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On the retraction of an adhesive cylindrical indenter from a 
viscoelastic substrate 
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A B S T R A C T   

The retraction of a cylindrical rigid indenter from a viscoelastic substrate is studied by means of an efficient 
Green’s function method. Hysteresis is observed in the load to area relationship in accordance with experimental 
results. Although our model relaxes many assumptions posed by LEFM-based analytical theories, the results fall 
between the limits, at high and low retraction velocities, predicted by the theories. Approaching the high velocity 
instantaneous limit requires, however, very high velocities or Maugis parameter. The work of adhesion is found 
to change during retraction. A non-dimensional parameter is proposed to estimate the effect of viscoelasticity in 
adhesive hysteresis.   

1. Introduction 

The contact mechanics of rubbers is relevant in various applications, 
which include tires [1,2], pressure sensitive adhesives [3,4], and 
conveying belts [5]. In order to understand how rubber behaves in 
contact, several research groups have studied the behaviour of glass 
balls when pressed against a PDMS flat surface [6–9–12–15]. Upon 
indentation and retraction, these studies reveal hysteresis in the 
load-to-area response. Indeed, while the indentation curve tends to align 
closely with the curve predicted by the JKR theory of adhesion [16], 
there is a deviation upon retraction, as the contact area decreases slower 
than load. This hysteresis is usually described through a change in the 
apparent work of adhesion, which is larger during retraction than during 
indentation. There is, however, an ongoing discussion in the literature 
regarding the physical origin of hysteresis. The common use of an 
apparent work of adhesion to describe the hysteresis in those works 
suggests that it is expected to arise at or near the interface, rather than at 
the bulk of the material. One should note, however, that if the inden-
tation and retraction are carried at velocities much higher than those 
studied in the aforementioned works, bulk viscoelasticity could also 
become relevant. The model presented in this work is appropriate at any 
speed since it captures both bulk and near-surface viscoelasticity. 
Several causes have been identified to explain the hysteresis, which 
include roughness [15,17], mechanical instabilities [6,18], the nature of 
chemical bonding [6–8], molecular entanglement [18], and 

viscoelasticity [12,13,18,19]. Likely, all of these have an effect and 
experimental conditions dictate what dominates. 

In this work, we model the adhesive smooth contact between a rigid 
and a viscoelastic body through simulations, where the only source of 
hysteresis is the viscoelastic dissipation in the presence of adhesion. 
Greenwood and Johnson [19] showed that, if the retraction is slow 
enough so that the bulk stresses can be related to the deformation 
through the relaxed modulus, the change in response due to viscoelas-
ticity is equivalent to that obtained through a change in the work of 
adhesion. As reported in [19], a standard application LEFM, allowing for 
a stress singularity at the edge of the contact, implies that viscoelastic 
effects are fully developed even at infinitesimal velocities and hence that 
no velocity dependence exist. Hence, a more complex analysis, consid-
ering the crack shape in detail, is required. Such analysis led the authors 
to obtain a relation between the work of adhesion and the opening ve-
locity, but not between the contact area and load. The relation between 
work of adhesion and velocity in an opening crack was also studied by 
Persson and Brener [20] and Carbone and Persson [21], who gave a 
more detailed solution. Again, they provided only a relation between 
opening velocity and work of adhesion. Barthel and Frétigny [22] did 
provide load to area relations for the case of a ball-on-flat contact. Un-
fortunately, the model does not extend easily to the cylinder-on-flat 
contact, which will be the focus of this work. 

In this work, we advance fundamental knowledge on the interplay 
between adhesion and viscoelasticity on adhesional hysteresis by 
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studying numerically the retraction of a rigid cylindrical indenter from a 
viscoelastic half-space for a generic retraction velocity. In this manner, 
we can relax the assumptions made in analytical models, i.e., that the 
system is close to the JKR-limit, that the viscoelastic effects are confined 
near the peeling edge or that the peeling edge behaves as a sharp crack 
opening with a constant velocity in mode I. Hence, we can test the 
validity of these hypotheses. In particular, although the simulations 
show a significant adhesion enhancement due to viscoelasticity, we find 
that the instantaneous limit is not reached unless the retraction velocity 
and the Maugis parameter are very high. Moreover, we provide a 
parameter that allows estimating when viscoelasticity can cause signif-
icant hysteresis in the presence of adhesion. This parameter can be 
helpful for experimentalists in judging whether viscoelasticity is rele-
vant in their experiments. 

The numerical results are obtained using the Green’s function 
method presented by Van Dokkum and Nicola [23]. It is based on a 
boundary element method, which allows for meshing the surface only. 
The quasi-static solution of the equation of motion is obtained numeri-
cally in Fourier space, where the coupling between surface displace-
ments and tractions is non-local. A similar method was also presented by 
Carbone and Putignano [24], who studied the steady-state sliding of a 
ball through a viscoelastic substrate and showed contact asymmetry 
caused by viscoelasticity. This method, although more computationally 
efficient than ours, can only consider steady-state conditions and hence 
is not suitable for the present study. A method very similar to ours was 
also presented by Bugnicourt et al. [25], who use the model to study the 
loading of viscoelastic rough surfaces. 

2. Problem definition 

In this work, we consider the contact mechanical problem of a rigid 
and macroscopically smooth frictionless indenter retracting from a 
viscoelastic isothermal half-space with an adhesive interface. The 
indenter is an infinitely long cylinder, and the problem is solved in the 
xz-plane, under plane strain conditions. The height of the cylinder, with 
radius R, is represented by the common parabolic approximation, 

h(x) ≡
R
2

(x
R

)2
, (1)  

where x is the distance from the vertical axis of symmetry. Fig. 1 pro-
vides a schematic representation of the contact mechanical problem 
considered in this work. In order to obtain the initial conditions, the 
substrate is first loaded to a maximum indentation depth h0. The cor-
responding adhesive contact problem is solved under the assumption 
that the substrate behaves elastically (with the relaxed modulus). Note 

that in this way, we can replicate the initial conditions that would be 
obtained if the viscoelastic substrate would first be loaded to the same 
depth and then left to relax for a long period of time. From this point, the 
indenter is retracted at a constant velocity vz, and the effects of visco-
elasticity are studied. Isothermal conditions are assumed during the 
whole process. The substrate is assumed to be linear elastic and 
incompressible in dilatation and viscoelastic in shear. For simplicity, we 
have described the viscoelastic material as a standard linear solid (also 
known as Zener model) [26], although different models can be 
straightforwardly implemented, if required. Accordingly, we can ex-
press shear deformation through the relaxation function 

μ(t) ≡ μ0 + (μ∞ − μ0)e
− t∕τ, (2)  

where τ is the relaxation time and μ0 and μ∞ are the two coefficients used 
to define the standard linear solid. In contact problems, it is often 
convenient to define the equivalent elastic modulus as E ∗ (t) =

2μ(t)∕(1 − ν), where ν is the Poisson’s ratio, here taken to be 0.5. From 
(2), the equivalent elastic modulus reads 

E ∗ (t) ≡ E∗0 + (E∗∞ − E∗0)e− t∕τ = E0 ∗

(

1 −
(

1 −
1
k

)

e− t∕τ
)

, (3)  

where E*∞ ≡ E*(t → 0) is the equivalent elastic modulus in the instan-
taneous limit (which characterizes the elastic response when the 
deformation rate u̇→∞), E*0 ≡ E*(t → ∞) is the equivalent elastic 
modulus in the relaxed limit (which characterizes elastic response when 
u̇→0) and k = E*0∕E*∞. Throughout the paper, E*0 will be used as a 
reference. Note that there are other works, like [19], where E*0 is used to 
denote the modulus in the instantaneous limit and E*∞ in the relaxed 
one. 

Adhesion is described following the Dugdale-Maugis model [27,28], 
i.e., the attractive part of the traction is given by σa = Δγ0∕Δmax, where 
Δγ0 is work of adhesion, and Δmax is the maximum separation at which 
adhesive tractions are active, i.e., the interaction length. Over-closure is 
prevented by adding a hard-wall constrain, so that the surface is under 
the following conditions: 

g(x, t) = 0, p(x, t) < σa, intimate contact;
0 < g(x, t) ≤ Δmax, p(x, t) = σa, adhesive zone;
g(x, t) > Δmax, p(x, t) = 0, out of contact.

(4)  

where g(x, t) = h(x) + uz(t) − u(x, t) is the gap between the two bodies, 
u(x, t) is the normal displacement of the viscoelastic solid and uz(t) the 
displacement of the rigid indenter and p(x, t) indicates the (normal) 
stresses at the interface (defined as positive when attractive). 

3. Theoretical background 

Before presenting the numerical method, let us revisit a few inter-
esting analytical results from the literature that will help in discussing 
the results of the numerical model. First, we introduce the effective work 
of adhesion for opening cracks, a problem that can be directly related to 
our retraction problem. Then, we present the load-area response in the 
two limits of high and low retraction rate. 

3.1. Effective work-of-adhesion 

The hysteresis in the load-to-area curve has been identified as caused 
by a mechanism acting near or at the interface and can thus be described 
by a change in the effective work of adhesion Δγeff. The peeling edges of 
the contact during retraction of the indenter can be described as cracks 
opening in mode I. Following Persson and Brener [20], and Carbone and 
Persson [21], the flow of energy into the crack-tip needed to advance the 
crack is 

ρ̇G(ρ̇) = ρ̇G0 + P(ρ̇), (5) 

Fig. 1. Schematic representation of the adhesive contact of a rigid smooth 
cylindrical indenter with radius R on the viscoelastic substrate. Here, ac is the 
contact half-width, Δn the gap between the surfaces and E ∗ (t) the time- 
dependent equivalent elastic modulus. 
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where ρ indicates the position of the crack-tip, ρ̇ its velocity, G(ρ̇) is the 
energy needed to advance the crack by unit area, G0 the crack propa-
gation energy per unit area in the absence of viscoelasticity and P(ρ̇) is 
the energy dissipation per unit length of created crack line and per unit 
time. Now, following LEFM theory, one defines G0 = Δγ0. Similarly, for a 
viscoelastic material, the relation G(ρ̇) = Δγeff(ρ̇) is used to define the 
effective work of adhesion. Following Persson and Brener [20], and 
Carbone and Persson [21], one can assume that: (1) the radial velocity ρ̇ 
is constant; (2) viscous dissipation is confined to a region near the 
peeling edges, so that far from it, the response is purely elastic with 
effective modulus E*0; (3), adhesion is short-ranged; and (4), the stress 
field is translational invariant and moves at a constant velocity ρ̇. The 
crack-tip has a certain radius c(ρ̇), which is a priori unknown. Under 
these assumptions one can compute the viscous dissipation and then, 
using (5), the effective work of adhesion as [20]. 

Δγeff (ρ̇)
Δγ0

=

⎛

⎜
⎜
⎝1 −

2
π E∗0

∫ 1

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ω2

√

ω Im

⎛

⎜
⎜
⎝

1

Ẽ ∗

(
2πρ̇ω
c(ρ̇)

)

⎞

⎟
⎟
⎠ dω

⎞

⎟
⎟
⎠

− 1

, (6)  

where ̃E(ω) represents the elastic modulus in the frequency domain (i.e., 
the Fourier transform of (3)), ω ≡ ω∕ωc is the frequency normalized by 
the critical frequency ωc = 2πρ̇∕c(_ρ) and Im(•̃) the imaginary part of the 
complex number •̃. Following Persson and Brener [20], the crack-tip 
radius c(ρ̇) can be related to the effective work of adhesion by 

c(ρ̇) = Δγeff(ρ̇)E0∗

πσ2
c

, thus c0 ≡ c(ρ̇→0) =
Δγ0E0∗

πσ2
c

, (7)  

where σc is the fracture stress and c0 the crack-tip radius in the relaxed 
limit. Using (6) and (7), one can simultaneously solve for the crack-tip 
radius and the effective work of adhesion. For the standard linear 
solid model, 

c(ρ̇) = Δγeff
Δγ0

=

⎛

⎝1 −

(

1 −
E∗0

E∗∞

)
⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

(
c(ρ̇)
v(ρ̇)

√ )2

−
c(ρ̇)
v(ρ̇)

⎞

⎠

⎞

⎠

− 1

, (8)  

where v(ρ̇) is the dimensionless velocity and c(ρ̇) the normalized crack- 
tip radius given by 

v(ρ̇) ≡ 2πρ̇τ
c0

, and c(ρ̇) ≡ c(ρ̇)
c0

=
Δγeff(ρ̇)

Δγ0
. (9)  

We note that Persson et al. [20,21] use a finite fracture stress σc at the 
crack-tip which is assumed to be characteristic for the given material. 

We have replaced the critical fracture stress σc with the adhesive traction 
σa to stress that the interfacial interaction is not a property of the 
viscoelastic solid. Numerically solving Eq. (8) for c(ρ̇) gives the 
normalized effective work of adhesion Δγeff∕Δγ0 as a function of the 
normalized velocity v(ρ̇) with moduli E*∞/E*0 = 10 in Fig. 2. Clearly, 
the effective work of adhesion has two asymptotes. In the limit of a 
vanishing crack-tip velocity, the effective work of adhesion is lim

ρ̇→0
Δγeff∕ 

Δγ0 = 1, whereas in the limit of an infinitely large velocity, lim
ρ̇→∞

Δγeff∕ 

Δγ0 = E∞ ∗ ∕E∗0. These two limiting cases are considered next. 

3.2. The load to area response in the two elastic limits 

Fig. 3 presents a schematic of the retraction problem studied in this 
work. It can be viewed as two Mode I cracks advancing with velocity 
ρ̇(t) = − ∂ac∕∂t. In the previous section, a relation between the work of 
adhesion and the crack-tip velocity ρ̇ was given. However, this velocity 
is a priori unknown but controlled by the retraction velocity vz. Hence, 
load-to-area curves cannot be directly obtained from (8). In this section, 
we present such curves for the two limiting behaviours at high and low 
retraction rates. For this we assume again that viscoelastic dissipation is 
only present in a small region around the peeling edges. 

Under these assumptions, the response in both limits follows that of a 
purely elastic material. Hence, we start by reviewing the response of an 
elastic substrate. In this case, the contact response is characterised by the 

Maugis parameter λ ≡
(
Δγ2R∕

(
E∗2Δ3

max
) )1

3, which was originally intro-
duced by Maugis (see, e.g., [28]) for the ball-on-flat contact and later 
shown to be relevant also in the cylinder-on-flat contact [29]. The 
Maugis parameter is large for contacts that behave according to JKR 
theory [16], and small for contacts that follow DMT theory [30]. 
JKR-type adhesion is typically encountered when studying the contact of 
a rigid ball with a relaxed substrate, due to the large radius and small 
elastic modulus. It is characterized by a vanishing interaction length, 
Δmax ≃ 0, and a very small adhesive annulus. According to [29], the 
load-area relation for λ > 3 already coincides with the JKR-response. 
The two-dimensional JKR solution gives a relation between the dimen-
sionless total load Ln and contact half-width ac as 

π
4

a
− 3/2

=
Ln
̅̅̅̅̅
ac
−

√ +
̅̅̅̅̅
2π

√
, (10)  

where the load and the contact half-width are normalized as 

Fig. 2. The normalized effective work of adhesion Δγeff∕Δγ0 depicted as a 
function of the normalized velocity v(ρ̇) with E*∞/E*0 = 10, as computed 
using (8). 

Fig. 3. Schematic representation of the retraction of the smooth frictionless 
rigid cylindrical indenter from the viscoelastic adhesive solid. The dashed lines 
represent the original configuration before the retraction of the indenter. The 
region in which viscoelastic effects are relevant is indicated by darker 
shaded regions. 
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ac ≡
ac
̅̅̅̅̅̅̅̅
ΔγR2

E∗
3
√ ; and Ln ≡

Ln
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RΔγ2E∗3

√ . (11) 

In cases where λ is below 3, the behaviour of the system departs from 
the JKR-solution. A more complex relation, valid for the whole range of 
λ, was given by Baney and Hui [8] as 

L
−

n =
π
4

ac
− 2

− 2λac
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
, (12)  

where m ≡ aa∕ac. Note that the total half-width aa includes the intimate 
contact and the adhesive region. Eq. (12) is numerically solved together 
with 

λa2
c
1
2

(
m
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
− arccosh(m)

)
+ λ2ac

4
π

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
arccosh(m) − mlog(m)

)

= 1.
(13)  

As λ → ∞, (12) turns into the two-dimensional JKR solution given by 
(11) (usually λ > 3 is sufficient). As a reference, Fig. 4 shows the scaled 
load-to-contact half-width for different λ. By virtue of the scaling and the 
choice of axes, the JKR-solution is given by a straight line with slope 1 
and the intercept with the vertical axis at 

̅̅̅̅̅̅
2π

√
. For λ ≥ 3.5 the agree-

ment with JKR-solution is excellent but becomes poorer for smaller 
values of λ. It should be noted that the deviation from the elastic JKR 
curve, for small values of λ, mostly consists of a horizontal translation 
and a slight change of slope. Only towards complete withdrawal of the 
indenter a large discrepancy is observed with respect to the JKR- 
solution, with a larger tensile load reached before full separation of 
the bodies. This region is, however, only achievable under separation 
controlled retraction. It is important to stress that, when the work of 
adhesion is not known a priori, the horizontal translation and the 
rotation are not identifiable. Hence, it would be easy to erroneously 
identify even the case λ = 0.75 as following closely the JKR solution. 

In the relaxed limit, which corresponds to vz → 0 and ρ̇→0, the 
retraction is done slowly enough so that the material does not show 
viscoelasticity. Hence, the previous discussion holds by simply 
substituting E* by E*0 and Δγ by Δγ0. In this case, we can define a 

relaxed Maugis parameter as λ0 ≡
(
Δγ2

0R∕
(
E0

∗2Δ3
max
) )1

3 When vz → ∞, 
thus ρ̇→∞, one finds, instead, the instantaneous limit. In this limit, and 
according to (8), the work of adhesion can be seen as constant and given 
by Δγ∞ ≡ Δγ0E*∞/E*0. Since we assume that viscoelastic effects are 
concentrated near the edge of the contact, the bulk is still characterized 
by the relaxed elastic modulus E*0. Hence, one recovers again an elastic 

behaviour, with E* = E*0, albeit with a larger work of adhesion corre-
sponding to the instantaneous state of the interface and a Maugis 
parameter specific to the instantaneous limit, i.e., 

λ∞ ≡
(

Δγ2
0R∕

(
(E∗

∞)
2Δ3

max

))1
3. In a general situation, due to the increase 

in work of adhesion, the effective Maugis parameter becomes smaller 
than λ0 and larger than λ∞. This is why viscoelastic effects result also in a 
departure from the JKR-limit, as can be seen by contrasting the curves in 
Fig. 4. This is further assessed in the following section. 

We here note that Greenwood and Johnson [19] indicated that, since 
the pressure spike at the peeling edge caused by adhesion is infinite 
under JKR-theory, the stress and strain rates would also be infinite for 
any finite velocity. Therefore, any viscous material around the peeling 
edge would always be in the instantaneous limit. They noted that this 
was against observations and therefore, suggested to use a more realistic 
description of the crack tip (e.g., the Barenblatt crack), which accounts 
for the fact that the stress peak at the peeling edges is not infinitely high 
and that adhesion acts over a finite, although small, distance. To our 
knowledge, this approach has never successfully been applied to 
describe the unloading of a cylinder from a flat. In our numerical model, 
where adhesion acts over a small distance Δmax, the instantaneous limit 
is not reached even for high values of λ∞, and the model is therefore 
appropriate to study the retraction of an indenter from a viscoelastic 
material. 

4. Numerical method: solution through Green’s function 
Molecular Dynamics 

The numerical simulations are performed using the Green’s Molec-
ular Dynamics (GFMD) technique for viscoelastic solids presented by 
Van Dokkum and Nicola [23]. The surface of the viscoelastic substrate is 
discretized with nx equi-spaced grid points on which the externally 
applied load rate is prescribed in real space. Tractions and displacements 
are computed in Fourier space. Following [23], a relation between 
tractions and displacements at the surface for a given wavenumber q, at 
time t, can be established as 

p(q, t) + τṗ(q, t) = − 8|q|(E∗0u(q, t) + τE∗∞u̇(q, t) ) (14)  

Note that, in (14), p and u are expressed in Fourier space. To obtain (14), 
one first solves, in Fourier space, the elastic problem of sinusoidal 
traction causing sinusoidal deformation. The result is then translated to 
the viscoelastic case using the correspondence principle. Finally, (3) is 
used to particularize the solution to the case of a standard linear solid to 
obtain (14). The reader is directed to [23] for a detailed derivation. The 
exact numerical integral solution requires the storage of the whole his-
tory of stresses and displacements. It therefore becomes, with time, 
progressively more demanding in terms of memory and computational 
time. Hence, we opt for integrating Eq. (14) over time-step Δt using the 
semi-analytical method proposed in [23]. The quasi-static solution at 
time tn + Δt, with the total simulation time ttotal divided into n equal 
time periods Δt, is obtained by solving the equation of motion for each 
mode with a unit mass in reciprocal space over a dimensionless time step 
Δt* via the position (Störmer-)Verlet algorithm [31]. The maximum 
time step Δtmax ≡ τE∗1∕E∗∞ [25]. Note that the dimensionless time t* is 
a numerical operator without any physical meaning while Δt has the 
dimension of time. Since in Fourier space the displacement modes 
decouple, each mode can be damped independently which leads to a fast 
converging solution. The solution is found quickest by critically damp-
ing each mode. We use the relaxed critical damping coefficient which is 
described by a non-monotonous equation: 

ccr = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅

8|q|E∗
0

√

− 8|q|E∗
0Δt∗, (15)  

to ensure that the solution is always underdamped. In this way, we 
achieve the correct solution, albeit not in the fastest manner. 

Fig. 4. The scaled contact half-width (π∕4)ac
̅̅̅̅
ac

√
as a function of the scaled 

pressure Ln∕
̅̅̅̅
ac

√
, as computed using Eqs. (12) and (13). Elastic conditions are 

assumed. The dashed black line corresponds to the JKR-limit following Eq. (10). 
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When the a priori calculated dimensionless equilibrium time tequil* is 
reached, the stresses and displacements in reciprocal space are saved as 
input for the next dimensional time-step. The attractive and repulsive 
tractions are calculated in real space, where the hardwall condition 
returns the coordinates of the surface nodes to the rigid body in case of 
over-closure. Non-adhesive contact simulations for viscoelastic bodies 
were validated in [23]. The pseudo-code used to obtain the numerical 
results is presented in Appendix A. 

We note that the relation between p and u, given in (14), degenerates 
when q = 0, which corresponds to the mean values of the pressures and 
deformations. The mean value of the deformation must be zero, since the 
body is incompressible and periodic: volume must be conserved and the 
only surface that can displace is the contact one. Periodicity allows us to 
define a finite mean separation, differently from the case of a non- 
periodic 2D body, where the mean deformation is undefined (see e.g., 
[32]). However, this quantity is somewhat arbitrary, since it depends on 
the width of the periodic cell. Hence, we will not show any result using 
the approach. Nonetheless, this definition does allow us to define a 
meaningful retraction velocity. 

4.1. Choice of parameters 

The viscoelastic substrate is modelled as a semi-infinite unit cell, 
periodic in x-direction. The ratio between the radius of the indenter and 
the size of the periodic unit cell is taken to be ΔL∕R = 10, to ensure no 
interaction between neighbouring periodic intenders at the maximum 
indentation depth, h ≡ h0∕R = 0.1. The indentation depth is taken to be 
sufficiently small, to warrant the deformation is in the small-strain 
regime. The substrate is characterized by the effective moduli, such 
that k = E*0/E*∞ = 0.1. The relaxed Maugis parameter and the retrac-
tion velocities will be varied. 

The rigid indenter displaces as follows: 

uz(t) ≡
{
− h0, for t < 0;
vzt − h0, for t ≥ τ,

}

(16)  

where vz is the retraction velocity, i.e., the rate at which the mean 
separation between the indenter and the substrate increases, and uz is 
the penetration of the indenter with respect to the undeformed sub-
strate. Following the dimensional analysis in Appendix C, the non- 
dimensional retraction velocity is defined as 

Vz = vzτ(E∗0
2∕Δγ0

2R)1∕3
, (17)  

and we take the values Vz = 0.045, 0.45, 4.55 and p. Two different 
indentation depths, h0 = 0.1 and 0.05, are considered to verify that the 
response is independent of the initial conditions, except for a given 
initial transient response. At times t < 0 an indention is performed with 
effective elastic modulus E* = E*0. The deformed surface at maximum 
indentation depth is obtained by solving the adhesive contact problem 
over a single time-step Δt imposing that the substrate behaves elasti-
cally. This is equivalent, but much faster than indenting very slowly a 
viscoelastic substrate or letting the substrate relax post-indentation. The 
total simulation time ttotal is chosen to achieve complete detachment. As 
demonstrated in Appendix B, convergence of the results is ensured by 
using a spatial discretization nx = 217 and a temporal discretization Δt∕ 
Δtmax = 50. 

5. Results 

It is important to note that, unlike the analytical models previously 
presented, our numerical model does neither assume that the system is 
in the JKR-limit, nor that the viscoelastic effects are confined to the 
contact edges, nor that the peeling edge should behave as a sharp crack 
opening in mode I with constant velocity. This allows us to test the 
validity of the aforementioned assumptions. Even so, we select relaxed 
Maugis parameters large enough (λ0 > 3) so that the elastic response is 
within the range in which JKR-theory is applicable, and any deviation 
from this theory is due to viscoelastic effects only. 

5.1. The effect of the retraction velocity 

In Fig. 5a, we show the contact area as a function of the scaled load 
for a viscoelastic substrate with Maugis parameters {λ0, λ∞} = {7, 1.5}. 
The indenter is retracted from an indentation depth h0 = 0.1 (dashed 
line) and h0 = 0.05 (solid line). The relaxed and instantaneous limits, 
defined in the previous section, are indicated by a black dotted and a red 
dotted line, respectively. Increasing the non-dimensional retraction ve-
locity from 0 to 9 shifts the behaviour of the contact from the relaxed 
towards the instantaneous limit. As apparent from (17), an increase in 
the non-dimensional velocity, and therefore a shift towards the 

Fig. 5. (a) The scaled contact area versus load for {λ0, λ∞} = {7, 1.5}, various normalized velocities and two indentation depths. The black dotted line indicates the 
relaxed limit while the red dotted line indicates the instantaneous limit. (b) The normalized work of adhesion Δγeff∕Δγ0 as a function of the dimensionless radial 
velocity v(ρ̇) for the cases shown in (a). The solid black line indicates the theoretical prediction (8) by Persson et al. [20,21]. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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instantaneous limit, can be achieved by either an increase of velocity or 
by a decrease of radius or the relaxation time of the viscous material. 

The initial indentation depth only affects the initial stages of 
retraction, when the velocity of the peeling edge changes from zero to a 
finite value. After that, a ‘steady-state’ is reached where the initial 
conditions do not matter any more. Only in the case of the highest Vz, 
does it take longer for the curves to superimpose. This is in agreement 
with the experimental observation that the initial conditions only affect 
the pull-off force when roughness is prevalent [33]. Towards the end of 
unloading, curves at low velocities present a tail, similar to that shown 
in Fig. 4 for low Maugis parameters. Unlike in that case, however, this is 
not caused by a departure from the JKR-limit. Instead, the contact area is 
small enough for the two edges to interact, which leads to an accelera-
tion of the peeling edges and to an increase in the effective work of 
adhesion. At high velocities, instead, an unstable jump occurs at a 
relatively high ac. Note that the normalization does not permit plotting 
states with ac = 0 and hence we have only plotted the curves at the 
smallest stable contact state. 

It should be noted that the JKR theory does not apply in the initial 
transient period and just before the detachment of the indenter. Since a 
similar transient response is to be expected also in experimental studies, 
it is important, when fitting experimental data, to exclude the data ob-
tained at the onset and at the end of retraction. For instance, Tiwari et al. 
[13] studied experimentally the indentation and retraction of a rigid 
sphere on a viscoelastic substrate and showed that the JKR solution 
could represent adequately the load area relation during retraction 
except at the onset of retraction. Presumably, the agreement with the 
JKR-solution would have been even better if the transient was explicitly 
recognized and the data points at the beginning of retraction were 

excluded. In this sense, plotting the experimental load-area data with the 
same scaling as in Fig. 5a can help in identifying the data that deviates 
from the JKR-solution and should be disregarded. 

In Fig. 5b, the work of adhesion is shown as a function of the non- 
dimensional peeling edge velocity, v(ρ̇). When computing the work of 
adhesion, it must realized that the curves in Fig. 5a, are not straight 
lines. This is true even under ‘steady state’ conditions, where the change 
in peeling-edge velocity leads to a change in work of adhesion. Hence, 
using a linear fit to assign a unique value for the work of adhesion to the 
whole retraction process, as done in several previous works [12,13,21], 
would lead to a certain arbitrariness in the calculation. Here, instead, we 
find the normalized effective work of adhesion Δγeff∕Δγ0 as a function of 
the radial velocity ρ̇ for each numerically obtained point in Fig. 5a. For 
that, a line with unit gradient passing through each point is constructed 
and the work of adhesion is obtained by taking the intercept of the line 
with the y-axis. Clearly, an increase in the retraction velocity produces 
an increase of ρ̇ and thus an increase of the effective work of adhesion, in 
accordance with the theoretical analysis in Section 3. One should also 
note that each retraction curve exhibits a range of velocities of the 
peeling edges and correspondingly a range of works of adhesion. 
Therefore, defining a single value for the work of adhesion to describe 
the whole retraction process is not accurate, unless the contact satisfies 
the relaxed or the instantaneous limits, see Section 3, which in practice 
does not happen. The analytical theory outlined by Persson and col-
laborators, given by Eq. (8) is also represented. As it can be seen, the 
numerical results align quite well with this equation, which was derived 
to model the opening of cracks in mode I. This indicates that, for the 
cases considered here, which are close to the JKR-limit, it is appropriate 
to assume that the contact behaves as two isolated cracks opening in 

Fig. 6. Scaled surface shape as a function of the position in x-direction, which is normalized by the initial contact area ac
t=0. The results are shown for {λ0, λ∞} = {7, 

1.5} at two values of ac or at L = 0, as indicated in each sub-figure. The insert in Fig. 6a and b show a zoom in of the surfaces shapes near the contact edge. 
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mode I, and also that the viscoelastic effects are confined to a small 
region around the edges of the contact. We note that perfect agreement 
should not be expected, as some assumptions made in the analytical 
models do not hold exactly. For instance, the peeling velocity is clearly 
not constant, specially during the transient observed at the onset of 
retraction. 

Fig. 6 a shows the surface shape (u − uz)∕R as a function of the 

normalized radius ρ∕ac
t=0 for the relative contact areas 4∕π ac

− 3/2 
= 5 and 

3. Fig. 6b shows a closer look of the same cases around the contact edge. 
An increase in the retraction velocity leads to a smaller separation be-
tween the surfaces that used to be in contact since the body has less time 
to recover. Hence, the contact area under adhesion becomes larger and 
the peeling angles more acute. As indicated in [19], this change is 
characteristic of a departure from the JKR-limit. Another way to un-
derstand this transition is to realize that the increased viscous dissipa-
tion must be compensated by an increase of work of adhesion, as also 
shown in Fig. 5b. This increase also results in a reduction of the effective 
Maugis parameter, which will lay between λ∞ and λ0 (note that λ∞ < λ0). 
Owing to the reduction of the Maugis parameter, the departure from the 
JKR-limit as the instantaneous limit is approached is not surprising. We 
note, however, that all cases are nonetheless fairly close to the JKR-limit, 
as seen in Fig. 5a. Moreover, this departure is not easily seen by looking 

solely at the load-to-area curves. Probably, these departures would be 
more obvious for larger E∞∕E0, where λ∞ would be much smaller. 

The reader will notice that some lines cross in Fig. 6a. This is solely 
caused because the profiles are shown at constant contact area, which 
however corresponds to different applied loads. In Fig. 6c it is shown 
that, when the load is the same, the lines do not cross. As expected, a 
smaller velocity leads to a larger relaxation of the viscoelastic solid and 
thus to a larger separation between the two surfaces. 

Fig. 7 shows the pressure distribution around the contact edge, 
which corresponds to Fig. 6a and c. Clearly, the width of the adhesive 
annulus increases with retraction velocity. A larger velocity leads to a 
more instantaneous behaviour and therefore approaches closer the 
instantaneous Maugis parameter λ∞ = 1.5. As discussed in Section 3, a 
smaller Maugis parameter is characterized by a larger adhesive annulus. 
Although the increase in adhesive area is small, since the adhesive 
pressures are large compared to the repulsive ones, this is sufficient to 
change the overall behaviour. 

5.2. The effect of the Maugis parameter 

In the previous section we saw how viscoelastic effects can reduce 
the effective Maugis parameter, making the contact depart from the 
JKR-limit. In this section we will show that the value of the relaxed 
Maugis parameter λ0, i.e., how close the elastic simulations is to the JKR- 
limit influences the viscoelastic response. In Fig. 8a, the contact area is 
presented as a function of the load for three sets of Maugis parameters 
{λ0, λ∞} = {14, 3}, {7, 1.5} and {3.5, 0.75}. The retraction velocity is set 
to Vz = 0.9. Again, the relaxed and instantaneous limits, corresponding 
to the case {λ0, λ∞} = {7, 1.5}, are shown as a reference. It is apparent in 
Fig. 8a that an increase of λ0 renders the system closer to the instanta-
neous limit. Note that, when λ0 is increased, the adhesive component of 
the pressure forms a higher and narrower spike at the contact edges, 
which induces larger the stress rates at the peeling edge. However, one 
should notice that while λ0 > 3 is sufficient for an elastic contact to 
converge to the JKR limit in terms of the area-load curve, a much larger 
λ0 is needed to reach the instantaneous limit. For instance, when Vz 
= 0.9, we find that λ0 = 14 is not sufficient to reach the instantaneous 
limit. This is because the spike is not sufficiently high and narrow to 
induce the high stress rates needed to reach the instantaneous limit. 
Note also that, as the instantaneous limit is approached, the effective 
Maugis parameter is reduced towards λ∞. This also contributes towards 

Fig. 7. Surface pressure as a function of the position in x-direction, which is 
normalized by the initial contact area ac

t=0. The results are shown for {λ0, 
λ∞} = {7, 1.5} at two values of ac or at L = 0, as indicated. 

Fig. 8. (a) The scaled contact area vs. load for Vz = 0.9, various Maugis parameters and two indentation depths. The black dotted line indicates the relaxed limit 
while the red dotted line indicates the instantaneous limit. (b) The normalized work of adhesion Δγeff∕Δγ0 as a function of the dimensionless radial velocity v(ρ̇) for 
the cases shown in (a). The solid black line indicates the theoretical prediction (8) by Persson et al. [20,21]. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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making it harder to reach the instantaneous limit. 
The work of adhesion is shown in Fig. 8b, where it is evident that the 

larger the Maugis parameter, the larger the effective work of adhesion. 
As in Fig. 5b, the work of adhesion is in general well represented by (8). 

5.3. A parameter to estimate the relevance of viscoelastic effects 

As discussed in the introduction, several mechanisms have been 
proposed for adhesion hysteresis. Viscoelasticity has been shown 
experimentally to be very relevant in some cases [13] but irrelevant in 
others [15]. We here propose a parameter that can be used to estimate 
when viscoelasticity is relevant. 

We first take note that both increasing Vz and increasing λ0 lead to a 
similar effect. This can be rationalized if one assumes that viscoelastic 
effects are confined to the peeling edge. In order to determine how close 
the viscoelastic modulus is to the instantaneous one, we estimate the 
stress rate close to the peeling edge, i.e. the speed with which the ad-
hesive pressure spike moves. An increase in Vz leads to an increase of the 
peeling edge velocity and hence the pressure spike moves faster and 
produces higher stress rates. Similarly, an increase in λ0 makes the spike 
taller and narrower, also leading to higher stresses rates. In order to 
attain a quantitative estimation, we simplify the picture by assuming 
that the spike is the only source of stress. The spike has a width w, 
reaches a maximum pressure σa and moves with the velocity of the 
peeling edge. The velocity of the peeling edge can be expressed as 

ρ̇ =
dac

duz

duz

dt
=

da
duz

vz (18)  

and hence scales with the retraction velocity vz. Therefore, we can write 

ṗ ≈
vzσa

w
, (19)  

where we have ignored the scaling factor given by dac∕duz. The width is 
computed in Appendix D as 

w =
πE∗Δmax

4σa
. (20)  

The non-dimensional pressure derivative is given by 

Ṗ ≈
Vz

W
=

4
π

vzτ
Δmax

λ0, (21)  

where W = π∕4∕λ2
0 is the non-dimensional width. Therefore, we can see 

that the stress rate should approximately scale with a parameter χve 

χve =
vzτλ0

Δmax
=

vzτ
Δ2

max

(
RΔγ0

2

E∗2
0

)1∕3

=
σavzτ
Δγ0

(
R

E∗2
0 Δγ0

)1∕3

. (22) 

To test the performance of this parameter, Fig. 9 shows cases with 
varying Vz and λ0. Cases with equal parameter but different Vz and 
λ0 show a very similar response, confirming that χve can be used to es-
timate the relevance of viscoelastic effects when Vz, λ0 and the interac-
tion length Δmax, are known. 

For small values of χve (say χve < 2), the system will be close to the 
relaxed limit and viscoelastic effects can be neglected. Instead, when it is 
large (say χve > 160), the system will be closer to the instantaneous limit 
and the work of adhesion will be given by Δγ∞. Reviewing each 
component of (22), we can say that, when the velocity and/or λ0 are 
large or Δmax is small the system approaches the instantaneous limit. 
This is because the adhesive pressure forms a sharper, faster moving 
spike. Finally, if τ is larger, we will also be closer to the instantaneous 
limit because a longer time will be needed to relax to the relaxed 
conditions. 

As an example of the usefulness of this parameter, we may compare 
several works in the literature. Unfortunately, values for Δmax or τ are 
not available so the best we can do is to assume that their values do not 
change significantly in the different experiments and, instead of giving 
numerical values to χve look for trends in this parameter. In the exper-
imental work by Dalvi et al. [15], the authors found viscoelastic effects 
to be negligible. In that case, the ball radius was small (R ≈ 2.5 mm), as 
was the retraction velocity (vz ≈ 60 µm/s). On the contrary, the elastic 
modulus was relatively large (E*0 ≈ 1–10 MPa). This combination of 
parameters corresponds to a fairly small χve. In the work by Tiwari et al. 
[13], instead, strong viscoelastic effects were noticed. In that case, the 
radius was of the same order (R ≈ 3.3 mm) but the retraction velocity 
was larger (vz ≈ 400 nm/s) and the elastic modulus was much smaller 
(E*0 ≈ 25 kPa). Hence the value of χve was much larger in that case. 
Similarly, Baek et al. [14] observed a strong hysteresis at a small velocity 
(vz = ≈60 nm/s) and high stiffness (E^*_0 ≈ 2.6 MPa) when studying a 
system with a large radius (R ≈ 200 mm), which would also lead to a 
high χve value. All these results are consistent with the behaviour pre-
dicted by the parameter defined in (22). 

It should be noted that, unfortunately, this parameter is not trivial to 
be estimated experimentally due to the presence of Δmax. We note, 
however, that the Maugis parameter shares the same limitation. Also we 
have proven the numerical performance of the parameter using the 
standard linear solid for viscoelasticity. Although we expect the results 
to be qualitatively similar for various viscoelastic materials, we do note 
that a single value for τ might not be sufficient to describe materials that 
deviate significantly from this model. An alternative in this case could be 
to choose a reference time-scale, as suggested by Persson et al. [34], 
equal to the inverse of the frequency at which viscous dissipation is 
maximum. 

6. Conclusions 

In this paper, we have analysed the retraction of a cylindrical 
indenter from a viscoelastic substrate. In agreement with analytical 
theories based on LEFM, we find that the load-to-area relationship lays 
between two limits, both of which can be characterized using JKR- 
theory: in the relaxed limit no viscoelastic effects are seen, while in 
the instantaneous limit there is an increase in the work of adhesion, Δγ∞ 
= E*∞/E*0Δγ0. Increase in the normalized retraction velocity and/or 
relaxed Maugis parameter enhances the instantaneous behaviour and 
brings the response closer to the latter limit. We have shown, however, 

Fig. 9. The scaled contact area vs. load with h = 0.05 and various combina-
tions of Vz and λ0. The colours indicate the value of χve as indicated in the lower 
legend. The lines correspond to the pair of values {Vz, λ0, χve} = {3.6, 7, 160} 
(blue, solid), {0.9, 14, 160} (blue, dashed), {3.6, 3.5, 40} (orange, solid), {0.9, 
7, 40} (orange, dashed), {0.18, 3.5, 2} (green, solid) and {0.045, 7, 2} (green, 
dashed). The black dotted line indicates the relaxed limit while the red dotted 
line indicates the instantaneous limit. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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that a very high velocities and /or a very large relaxed Maugis parameter 
are needed for the instantaneous limit to be approached. 

Differently from the LEFM based theories, the simulations show that 
a transient period is present at the onset of retraction, in which the 
contact area reduces only very slowly; and that a tail appears close to the 
detachment point. Also, we observe a deviation from the JKR-behaviour 
as the instantaneous limit is approached. Both these features complicate 
an analysis of the contact based on the JKR-solution. This means that in 
all practical scenarios, i.e., away from either limit, the area-load curve is 
translated and rotated with respect to the relaxed limit. 

Finally, we have proposed a new parameter, 

χve =
vzτ

Δ2
max

(
RΔγ0

2

E∗2
0

)1∕3

=
σavzτ
Δγ0

(
R

E∗2
0 Δγ0

)1∕3

, (23)  

that allows estimating under which conditions viscoelastic effects can be 
relevant. We find that viscoelasticity can be ignored when χve < 2 and 
that the instantaneous limit is approached when χve > 160. This can be 
particularly useful in experiments where it is unclear whether visco-
elasticity contributes to adhesive hysteresis. To show the effectiveness of 
the parameter, we have shown that the presence or absence of visco-
elastic effects in several experimental works in the literature correlates 
with trends of increasing or decreasing χve. 
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Appendix A. Viscoelastic GFMD pseudo-code  

(i) Setup rigid indenter with initial surface topography h(x)tn=0; 
(ii) Determine damping coefficient vector ccr(q) such that all modes are critically and/or under-damped, and calculate the dimensionless equi-

librium time t*equil for a given dimensionless time-step Δt*;  
(iii) Loop over iteration n with time-step Δt till the time tfinal is reached. Give the location of the rigid indenter as z(x)indenter

tn+Δt = h(x − δx
tn+Δt)tn=0 +

δz
tn+Δt, where δz

tn+Δt and δx
tn+Δt are the normal and tangential displacement of the rigid indenter at time tn + Δt respectively.  

(a) Loop over Δt* till the equilibrium time t*equil is reached.  
– Discrete fast Fourier transform (DFFT) surface displacement u(x)new

tn+Δt using the FFTW3 library [35].  
– Calculate viscoelastic restoring force,F̃(q)visco-elas

tn+Δt ←Func.{ũ(q)new
tn+Δt , ũ(q)tn , F̃(q)tn ,Δt};  

– Add external force and interfacial force, F̃(q)total
tn+Δt←F̃(q)visco-elas

tn+Δt + F̃(q)ext
tn+Δt + F̃(q)if

tn+Δt ;  

– Add damping forces, F̃(q)total
tn+Δt← − ccr(q)

ũ(q)now
tn+Δt − ũ

old
(q)tn+Δt

Δt∗ ;  
– Use pSV to solve equation of motion, ũ(q)new

tn+Δt = 2ũ(q)now
tn+Δt + − ũ(q)old

tn+Δt + + F̃(q)d
tn+Δt(Δt ∗ )2  

– Assign ũ(q)old
tn+Δt←ũ(q)now

tn+Δt & ũ(q)now
tn+Δt←ũ(q)new

tn+Δt;  
– Reverse DFFT displacement u(x)new

tn+Δt into real space, and scale displacement u(x)new
tn+Δt with 1∕L;  

– Implement the hardwall boundary condition,u(x)new
tn+Δt←min{u(x)new

tn+Δt , z(x)
indenter
tn+Δt };  

– Calculate interfacial force F(x)if
tn+Δt←Func.{u(x)new

tn+Δt , z(x)
indenter
tn+Δt } & DFFT to F̃(q)if

tn+Δt.  
(b) DFFT displacement u(x)new

tn+Δt;  

(c) Assign ũ(q)tn ←ũ(q)new
tn+Δt & F̃(q)tn ←F̃

total
tn+Δt. 

Appendix B. Convergence test 

Convergence with increased spatial and temporal discretization is shown here for two cases. The first one, presented in Fig. B1a, corresponds to Vz 
= 4.5 and λ0 = 7. Clearly, nx = 217 and Δt∕Δtmax = 50 are sufficiently fine to achieve a good spatial and temporal discretization for this case. Note that, 
with increased λ0, the pressure spike becomes thinner and hence a finer spatial discretization is needed. Also, with increased retraction velocity, a 
smaller time step in needed. Hence, the case presented in Fig. B1a demands a discretization finer than any other case considered in this work. Hence, 
most cases considered in this work will demand a less fine time and spatial grids and can be considered converged as well. Only two cases remain to be 
checked. The case Vz = 9 and λ0 = 7 could fail because the higher speed may require a finer temporal discretization. It was tested in a similar fashion 
(not shown), leading to the conclusion that Δt∕Δtmax = 100 was needed for convergence to be achieved. It is worth pointing out that a fine time 
discretization is needed to capture the appropriate pull-off load, as a coarse time discretization leads to an early pull-off. The other case corresponds to 
Vz = 0.9 and λ0 = 14, which might need a finer spatial discretization to capture the narrower pressure spike. The convergence test for this case is 
shown in Fig. B1b. Again, the discretization used (nx = 217 and Δt∕Δtmax = 50) is sufficient in this case. 
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Appendix C. Non-dimensional formulation 

The equations governing the contact problem are given by (14) and (4). Now, by using the scaled variables 

X =
x
β
=

x
(
R2Δγ0∕E∗

0
)1∕3 , T =

t
τ,P =

p
Δγ0∕Δmax

, U =
u

β2∕R
, (C.1)  

these equations may be written as. 

P(Q, T) + Ṗ(Q, T) = − 8
⃒
⃒
⃒
⃒Q
⃒
⃒
⃒
⃒

1
λ0

(

U(Q,T) +
1
k
U̇(Q,T)

)

,

G(X, T) = H0(X) + VT − H0(T) − U(X,T),

G(X, T) = 0, P(X,T) < 1,

0 < G(X,T) ≤
1
λ0
, P(X, T) = 1,

G(X, T) >
1
λ0
, P(X,T) = 0,

(C.2a)  

where Q = qβ. In this case, the problem can be seen to be controlled by 

λ0 =
Δγ0

Δmax

(
R

E∗2
0Δγ0

)1∕3

, H0 =
h0

Δmaxλ∞
,V = vzτ

(
E∗2

0

Δγ2
0R

)1∕3

, k =
E∗

0

E∗
∞

(C.3)  

Appendix D. Estimation of the width of the pressure spike 

In order to estimate the width of the adhesive annulus, we need to estimate the value of m in (13). The dimensional version of that equation is [29]. 
aa

2R

(
m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
− arccosh(m)

)
+

4paaa

πE∗

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
arccosh(m) − mlog(m)

)
= Δmax.

(D.1)  

This is a highly non-linear equation that cannot be solved analytically. To simplify it, we may note that, if the width of the adhesive annulus is much 
smaller than the contact area then m ≈ 1. In this case, the following approximations hold, 

arccosh(m) ≈
̅√
(2)

̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√
, mlog(m) ≈ (m − 1). (D.2)  

Hence, we may approximate the first term in (D.1) as 

Fig. B1. Convergence test with increased spatial and temporal discretization. In (a), the reference case is given by Vz = 4.5, λ0 = 7, nx = 217 and Δt∕Δtmax = 50. In 
(b), the reference case is given by Vz = 0.9, λ0 = 14, nx = 217 and Δt∕Δtmax = 50. In the other cases, only the value indicated on the legend has been changed. 
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aa

2R

(
m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(m − 1)(m + 1)

√
−

̅̅̅
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅
m − 1

√ )
≈

aa

2R
̅̅̅
2

√ ((
m − 1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(m − 1)

√ )
,

(D.3) 

and the second term as 

4paaa

πE∗

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(m + 1)(m − 1)

√ ̅̅̅
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(m − 1)

√
− (m − 1)

)

≈
4paaa

πE∗
(m − 1).

(D.4)  

Comparing these two terms, we see that when m → 1, the first term will go faster to zero. Hence, we may neglect it to reach 

4paaa

π E∗
(m − 1) ≈ Δmax. (D.5)  

Finally, realizing that the width is given by w = aa(m − 1), we find 

w =
πE∗Δmax

4pa
. (D.6)  
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