above or below these thresholds are shown individually. For some events, the final
state of the target oscillator has a mean photon number exceeding 100, and therefore a large Hilbert space is required to faithfully represent
those states. From analytical considerations, we know that �p = 1 should be constant, independent of the measurement results. As can be
seen, errors are negligible up to n̄ = 3.5; for n̄ = 4, the relative error for most events is still less than 1%.

hence lead to less effective squeezing. First, the instantaneous
measurement is applied to a small coherent state, i.e., the
one that arrives during a small interval in time, which has
large angle uncertainty. Second, the overall output of the
measurement is only a weighted integration of the heterodyne
signal obtained from each small coherent state, i.e., we assume
that we gain no knowledge of the individual trajectory of
outcomes, but only integrate (using a filter) their values in
time; see Eq. (E1) below (although one could go beyond this
and look at full trajectories; see Refs. [42,43]). Note that in
this effective model we do not include additional losses nor
the amplification step in the measurement chain as we discuss
their effect in Sec. IV C. Naturally, because of the sequence
of amplifiers and bringing the signal up to room-temperature
electronics, the actual states which are measured are not small
coherent states but classical voltage signals, and their quantum
fluctuations are frozen in as classical noise.

In our analysis, we also do not include a spurious photon-
pressure coupling (and hence a possible rotation) to the target
oscillator during the release of the state in the ancilla oscilla-
tor. Naturally, if the oscillator state is further rotated while it
is also being released, then this is likely to lead to additional
noise in the measurement as the to-be-measured phase is
changing in each of the weak measurements in sequence.

Our model is that of a sequence of N beam-splitter inter-
actions of strength

√
δt × κopen of the ancilla oscillator with

individual “measure” modes j = 0, 1, . . . , J − 1 which are
each initialized in a vacuum state. For a nontunable fixed
setup, the decay rate κopen is determined by the capacitive
coupling between ancilla oscillator and transmission line and
enters a more complete Hamiltonian description of such an
interaction; see, e.g., Appendix A in Ref. [23]. When one
uses a switch mechanism as in Ref. [34], one can use an
effective decay rate κopen = 4λ2/κout when λ 	 κout, where
λ is the strength of the beam-splitter coupling to the lossy
oscillator and κout is the decay rate of the lossy oscillator (set

by its coupling strength to some transmission line, coplanar
wave guide, or coaxial cable hosting 1D continuous traveling
modes).

The idea is that one has a beam-splitter interaction between
oscillator mode and transmission line mode localized at a
point in space: This interaction puts some of the coherent
amplitude in this spatial mode which due to the transmission-
line Hamiltonian propagates away at (speed of light) veloc-
ity v, returning the local spatial mode to the vacuum; see
Appendix E, Sec. 2, pp. 73–77 in Ref. [44] for this perspective
of the interaction of a (cavity) oscillator with the bath modes
on the transmission line. Hence, the measure mode j will
model the state that one can measure at time t = jδt at a fixed
spatial point on the transmission line where the detector sits:
A new measure mode is arriving at the detector after each time
step δt . We will take the continuum limit δt → 0 and J → ∞
in our expressions while keeping the total measurement time
tmeas = δtJ finite. Note that we could include thermal noise
in this model by having each measure mode initialized in
a thermal state instead of a vacuum state. We will assume
that each measure mode j undergoes a complete heterodyne
measurement, providing an outcome β j . In addition, we omit
any time dependence of the ancilla oscillator or the measure
modes; i.e., our expressions assume that we work in a rotating
frame at the ancilla oscillator frequency.

The outcome of the measurement is an estimate of the time-
integrated (dimensionless) quadratures Iout and Qout, which we
define as

Iout = √
2κopen

∫ tmeas

0
dt f (t )Re[β(t )],

(E1)

Qout = √
2κopen

∫ tmeas

0
dt f (t )Im[β(t )],

where f (t ) = exp(−κopent/2). Here β(t ) is the contin-
uum limit of the outputs β j , detailed below. To make
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contact with the usual input-output formalism in which we
have an outgoing field b̂out (t ) = √

κopenâ(t ) for the cavity
field â [44] (represented here by the ancilla oscillator),
we observe that the expected value 〈Iout〉 = ∫ tmeas

0 dt 〈q̂out (t )〉
where q̂out (t ) = 1√

2
[b̂out (t ) + b̂out (t )] [and similarly 〈Qout〉 =∫ tmeas

0 dt 〈p̂out (t )〉]. The superoperator represented by this mea-
surement is thus given as

SQout,Iout (ρin ) =
∫

Qout,Iout
dβ MβρinM†

β

Tr(
∫

Qout,Iout
dβ M†

β
Mβρin )

,

where a sequence of outcomes β j , j = 0, . . . , J − 1 is collec-
tively denoted as a vector β, and the integral goes over all β

leading to integrated signal Qout and Iout. Based on Iout and
Qout, the measurement estimates the eigenvalue exp(iϕ) of Sq

as ϕout = arctan(Qout/Iout ). If we were to use a Q switch and
a lossy oscillator, the temporal profile of the outgoing field
would not be the exponentially decaying function f (t ) as the
ancilla oscillator first has to build up some amplitude in the
lossy oscillator before leaking out of it, and one could use
such a compensated time filter as in Eq. (S6) of Ref. [34].

Now let us consider the details of this measurement. Our
expressions will depend on κopentmeas which we assume to be

large, capturing the fact that we measure until the coherent
state has (almost) entirely leaked out of the ancilla oscillator.
Each beam-splitter interaction B applies a simple transforma-
tion on a coherent state |β〉 in the ancilla oscillator and a
measure mode j:

B |β〉A ⊗ |0〉 j = |β cos(
√

κopenδt )〉A |β sin(
√

κopenδt )〉 j

≈ |β√
1 − κopenδt〉A |β√

κopenδt〉 j .

Let us write down the heterodyne measurement operator Mβ

as a function of β. Note that the state of the ancilla oscillator
and the measure modes after J beam splitters equals

BJ−1 . . . B2B0 |α〉A |0〉J−1 . . . |0〉2 |0〉0

= |α(1 − κopenδt )J/2〉A

J−1∏
j=0

|α j〉 j ,

α j ≡ α(κopenδt )1/2(1 − κopenδt ) j/2 ∈ R.

As the measure modes j = 0, . . . , J − 1 do not couple, the
total measurement operator on the measure modes is simply
a product over all modes. The measurement operator equals
[using 〈β| α〉 = exp[−(|α|2 + |β|2)/2] exp(β∗α)]:

Mβ = 1

π J/2

J−1∏
j=0

〈β j | exp(i2
√

π q̂)α j〉 = 1

π J/2
exp

⎛
⎝−1

2

J−1∑
j=0

(|α j |2 + |β j |2)

⎞
⎠ exp

⎛
⎝J−1∑

j=0

α jβ
∗
j exp(i2

√
π q̂)

⎞
⎠

= 1

π J/2
exp

⎛
⎝−1

2

J−1∑
j=0

(|α j |2 + |β j |2)

⎞
⎠ exp

⎛
⎝J−1∑

j=0

K|β j | cos(2
√

π q̂ − ϕ j )/2

⎞
⎠ exp

⎛
⎝i

J−1∑
j=0

K|β j | sin(2
√

π q̂ − ϕ j )/2

⎞
⎠, (E2)

using K|β j | = 2α j |β j |. Not surprisingly, we see that the mea-
surement operator has the same form as in Eq. (9). If we take
the continuum limit, we note that the q̂-dependent part in Mβ

does not explicitly depend on the measurement results β, but
on a time-integrated average over the results as follows. We
have

J−1∑
j=0

α jβ
∗
j =

J−1∑
j=0

δt α
√

κopen(1 − κopenδt ) j/2
β∗

j√
δt

→
∫ tmeas

0
dt α(t )β∗(t ),

where we have defined β(t ) =
√

β j

δt and α(t ) =
α
√

κopene−κopent/2. Note that α(t ) and β(t ) have dimension
t−1/2. Thus, the q̂-dependent part of Mβ is—in the continuum
limit—proportional to

exp

(∫ tmeas

0
dt α(t )β∗(t )Sq

)
= e

α√
2

(Iout−iQout )Sq .

Since
∑

j |β j |2 → ∫ tmeas

0 dt |β(t )|2 and

∑
j

|α j |2 → κopen|α|2
∫ tmeas

0
dt exp(−κopent )

= |α|2[1 − exp(−κopentmeas)] ≈ |α|2,

the prefactor in Mβ does depend on
∫ tmeas

0 dt |β(t )|2, not only
on Qout and Iout. The conclusion is that by using an exponen-
tially decaying filter on the measured data as in Eq. (E1), one
can ensure that a single measurement operator is applied on
the input state given the measurement output Iout, Qout and
this measurement operator does not depend on the specific
temporal noisy sequence β0, . . . , βJ−1. Hence, we expect that
the effect of this integrated measurement in time does not lead
to a more noisy outcome than one in which we record the
entire sequence of values β0, . . . , βJ−1.

We can make this explicit by estimating the effective
squeezing as we have done in Sec. III A for the direct mea-
surement. We can find

M†
β
Mβ ∝ exp

(
α

√
2
(
Q2

out + I2
out

)
cos(2

√
π q̂ − ϕout )

)
,

which defines an effective concentration Keff =
α
√

2(Q2
out + I2

out ). Hence, in analogy with the direct
measurement where the effective squeezing is estimated
by considering 〈|β|〉, here the goal is to estimate the
expected value of Keff . Translating back to the discrete
representation, this requires estimating 〈|∑ j α jβ

∗
j |〉.

Instead of estimating this quantity directly, we evaluate√
〈| ∑ j α jβ

∗
j |2〉 ∝

√
〈Q2

out + I2
out〉 and obtain a lower bound

on the effective squeezing in this manner.
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Using the discrete sequence-of-measurements represen-
tation, it can be observed that the entire measurement
is a simple product of individual measurements, each

with outcome β j , applied to a product state. We first
observe that, like in the proof of Lemma G.1, we
have

〈∣∣∣∣∣
∑

k

αkβ
∗
k

∣∣∣∣∣
2〉

=
∫

dβ Pin(β)
∑
k,l

αkαl |βk||βl | exp[i(ϕk − ϕl )]

=
∑
k,l

αkαlTr
J−1∏
j=0

∫
d|β j | |β j ||βk||βl |

∫ π

−π

dϕ j M†
β j

Mβ j ρin exp[i(ϕk − ϕl )] (E3)

with

M†
β j

Mβ j = 1

π
e−|α j |2−|β j |2 exp

[
Kβ j cos(2

√
π q̂ − ϕ j )

] = 1

π
e−|α j |2−|β j |2

∑
n j∈Z

In j

(
Kβ j

)
S

nj
q exp(−in jϕ j ).

When k = l , we see that the integrals over ϕ j lead to δ functions at n j = 0 and the dependence on ρin drops out as we can use
Tr ρin = 1. For k �= l , we project onto nl = −1 and nk = +1, picking up I−1(2αl |βl |)S−1

q and I1(2αk|βk|)Sq factors. For k �= l ,
we thus always apply a product SqS−1

q = 1 and again the dependence on ρin drops out. Using that I−1(x) = I1(x), we get〈∣∣∣∣∣
∑

k

αkβ
∗
k

∣∣∣∣∣
2〉

= 2J
J−1∑
k=0

|αk|2
∫ ∞

0
d|βk| |βk|3e−|αk |2−|βk |2 I0(2αk|βk|)

J−1∏
j=0: j �=k

∫ ∞

0
d|β j | |β j |e−|α j |2−|β j |2 I0(2α j |β j |)

+
J−1∑

k �=l=0

αkαl

∫ ∞

0
d|βk| |βk|2e−|αk |2−|βk |2 I1(2αk|βk|)

∫ ∞

0
d|βl | |βl |2 exp

( − α2
l − |βl |2

)
I1(2αl |βl |)

×
J−1∏

j=0: j �=k, j �=l

∫ ∞

0
d|β j | |β j |e−|α j |2−|β j |2 I0(2α j |β j |),

which can be simplified, using
∫ ∞

0 dx x exp(−x2 − y2)I0(2yx) = 1, Eq. (G4), and 2
∫ ∞

0 dx x2 exp(−y2 − x2)I1(2yx) = y to〈∣∣∣∣∣
∑

k

αkβ
∗
k

∣∣∣∣∣
2〉

=
∑

k

|αk|2(1 + |αk|2) +
∑
k �=l

|αk|2|αl |2 =
∑

k

|αk|2 +
(∑

k

|αk|2
)2

→ |α|2(1 − e−κopentmeas )[1 + |α|2(1 − e−κopentmeas )].

Thus, when the measurement time is long enough so that the entire state has leaked out, κopentmeas � 1, we can upper bound the

expected Keff � 2|α|
√

1 + |α|2, resulting in a lower bound on �q equal to 1/

√
4π |α|

√
1 + |α|2. For long enough tmeas, this is

identical to our result for the direct measurement, which we have shown is closely related to the actual amount of squeezing in
Fig. 4.

APPENDIX F: EFFECTIVE SQUEEZING WITH VACUUM INPUT STATE

In Sec. III, we derived approximations for the effective squeezing after the measurement protocol, because the average
sharpness as in Eq. (12) is hard to evaluate.

Since Sq commutes with Mβ , we have

〈|TrSq|〉 =
∫
C

d2β |〈vac|SqM†
βMβ |vac〉|

= 1

π
√

π

∫
C

d2β e−|α|2−|β|2
∣∣∣∣
∫
R

dq e−q2+i2
√

πq+K|β| cos(2
√

πq−ϕ)

∣∣∣∣. (F1)

At b � 2, one can use the convenient Villain approximation
[45]:

exp[b cos(x)] ≈
∑
n∈Z

exp(b) exp

[
−b

2
(x − 2πn)2

]
.

For large K|β|, the dominant contribution comes from small
values of |n|: For K|β| � 2, one can restrict the sum to n =
0,±1,±2 with −π � ϕ � π .

If we assume that the outcomes of β are concentrated
around values where the Villain approximation holds [which
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is reasonable since we know that P (β ) is concentrated around
|β| = α from Eq. (8)], then one can apply this approximation
and evaluate the resulting Gaussian integral to get

〈|TrSq|〉 ≈
∫ ∞

|β|c
d|β| e−π

π
√

2K|β|π
e−(|α|−|β|)2

×
∫ π

−π

dϕ

∣∣∣ϑ3
(
iπ − ϕ

2
, e−π−1/(2K|β| )

)∣∣∣. (F2)

Here ϑ3(z, q) = ∑
n∈Z qn2

e2inz is the θ function and |β|c is a
lower cutoff to allow for the Villain approximation. The lower
cutoff |β|c is chosen such that first P (|β| < |β|c) 	 1, and
second |αβ|c � 1 to allow for the Villain approximation with
K|β| � 2. We take |β|c = 1/|α| so that for n̄ � 5 the probabil-

ity for such |β|c is low (suppressed by exp[−(5 − 1/
√

5)
2 ≈

0.04]. The function ϑ3(z, q) is oscillatory with n, but contribu-
tions beyond n = 0,±1,±2 are negligible. Inserting the mean
sharpness with its approximation in Eq. (F2) in the expression
for �q, we obtain the purple curve in Fig. 4.

We can also consider the eigenvalue phase of Sq of the
output state ρβ , i.e.,

arg(〈Sq〉) = arg

(∫
R

dq ρin(q, q)SqeK|β| cos(2
√

πq−ϕ)

)
. (F3)

When ρin(q, q) is a uniform distribution, i.e., there is no prior
bias for q̂ (or Sq), the integral over q results in exp(iϕ),
confirming that the best choice for inferring the eigenvalue of
Sq is indeed exp(iϕ). If we have prior information on the input
state to the measurement, e.g., it is the vacuum state, then one
can use Eq. (F3) as the outcome of the measurement.

As a sanity check, we examine 〈|TrSp|〉 (or 〈|TrX |〉) after
the modular q measurement. First of all, note that the expec-
tation

∫
C

d2β TrSpρβ is unchanged, since Sp commutes with
the Sq measurement, so

∫
C

d2β Tr Spρβ = Tr Spρin. Thus, for
the output state, the squeezing of Sp (or X ) is unchanged as
expected. In addition, if we consider the mean sharpness, we
can also see it is preserved when we start with the vacuum
state:

〈|TrSp|〉 =
∫
C

d2β |〈vac|SpM†
βMβ |vac〉|

= 〈vac| Sp |vac〉 = exp(−π ).

Here we used the fact that 〈ψ | SpM†
βMβ |ψ〉 for any state

|ψ〉 whose wave function is non-negative in the q basis,
i.e., ψ (q) � 0, so we can omit the absolute value and use∫
C

d2β M†
βMβ = I . One should observe that the preservation

of the mean sharpness does not automatically follow from the
commutation of Sp with Mβ or M†

β .

APPENDIX G: SOME STATISTICS OF MEASUREMENT
OUTCOMES IN THE MODULAR QUADRATURE

MEASUREMENT

Here we analyze some mathematical properties of the mea-
surement discussed in Sec. III A which are used in Sec. III B.

To estimate 〈 f (|β|)〉 where f (x) is some function, we note
the following useful property, which we prove as a lemma:

Lemma G.1. The input state in the target cavity ρin does
not influence the expectation of any function f (|β|), where β

is the outcome of (heterodyne) measuring in the ancilla mode
in an overcomplete coherent basis.

Proof. For a general input state ρin, we have

〈 f (|β|)〉 =
∫
C

d2β Pin(β ) f (|β|)

=
∫ ∞

0
d|β| |β| f (|β|)

∫ π

−π

dϕ Pρin (|β|eiϕ )

=
∫ ∞

0
d|β| |β| f (|β|)

∫ π

−π

dϕ TrM†
βMβρin.

We can use the Jacobi-Anger expansion

exp[iz cos(θ )] =
∑
n∈Z

inJn(z)einθ

= J0(z) + 2
∞∑

n=1

inJn(z) cos(nθ ),

where Jn(z) is the Bessel function of the first kind and using
J−n(z) = (−1)nJn(z). The modified Bessel function of the
first kind In(z) is defined as In(z) = i−nJn(iz) and it follows
that exp[b cos(x)] = ∑

n∈Z In(b) exp(inx), where In(b) is the
modified Bessel function of the first kind of order n. We can
then use Eq. (11) to write∫ π

−π

dϕ TrM†
βMβρin

= 1

π
e−|α|2−|β|2 ∑

n∈Z

∫
dqρin(q)In(Kβ )ein2

√
πq

∫ π

−π

dϕ e−inϕ.

(G1)

The integral over ϕ leads to n = 0 being the only surviving
term in

∑
n∈Z, thus removing all dependence on ρin in the

integral over q. Hence,

〈 f (|β|)〉 = 2e−|α|2
∫ ∞

0
d|β| |β| f (|β|)e−|β|2 I0(Kβ ), (G2)

independent of ρin.
Equation (G2) allows us to get an expression for 〈|β|〉 as

〈|β|〉 = 2e−|α|2
∫ ∞

0
d|β| e−|β|2 |β|2I0(2α|β|)

=
√

π

2
e−|α|2/2

[
I0

( |α|2
2

)

+ α2I0

( |α|2
2

)
+ α2I1

( |α|2
2

)]
, (G3)

which for α �
√

2 is virtually indistinguishable from 〈|β|〉 ≈
α, as expected. Therefore, the expected effective squeezing
can be approximated as 〈�q〉 ≈ 1/

√
4π |α|2 as plotted in

Fig. 4. Fluctuations around this expected value are determined
by

〈|β|2〉 = 2e−|α|2
∫ ∞

0
d|β| e−|β|2 |β|3I0(2α|β|)

= 1 + |α|2, (G4)

so that Var(|β|) = 〈(|β| − 〈|β|〉)2〉 ≈ 1.
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As expected, these statistics are identical to that of a direct
overcomplete measurement in the coherent basis applied to a

state |α〉, i.e., without any coupling to a target oscillator. The
only dependence on ρin is found in the phase ϕ.
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