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a b s t r a c t

We study a diagnosis scheme to reliably detect the active mode of discrete-time, switched affine
systems in the presence of measurement noise and asynchronous switching. The proposed scheme
consists of two parts: (i) the construction of a bank of filters, and (ii) the introduction of a
residual/threshold-based diagnosis rule. We develop an exact finite optimization-based framework to
numerically solve an optimal bank of filters in which the contribution of measurement noise to the
residual is minimized. The design problem is safely approximated through linear matrix inequalities
and thus becomes tractable. We further propose a thresholding policy along with probabilistic false-
alarm guarantees to estimate the active system mode in real-time. In comparison with the existing
results, the guarantees improve from a polynomial dependency in the probability of false alarm to a
logarithmic form. This improvement is achieved under the additional assumption of sub-Gaussianity,
which is expected in many applications. The performance of the proposed approach is validated
through a numerical example and an application of the building radiant system.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last two decades, special attention has been paid
o switched affine systems because they can be used to effec-
ively model a wide range of practical systems, such as chem-
cal plants (Venkatasubramanian, Rengaswamy, Yin, & Kavuri,
003), aeronautic systems (Zolghadri, 2012) and smart build-
ngs (Weimer et al., 2013). These systems are usually difficult to
e exactly described by a single model because of their nonlin-
ar and complex dynamic characteristics. Research on switched
ystems is mainly focused on model identification (Bako, 2011;
hlsson & Ljung, 2013), state estimation (Ackerson & Fu, 1970),
tability analysis and controller design (Lin & Antsaklis, 2009;
uan, Zhang, De Schutter, & Baldi, 2018). The prior knowledge
f the switching signal that indicates the evolution of modes is
rucial to theoretical results in these research topics. For example,
general approach to controlling switched systems is to employ
ode-dependent controllers, where the activation of a proper
ontroller depends on the switching signal. There are, however,
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several scenarios in which the switching signal is not a priori
known. In fault diagnosis scenarios, an unexpected transition
from a healthy mode to a faulty mode can be treated as an
unknown switching. Thus, one needs to detect the active mode
of switched systems as the detection process results in a delay
between the active mode and its corresponding controller.

1.1. Literature review

The problem of mode detection for switched affine systems
has been studied for decades. The proposed approaches can be
grouped into two categories: data-based and model-based ap-
proaches. The data-based approaches are most adopted when
the parameters of each mode are unknown. In that case, the
parameters need to be identified from a collection of input–
output data. Then the new data is associated with the most
suitable mode through data classification techniques. A number
of results on data-based approaches have been achieved. We refer
the interested readers to Bako (2011) and the references therein.

Model-based fault diagnosis: In model-based approaches, one
leverages tools from the fault detection and isolation (FDI) field
to detect and isolate changes caused by switches or faults. The
most widely used FDI methods are based on residual genera-
tion, where certain residual signals are generated by observer-
based or parity space methods to characterize the occurrence of
changes quantitatively (Gao, Cecati, & Ding, 2015). Beard (1971)
proposes the original observer-based diagnosis approach to re-
place the hardware redundancy in 1971. Subsequently, many
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bserver-based diagnosis approaches are developed. To deal with
isturbances or measurement noise, the authors in Henry and
olghadri (2005) construct an optimization problem to design
he parameters of the observer, in which the influence of dis-
urbances on residuals characterized by H∞-norm is minimized.
he parity space approach is proposed in Chow and Willsky
1984), which generates residuals to check the consistency be-
ween the model and the measurements. It is worth noting that
he derived residual generators usually have the same order as
hat of the systems. This makes the generators complex and
omputationally demanding when dealing with high-dimensional
r large-scale systems. Frisk (Frisk & Nyberg, 2001) proposes
parity-space-like approach in a polynomial framework which
roduces residual generators with possibly low order. In their
ollowing work (Nyberg & Frisk, 2006), the previous approach
s extended to the linear differential–algebraic equation (DAE,
ifference-algebraic equation in the discrete-time case). This ex-
ension enlarges the application range of FDI approaches be-
ause DAE models cover several classes of models, e.g., transfer
unctions, state-space models, or descriptor models. The above
pproaches are for linear systems. For the fault detection of
onlinear systems, a natural way is to linearize nonlinear systems
t local operating points and decouple the disturbances together
ith the higher-order terms from the residuals, see for exam-
le (Benosman, 2010; Seliger & Frank, 1991). Another method
s to develop adaptive nonlinear estimators to approximate the
onlinear terms (Boem, Ferrari, & Parisini, 2011; Ferrari, Parisini,
Polycarpou, 2011). More recently, the authors in Mohajerin Es-

ahani and Lygeros (2015), Pan, Palensky, and Mohajerin Esfahani
2021) develop tractable optimization-based approaches in the
AE framework to design FDI filters to deal with disturbances and
onlinear terms.
Multi-mode diagnosis: Note that the aforementioned approaches

are applicable to systems with a single model. A bank of residuals
is usually required to deal with systems consisting of several
modes. Moreover, the systems need to satisfy certain rank condi-
tions to guarantee that any two subsystems can be distinguished
from each other. This is the distinguishability (also called dis-
cernibility or observability) of switched systems (Halimi, Milléri-
oux, & Daafouz, 2014; Küsters & Trenn, 2018). To detect the active
mode, the idea that makes each residual sensitive to all but only
one mode is usually adopted, which is called generalized observer
cheme (GOS) (Frank, 1990). Following a GOS mindset, results
n mode detection are achieved based on basic residual gener-
tion methods, such as parity space approaches (Cocquempot, El
ezyani, & Staroswiecki, 2004), unknown input observers (Wang
Lum, 2007), and sliding mode observers (Mincarelli, Pisano,

loquet, & Usai, 2016; Zhang, Li, Yan, & Fan, 2019). Note that the
omputational complexity of these residual generation methods
ncreases significantly as the system dimension and the number
f modes increase. In this work, we propose a design perspective
n the DAE framework that relies on a bank of filters whose
imension does not necessarily scale up with the dimension
f the system. This feature enables a possibility of low-ordered
ilters compared to the existing literature.

Another class of mode detection methods is the set-
embership method which computes the reachable set of each
ubsystem. Then, the output is compared to the reachable sets
o determine the mode (Harirchi & Ozay, 2018; Marseglia &
aimondo, 2017; Scott, Findeisen, Braatz, & Raimondo, 2014).
he authors in Scott et al. (2014) and Marseglia and Raimondo
2017) develop active diagnosis approaches in which an optimal
eparating input sequence is designed to guarantee that output
ets of different subsystems are separated. In Harirchi and Ozay
2018), a model invalidation approach is proposed to compare

he input–output data to the nominal behaviors of the system, d

2

where the set-membership check is reduced to the feasibility of a
mixed-integer linear programming problem. The set-membership
methods are generally computationally demanding because they
require solving optimization problems at each step. Also, the
residual generation and set-membership methods mentioned
above either neglect the noise or treat them as robust only
through the support information. This viewpoint often leads to
conservative diagnosis guarantees. In fact, the measurement noise
introduces a unique challenge to the detection task where the
reachable sets of healthy residuals may well overlap with the
faulty ones. This challenge is one of the focus points of this study.

1.2. Main contributions

In the light of the literature reviewed above, the main message
of this paper revolves around a diagnosis scheme to detect the
active mode of asynchronously switched affine systems in real-
time. The diagnosis scheme consists of a bank of filters and a
residual/threshold-based diagnosis rule. The bank of filters com-
prises as many filters as the admissible mode transitions, while
the diagnosis rule prescribes conditions under which we estimate
the transition based on the behaviors of the residuals. The main
contributions of this paper are summarized as follows.

• Exact characterization of an optimal bank of filters: Build-
ing on residual-based detection and H2-norm approaches in
the DAE framework, we formulate the optimal bank of filters
design problem as a finite optimization problem in which
the objective is the noise contribution to the residuals (The-
orem 3.1). We also provide necessary and sufficient condi-
tions that ensure the feasibility of the resulting optimization
problem (Proposition 3.3).

• Tractable convex restriction: We provide an LMI-based
sufficient condition for the nonlinear constraint in the ex-
act optimization problem of the filters design, leading to a
tractable approximation of the original problem (Proposi-
tion 3.2).

• Probabilistic performance bounds: We further propose di-
agnosis thresholds along with probabilistic false-alarm guar-
antees to estimate the active system mode (Theorem 3.8).
The proposed bound admits a logarithmic dependency with
respect to the desired reliability level, which is better than
the polynomial rate in the existing works (Boem, Riverso,
Ferrari-Trecate, & Parisini, 2018). This improvement comes
under the sub-Gaussianity assumption on the noise distri-
bution, a regularity requirement expected to hold in many
real-world applications.

The rest of the paper is organized as follows. The prob-
em formulation and the proposed architecture of the diagnosis
cheme are introduced in Section 2. In Section 3, we present
n optimization-based approach to design the filters along with
ome performance analysis of the proposed scheme. To improve
he flow of the paper and its accessibility, we postpone all tech-
ical proofs to Section 4. The proposed scheme is applied to a
umerical example and a building radiant system in Section 5 to
alidate its effectiveness. Finally, Section 6 concludes the paper
ith some remarks and future directions.

otation. Sets R (R+) and N (N+) denote all reals (positive
eals) and non-negative (positive) integers, resp. Set {1, . . . , n}
s denoted by N . Sets of symmetric matrices and non-singular
atrices are denoted by S and M, resp. In symmetric matrices,
e use ∗ for the off-diagonal elements in an attempt to avoid
lutter. The identity matrix with an appropriate dimension is
enoted by I . The maximum singular value of a matrix A is

enoted by ∥A∥2. For a vector v = [v1, . . . , vn], the 2-norm
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nd infinity-norm of v are ∥v∥2 =

√∑n
i=1 v

2
i and ∥v∥∞ =

axi∈{1,...,n} |vi|, resp. For a random variable χ , the probability law
nd its expected value are denoted by Pr[χ ] and E[χ ], resp. Given
signal s = {s(k)}k∈N and a LTI system (or transfer function) T,

he notation T[s] denotes the output of the system in response
o the input signal s. The composition of two transfer functions T
and F is also denoted by FT[s] = F[T[s]]. We use the shorthand
notation ∥T∥H2 to denote the H2-norm of T. The steady-state
ain of T is denoted by [T]ss := limk→∞ T[1](k), whenever the
imit exists.

. Model description and problem statement

In this section, a formal description of discrete-time asyn-
hronously switched affine systems is given. Then we present the
rchitecture of the proposed mode detector and formulate the
roblems studied in this work.

.1. Model description

Consider a discrete-time switched affine system that consists
f n subsystems:

(k + 1) = Aσ (k)x(k) + Bσ (k)u(k) + Eσ (k)d(k) + Wσ (k)ω(k),

y(k) = Cσ (k)x(k) + Dσ (k)ω(k) (2.1)

here x(k) ∈ Rnx , u(k) ∈ Rnu and y(k) ∈ Rny are the state,
ontrol input and output, resp. The signals d(k) ∈ Rnd and
(k) ∈ Rnω represent the reference and noise signals, resp. For
implicity of analysis, we consider a one-dimensional reference
ignal, i.e., nd = 1. Throughout this study, the noise ω(k) is
ssumed to be independent and identically distributed (iid). The
witching law σ (k) ∈ N indicates the active mode at each
nstant k. Matrices Aσ (k), Bσ (k), Eσ (k), Wσ (k), Cσ (k) and Dσ (k) are
ll known with appropriate dimensions, and matrices Ei ̸= 0.

For each mode i ∈ N , we consider the static output-feedback
controller

u(k) = Kiy(k), (2.2)

here Ki is a constant controller gain; see Chang and Yang (2013)
or a design approach to Ki. Let {t0, t1, . . . , ts, . . .} denote the
equence of switching time instants of the system mode σ (k),
.e., by definition we have σ (ts − 1) ̸= σ (ts).

In this study, we consider the setting that the switching
aw σ (k) and the switching instant ts are both unknown to the
ontroller. The main objective is to estimate the active mode σ (k),
ereafter denoted by σ̂ (k), through the noisy measurement y
n real-time. As depicted in Fig. 1, our proposed scheme to
ccomplish this goal builds on a bank of filters where each of
hich is intended to detect a possible pair of σ̂ (k) = i, σ (k) = j

or any i, j ∈ N ; we use the notation Sij to represent this status of
he closed-loop system. For each pair (i, j), the filter is assumed
o be a linear time-invariant (LTI) system (or transfer function)
enoted by Fij whose output (also called residual) is a scalar-
alued signal rij := Fij[y]. We note that in our setting, the current
ontroller mode σ̂ (k) = i is always known, whereas the system
ode σ (k) is unknown and the object of interest. Suppose that

he system transitions to the status Sih at ts (i.e., σ̂ (ts) = i, σ (ts) =

), thanks to the linearity of the dynamics, the residual rij can be
ritten as

ij = FijT
Sih
dy  

d↦→rij

[d] + FijT
Sih
ωy  

ω ↦→rij

[ω] + I(x(ts), x̄ij(ts))  
initial condition

, (2.3)

here TSih
dy and TSih

ωy are the LTI systems from the external sig-
als (d, ω) to y, and I(·) is the contribution of the internal states
 s

3

Fig. 1. Structure of the closed-loop dynamics and the mode detector.

of the system x(ts) and the filter x̄ij(ts). From the classical system
heory, we know that the initial condition contribution vanishes
xponentially fast under appropriate stability conditions. To iso-
ate the active mode, we adopt the same mindset as GOS and opt
o decouple the contribution of the reference signal d (i.e., the
irst term on the right-hand side of (2.3)) for the matched mode
= h, and make sure that it is significantly high when j ̸= h.
ith regard to the latter, we look at the steady-state behavior of

he filters, motivated by the fact that in many important applica-
ions the reference signal d is effectively constant between two
witching instants. Furthermore, we opt to suppress the noise
ontribution (the second term on the right-hand side of (2.3)) for
ll h ∈ N . These steps will be formalized in the next part.

.2. Problem statements

The proposed diagnosis solution comprises two components:
i) bank of filters, as briefly described in the previous section, and
ii) diagnosis rule, which is essentially a thresholding technique
o estimate the system mode from the residuals. We then present
wo problems concerning each of these components. For each pair
i, j) and the respective filter Fij, the desired properties of d ↦→ rij
nd ω ↦→ rij (the first two terms on the right-hand side of (2.3))
an be formalized as follows:

FijT
Sij
dy = 0, (2.4a)[

FijT
Sih
dy

]
ss

⏐⏐⏐ ≥ 1, ∀h ∈ N \ {j}, (2.4b)FijT
Sih
ωy


H2

≤ ηijh, ∀h ∈ N . (2.4c)

et us briefly elaborate on each condition in (2.4): The equality
onstraint (2.4a) decouples d from rij when the closed-loop status
s Sij. The condition (2.4b) ensures that the absolute value of the
teady-state gain of FijT

Sih
dy remains larger than or equal to 1, and

s such, the contribution of d to rij is notably nonzero when the
losed-loop status is Sih for all h ∈ N \ {j}. Recall that the H2-
orm of a transfer function is the asymptotic variance of the
hite noise response (Scherer, Gahinet, & Chilali, 1997). Then,
he constant ηijh in (2.4c) is an upper bound for the variance
f the noise contribution to the residual. In view of the desired
roperties (2.4), we proceed with our first problem.

roblem 1 (Optimal Bank of Filters). Consider the closed-loop
ynamics (2.1)–(2.2) and the mode detector in Fig. 1. Given i, j ∈

and an admissible family of the filters Fij, find the optimal filter
efined through the optimization program

min
Fij, ηijh

{
n∑

h=1

ηijh : (2.4a), (2.4b), (2.4c)

}
. (2.5)

Given the filters as an (approximate) solution to (2.5), we now

hift our attention to the diagnosis rule component in Fig. 1.
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Fig. 2. Illustration of the diagnosis process.

Consider a transition from mode i to mode j at time instant ts
i.e., σ̂ (ts) = i, σ (ts) = j) where i, j ∈ N . There are two key
arameters during the diagnosis process of the transition: (1) the
hreshold εi ∈ R+, and (2) the waiting time τj ∈ N+. The behavior
f the trajectories, as well as the design parameters εi, τj, are
ictorially illustrated in Fig. 2. In the following, the role of each
f the design parameters is discussed:
(1) Threshold εi: As formalized in (2.4), the matched residual

σ̂ σ (k) should be close to zero, while the other residuals are no-
ably away from zero. Recall that the current controller mode σ̂ (k)
s known, and the system mode σ (k) is the detection target.
ence, we monitor the residuals rσ̂h(k) for all h ∈ N , and compare
hem with the threshold εσ̂ to isolate the matched residual (the
ne with the smallest absolute value). More specifically, we opt to
ingle out one candidate from all the other possible modes. This
rocedure can be formally described by introducing the following
onditions
∗(k) = argmin

h∈N
|rσ̂h(k)|, (2.6a)

rσ̂ j∗ (k)| ≤ εσ̂ (k) < min
h∈N\{j∗(k)}

|rσ̂h(k)|. (2.6b)

he mode j∗(k) defined in (2.6a) is our best candidate to estimate
he system mode σ (k), and (2.6b) is essentially a requirement to
nsure that the threshold only selects one candidate. Once the
onditions (2.6) are fulfilled at a time instant k, then the diagnosis
omponent updates σ̂ (k + 1) = j∗(k), otherwise, it still retains
he old mode σ̂ (k + 1) = σ̂ (k). In Fig. 2, note the period prior to
iso
s , the isolation time of the transition at ts; this will be formally
efined in the next part in (2.7).
(2) Waiting time τj: Once we update σ̂ at t isos , the condi-

ions (2.6) are violated immediately since the controller mode
hanges. Thus, we need to wait for sufficiently large time to
ass the transient behavior of the system caused by the initial
ondition (the third term on the right-hand side of (2.3)); see the
‘waiting period’’ [t isos , t

iso
s + τj) in Fig. 2. The controller mode σ̂

emains unchanged during this period (i.e., σ̂ (k + 1) = σ̂ (k))
ntil |rjj(k)| reaches the respective threshold εj; see Fig. 2 and the
ime instant t isos +τj. To determine whether the diagnosis process
s in the waiting period or not, we record the last isolation time
nstant through

iso(k) := max
{
t ∈ N+ : σ̂ (t) ̸= σ̂ (t − 1), k ≥ t

}
. (2.7)

e use the shorthand notation t iso(k) = t isos for k ∈ [t isos , t
iso
s+1).

In summary, the diagnosis rule of the second component can
e mathematically described by

ˆ (k + 1) =

{
j∗(k), if (2.6) and k ≥ t iso(k) + τσ̂ (k)
σ̂ (k), otherwise. (2.8)

Note that εi in (2.6) and τj in (2.8) are the design parameters,
nd their objective is to detect the current system mode σ (k).
n view of the update rule (2.8), this objective is formalized in
ur next problem in terms of the behavior of the matched filter
esidual r (k).
ij

4

roblem 2 (Probabilistic Performance Certificates). Suppose that
he transition from mode i to j occurs at ts (i.e., σ̂ (ts) = i and
(ts) = j). Given the filters constructed from Problem 1 and a
eliability level β ∈ (0, 1], determine the threshold εi and the
stimated matched time Tij such that

r
[⏐⏐rij(t)⏐⏐ ≤ εi

⏐⏐⏐ [σ̂ (k)
σ (k)

]
=

[
i
j

]
, k ≥ ts

]
≥ 1 − β, ∀ t ≥ ts + Tij.

(2.9)

The initial condition I(x(ts), x̄ij(ts)) determines the time that |rij|
akes to reach εi. However, the internal system state x(ts) and
witching instant ts are unknown. Moreover, if the next transi-
ion occurs before ts + Tij, the guarantee in (2.9) is no longer
seful. Thus, we assume that the time between two consecutive
ransitions (the so-called dwell time (Yuan et al., 2018)) is large
nough so that the system reaches its steady-state before the
ext transition. It is a reasonable assumption as the dwell time of
any real-world applications is longer than the time available for

he controller to detect the mode. In this setting, the probabilistic
uarantee (2.9) can be obtained, and the internal state x(ts) can
e estimated by its steady-state value.

emark 2.1 (Waiting Time). The waiting time τj depicted in Fig. 2
s indeed a special case of the estimated matched time introduced
n Problem 2 where the controller and the system mode coincide,
.e., σ̂ (t isos ) = σ (t isos ) = j, and as such τj = Tjj.

. Main result

In this section, the structure and design method of the filters
re presented. Then, computation methods of the thresholds and
he estimated matched time are given to provide probabilistic
uarantees on the diagnosis performance. All proofs are moved
o Section 4 to improve readability.

.1. Filter design: optimization-based method

Suppose the current status is Sih, i.e., σ̂ (k) = i, σ (k) = h. The
losed-loop dynamics (2.1)–(2.2) can be written as

(k + 1) = Acl
ihx(k) + Ehd(k) + (Wh + BhKiDh)ω(k)

y(k) = Chx(k) + Dhω(k), (3.1)

here Acl
ih = Ah + BhKiCh. We further reformulate (3.1) into the

AE format, which is

ih(q)
[
x
d

]
+ L(q)[y] + Gih(q)[ω] = 0. (3.2)

he operator q is a time-shift operator, i.e., x(k + 1) = qx(k). The
olynomial matrices Hih(q), L(q) and Gih(q) are given by

ih(q) = Hih,1q + Hih,0 =

[
−qI + Acl

ih Eh
Ch 0

]
,

(q) = L0 =

[
0
−I

]
, Gih(q) = Gih,0 =

[
Wh + BhKiDh

Dh

]
.

Inspired by Nyberg and Frisk (2006) and Mohajerin Esfahani
nd Lygeros (2015), the filter Fij is defined as

ij(q) = a−1(q)Nij(q)L(q), (3.3)

here the polynomial row vector Nij(q) =
∑dN

m=0 Nij,mq
m, each

ij,m ∈ R1×(nx+ny) is a constant row vector, dN denotes the degree
f Nij(q), and a(q) is a (dN + 1)-th order polynomial with all roots
nside the unit disk. We define

(q) = qdN+1
+ a qdN + · · · + a q + a , (3.4)
dN 1 0
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here am is a constant coefficient for each m ∈ {0, 1, . . . , dN}.
otice that the role of a(q) is to ensure that the filter Fij is strictly

proper and stable. To simplify the design process, we fix a(q)
and dN , and suppose that all the filters are of the same degree.
The coefficients of the numerator, i.e., Nij,m for m ∈ {0, 1, . . . , dN},
re the design parameters. Multiplying the left-hand side of (3.2)
y a−1(q)Nij(q) yields

ij =
Nij(q)L(q)

a(q)
[y] = −

Nij(q)Hih(q)
a(q)

[
x
d

]
−

Nij(q)Gih(q)
a(q)

[ω]. (3.5)

To bound the H2-norm of the transfer function from ω to rij, we
derive the observable canonical form of Fij(q) from (3.3)

x̄ij(k + 1) = Ar x̄ij(k) + Brijy(k)

rij(k) = Cr x̄ij(k), (3.6)

where x̄ij(k) ∈ RdN+1 denotes the state, matrices Ar , Brij , Cr are

Ar =

⎡⎢⎢⎣
0 . . . 0 −a0
1 . . . 0 −a1
...

. . .
...

...

0 . . . 1 −adN

⎤⎥⎥⎦ , Brij =

⎡⎢⎢⎣
Nij,0
Nij,1
...

Nij,dN

⎤⎥⎥⎦ L0, Cr =
[
0 . . . 0 1

]
.

(3.7)

The parameters Nij,m are reformulated into Brij here. Let us intro-
duce an augmented state Xij(k) :=

[
x(k)⊤ x̄ij(k)⊤

]⊤. The dynamics
of Xij can be derived from (3.1) and (3.6), which is

Xij(k + 1) = AijhXij(k) + Ehd(k) + Dijhω(k)
rij(k) = CrXij(k),

(3.8)

where

Aijh =

[
Acl
ih 0

BrijCh Ar

]
, Eh =

[
Eh
0

]
,Dijh =

[
Wh + BhKiDh

BrijDh

]
,

Cr =
[
0 Cr

]
.

To design filters satisfying conditions in Problem 1, we for-
mulate an optimization problem in the following theorem. For
clarity of exposition, we allocate the first two lines to the decision
variables in the optimization problem.

Theorem 3.1 (Optimal Bank of Filters: Exact Finite Reformulation).
Consider the closed-loop dynamics (2.1)–(2.2) and the filter Fij pro-
posed in (3.3) with the state-space realization (Ar , Brij , Cr ) as defined
in (3.7). Given the order dN , coefficients of a(q), and a sufficiently
small ϑ ∈ R+, Problem 1 as defined in (2.5) can be equivalently
translated into the following finite optimization program:

min
n∑

h=1

ηijh

s.t. Nij,m ∈ R1×(nx+ny),∀m ∈ {0, 1, . . . , dN}, ηijh ∈ R+,∀h ∈ N ,

Pij ∈ SdN+1, Pijh ∈ Snx+dN+1,∀h ∈ N \ {j}

N̄ijH̄ij = 0, (3.9a)⏐⏐a−1(1)N̄ijLih
⏐⏐ ≥ 1, ∀h ∈ N \ {j}, (3.9b)[Pij ArPij Bij

∗ Pij 0
∗ ∗ I

]
⪰ ϑ I,

[
ηijj CrPij
∗ Pij

]
⪰ ϑ I, (3.9c)

[Pijh AijhPijh Dijh
∗ Pijh 0
∗ ∗ I

]
⪰ ϑ I,

[
ηijh CrPijh
∗ Pijh

]
⪰ ϑ I,

∀h ∈ N \ {j}. (3.9d)
5

where the involved matrices are given by

N̄ij = [Nij,0 Nij,1 . . . Nij,dN ], Lih = L̄[

dN+1  
I . . . I]⊤Ch

(
I − Acl

ih

)−1
Eh,

H̄ij =

⎡⎢⎣Hij,0 Hij,1 . . . 0
...

. . .
. . .

...

0 . . . Hij,0 Hij,1

⎤⎥⎦ , Bij = −

⎡⎢⎣ Nij,0
...

Nij,dN

⎤⎥⎦Gij,0,

L̄ =

⎡⎢⎣L0, . . . , 0
...

. . .
...

0 . . . L0

⎤⎥⎦ .
Proof. The proof is provided in Section 4.1. □

Note that if N∗

ij,0, . . . ,N
∗

ij,dN
are feasible solutions to (3.9),

then so are −N∗

ij,0, . . . ,−N∗

ij,dN
with the same objective values.

This directly holds for constraints (3.9a) and (3.9b) and can be
proved through Schur complement for the matrix inequalities
constraints (3.9c) and (3.9d). Thus, we can drop the absolute value
of (3.9b) without loss of generality.

The following proposition shows that the nonlinear matrix
inequality in (3.9d) can be safely approximated with a LMI.

Proposition 3.2 (Optimal Bank of Filters: Safe Convex Approxima-
tion). Consider the optimization problem (3.9). Given α ∈ R and γ ∈

R+, the nonlinear inequality constraint as the first term in (3.9d) can
be safely approximated by the following LMI constraint if there exist
matrices Gijh,1 ∈ Mnx+dN+1, Gijh,2 ∈ Mnω such that:⎡⎢⎢⎢⎣

Pijh ÂihGijh B̂rij 0

∗ Ξijh 0
(
D̂hGijh

)⊤

∗ ∗
1
γ
I 0

∗ ∗ ∗ γ I

⎤⎥⎥⎥⎦ ⪰ ϑ I, (3.10)

here the involved matrices are defined as

ˆ ih =

[[
Acl
ih 0
0 Ar

] [
Wh + BhKiDh

0

]]
, Gijh =

[
Gijh,1 0
0 Gijh,2

]
,

D̂h =
[[
Ch 0

]
Dh

]
, B̂rij =

[
0

−Brij

]
,

ijh = αGijh + αG⊤

ijh − α2
[
Pijh 0
∗ I

]
.

roof. The proof is provided in Section 4.1. □

It is worth pointing out that the linear approximation (3.10)
rovides a sufficient condition for the nonlinear matrix inequal-
ty in (3.9d). This means that any feasible solution to (3.10) is
ecessarily a feasible solution to the nonlinear constraint.
Furthermore, we provide necessary and sufficient conditions

or the feasibility of the optimization problem (3.9) in the follow-
ng proposition. Here, the rank and eigenvalues of a matrix A are
enoted by Rank(A) and Λ(A), resp.

roposition 3.3 (Optimal Bank of Filters: Feasibility). The optimiza-
ion problem (3.9) is feasible if and only if the following conditions
re satisfied.

dN + 1)(nx + ny) > Rank
(
H̄ij

)
, (3.11a)

ank
([
H̄ij Lih

])
> Rank

(
H̄ij

)
, (3.11b)

Λ(Ar )| < 1, |Λ(Acl
ih)| < 1, (i.e., Ar and Acl

ih are stable). (3.11c)

roof. The proof is provided in Section 4.1. □
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Note that the inequality (3.11a) provides a way to find the
minimum filter order dN . According to (3.11c), |Λ(Acl

ih)| < 1
ensures that (3.9d) is feasible. However, Acl

ih could be unstable
because the model and controller are unmatched. Hence, the con-
straints in (3.9d) with unstable Acl

ih should be excluded. Since the
unmatched residuals of those unstable modes diverge from zero,
removing those constraints does not affect the mode detection
task.

Remark 3.4 (Observability). The conditions (3.11a) and (3.11b)
are related to the observability of switched affine systems the-
oretically (Küsters & Trenn, 2018). In particular, the mode can be
determined deterministically without noise if the two conditions
are satisfied. Also, observability of each mode is not necessary,
which is consistent with the result in Küsters and Trenn (2018,
Theorem 8).

We close this section with the following remark on different
sources of conservatism for the proposed filter design:

Remark 3.5 (Conservatism Analysis). The conservatism of the pro-
posed approximate solution stems from three different sources:

(i) Reference signal dimension: We only focus on one-
dimensional reference signals, but instead, we do not re-
quire any further prior assumptions on their values. As
shown in Pan, Palensky, and Mohajerin Esfahani (2019),
this restriction is inevitable when the filter residual is one-
dimensional since different elements of a multi-dimensiona
reference signal may cancel out each other’s contributions.

(ii) Filters denominator: To simplify the design, the filters de-
nominator a(q) are all fixed, which reduces design freedom.

(iii) Non-convexity: The exact reformulation of Problem 1 is a
non-convex optimization problem (Theorem 3.1), for which
we propose a safe convex approximation (Proposition 3.2).

3.2. Performance certificates

With the filters designed by using (3.9), we now determine
the threshold εi and waiting time τj to ensure proper detec-
tion task governed by (2.8). Considering the stochastic measure-
ment noise ω, we resort to the probabilistic guarantees depicted
in (2.9). Let us introduce the following lemma and assumption.

Lemma 3.6 (Sub-Gaussian Concentration Vershynin (2018, Propo-
sition 2.5.2)). Suppose χ is an Rnχ -valued sub-Gaussian random
vector with positive parameter ζ , i.e., E

[
eφν

⊤(χ−E[χ ])
]

≤ eζ
2φ2/2 for

ll φ ∈ R and ν ∈ Rnχ where ∥ν∥2 = 1. Then, we have

r
[
∥χ − E[χ ]∥∞ ≤ ε

]
≥ 1 − 2nχ e−ε2/(2ζ2), ∀ε ∈ R+. (3.12)

ssumption 3.7 (Sub-Gaussian Noise). The measurement noise ω
s an iid sub-Gaussian signal with zero mean and parameter ζω ∈

+ as defined in Lemma 3.6.

From (3.12), the tails of sub-Gaussian distributions decay ex-
onentially. Moreover, the class of sub-Gaussian distributions is
road, containing Gaussian, Bernoulli, and all bounded distribu-
ions. In the following results, the noise is assumed to be sub-
aussian. To improve readability, we further introduce several
otations. Let the polynomial row vector Nij(q) :=

[
N̂ij(q) Ňij(q)

]
,

here N̂ij(q) and Ňij(q) have dimensions nx and ny, resp. De-
ine λmax := maxm∈{1,...,dN+1} |λm|, where λm is a root of a(q)
efined in (3.4). These roots are chosen to be distinct, i.e., λm ̸= λn
or m ̸= n. The following theorem provides conditions for the
robabilistic performance certificates.
 r

6

Fig. 3. Estimated matched time.

Theorem 3.8 (Probabilistic Performance Certificates). Suppose
Assumption 3.7 holds and the dwell time is large enough. Consider
the closed-loop dynamics (2.1)–(2.2) and the filter Fij with the
poles λm,m ∈ {1, . . . , dN+1}, and the numerator designed by
using (3.9) with the corresponding optimal solutions η∗

ijj. Given a
reliability level β ∈ (0, 1] and a constant µ ∈ R+, the probabilistic
performance (2.9) in Problem 2 is satisfied, if the threshold εi is set
as

εi =

(
µ+ ζω

√
2 ln (2/β)

)√
η̄i, η̄i = max

j∈N
η∗

ijj, (3.13)

nd the estimated matched time Tij equals

ij =

⌈
log

(
ψij

(
Fij,Xij(ts)

)
/
(
µ

√
η̄i

))
log λ−1

max

⌉
, (3.14)

here ψij
(
Fij,Xij(ts)

)
=

√
dN + 1

(
1 + λ−1

max∥Bij∥2
) E [

Xij(ts)
]

2.
The matrix Bij is defined as

ij =

⎡⎢⎣ bij,11 . . . bij,1nx
...

. . .
...

bij,(dN+1)1 . . . bij,(dN+1)nx

⎤⎥⎦ ,
where bij,ℓh = −

∑dN
m=0 N̂ij,m(h)λmℓ

/(∏
ℓ̸̃=ℓ(λℓ̃ − λℓ)

)
for h ∈

{1, . . . , nx}, ℓ, ℓ̃ ∈ {1, . . . , dN + 1}, and N̂ij,m(h) denotes the hth
element of N̂ij,m.

Proof. The proof is provided in Section 4.2. □

The estimated matched time Tij in (3.14) is actually an upper
bound for the time that |E[rij]| takes to arrive at µ

√
η̄i after tran-

sition happens (as shown in Fig. 3). Then, we set the confidence
interval according to β , such that εi is determined.

Remark 3.9 (Threshold Vs Estimated Matched Time Trade-Off).
There is a trade-off in selecting µ and β in (3.13): A smaller
threshold εi provides high guarantees on excluding the unmatched
residuals. We can decrease εi with smaller µ or larger β from
3.13). However, a smaller µ can lead to a more conservative
estimated matched time Tij from (3.14). Also, a larger β increases
the chance of false isolation.

Remark 3.10 (Comparison with Chebyshev Based Bounds). We
ighlight that the threshold (3.13) depends logarithmically on
he reliability parameter, i.e.,

√
ln(2/β). This is a significant im-

provement in comparison with the results based on Chebyshev’s
inequality (e.g., (Boem et al., 2018, Section III.B)) in which the
threshold scales polynomially by the factor

√
1/β .

As a special case of Tij in Theorem 3.8, the waiting time τj can
be determined by

τj =

⌈
log

(
ψjj

(
Fjj,Xjj(t isos )

)
/
(
µ

√
η̄j

))
log λ−1

max

⌉
, (3.15)

here ψjj
(
Fjj,Xjj(t isos )

)
=

√
dN + 1

(
1 + λ−1

max∥Bjj∥2
) E [

Xjj
(
t isos

)]
2.

Observe that the expected values of Xij(ts) and Xjj(t isos ) are
equired in (3.14) and (3.15). Recall that we assume that the



J. Dong, A.S. Kolarijani and P.M. Esfahani Automatica 151 (2023) 110898

d
s
i
[

v

p

R
t
n
e

t
&
o

4

r

4

T

L
f
p

Q

w
c

Q

w

Q

r

L
L
A

T

(
s

y

a

F

w
o
c

i

t
i
s
c

i

s
t

P
s
B

well time is large enough and the system can reach the steady
tate before the next transition. The constant reference signal d
s considered during the dwell time, i.e., d(k) = d̄ for k ∈

ts, ts+1). Then E
[
Xij(ts)

]
can be estimated by its steady-state

alue E
[
Xij(ts)

]
=

(
I − Aiji

)−1
Eid̄. For E

[
Xjj(t isos )

]
, since the

actual diagnosis time is a random value, we first compute the
steady-state value of E

[
Xjj(ts)

]
. Then, according to the dynam-

ics (3.8), we compute maxi∈N
E [

Xjj(ts + Tij)
]

2 as an estimation
of E[Xjj(t isos )].

According to the diagnosis rule (2.8), one still needs to let
the unmatched residuals be outside the threshold interval. Sup-
pose the status is Sij. Inspired by the active fault diagnosis
method (Scott et al., 2014), we can design the reference signal d
such that the unmatched residuals rih satisfy |E[rih]| ≥ εi + µ̄

√
η̄i

in the steady state, where µ̄ ∈ R+ is a constant. From the closed-
loop dynamics (3.1) and (3.5), the expected value of rih can be
written as

E[rih] =
Nih(q)L(q)

a(q)
Cj

(
qI − Acl

ij

)−1
Ejd̄. (3.16)

According to (3.16), the requirement |E[rih]| ≥ εi + µ̄
√
η̄i is

equivalent to choosing d̄ such that⏐⏐a−1(1)N̄ihLijd̄
⏐⏐ ≥ εi + µ̄

√
η̄i. (3.17)

In the light of Lemma 3.6, we have |rih| > εi with guaranteed
robability in the steady state if (3.17) is satisfied.

emark 3.11 (Regularities on the Reference Input).When designing
he filters and thresholds, the value of the reference signal is not
ecessary. However, this value is required when computing the
stimated matched time Tij. Moreover, in order to separate the

residuals of different modes in the presence of noise, the refer-
ence signal d̄ should satisfy (3.17). Such constraint is not novel in
he distinguishability problem for switched affine systems (Rosa
Silvestre, 2011). This also can be interpreted as the persistence
f excitation.

. Technical proofs of main results

This section presents the technical proofs of the theoretical
esults in Section 3.

.1. Proofs of results in filter design

Let us start with two lemmas required for the proof of
heorem 3.1.

emma 4.1 (Multiplication of Polynomial Matrices (Mohajerin Es-
ahani & Lygeros, 2015, Section III-A)). Let Q1(q) and Q2(q) be
olynomial matrices of degree d1 and d2, resp., and defined by

1(q) =

d1∑
m=0

Q1,mq
m, Q2(q) =

d2∑
m=0

Q2,mq
m,

here Q1,m ∈ Rn1×n2 and Q2,m ∈ Rn2×n3 are the matrices of constant
oefficients. The multiplication of Q1(q) and Q2(q) is equivalent to

1(q)Q2(q) = Q̄1Q̄2
[
I qI . . . qd1+d2 I

]⊤
,

here Q̄1 =
[
Q1,0 Q1,1 . . . Q1,d1

]
and

¯2 =

⎡⎢⎢⎢⎢⎣
Q2,0 Q2,1 . . . Q2,d2 0 . . . 0

0 Q2,0 Q2,1 . . . Q2,d2 0
...

...
. . .

. . .
. . . 0

⎤⎥⎥⎥⎥⎦ .

0 0 . . . Q2,0 Q2,1 . . . Q2,d2

7

The following lemma is a slight modification of the standard
esult concerning the H2-norm of the stable LTI systems.

emma 4.2 (H2-norm (De Oliveira, Geromel, & Bernussou, 2002,
emma 1)). Consider the linear transfer function T(q) = C(qI −

)−1B. For any constant η, the system is stable and ∥T(q)∥2
H2

< η
if and only if for all sufficiently small ϑ ∈ R+, there exist P, Z ∈ S
such that the following LMIs are feasible:[P AP B
∗ P 0
∗ ∗ I

]
⪰ ϑ I,

[
Z CP
∗ P

]
⪰ ϑ I, Trace(Z) ≤ η − ϑ.

Proof of Theorem 3.1. First, we show that the equality (3.9a)
guarantees the satisfaction of the property (2.4a). According to
Lemma 4.1, it holds that

Nij(q)Hij(q) = N̄ijH̄ij
[
I qI . . . qdN+1I

]⊤
.

Hence, (3.9a) implies that Nij(q)Hij(q) = 0. The contribution of d
to rij is completely canceled when the status is Sij (h = j in (3.5)).
his concludes the first part of the proof.
In the second part of the proof, we show that the constraint

3.9b) implies the satisfaction of the property (2.4b). Suppose the
tatus is Sih. According to the closed-loop dynamics (3.1), we have

= Ch
(
qI − Acl

ih

)−1
Eh[d]

+

[
Ch

(
qI − Acl

ih

)−1
(Wh + BhKiDh) + Dh

]
[ω].

By virtue of (3.5) and the expression of y, the transfer function
from d to rij can be written as

FijT
Sih
dy (q) = a−1(q)Nij(q)L(q)Ch

(
qI − Acl

ih

)−1
Eh

= a−1(q)N̄ijL̄
[
I qI . . . qdN I

]⊤
Ch

(
qI − Acl

ih

)−1
Eh,

where Lemma 4.1 is used in the second equality. Then, we enforce
the absolute value of the steady-state gain of FijT

Sih
dy to be larger

than or equal to 1 when h ̸= j, which is⏐⏐⏐[FijT
Sih
dy

]
ss

⏐⏐⏐ =
⏐⏐a−1(1)N̄ijLih

⏐⏐ ≥ 1.

This concludes the second part of the proof.
In the third part, we show that the inequalities (3.9c) and

(3.9d) enforce the desired property (2.4c). When the status is Sij,
s shown in (3.5), the transfer function from ω to rij becomes

ijT
Sij
ωy(q) = −a−1(q)Nij(q)Gij(q), (4.1)

here [x⊤ d⊤
]
⊤ is decoupled by (2.4a). Let (Ar ,Bij, Cr ) be the

bservable canonical realization of (4.1), whose derivation pro-
ess is similar to that of (3.7). According to Lemma 4.2, the

nequalities (3.9c) imply
FijT

Sij
ωy

2

H2
< ηijj directly. Note that

he slack variable Z shown in Lemma 4.2 has one dimension
n this problem, thus the third inequality is dropped. When the
tatus is Sih for h ∈ N \ {j}, the transfer function from ω to rij
an be obtained from (3.8). Again, according to Lemma 4.2, the

nequalities (3.9d) imply
FijT

Sih
ωy

2

H2
< ηijh. Then we take the

um of ηijh for all h ∈ N as the objective function to minimize
he effect of ω on rij. This completes the proof. □

roof of Proposition 3.2. This proof is to show that (3.10) en-
ures the satisfaction of the nonlinear matrix inequality in (3.9d).
y applying Schur complement to (3.10), we have[

Pijh ÂihGijh
∗ Ξijh

]
−

⎡⎣B̂rij 0

∗

(
D̂hGijh

)⊤

⎤⎦[
γ I 0
∗

1
γ
I

][
B̂⊤
rij 0
∗ D̂hGijh

]
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=

N
s

=

=

F

F

[
Pijh ÂihGijh
∗ Ξijh

]
− γ

[
B̂rij
0

] [
B̂⊤
rij 0

]
−

1
γ

[
0(

D̂hGijh

)⊤

] [
0 D̂hGijh

]
⪰ϑ I. (4.2)

ote that, for matrices A, B with appropriate dimensions and any
calar γ > 0, it holds that γAA⊤

+
1
γ
B⊤B ⪰ AB + B⊤A⊤ (Chang &

Yang, 2013, Lemma 1). We have

−

[
B̂rij
0

] [
0 D̂hGijh

]
−

[
0(

D̂hGijh

)⊤

][
B̂⊤
rij 0

]
⪰ − γ

[
B̂rij
0

] [
B̂⊤
rij 0

]
−

1
γ

[
0(

D̂hGijh

)⊤

] [
0 D̂hGijh

]
.

Thus, the inequality (4.2) can be written as[
Pijh ÂihGijh
∗ Ξijh

]
−

[
B̂rij
0

] [
0 D̂hGijh

]
−

[
0(

D̂hGijh

)⊤

][
B̂⊤
rij 0

]
=

[
Pijh ÂihGijh − B̂rij D̂hGijh
∗ Ξijh

]
⪰ ϑ I. (4.3)

Expanding ÂihGijh − B̂rij D̂hGijh leads to[[
Acl
ih 0
0 Ar

]
Gijh,1

[
Wh + BhKiDh

0

]
Gijh,2

]
−

[[
0

−Brij

] [
Ch 0

]
Gijh,1

[
0

−Brij

]
DhGijh,2

]
[[

Acl
ih 0

BrijCh Ar

]
Gijh,1

[
Wh + BhKiDh

BrijDh

]
Gijh,2

]
[
Aijh Dijh

]
Gijh. (4.4)

rom (4.4), the inequality (4.3) is equivalent to[
Pijh

[
Aijh Dijh

]
Gijh

∗ Ξijh

]
⪰ ϑ I. (4.5)

or a scalar α ∈ R, matrices A, B with appropriate dimensions,
and A ≻ 0, note that (B−αA)⊤A−1(B−αA) ⪰ 0 implies B⊤A−1B ⪰

αB + αB⊤
− α2A. Thus, we have

Gijh
⊤

[
Pijh 0
∗ I

]−1

Gijh ⪰ Ξijh. (4.6)

By combining (4.5) and (4.6), we obtain⎡⎣Pijh
[
Aijh Dijh

]
Gijh

∗ Gijh
⊤

[
Pijh 0
∗ I

]−1

Gijh

⎤⎦ ⪰ ϑ I. (4.7)

Pre- and post-multiplying (4.7) by diag(I, Gijh
−⊤) and diag(I, Pijh, I)

and their transpose successively, we arrive at[Pijh AijhPijh Dijh
∗ Pijh 0
∗ ∗ I

]
⪰ ϑ I.

This completes the proof. □

Proof of Proposition 3.3. We first show that the inequal-
ity (3.11a) is a necessary and sufficient condition for the con-
straint (3.9a) having non-trivial solutions. According to Rank Plus
Nullity Theorem (Meyer, 2000, Chapter 4), it holds that (dN +

1)(nx + ny) = Rank
(
H̄ij

)
+ Null

(
H̄ij

)
, where Null

(
H̄ij

)
denotes

the dimension of the left null space of H̄ij. Thus, (3.9a) having
non-trivial solutions is equivalent to Null

(
H̄ij

)
being nonzero. This
concludes the first part of the proof.

8

Second, we show that (3.11b) is equivalent to (3.9b) when
(3.11a) holds. (⇒) We proceed with the proof by contradic-
tion. Suppose that (3.9b) holds but (3.11b) is not satisfied, we
have Rank

([
H̄ij Lih

])
= Rank

(
H̄ij

)
. This means that Lih belongs

to the column range space of H̄ij. In other words, there exists
a vector ξ ∈ R(nx+nd)(dN+2), such that Lih = H̄ijξ . Since N̄ij
satisfying N̄ijH̄ij = 0, we have N̄ijLih = N̄ijH̄ijξ = 0, which
contradicts to (3.9b). (⇐) Assume that (3.11b) holds. This means
that the left null space of H̄ij and Lih are not the same. Thus, one
can find a N̄ij which satisfies (3.9a) and (3.9b) at the same time.
This completes the second part of the proof.

Finally, it is known from Lemma 4.2 that |Λ(Ar )| < 1, and
|Λ(Aijh)| < 1 are necessary and sufficient conditions for the
feasibility of (3.9c) and (3.9d), resp. Recalling the definition of Aijh
in (3.8), |Λ(Aijh)| < 1 if and only if |Λ(Ar )| < 1 and |Λ(Acl

ih)| < 1.
This completes the proof. □

4.2. Proofs of probabilistic certificates

We introduce the following lemma to prove Theorem 3.8.

Lemma 4.3 (Linear Transformation of Sub-Gaussian Signals). Sup-
pose Tωr is a transfer function from ω to r with the state-space
realization (A, B, C), i.e., r = Tωr [ω] = C(qI − A)−1B[ω]. If the
input ω is an iid sub-Gaussian signal with zero mean and param-
eter ζω , the output r is also sub-Gaussian with zero mean and the
respective parameter ζr = ∥Tωr∥H2ζω .

Proof. From the linear system theory we know that r(k) −

E[r(k)] = C
∑k−1

m=0 A
k−1−mBω(m). Then, for any constant φ ∈ R

and a unit vector ν with an appropriate dimension, we have

E
[
eφν

⊤(r(k)−E[r(k)])
]

= E
[
eφν

⊤C
∑k−1

m=0 Ak−1−mBω(m)
]

=

k−1∏
m=0

E
[
eφν

⊤CAk−1−mBω(m)
]
, (4.8)

Since ω is sub-Gaussian, according to Lemma 3.6, it holds that

E
[
eφν

⊤CAk−1−mBω(m)
]

≤ eφ
2
∥ν⊤∥

2
2∥CAk−1−mB∥22ζ

2
ω/2.

Recall that ∥v∥2 = 1. Thus, equality (4.8) satisfies

E
[
eφν

⊤(r(k)−E[r(k)])
]

≤

k−1∏
m=0

eφ
2
∥CAk−1−mB∥22ζ

2
ω/2

= eφ
2 ∑k−1

m=0 ∥CAk−1−mB∥22ζ
2
ω/2.

By matrix norm definitions, we know ∥A∥
2
2 ≤ Trace(A⊤A) for all

real-valued matrix A, and thus

E
[
eφν

⊤(r(k)−E[r(k)])
]

≤ eφ
2 ∑k−1

m=0 Trace
(
CAk−1−mBB⊤A⊤k−1−mC⊤

)
ζ2ω/2

≤ eφ
2
∥Tωr∥2H2

ζ2ω/2,

where the last inequality follows from Parseval’s Theorem and
the H2 norm definition. □

Proof of Theorem 3.8. The main idea builds on the probabilistic
relation between the concentration of a random variable and
its expectation. Since the noise ω is sub-Gaussian, according to
Lemma 4.3, the matched residual rij is also sub-Gaussian with
the parameter ζrij =

TSij
ωrij


H2
ζω <

√
η̄iζω . We first show that

the performance guarantee (2.9) holds when |E[rij(k)]| ≤ µ
√
η̄i.

According to (3.13), we have⏐⏐ ⏐⏐ √ √

εi − E[rij(k)] ≥ εi − µ η̄i = ζω 2 ln (2/β)η̄i.
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ince it also holds that
⏐⏐rij(k)⏐⏐− ⏐⏐E[rij(k)]

⏐⏐ ≤
⏐⏐rij(k) − E[rij(k)]

⏐⏐, we
ave

Pr
[⏐⏐rij(k)⏐⏐ ≤ εi

⏐⏐⏐ [σ̂ (k)
σ (k)

]
=

[
i
j

]
, k ≥ ts

]
Pr

[⏐⏐rij(k)⏐⏐ −
⏐⏐E[rij(k)]

⏐⏐ ≤ εi −
⏐⏐E[rij(k)]

⏐⏐ ⏐⏐⏐ [σ̂ (k)
σ (k)

]
=

[
i
j

]
, k ≥ ts

]
≥Pr

[⏐⏐rij(k) − E[rij(k)]
⏐⏐ ≤ ζω

√
2 ln (2/β)η̄i

⏐⏐⏐ [σ̂ (k)
σ (k)

]
=

[
i
j

]
, k ≥ ts

]
≥1 − 2e

−2 ln (2/β)η̄iζ2ω
/(

2∥T
Sij
ωrij ∥

2
H2

ζ2ω

)
≥ 1 − β,

here the concentration inequality (3.12) in Lemma 3.6 is used
o get the second inequality. This completes the first part of the
roof.
Next, we show that |E[rij(k)]| ≤ µ

√
η̄i when k ≥ ts +Tij. Let us

incorporate the initial state x(ts) into the expression of E[rij(k)],
here x(ts) is viewed as an input to the system that only has a
onzero value at ts. According to the closed-loop dynamics (3.1),
or k = ts +∆k where ∆k ∈ [0, t isos ), we have

(k + 1) = Acl
ij x(k) + Ejd(k) + (Wj + BjKiDj)ω(k) + x(ts),

y(k) = Cjx(k) + Djω(k). (4.9)

e reformulate (4.9) into the DAE format, which is[
−qI + Acl

ij Ej I
Cj 0 0

][ x
d

x(ts)

]
+ L(q)[y] + Gij(q)[ω] = 0. (4.10)

Multiplying the left hand-side of (4.10) by a−1(q)Nij(q) leads to

rij =
Nij(q)L(q)

a(q)
[y]

= −
Nij(q)
a(q)

[
−qI + Acl

ij Ej I
Cj 0 0

][ x
d

x(ts)

]
−

Nij(q)Gij(q)
a(q)

[ω].

(4.11)

Recall that Nij(q)Hij(q) = 0 in Theorem 3.1. By substituting Nij(q) =

N̂ij(q) Ňij(q)
]
into (4.11), we have

ij = −
N̂ij(q)
a(q)

x(ts) −
Nij(q)Gij(q)

a(q)
[ω].

ence, the expected value of rij is

[rij] = −a−1(q)N̂ij(q)E[x(ts)].

To compute Tij, following the idea of Van der Ploeg, Alirezaei,
an De Wouw, and Mohajerin Esfahani (2022, Lemma 3.4), we
ransform −a−1(q)N̂ij(q) to its Jordan canonical form denoted
y (A,Bij,C). The transfer function −a−1(q)N̂ij(q) can be expanded

as

−
N̂ij(q)
a(q)

=

[
−

∑dN
m=0 N̂ij,m(1)qm

a(q)
, . . . ,−

∑dN
m=0 N̂ij,m(nx)qm

a(q)

]
,

Recall that a(q) =
∏dN+1
ℓ=1 (q − λℓ). The factorization of the hth

element of −a−1(q)N̂ij(q) is

−

∑dN
m=0 N̂ij,m(h)qm

a(q)
=

dN+1∑
ℓ=1

bij,ℓh
q − λℓ

,

here bij,ℓh = −

∑dN
m=0 N̂ij,m(h)λm

ℓ∏
ℓ̸̃=ℓ

(λ
ℓ̃
−λℓ)

. The Jordan canonical form of

−a−1(q)
∑dN

m=0 N̂ij,m(h)qm is denoted by (Ah,Bij,h,Ch), where

= diag([λ , . . . , λ ]), B = [b , . . . , b ]
⊤,
h 1 dN+1 ij,h ij,1h ij,(dN+1)h

9

h = [1, . . . , 1].

According to the superposition property of linear systems, we
have A = diag([λ1, . . . , λdN+1]), Bij = [Bij,1, . . . ,Bij,nx ], C =

[1, . . . , 1]. With the state-space description, E[rij(k)] can be writ-
ten as

E[rij(k)] = CA∆kE[x̄ij(ts)] + C
∆k−1∑
m=0

A∆k−1−mBijE[x(ts)]

= CA∆kE[x̄ij(ts)] + CA∆k−1BijE[x(ts)]

here x̄ij(ts) is the filter state. Since A is a diagonal matrix, we
ave ∥A∥2 = λmax. Based on the triangle property of norms,
E[rij(k)]| is bounded by

E[rij(k)]| ≤ ∥C∥2∥A∥
∆k
2 ∥E[x̄ij(ts)]∥2

+ ∥C∥2∥A∥
∆k−1
2 ∥Bij∥2∥E[x(ts)]∥2

≤

√
dN + 1(1 + λ−1

max∥Bij∥2)∥E[Xij(ts)]∥2λ
∆k
max

= ψij
(
Fij,Xij(ts)

)
λ∆k
max.

y setting µ
√
η̄i ≥ ψij

(
Fij,Xij(ts)

)
λ∆k
max, we arrive at

∆k ≥ Tij =

⌈
logλmax

µ
√
η̄i

ψij
(
Fij,Xij(ts)

)⌉
.

That completes the proof. □

5. Illustrative examples

In this section, we consider a numerical example and a prac-
tical application on building radiant systems to illustrate the
effectiveness of the proposed diagnosis scheme.

5.1. Numerical results

Consider a switched system with three linear subsystems. The
system matrices are

A1 =

[
0.5 0
0 −0.4

]
, A2 =

[
0.5 −0.2
0 −0.4

]
, A3 =

[
−0.5 0
0.1 −0.4

]
,

B1 =

[
0
1

]
, B2 =

[
1
1

]
, B3 =

[
1
0

]
, E1 = E2 = E3 =

[
1
1

]
,

W1 = W2 = W3 = 0, C1 = C3 =

[
1 0
0 1

]
, C2 =

[
1 0
0 0

]
,

D1 = D2 = D3 =

[
0.01 0
0.01 −0.01

]
.

The controller gains are K1 = [−0.0395 − 0.0741], K2 =

[−0.0648 0.0510], and K3 = [−0.0420 0.0326]. We set the degree
of the filters dN = 1, the denominator a(q) = (q + 0.1)(q + 0.2).
The reference signal is set as d̄ = 0.5. The parameter of the iid
sub-Gaussian noise is 1. The filters are constructed by using the
approach proposed in Theorem 3.1 and Proposition 3.2. We solve
the optimization problems by YALMIP toolbox (Lfberg, 2004). The
thresholds are computed according to (3.13) where the reliability
level β = 0.05 and µ = 0.5. Thus, the thresholds are ε1 =

0.18, ε2 = 0.16, ε3 = 0.12. The waiting time τi for i ∈ {1, 2, 3}
computed by (3.15) are τ1 = 7, τ2 = 6, τ3 = 7. To cover all the
scenarios, we set the switching sequence as: 1 → 2 → 3 → 1 →

3 → 2 → 1.
Fig. 4 depicts the residuals behavior under different scenarios.

Here, we only analyze r1h for h ∈ {1, 2, 3} with the transition M50
12

shown in Fig. 4(a), because the rest are similar. Since the initial
status of the closed-loop system is S11, the absolute value |r11(k)|
remains below ε until transition happens at k = 50. The other
1
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Fig. 4. Residuals behavior under different scenarios: Let Mk
ij stand for a system

ransition from i to j at time k.

Fig. 5. Diagnosis result of the whole process.

Fig. 6. Distribution of the diagnosis time for each scenario.

two residuals r12 and r13 first reach their corresponding steady
alues and then oscillate around the steady values because of the
oise. The matched residual r11 and the unmatched residuals r12

and r13 are separated. After the transition M50
12 happens at k =

0, |r11(k)| exceeds the threshold ε1 immediately such that the
switching is detected. Then, |r12(k)| reaches ε1 at about k = 53
hile the other two residuals are above ε1. As a result, active
ode 2 is determined. Fig. 5 shows the diagnosis result of the
hole process, where the switching signal is correctly estimated.
10
Table 1
Average diagnosis time and wrong detection probability when µ = 0.5 and β =

0.05.
Transition M12 M13 M21 M23 M31 M32

ADT 5 6 6 6 7 5
Tij 5 7 7 7 7 5
WDP 0 0 0.002 0.003 0 0

We execute the experiment 1000 times for each switching
scenario to obtain the distributions of the diagnosis time and
the probability of wrong detection. The results are shown in
Fig. 6. The average diagnosis time (ADT) and the wrong detection
probability (WDP) are presented in Table 1. We compute the
estimated matched time Tij based on (3.14). From Table 1, the
estimated matched time estimates the average diagnosis time
well, and the wrong detection probability is low.

5.2. Building radiant systems

In this section, a building radiant system is considered. We
adopt the example from Harirchi and Ozay (2018), where the
building with four rooms of the same size is equipped with a ra-
diant system with two pumps. Moreover, we compare the model
invalidation approach proposed in Harirchi and Ozay (2018) with
our approach.

5.2.1. System model description
The radiant system can be modeled by the following equations

Cc,1Ṫc,1 = Kc,1(T1 − Tc,1) + Kc,3(T3 − Tc,1) + Kw,1(Tw,1 − Tc,1),

Cc,2Ṫc,2 = Kc,2(T2 − Tc,2) + Kc,4(T4 − Tc,2) + Kw,2(Tw,2 − Tc,2),

C1Ṫ1 = Kc,1(Tc,1 − T1) + K1(Ta − T1) + K12(T2 − T1) + K13(T3 − T1),

C2Ṫ2 = Kc,2(Tc,2 − T2) + K2(Ta − T2) + K12(T1 − T2) + K24(T4 − T2),

C3Ṫ3 = Kc,1(Tc,1 − T3) + K3(Ta − T3) + K13(T1 − T3) + K34(T4 − T3),

C2Ṫ4 = Kc,2(Tc,2 − T4) + K4(Ta − T4) + K24(T2 − T4) + K34(T3 − T4),

where the temperatures of two cores in the radiant system are
denoted by Tc,i for i ∈ {1, 2}. The temperature of the supply water
is denoted by Tw,i. The ambient air temperature is denoted by Ta.
The air temperature of room i for i ∈ {1, 2, 3, 4} is denoted by Ti.
The thermal conductance between Ti and Ta is denoted by Ki.
The thermal conductance between Tc,i and Ti is denoted by Kc,i.
The thermal conductance between room i and j is denoted by Kij.
The piping thermal conductance between Tc,i and Tw,i is denoted
by Kw,i. The thermal capacitance of room i and core i is denoted
by Ci and Cc,i, resp. Assume that the constant flow of pumps
is known. Each pump supplies water to the water pipe and is
connected to a valve to adjust the constant flow. The system state
consists of the temperatures of the four rooms and the two cores.
Suppose both pumps are on. The values of the parameters are the
same as that in Harirchi and Ozay (2018). The above equations
can be written into the state-space form

ẋT = Arad,1xT + Erad,1Td,

y = Crad,1xT + ω, (5.1)

where xT = [Tc,1, Tc,2, T1, T2, T3, T4]⊤, Td = [Tw,1, Tw,2, Ta]⊤ is
the constant input (or reference signal). Matrices Arad,1 and Erad,1
are obtained from the above equations. The matrix Crad,1 =

diag([0, 0, 1, 1, 1, 1]) indicates the measured temperatures. As-
sume that there is an uncertainty ν in Ta due to small changes
(i.e., Ta = 10 + ν where ν is Gaussian noise with mean 0 and
variance 0.1). The measurement noise denoted by ω is Gaus-
sian noise with mean 0 and variance 0.01. The discrete-time
model of the radiant system (5.1) is obtained with a sampling
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ime of 5 min. Let (Ad
rad,1, E

d
rad,1, Crad,1) represent the fault-free

iscrete-time model of the system.

.2.2. Faulty modes
The normal functions of the valves and temperature mea-

urement sensors are impaired in the faulty modes. Specifically,
hen there is a fault in the valve, we assume that the valve is
tuck in the middle and does not respond to commands. Since
he fault cuts the heat transfer in half, the fault is modeled
ith a change in the heat conductance parameter, i.e., Kw,1 →

w,1/2 in Arad,1 and Erad,1. The sensor failures result in inaccurate
easurements of the temperature. We change the corresponding
ntry in Crad,1 to model the sensor fault, i.e., 1 → 0.9. Here, two
aulty modes are considered. The first faulty mode is denoted
y (Ad

rad,2, E
d
rad,2, Crad,2), where faults occur in the second pump

nd the sensor measuring T1. As a result, Kw,2 decreases to Kw,2/2
nd Crad,2 = diag([0, 0, 0.9, 1, 1, 1]). The second faulty mode is
enoted by (Ad

rad,3, E
d
rad,3, Crad,3), where just one fault occurs in the

irst pump. Note that the second faulty mode is more incipient
han the first one because the outputs do not change dramatically.
he matched residual of (Ad

rad,i, E
d
rad,i, Crad,i) is defined as ri for i ∈

1, 2, 3}.

.2.3. Filter design and model invalidation approach
Note that there is no control signal in the radiant system (5.1).

hus, we only need to design three filters corresponding to the
hree modes. The degree of the filters is set as dN = 3. The filters
re then constructed based on Theorem 3.1 and Proposition 3.2.
he idea of the model invalidation approach proposed in Harirchi
nd Ozay (2018) is that, given the input and output data, detect
he transitions by checking the feasibility of a mixed-integer
inear programming problem. Since the example we adopt here
as only one healthy mode, the MILP problem degenerates into
he following linear programming problem.

ind x(k), ν(k), ω(k), ∀k ∈ {0, 1, . . . , T − 1}

s.t.

⎧⎪⎨⎪⎩
x(k + 1) − Arad,1x(k) − Erad,1(Td + [0, 0, ν(k)]⊤) = 0,
y(k) − Crad,1x(k) − ω(k) = 0,
Xl ≤ x(k) ≤ Xu, Vl ≤ ν(k) ≤ Vu,

Wl ≤ ω(k) ≤ Wu.

(5.2)

here the ranges of x(k), ν(k) and ω(k) are set as 15 ≤ ∥x∥∞ ≤

9, −0.3 ≤ ∥ν∥∞ ≤ 0.3 and −0.03 ≤ ∥ω∥∞ ≤ 0.03, resp. The
ositive integer T is derived from the definition T-Detectability
n Harirchi and Ozay (2018). It represents the number of steps
hat a faulty model needs to generate an abnormal trajectory. We
efer readers to Harirchi and Ozay (2018) for more details about
he computation method of T .

.2.4. Results
In the first case, we suppose the first faulty mode occurs at k =

0. The diagnosis results are presented in Fig. 7. Fig. 7(a) shows
he changes in the measured temperatures. The temperature T1
rops significantly due to sensor failure, and other measured
emperatures also change slightly because of the fault in pump
. Fig. 7(b) shows the changes in the residuals and the feasibility
f the invalidation problem (5.2). One can see that r1 crosses the
hreshold at k = 21, and thus the fault is detected immediately af-
er the faults happen. At k = 23, the matched residual r2 reaches
he threshold. Thus, the faulty mode is determined. Meanwhile,
he problem (5.2) becomes infeasible at k = 21, which means
he faults are detected by the model invalidation method as well.
n the second case, we suppose the second faulty mode happens
t k = 20. One can see from Fig. 7(c) that the changes in the
easured temperatures are slight. This poses a challenge to the
11
Fig. 7. Simulation results with faulty modes happen at k = 20. The symbols ◦

and × indicate the feasible and infeasible status of (5.2).

iagnosis task. Fig. 7(d) shows the changes in the residuals and
he feasibility of (5.2). Note that r1 crosses the threshold at k =

2. Hence, the fault is detected. Then, the matched residual r3
eaches the threshold at k = 24 such that the second faulty
ode is determined. As a comparison, the invalidation problem is
lways feasible during the whole process, which means that the
nvalidation approach fails to detect the fault in the second case.

. Conclusion and future directions

In this paper, we propose a diagnosis scheme to detect the
ctive mode of discrete-time, switched affine systems in the
resence of measurement noise and asynchronous switching.
ased on an integration of residual generation and H2-norm
pproaches, the design of an optimal bank of filters is formulated
nto a tractable optimization problem in which the noise contri-
ution to the residuals is minimized. With the filters designed
y the optimization problem, the diagnosis thresholds are deter-
ined which provide probabilistic false-alarm guarantees on the
ode detection performance. Simulation results of a numerical
xample and a building radiant system show the effectiveness
f the proposed approach. As future work, the first research
irection is to combine the proposed approach with the active
ault diagnosis method to deal with the unknown disturbance.
ne can design certain input sequences such that the unmatched
esiduals are separated from the matched residual with guaran-
eed probability. Note that the switching delay between the active
ode and its corresponding controller is stochastic because of the
tochastic noise. As a result, the second research direction would
e focused on the impacts of the stochastic delay on the stability
f asynchronously switched systems.
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