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ABSTRACT

In neurosurgery, technical solutions for visualizing the border between healthy brain and tumor tissue is of great
value, since they enable the surgeon to achieve gross total resection while minimizing the risk of damage to
eloquent areas. By using real-time non-ionizing imaging techniques, such as hyperspectral imaging (HSI), the
spectral signature of the tissue is analyzed allowing tissue classification, thereby improving tumor boundary
discrimination during surgery. More particularly, since infrared penetrates deeper in the tissue than visible light,
the use of an imaging sensor sensitive to the near-infrared wavelength range would also allow the visualization
of structures slightly beneath the tissue surface. This enables the visualization of tumors and vessel boundaries
prior to surgery, thereby preventing the damaging of tissue structures. In this study, we investigate the use of
Diffuse Reflectance Spectroscopy (DRS) and HSI for brain tissue classification, by extracting spectral features
from the near infra-red range. The applied method for classification is the linear Support Vector Machine (SVM).
The study is conducted on ex-vivo porcine brain tissue, which is analyzed and classified as either white or gray
matter. The DRS combined with the proposed classification reaches a sensitivity and specificity of 96%, while
HST reaches a sensitivity of 95% and specificity of 93%. This feasibility study shows the potential of DRS and
HSI for automated tissue classification, and serves as a first step towards clinical use for tumor detection deeper
inside the tissue.

Keywords: Hyperspectral imaging, diffuse reflectance spectroscopy, neurosurgery, brain surgery, image-guided
surgery, machine learning, image classification, tissue classification

1. INTRODUCTION

Technical aids to delineate tumor margins and distinguish between healthy brain and tumor are of great value
for neurosurgeons. Neuro-navigation and fluorescent tumor markers, as well as imaging techniques such as intra-
operative Magnetic Resonance Imaging (ioMRI) and intra-operative CT, are commonly used for this purpose.
However, there are several limitations due to brain shift and low spatial resolution.! The use of a real-time non-
ionizing imaging techniques would allow analyzing the spectral signature of the tissue and therefore making a
tissue classification, to aid during surgery. Since infrared light penetrates deeper in the tissue rather than visible
light, the use of an imaging sensor sensitive to the near-infrared wavelength range would enable the visualization
of sub-surface structures and minimize the risk of tissue damage. In Diffuse Reflectance Spectroscopy (DRS),?
tissue is probed by sending white light from a broadband light source through an optical fiber. After the
light has interacted with the tissue, another optical fiber is used to collect the diffusely reflected light. The
light is then analyzed, and the spectral signature is used for distinguishing between different tissue types.®*
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DRS has been shown to be able to estimate the concentration of blood, fat, and other optical properties in
various clinical applications, such as tumor and nerve detection. Hyperspectral Imaging (HSI) is an emerging
imaging modality for medical applications with the potential of for non-invasive disease diagnosis and surgical
guidance.® The objective of hyperspectral imaging is to collect a three-dimensional dataset of spatial and spectral
information, known as hypercube.® With this information, it is possible to obtain a spectral signature of each
imaged pixel.”® Preliminary research demonstrates that HSI has potential for providing diagnostic information
for various diseases, when combining it with Machine Learning (ML) methods in a broad sense, which include
the well-known Support Vector Machine (SVM) and Convolutional Neural Networks (CNNs).% 10

In this feasibility study, a hyperspectral endoscopy imaging system has been designed that couples a mosaic
sensor exploiting 25 wavelength bands, with a rigid endoscope. Using this system, we have investigated the
applicability of HSI and DRS for brain tissue classification, extracting spectral features from the near infra-red
range. The applied method for classification is the linear Support Vector Machine (SVM). The study is conducted
on eight ex-vivo porcine brain-tissue samples, which are analyzed and classified as either white or gray matter.

2. METHOD

Figure 1 shows the framework applied for training and testing. First, the hyperspectral images and DRS signals,
acquired on white and gray matter using the color image as a reference, are preprocessed to perform data
normalization and noise reduction. Second, relevant features are extracted and used for classification. Eventually,
leave-one-out cross-validation (LOOCV) testing is applied to avoid overfitting.

Training phase

Training Data ] [ ] »
(HSI or DRS) Trained classifier

Testing phase *

(J;S :)rD;tI;lS) H Trained classifier Prediction

Figure 1: Method used for training and classification in the system.

2.1 HSI system

The HSI system is composed of a mosaic sensor, coupled to a rigid endoscope via an endoscopic camera coupler
with a focal length of 35 mm. The hyperspectral sensor is a CMOS Snapshot Mosaic device called SNmb5x5
NIR (near-infrared) sensor (IMEC, Leuven, Belgium), which integrates spectral filters per pixel monolithically
on top of the imager wafers in a mosaic pattern. This solution is one of the first commercial systems, offering
true multispectral imaging at video rates in a small form factor. The sensor is capturing 25 spectral bands, from
676 to 954 nm, with a collimated spectral bandwidth of less than 15 nm and 10-bit color depth. The sensor has a
resolution of 2050x 1080 pixels, while the 25 bands are arranged in a 5x5 mosaic grid. This results in achieving
an imaging pixel resolution of 410x216 pixels for each of the 25 bands. The hyperspectral sensor is mounted in a
vertical position on a rigid frame, to image the specimens placed on the horizontal plane (Figure 2a). Specimens
are illuminated by the light transmitting system of the endoscope, with light covering the sensitive range of the
Sensor.

2.2 DRS system

The experimental setup for DR spectral acquisition consists of a tungsten halogen broadband light source (360
to 2500 nm) with an optical spectrometer (depicted in Figure 2b). A fiber-optic probe of 1.6 mm was used. The
probe contains two optic fibers, with a 1.22 mm center-to-center distance between them and axis of symmetry
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parallel to the axis of symmetry of the probe. One fiber is connected to the tungsten halogen broadband light
source and the second fiber is connected to the spectrometer (Andor Technology, DU420ABRDD), with a spectral
response from 400 to 1600 nm. LabVIEW software (National Instruments, Austin, Texas) developed in-house
was used to control the spectrometer and acquire the data.

- » “a _
. +—_ Hyperspectral || )
sensor | Optical
. tro " —_ — lluminatior
spectrometer
-] \ Coupler o —_—

| Lémm |
!
| 122mm |
i i
|

Optical
probe

Endoscope e 8

Figure 2: a) Photo of the system designed for hyperspectral imaging; b) Schematic of the system used for diffuse
reflectance spectroscopy.

2.3 Data acquisition

In this study, eight ex-vivo porcine brain-tissue samples were scanned using the hyperspectral and DRS sensors.
Brain samples were gathered at the LifeTec Group (Eindhoven, The Netherlands) and included in this study.
All ethical guidelines for ez-vivo animal studies were followed. The porcine brain specimens were cut in coronal
slices and pictured with a color camera (Figure 3a). For each tissue slice, the DRS signals for the white and
the gray matter were acquired, using the color image as a reference, where the DRS capturing locations were
annotated on the color image (Figure 3b). Then, the hyperspectral imaging acquisitions were performed. Each
slice was imaged with HSI multiple times, acquiring images from different spots on the same slice. Afterwards,
hyperspectral images were manually registered on the color image (Figure 3¢). On each of the eight porcine brain
specimens, about 140 DRS signals (70 for the white matter and 70 for the gray) and about 25 hyperspectral
images were acquired.

a)

Figure 3: a) Porcine brain was cut in coronal slices; b) Brain slice annotated with the locations of the DRS
acquisitions; ¢) Hyperspectral image acquired on a portion of the brain slice and manually registered on the
color image.

2.4 Data preprocessing and feature extraction

The hyperspectral images and the DRS signals are calibrated and preprocessed, to achieve data normalization
and noise reduction, which does significantly affect the classification accuracy. Calibration for HSI, based on
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Lu et al.,'" is achieved at each wavelength A sampled for all pixels 7, j of the HSI, by subtracting the inherent

dark current and dividing by a white reference, as specified by:

Iraw()‘v l)j) B Idark(Aa Za])
Iwhitc()‘a ’Lv]) - Idark(>\> Z?]) '

Ical(AaZ-aj) = (1)
where I, denotes the calibrated reflectance value, I.,, is the effective measured diffuse reflectance value at the
given pixel, Iyphite the intensity value for the white reference, acquired by positioning a white reference plate in
the field of view, and I, represents the dark reference value, acquired by keeping the camera shutter closed.
DRS signals are calibrated in a similar way, giving

Sraw(A) - Sdark()\)
Swhite()\) - Sdark(A)’
where S¢a1 represents the calibrated reflectance value, Siay is the effective measured diffuse reflectance value at

each A\, Synite denotes the intensity value for the white reference, acquired by positioning a white reference plate
in front of the probe, and S,k the dark reference value, acquired by shuttering the light input.

Scal()\) =

(2)

Then, since the hyperspectral-imaging sensor is operational in 25 wavelength bands, we match the dimension
of the DRS signals to select the same 25 bands. Afterwards, the hyperspectral images are segmented according
to the DRS signals annotated on the color images and then averaged, to obtain the same spatial density of
information for DRS signals. We exploited the assumption that an area of uniform pixel intensity in the HSI
image corresponds to the same type of tissue of the color image (Figure 4). This approach also increases the
robustness of the spectral noise for HSI. Eventually, the DRS and HSI signals are normalized with respect to the
value of the first wavelength band (676 nm). This allows removing the dependence on absolute intensity values
and therefore to classify the signals only according to the signal shape. The normalized value of HSI and DRS
signals and their derivative are used for the classification.

HSI signals normalized
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Figure 4: HSI segmentation according to the DRS signals annotation on the color image. The plots show the
HST and DRS signals, respectively, acquired on the same locations.

2.5 Classification of HSI and DRS data and validation

For this feasibility study, a supervised learning approach is adopted, employing a linear SVM | to design predictive
models for tissue classification from HSI and DRS acquisitions. Leave-one-out cross-validation testing is applied.
That means that the classifier is trained for each of the eight brain samples, using all the data except for
one sample that is used for testing. This process avoids double-sample usage and prevents overfitting. After
classification, each signal is labeled as white or gray matter tissue. As a result, we obtain binary classified images
for each brain sample.
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To evaluate the classifier performance, we have computed the receiver operating characteristics (ROC) curve,
area under the curve (AUC), sensitivity (Se) and specificity (Sp). The last two metrics measure the signals
correctly classified as white (Se) and as gray (Sp), respectively, as defined in equations from literature, based
on T'N: true negatives, T'P: true positives, F'P: false positives, and F'N: false negatives. For benchmarking,
the same performance metrics of sensitivity and specificity are exploited during the validation process, which are
specified by:

TP TN

Se= TP T FN’ and  Sp =N Tp

3)

3. EXPERIMENTAL RESULTS

Figure 5 shows the averaged normalized signals of white and gray matter of the eight brain samples, both for
DRS and HSI. DRS signals are smoother and more consistent among each other with respect to HSI signals,
both for white and gray matter. For the gray matter, DRS curves show a constant decrease in reflectance value,
from 676 nm to 954 nm. Instead, HSI shows relative flat curves, which suddenly drop in the range of 900 nm
and after that start rising again. This trend is different for Sample 3, 4 and 6, where an unexpected increase in
reflectance occurs between 840 and 870 nm before the drop at 900 nm. For the white matter, DRS curves are
almost flat and then the reflectance drops after 900 nm. For HSI, curves smoothly decrease until 900 nm and
then increase slightly again. This does not hold for Sample 3 and 6, which show a slight increase of reflectance
between 840 and 870 nm, as for their respective curves of gray matter. Figure 6 depicts the ROC curves of the
detection rates. The AUC values, sensitivity (Se) and specificity (Sp) are shown in Table 1. For DRS, sensitivity,
specificity and AUC all reach 96%, where for HSI, sensitivity reaches 95%, specificity 93% and AUC 95%.

DRS signals - Gray matter HSI signals - Gray matter
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Figure 5: Averaged normalized signals of white and gray matter of the eight brain samples, both for DRS and
HSI.

4. DISCUSSION

In these experiments, we have explored the potential of automated porcine brain-tissue classification using DRS
and HSI technologies, extracting spectral features from the near-infrared range. DRS performs very well with a
well-balanced sensitivity and specificity. This is possible since the shapes of the DRS signals are highly conform
and appear with a very low variance, both for gray and white matter. For the HSI signals, however, sensitivity
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ROC curve for DRS classification ROC curve for HSI classification
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Figure 6: ROC curves for the eight brain samples with SVM classification, for DRS and HSI.

DRS HSI

AUC Sens. Spec. | AUC Sens. Spec.

Sample 1 0.93 0.92 0.95 0.91 0.76 1
Sample 2 0.93 0.95 0.91 0.96 0.96 0.96
Sample 3 0.99 0.98 1 0.85 1 0.69
Sample 4 0.96 0.91 1 0.98 1 0.96

Sample 5 0.93 1 0.85 0.99 0.98 1
Sample 6 0.99 0.99 0.99 0.96 0.91 0.98

Sample 7 0.98 0.96 1 1 1 1
Sample 8 0.98 1 0.95 0.93 1 0.87
Mean 0.96 0.96 0.96 0.95 0.95 0.93

Table 1: Performance comparison between classification with DRS and HSI.

reaches 95%, similar to DRS, but specificity becomes 93%, with the lowest classification score obtained for Sample
3 (Sp 69%) and Sample 8 (Sp 87%). As mentioned in Section 3, the shape of the signal of these two Samples
(3 and 8) is much different than the other samples. White and gray matter have different composition that
can be captured by both infrared sensing techniques, which results in a good accuracy when automated tissue
classification is performed. This feasibility study represents a first step towards real-time tumor detection and
classification for clinical use.

There is another aspect that should be considered about DRS and HSI. Whereas DRS is a spot measurement
which requires contact with the tissue for spectral signature acquisition, HSI is a contactless imaging technique
that can be used in real-time operation during surgery. Although HSI shows less smooth behavior in the spectrum,
with normalization, we were able to achieve a reliable spectral measurement that can be classified automatically.
Moreover, HSI has been already exploited for ez-vivo tissue classification and cancer detection,”® while research
is now moving towards real-time neurosurgical operations.'> By coupling the HSI sensor to the endoscope, we
aimed to design a prototype of an endoscopic system that can perform tissue classification, which may be used
in the future during minimally invasive neurosurgical procedures, thereby increasing the information available
for the surgeons.

5. CONCLUSIONS

In this study, we explore the potential of automated porcine brain-tissue classification with DRS and HSI,
by extracting spectral features from the near-infrared range. The classification employs linear support vector
machine and is performed on eight ez-vivo porcine brain-tissue samples, which are analyzed and classified as either
white or gray matter. The DRS combined with the proposed classification reaches sensitivity and specificity of
96%, while HSI reaches a sensitivity of 95% and specificity of 93%. The results show that the spectral signature
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of the tissue in the near-infrared range contains enough information to automatically discriminate brain tissue
in white and gray matter. Thus far, we have classified healthy tissue in white and gray matter, but the primary
objective will be to use this technology for real-time classification of healthy and tumor tissue during surgery.
This feasibility study shows the potential of DRS and HSI for tissue classification and paves the way for a further
investigation towards real-time clinical brain tumor detection deeper inside tissue.
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