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Abstract

A loss of vacuum accident in the hyperloop tunnel will likely occur during its operation, and it
may have a severe impact on its operational safety. Nevertheless, the hyperloop tube breach has
only been researched superficially.
Two aerodynamic phenomena due to the breach are identified: a (quasi-)steady underexpanded
jet and an unsteady blast wave. The overpressure due to the confined blast wave impacting the
hyperloop vehicles is determined using various methods.
Numerical simulations of the breach applying the 3-dimensional Euler equations show that quasi-
1-dimensional (Q1D) approaches only suffice for smaller holes. Although their analytical imple-
mentation is less involved than numerical analyses, the Q1D models underpredict the blast wave
overpressure, because they cannot account for energy input after the critical shock formation.
The (pressure) drag on a vehicle inside the evacuated tube may increase more than an order of
magnitude due to the blast wave emanated from the breach location.
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Chapter 1

Introduction

The hyperloop concept in Figure 1.1 is an attempt to combine the convenience of trains with
the speed of aircraft. Its magnetically levitated vehicles (pods) are propelled to transonic speeds
through a tunnel operating under near-vacuum conditions. This low pressure environment reduces
energy losses due to drag, but requires a completely new infrastructure.

Figure 1.1: Artist’s rendition of the hyperloop as envisioned by Hardt Hyperloop.

Even though the hyperloop concept once realised may offer great opportunities, it is not without
critics exposing its weak points. One of the major threats is the inherent risk of a tunnel leakage,
in which case ambient air flows into the low-pressure tunnel. Although the occurrence of a
sudden leakage (tube breach) during the operational lifetime is certain, the expected impact is
still unknown.
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2 Introduction

This is primarily because the hyperloop concept has not been studied as extensively as conventional
(or established) modes of transport: the lack of a full-scale realisation and the use of many
components with low technology readiness level render physical experiments more expensive. Most
published hyperloop research focuses on normal operation of the hyperloop. It is vital, however,
to also ensure passenger safety during emergencies, such as a tube breach scenario. Forecasting
the effects of a tube breach by aerodynamic modelling is thus important and this forms the core
of this thesis.
This introductory chapter gives an account of the evolution from hyperloop precursors to its
current state, in an attempt to transfer the state-of-the-art from one field to the other. The
extrapolation is however not straightforward. Section 1.1 also refers to the current industry vision
on breach safety, reiterating the above-mentioned lacking but important research. The specific
research questions for this thesis are discussed in Section 1.2 and the report is outlined at the end
of this chapter, in Section 1.3.

1.1 Hyperloop development

The overarching concept of the hyperloop is not new. Aerospace engineer Robert Goddard is often
credited as founder of the modern vacuum train (or vactrain, in short). His sketches, posthumously
patented to his wife (Goddard [1945]), date back to 1904.
Later, companies such as SwissMetro [1999], TransPod (Janzen [2017]), Rand (Salter [1972]) and
Evacuated Tube Transport Technologies (ET3, Oster et al. [2011]) further developed the vactrain
design, although they never realised a fully operational system. Then, entrepreneur Elon Musk
[2013] adopted and popularised the vactrain design in his white paper, renaming it the Hyperloop.

1.1.1 From conventional trains to hyperloop

Alternative research fields have to be consulted due to the lack of published papers on the topic of
hyperloop with its economic potential. Public research on conventional high-speed trains presents
such an alternative. Both the transonic hyperloop and the conventional high-speed trains research
domains share their interest in obtaining high velocities on a predetermined route. The following
attempts to project the implications of the research of high-speed trains onto the hyperloop
domain.
Raghunathan et al. [2002] argue that the goal of increasing train speed was typically realised by
increasing power input rather than by reducing aerodynamic drag. This practise inevitably led
to high energy losses, since drag grows quadratically with speed. High-speed train designs could
no longer ignore the energy losses. Hence noise, passenger discomfort and impulse waves due to
oncoming trains and tunnels became areas of interest.
Takayama et al. [1995], for instance, discuss the pressure variations and tunnel sonic boom for their
1:300 scaled model. This weak shock wave occurs when compression waves coalesce. They propose
two ways to reduce the shock overpressures. First, an entrance hood prevents the coalescence
of the compression waves. This only works for compression waves which have relatively small
overpressures. The other method, more suitable for high speeds, is to perforate the tunnel walls.
The shock wave strength is reduced due to the mass suction, and thus momentum and energy loss.
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1.1 Hyperloop development 3

Takayama et al. [1995] conclude a combination of both methods can reduce the peak overpressure
in the scaled model up to 80% at high speeds. Extending this design reasoning to the hyperloop:
a shock wave in a hyperloop tube could theoretically be weakened by perforating the tube adding
an outer tube.
Baron et al. [2001] investigated high-speed trains in “very long tunnels”. Specifically, they used a
quasi one-dimensional numerical simulation for trains travelling at 120 m/s in a 60 km tunnel. A
small tunnel diameter is preferred as they are “tentatively proportional” to the construction costs.
However, the higher blockage ratio then leads to higher propulsion costs. This trade-off is also
encountered in the hyperloop design. A 52% blockage ratio (i.e. pod to tube cross-sectional area
ratio) already produces supersonic air flows at standard atmospheric pressure. They show that
reducing the tunnel diameter by a factor of 2 leads to the required power increase by a factor of 7.
Not wanting to lower the cruise speed, Baron et al. [2001] therefore also propose to create a
partial vacuum at 10 kPa, which is still 100 times greater than the proposed hyperloop pressure.
Instead of the perforated walls, they employ pressure relief ducts to a parallel tunnel, creating a
two-way connection. They note that this configuration is also found in the Channel tunnel. Large
unsteady aerodynamic loads due to trains travelling in opposite direction form a disadvantage to
this tunnel network. Finally they note that the air temperature rises with at least 40 K. This does
not present an urgent problem as the tunnels are underground, which offers a thermal reservoir.
This is not the case if the tunnel is built above ground level and it may then require a cooling
system.

1.1.2 From hyperloop to breach

All hyperloop concepts have one fundamental physical advancement in common: they reduce
the aerodynamic drag of the vehicles by depleting their environment from most of the air. Even
though the depressurisation and retention of a partial vacuum require energy and the tunnel
infrastructure adds to the total project cost, it is asserted that it is still less expensive compared
to current alternatives such as train and air travel. Additionally, the proposed transonic speeds
are comparable to those of aircraft. Note that the hyperloop operates at only a partial vacuum
of about 100 Pa or 1/1000 of standard sea level pressure, because a higher vacuum requires too
much pumping complexity for its possible benefits. However, the downside of this approach is
that the total pressure and thus pressure drag rises when transonic speeds are achieved due to an
internal choking effect known as the Kantrowitz limit, (named after Kantrowitz and Donaldson
[1945]) which is discussed in Section 2.3.
Although the hyperloop design offers many advantages over conventional transportation methods,
simultaneously it presents safety risks which need to be addressed. One major concern is a loss
of vacuum accident. That is, the low-pressure tunnel may become damaged, such that air leaks
into the tube.
In order to shed light upon the current available notion of safety of the hyperloop, the FAQ section
of two prominent hyperloop developers is consulted:

Pods will continue to travel safely to the next portal even with a large breach. Our response
to a breach would be to intentionally repressurize the tube with small valves places along the
route length while engaging pod brakes to safely bringing all pods to rest before it is deemed
safe to continue to the next portal. A sustained leak could impact performance (speed) but
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4 Introduction

would not pose a safety issue due to vehicle and system architectural design choices. This
assessment is based in solid understanding and analysis of the complex vehicle load behaviors
during such an event. — Virgin Hyperloop One [2020]

The only way in which a substantial breach in the tube would occur, as the tube construction is
extremely strong, is in a case of major impact. This concerns risks to which every infrastructure
is subject. As with any form of transport, in such a case it would be desirable to shut down the
line in which the breach occurred until the calamity has been solved. The pipes are segmented,
with air seals located every couple kilometers, so that in the event of a leak, this can be limited
to a certain area. By means of sensors along the infrastructure that measure the pressure the
vehicles will be notified. The intervehicle communications system allows vehicles to act as
one and immediately and jointly brake, leaving no room for human error. The emergency
braking system will know a deceleration that you can expect during any emergency stop of
other modalities. As air would vastly flow into the tube creating an environment equivalent
to that of the atmosphere around us, the increase in air resistance will help the vehicles to
naturally slow down. Due to the pressure level in the tube this impact will be gradual. —
Hardt Hyperloop [2020]

In short, the risk is mitigated with a focus on emergency brakes and pipe segmentation. Hyperloop
TT and Transpod do not specifically mention a vacuum breach, but about safety in general they
concentrate on benefits of automation and the insurability of the project. Shifting to governmental
documentation, the Ministry of Infrastructure and Environment of the Netherlands commissioned a
report about the applications of the hyperloop concept in the Netherlands. They acknowledge that
the hyperloop tube “poses safety related issues that need to be addressed. But no fundamental
showstoppers are currently foreseen.” (Arup et al. [2017]) Unfortunately, in all cases a thorough
quantitative analysis substantiating the claims is lacking.

Thus, despite the accelerated development of and new excitement for the hyperloop, one aspect
remains invariably neglected: safety. Still, the tunnel structure is as accessible as conventional
train tracks, increasing the likelihood of damage due to weather influence or even malicious actors.
Even more than conventional railway transport systems, however, the hyperloop could be prone to
cascading failures due to the enclosed low-pressure environment. Hence, the present research aims
to support the development of a safe hyperloop and to cover part of its corresponding current
research gap.

1.2 Research questions

The contextualisation of the hyperloop tube breach above implies that thorough analyses of its
effects have not been publicised. Critics think a breach is devastating, whereas investors who claim
the hyperloop is safe, think a tube breach is a hurdle easily overcome by leak detectors, increased
vacuum pump power and emergency brakes. The research gap described by this juxtaposition
forms the basis of this thesis’ research objective and research questions.

The research objective is to offer hyperloop developers recommendations concerning how to im-
prove their design for safety in case of a loss of vacuum in the tube by developing a validated
design tool analysing the unsteady aerodynamic forces in such a scenario.

The main question of the thesis is formulated as follows:

Yorrick Bauer MSc Thesis



1.3 Thesis outline 5

What are the additional aerodynamic forces on hyperloop pods that may be expected in
case of a given near-vacuum tube breach scenario according to a validated one-dimensional
analysis?

This question is split into six sequential sub-questions:

1. What are the aerodynamic forces on hyperloop pods during normal operation?
Before the additional forces are analysed it is wise to first analyse the aerodynamic forces
on a normally operating hyperloop.

2. What are the typical aerodynamic phenomena expected during a tube breach?
Identification and exploration of the problem is the next step into solving the main research
question.

3. What models are useful to simulate those typical phenomena?
The now expected phenomena can be analysed using models. Models simplify the prob-
lem: too simple yields inaccurate results, and too complex yields computationally expensive
results. A trade-off decides what is important and what may be neglected.

4. What is the (spatiotemporally varying) overpressure magnitude throughout the tube caused
by a given breach scenario according to those models?
Now applying the models allows to quantitatively analyse the breach and find the overpres-
sure necessary to find additional forces.

5. What is the accuracy of the predictions made by the one-dimensional model?
The quasi-one-dimensional (Q1D) model is verified with an inviscid computational fluid
dynamics (CFD) analysis. Hence, two models are required by the research questions: a
Q1D analysis tool and a three-dimensional (3D) inviscid CFD verification. The simpler
model is developed in the programming language Python. The more sophisticated CFD
analysis is done with Ansys software.

6. What is the magnitude of the expected additional forces?
Generally, a Q1D model supported with CFD is used for these conditions. The overpressure
due to a breach then yields additional forces.

1.3 Thesis outline

This thesis is set up as shown in Figure 1.2 on the next page. The top items are more general
than the bottom items. The lower items lean on the ideas discussed in the upper items. Pod
aerodynamics and breach aerodynamics are separately discussed but they eventually merge in the
conclusion. These two chapters conclude with a brief literature review of the state-of-the-art.
The link between the steady jet and the Q1D model is weak: it only pertains to the discharge
coefficient description.
First, Chapter 2 discusses the aerodynamic theory required to estimate the drag force on the pod
under normal operations. Once the flow regime has been identified, isentropic flow is used to
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6 Introduction

describe how phenomena such as the Kantrowitz limit increase the drag. Ultimately, the drag is
estimated using the pressure distribution and a basic skin friction model.
Then, Chapter 3 identifies two aerodynamic phenomena occurring due to a sudden leak: the
unsteady blast wave and steady underexpanded jet. General models of both phenomena are
discussed, which form the basis of the models specific for the hyperloop in the next chapters.
Next, Chapter 4 quantifies the unsteady blast wave for several hyperloop tube breach scenarios
using three distinct (quasi) one-dimensional (Q1D) approaches: Riemann shock tube, TNT-
equivalency and geometric shock dynamics. Chapter 5 compares those models to a three-
dimensional (3D) computational fluid dynamics (CFD) results applying the Euler equations.
Finally, Chapter 6 discusses the results and answers the main research question. Furthermore, it
proposes several recommendations for further research.

Introduction
(1)

Pod aero
(2)

Breach aero
(3)

Steady jet
(3.1)

Blast wave
(3.2)

Q1D model
(4)

CFD model
(5)

Pod drag model
(2.4)

Conclusion
(6)

Figure 1.2: Thesis outline.
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Chapter 2

Hyperloop pod aerodynamics

This chapter addresses the first research sub-question: What are the aerodynamic forces on
hyperloop pods during normal operation? To this end, aerodynamic theory is applied to the
hyperloop pod. First an overview of relevant parameters is given. These parameters may then
be used to derive that the flow around the pod is viscous, compressible and a continuum. It is
thus required to analyse the flow with isentropic relations. This leads to an exploration of the
phenomenon called the Kantrowitz limit. Synthesising all previous information, an estimation of
the drag on the pod is computed and compared with literature approaches.

2.1 Pod flow regime

Identifying the flow regime of a hyperloop pod during normal operation (cruise) offers important
information. First of all because this categorisation shows which models are valid and which ones
lead to large errors. Secondly, these models turn out to be applicable to the breach modelling
subsequently as well.

Identification is done with dimensionless similarity parameters such as the Reynolds, Mach and
Knudsen number, which depend on geometry and fluid properties. However, no full-scale hyperloop
system exists, besides proof-of-concept prototypes. The proposed values are therefore indicative
and represent the current state-of-the-art sufficiently, such that flow regime can be identified.
In other words: the following hyperloop design parameters reflect reasonable order of magnitude
estimates based on current design consensus.

The geometry of the pod and tunnel in particular vary widely. The following pod design provided
by Hardt Hyperloop is analysed in this thesis, see Figure 2.1. The pod maximum diameter Dp

is 0.84 m, its length is 6 m and it travels at U 300 m/s. Hardt suggested for their pod design
approximately 70% blockage ratio to yield a tube diameter of 1.0 m. The cross-sectional area of
the pod Ap, the tube area At and the bypass area (Ap − At) varying with axial position x are
then shown in Figure 2.1 below.
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8 Hyperloop pod aerodynamics
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Figure 2.1: Conceptual pod design provided by Hardt Hyperloop (above) with its axially varying
cross-sectional area (below).
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2.1 Pod flow regime 9

The hyperloop tube operational pressure p is approximately 100 Pa or a thousandth of standard
atmospheric conditions at sea level. This pressure is a trade-off between reducing drag losses and
increasing vacuum pump requirements.

Without active thermal control, the tube is in thermal equilibrium with the ambient environment.
The ambient air temperature at standard sea level conditions is 15 °C or 288 K. This is then equal
to the tube air temperature T . Using Sutherland’s law, the dynamic viscosity of air µ at this
temperature is 1.8 × 10-5 Pa s. Note that the viscosity is independent of pressure.

Applying the ideal gas law (p = ρRT ) reveals that the air density ρ is also a thousandth of the
atmospheric air density, i.e. 1.2 × 10-3 kg/m3. The specific gas constant for air R is 287 J/(kg K).
The specific heat ratio γ is 1.4 for air.1 The speed of sound is then a =

√
γRT = 340 m/s.

Table 2.1 summarises the physical properties of air and (geometric) design parameters. These
parameters allow to estimate the similarity parameters, which characterise the flow regime.

Table 2.1: Overview of physical and design parameters.

Parameter Symbol Value Unit
Air Gas constant R 287 J/kg K

Specific heat ratio γ 1.4 -
Dynamic viscosity µ 1.8E-5 Pa s
Speed of sound a 340 m/s

Tube Diameter Dt 1.0 m
Pressure p 100 Pa
Temperature T 288 K
Density ρ 1.2E-3 kg/m3

Ambient Pressure p0 101325 Pa
Temperature T0 288 K
Density ρ0 1.225 kg/m3

Pod Length L 6.0 m
Speed U 300 m/s
Diameter Dp 0.84 m

Three similarity parameters are discussed to describe the flow regime and to simplify the general
conservation laws: the Reynolds number, Mach number and Knudsen number. They are appro-
priate for e.g. steady single-species gas flows where electromagnetic, thermal and gravity effects
are small. They provide information on the compressibility, viscous effects and continuity of the
flow, respectively.

2.1.1 Compressibility: Mach number

The Mach number M represents the ratio of the flow velocity U and the speed of sound a,

M ≡ U

a
= 0.88

1This is the ratio of specific heat at constant pressure cp over the specific heat at constant volume cv.
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10 Hyperloop pod aerodynamics

The hyperloop pods travel at transonic speeds, i.e. M ≈ 1. Hence, the compressibility of the
fluid has to be considered. This means that the isentropic relations have to be employed instead
of the simpler incompressible Bernoulli equation.
Moreover, shock waves may occur when the Mach number exceeds unity. They are discussed in
Section 3.2. Note that although the pod travels at subsonic speeds, locally the air velocity may
exceed the speed of sound.
Further, the tunnel temperature may vary, which also affects the speed of sound, although this
contribution is likely smaller. For example, a temperature rise or fall of 30 °C constitutes a 10%
change in absolute temperature, but only affects the speed of sound by 5% due to the square root
proportionality (a ∝

√
T ).

2.1.2 Viscous effects: Reynolds number

The Reynolds number Re is defined as the ratio between the inertial and viscous forces, mathe-
matically

Re ≡ ρUL

µ
= 1.2 × 105

With density ρ, velocity U , characteristic length L and dynamic viscosity µ. Using the length of
the pod as characteristic length, the Reynolds number of the air around the pod is Re = O(105).
Direct numerical simulations at this large Reynolds number are computationally too expensive.
Moreover, turbulent flows may typically be found in this high Reynolds number flow regime.
Note that the flow approaches zero velocity near the walls due to viscous forces, i.e. the no-slip
condition. This also implies that the Reynolds number can become arbitrarily small near the walls.
This is why it is useful to split the flow into a viscous boundary layer near the walls and inviscid
flow in the remaining flow, further discussed in Section 3.2.
Furthermore, note that the characteristic length also approaches zero towards the leading edge.
This is why laminar flow can be expected near the nose of the pod. The transition zone from
laminar to turbulent flow is generally hard to model. A relatively simple approach is used in
Section 2.4.

2.1.3 Continuity: Knudsen number

The final dimensionless parameter discussed is the Knudsen number Kn, which is defined as the
ratio of the mean free path ℓ to the characteristic length scale. It can be shown that the Knudsen
number is related to the Reynolds number and Mach number as follows

Kn ≡ ℓ

L
= M

Re

√
γπ

2
= 1.1 × 10−5 ≪ 1

The air thus may be modelled as a continuum rather than a rarefied gas. This is due to the fact
that the Knudsen number is well below unity, i.e. the mean free path of a fluid element is much
smaller than the characteristic length scales. Moreover, the slip at the walls is indeed negligible
in this flow regime and the no-slip condition remains valid.
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2.2 Pod-nozzle equivalence 11

Figure 2.2: Flow regimes dictated by the Knudsen number. (From: Moss and Bird [2003])

The hyperloop tube may be referred to as a vacuum tunnel. However, different vacuum qualities
exist, and the 100 Pa absolute pressure in the tube is only a low (rough) vacuum. This is far from
a perfect vacuum of 0 Pa absolute. In fact, more extreme vacua have been achieved in lab setups
below 10-9 Pa.

Figure 2.2 graphically represents an overview of the four flow regimes dictated by the Knudsen
number, which are in order of stronger vacua: continuum, slip flow, transitional and free molecular
flow. The Navier–Stokes equations hold for Kn < 0.2 but for Kn > 0.03 the no-slip condition
becomes the velocity- and temperature-slip condition. The free molecular flow for Kn > 1 is
characterised by “individual molecular impacts” (Anderson Jr. [2006]).

In summary, the flow inside the hyperloop can be characterised as a continuum, but is compressible
and may contain shocks. Also, inviscid flow occurs only outside the viscous boundary layers.
The characterisation of the hyperloop pod flow initiates the analysis of the aerodynamic forces
during normal operation and isentropic flow seems an apt model. The next section outlines an
implementation method.

2.2 Pod-nozzle equivalence

M∞ M∞ M∞

Figure 2.3: Left to right: moving pod, pod frame, convergent-divergent nozzle.
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12 Hyperloop pod aerodynamics

The hyperloop pod may be modelled as a convergent-divergent nozzle. Figure 2.3 illustrates the
equivalence for a quasi-one-dimensional (Q1D)2 case. On the left is the lab reference frame, in
which the vehicle travels through the hyperloop tunnel at Mach number M∞. Equivalently, in the
reference frame of a passenger aboard the hyperloop, the pod is stationary while air is approaching
at M∞. This is similar to a wind tunnel setup. This change of reference frame allows for a direct
relation between the pod Mach number and the total pressure. The isentropic flow relations are
presented in the next section.
In absence of boundary layers, walls of the pod may be superimposed on the tunnel walls. This
superposition creates the convergent-divergent nozzle structure, displayed on the right. The far-
field Mach number M∞ remains the same. Note that the pod thus effectively decreases the area
through which the air has to travel. This is the bypass, which in this reference frame acts as the
nozzle throat.
The pressure drag on a pod can now be determined solely based on the tube pressure and pod
velocity and geometry.3 Specifically, if the cross-sectional area of the pod varying with pod
position (from nose to tail) Ap(x) is known, then the pressure distribution p(x) on the pod can
be found using the Mach number distribution M(x). Choked flow and the Kantrowitz limit must
be discussed in order to assess this methodology in more detail.

2.3 Choking: Kantrowitz limit

The isentropic flow relations are

T0
T

= 1 + γ − 1
2

M2 (2.1a)

And
p

p0
=
(

T

T0

) γ
γ−1

=
(

ρ

ρ0

)γ

(2.1b)

The 0 subscript refers to total (i.e. stagnant) conditions, obtained when the air flow is brought
to rest isentropically. These relations with the ideal gas law may be substituted into the one-
dimensional (1D) mass flow equation. This yields for the (constant) mass flow ṁ

ṁ = ρAU = Ap0M

√√√√ γ

RT0

(
1 + γ − 1

2
M2

)− γ+1
γ−1

(2.2)

This shows that the mass flow depends linearly on the nozzle cross-sectional area A and the ambi-
ent (stagnant) pressure p0 and inversely on the square root of the ambient (stagnant) temperature
T0. Also, the heat capacity ratio γ and air gas constant R offer proportionality constants since
they are constant for the considered temperature range.

2The model is quasi-1-dimensional, because although the variables are considered in only one (x-)coordinate, it
also considers the cross-sectional area A. It is valid to neglect two-dimensional effects if changes in A(x) are small.
(Anderson [2003])

3Note that viscous effects such as a boundary layers are not taken into account. As it turns out later in
Section 2.4.3, the skin friction is negligible with respect to the pressure drag.
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2.3 Choking: Kantrowitz limit 13

The mass flow can be increased by lowering the downstream pressure, until the maximum mass
flow has been obtained at Mach 1:

ṁ⋆ = A⋆p0

√√√√ γ

RT0

( 2
γ + 1

) γ+1
γ−1

(2.3)

Due to mass continuity, the sonic (M = 1) conditions occur at the minimum nozzle cross-sectional
area, the throat A⋆. In case of a pod, this is the minimum bypass area. The flow is choked at the
critical (downstream) pressure p⋆,

p⋆ = p0

( 2
γ + 1

) γ
γ−1

(2.4)

Which is simply the isentropic flow relation (2.1) at M = 1. A larger difference between upstream
and downstream pressure does not yield higher flow velocity at the throat. Nonetheless, upstream
of the throat the air velocity is subsonic and downstream of the throat it is supersonic.
Choked flow thus occurs when the downstream pressure is below the critical pressure and it is
therefore also referred to as supercritical flow — this is in contrast to the unchoked, subcritical
flow. Using the (constant) specific heat ratio for air from Table 2.1, the critical pressure for choked
flow is 54% of the total pressure.
The continuity of the flow dictates that the mass flow be constant, and thus a nozzle (or pod)
geometry A(x) can be related to the local Mach number using the mass flow equation at the
throat and at an arbitrary other location x. Dividing the compressible mass flow equation (2.2)
at an arbitrary location and at a choked throat (where M = 1) yields

A(x)
A⋆

= 1
M

√√√√(2 + (γ − 1)M2

γ + 1

) γ+1
γ−1

(2.5)

Thus, in the Q1D case, if the pod geometry and thus bypass area distribution A(x) is known, the
Mach distribution M(x) can be found with Equation 2.5. Even if the nozzle is fully subsonic, a
virtual sonic throat may be added to still obtain the Mach number distribution.
Now more realistically, although the pods themselves travel subsonically, the surrounding air may
accelerate to supersonic flow. Transonic aircraft wings must be swept in order to prevent super-
sonic flow over the similarly accelerating flow. Unlike the external flow on transonic aircraft, the
hyperloop pods are experiencing an internal flow, limited by the tube walls. The choking limit in
the internal flow case is the Kantrowitz limit. (Kantrowitz and Donaldson [1945])
Substitution of the pod Mach number M∞ into 2.5 yields an area ratio. If this ratio is larger
than the actual tube area to throat area ratio (i.e. Abypass > A⋆) then the nozzle is fully subsonic.
On the other hand, if the ratio is smaller than the actual ratio (i.e. Abypass < A⋆), then the
actual throat is too small to attain the required mass flow. That is, the Kantrowitz limit has been
exceeded.
The Kantrowitz limit can be exceeded as follows. Since the downstream pressure cannot drop
below the critical pressure, the total pressure is increased instead. The pod (propulsive system)
converts some of its work into compressing the air. The total pressure can subsequently be found.
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Figure 2.4: Pressure ratio of isentropic and Kantrowitz limited flow for varying blockage ratios.

Recall from Equation 2.2 that a choked flow can only increase the mass flow rate by increasing the
total pressure or lowering the total temperature. The total temperature T0 in the tube depends
on the freestream Mach number M∞ (i.e. the pod speed) and is found with the isentropic flow
relation. The required mass flow rate ṁreq is in a tube with cross-sectional area At, using the
equation of state

ṁreq = ρ∞AtU∞ = p∞
RT∞

AtM∞
√

γRT∞ = ṁ⋆

The total pressure p0 to achieve this required mass flow can be found by rearranging:

p0
(2.3)= At

A⋆
p∞M∞

√√√√(1 + γ − 1
2

M2
∞

)(
γ + 1

2

) γ+1
γ−1

If the Kantrowitz limit is exceeded, this total pressure is higher than the total pressure as calculated
by the isentropic flow equations. Figure 2.4 shows the pressure ratio depending on the freestream
Mach number for both isentropic flow and flow exceeding the Kantrowitz limit. The area ratio
(At/A⋆) is represented by the pod blockage ratio β,
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2.4 Basic drag analysis 15

β ≡ Apod
At

= 1 − A⋆

At

The pressure ratio is higher than the isentropic pressure ratio when the Kantrowitz limit is ex-
ceeded. For higher pod blockage, the Kantrowitz limit is exceeded at lower pod velocities. For
instance, at 20% blockage, the total pressure increases when the pod travels at M∞ = 0.55,
whereas at 80% blockage the speed limit reduces to M = 0.12. It is interesting that at suffi-
ciently high supersonic pod speeds, the Kantrowitz limit is not exceeded anymore, but this requires
the pod to break the sonic barrier.

The drag increases linearly with the total pressure, because it is proportional to the dynamic
pressure (q ≡ ρU2/2) and recall that for an ideal gas the density is proportional to the pressure.
This discussion on the Kantrowitz limit thus quantifies one of the challenges of transonic pods
travelling in low pressure tunnels.

Ideally the pods shall minimally block the air flow, but then the tunnel diameter must be large.
The hyperloop project costs increase with tunnel diameter due to construction costs and stricter
vacuum pump requirements. Therefore, some designs such as the one described by Musk [2013]
propose to use an on-board compressor to prevent the total pressure increment. This, however,
also increases the cost, risk and complexity of the design. This is why Opgenoord and Caplan
[2018] opted to not implement a compressor in their design and accept the pressure (and drag)
increment.

In summary, the pressure distribution p(x) over the pod has to be computed in order to find the
pressure drag. This distribution can be now found with the isentropic flow equation (2.1), which
requires the total pressure p0 and the Mach number distribution M(x). The former may be higher
than the tunnel pressure due to exceeding of the Kantrowitz limit. The latter is found with the
nozzle geometry A(x).

2.4 Basic drag analysis

The pod drag during normal operation can now be estimated using the nozzle equivalency principle.
The drag is found by integrating all aerodynamic forces over the pod surface. The aerodynamic
forces consist of (normal) pressure and shear stresses, leading to pressure drag Dp and skin friction
drag Ds, respectively. Both are quantified in the next two sections.

2.4.1 Pressure drag

The discussion of the Kantrowitz limit in Section 2.3 explained how the pressure distribution can
be found using isentropic flow. This is valid for a fully subsonic flow around the pod. However,
the flow regime in the equivalent nozzle changes at transonic pod speeds as already indicated by
the increase of total pressure due to exceeding the Kantrowitz limit. At increasing speeds the tail
of the pod experiences partially to fully supersonic flow. The supersonic flow can jump back to
subsonic flow due to a shock wave. The total pressure p0, tube back pressure p and tube to throat
area ratio A/A⋆ ultimately dictate the flow regime and where shock waves may form.
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Figure 2.5: A nozzle with two throats and a normal shock wave (NSW).

The location of the shock wave on the pod can be determined by adding a virtual throat (or
second pod) after the first one (Figure 2.5). The shock will lie between the throat and trailing
edge (TE) of the pod. Its location can be found using the following steps.

First the trailing edge Mach number is found with the pressure and area ratio with respect to
the virtual throat. Mass conservation between the trailing edge and real throat combined with
adiabatic flow yields (see Appendix A.1)

MTE =

√√√√√
√

1 + 2(γ − 1)
(

2
γ+1

) γ+1
γ−1

(
A⋆

ATE
p0

pTE

)2
− 1

γ − 1

This Mach number yields the virtual isentropic area ratio (see Equation 2.5) and thus the area
ratio with the real throat. Mass conservation between both throats in adiabatic flow yields

p02

p01

= A⋆
1

A⋆
2

This total pressure ratio is then used to find the Mach number of the normal shock wave Ms with
the implicit normal shock wave relation

p02

p01

=
[

(γ + 1)M2
s

(γ − 1)M2
s + 2

] γ
γ−1 [ γ + 1

2γM2
s − (γ − 1)

] 1
γ−1

Knowing the shock wave location allows to determine p(x) over the full length of the pod (from
leading to trailing edge). The total pressure drag on the pod is then

Dp =
∫∫

A
p(x) dA

This concludes the discussion of the pressure drag. The second part of the drag originates from
shear forces, i.e. the skin friction drag.
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2.4 Basic drag analysis 17

2.4.2 Skin friction drag

The skin friction drag is estimated with the flat plate formulas. The main distinction is made by
the flow type: either laminar or turbulent air flow. The transition location may be approximated
with the critical Reynolds number Re⋆ = 5 × 105 as follows (Incropera et al. [2006])

x⋆ = µ

ρU
Re⋆

Using the design parameters of Table 2.1, transition from laminar to turbulent flow occurs around
x = 25 m. This means that before the transition location the Blasius solution for the friction
coefficient cf of a flat plate can be used, derived in e.g. Anderson [2011], i.e.

0 ≤ x ≤ x⋆ : cf = 0.664
Rex

(laminar)

Whereas after the transition location, the Prandtl’s 1/7 power law is applied, i.e.

x⋆ ≤ x ≤ L : cf = 0.027
Re1/7

x

(turbulent)

The total skin friction drag is then

Df =
∫∫

A
cf (x)ρ(x)U2(x)

2
dA

And the total drag is the sum of both pressure and skin friction drag.

A note on boundary layer and displacement thickness

It is common to divide the flow field around an object into two parts: an attached boundary
layer where the viscous effect are significant and an outer inviscid region where viscous effect
may be neglected. The boundary layer develops because of the no-slip condition: the velocity at
the object’s walls is zero. This creates a velocity gradient, which in turn leads to friction. The
shear stress τ experienced at the walls is linearly proportional to the velocity gradient at the walls,
mathematically

τ = µ
∂u

∂y

∣∣∣∣
y=0

The boundary layer conventionally ends where the velocity has reached 99% of the freestream
velocity. This is where the inviscid region starts. The boundary layer thickness δ for laminar flow
over a flat plate can be described by the Blasius solution, again derived in Anderson [2011], i.e

0 ≤ x ≤ x⋆ : δ = 5.0x√
Rex

(laminar)
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18 Hyperloop pod aerodynamics

This means that the boundary layer thickness increases with the square root of the length. The
turbulent boundary layer thickness is

x⋆ ≤ x ≤ L : δ = 0.37x

Re1/5
x

(turbulent)

The displacement thickness δ⋆ practically provides the thickness with which the walls should
be increased to create a body with similar aerodynamic characteristics, but without a boundary
layer. That is, adding the displacement thickness to the original body creates the shape which
only experiences inviscid flow. For a flat plate, these are for the laminar and turbulent case,
respectively

0 ≤ x ≤ x⋆ : δ⋆ = 1.72x√
Rex

(laminar)

And
x⋆ ≤ x ≤ L : δ⋆ = 0.020x

Re1/7
x

(turbulent)

Hence, the displacement thickness also increases over the length of the body. This means that
the throat conditions of the pod occur at the end of the constant area mid section.

2.4.3 Results

The cross-sectional area of the pod model geometry in Figure 2.6 has been determined at several
axial positions. Using the previously described methodology, the Mach number, static pressure
and temperature distribution may be determined for varying pod speeds. The values are constant
at the constant cross-section pod domain. Here, the blockage ratio is 0.71, which is the maximum
value.
The Mach number distribution shows how the fully subsonic pod may accelerate to a partially
supersonic flow regime at subsonic pod speeds (up to 210 m/s). At higher (but still subsonic)
pod speeds, the trailing edge flow regime is fully supersonic up to M = 2.5.
The static pressure distribution shows that above the fully subsonic flow regime, the leading edge
static pressure exceeds the 100 Pa tube pressure. The pressure reaches a fourfold of the static
pressure at the leading edge at the highest analysed speed of 310 m/s. The fully supersonic
regime drops below the ambient pressure at the trailing edge, whereas the partially supersonic
regime returns to the tube pressure at the trailing edge.
The static temperature distribution shows the temperature increase due to exceeding the Kantrowitz
limit up to 40 K at the leading edge at the top speed. The temperature drops due to increasing
Mach number and returns to the ambient tube temperature if a shock wave occurs on the trailing
edge. However, if the trailing edge is fully supersonic, the temperature drops further to 150 K or
-123 °C.
Finally, the contributions of the pressure distribution and the skin friction to the total drag are
shown. Clearly, the skin friction is negligible with respect to the pressure drag. At low speeds
below the Kantrowitz limit, the drag barely increases. Beyond this limit, however, the drag rapidly
increases. The drag at maximum speed is approximately 430 N. The power required to propel the
pod to overcome the drag at maximum speed is then P = DU , yielding 134 kW.
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2.4 Basic drag analysis 19

Figure 2.6: Drag analysis of the pod (above) yields the Mach number, static pressure and
temperature distribution and the drag contributions at several pod speeds.
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20 Hyperloop pod aerodynamics

2.5 State-of-the-art: hyperloop literature study

Most hyperloop aerodynamic research focuses on the reduction of the pod drag varying its shape.
Initially, the Hyperloop Pod Competition by SpaceX [2018] gave rise to several research papers.
Opgenoord and Caplan [2018], for instance, note that the hyperloop pod flow regime is “unconven-
tional”, encountering relatively small Reynolds numbers at high Mach numbers. This is important
because laminar to turbulent flow transition may be expected on the pod. Their drag reduction
strategy was thus to move the transition location upstream in order to delay flow separation. The
added skin friction due to a turbulent (but attached) flow on the one hand is smaller than the
increased pressure drag due to separation on the other hand.
They also considered the Kantrowitz limit but argue that mitigation is unnecessary in their design:
the freestream Mach number (at 110 m/s) is M = 0.3 at 30 percent blockage ratio. Figure 2.7
then shows that under these conditions the external flow accelerates to M = 0.5 at most, indicated
by the red dot. The Kantrowitz limit is reached at the speed of sound (M = 1), indicated by
the black solid line. Most full-scale hyperloop designs however advertise travel speeds near speed
of sound, say, M = 0.9. This speed regime is far past the choking limit for any reasonable tube
diameter (i.e. blockage ratio). Musk [2013] proposes to implement a compressor to bypass more
air, whereas Opgenoord and Caplan [2018] realise this requires too much development effort due
to the current lack of compressors designed for this flow regime. Another possibility is to accept
the resulting higher pressure drag, but this may defeat the purpose of a near-vacuum environment.
Figure 2.8 shows the rapid drag increase beyond the choking limit.

Figure 2.7: Blockage ratio versus
freestream Mach number and resulting
maximum Mach number due to the block-
age. (From: Opgenoord and Caplan
[2018])

Figure 2.8: Rapid drag increase beyond
the Kantrowitz limit. (From: Opgenoord
and Caplan [2018])

Braun et al. [2017] took a similar approach in the same competition and agree with Opgenoord
and Caplan [2018] that a compressor is obsolete for their design goal. Their approach focused
on generating lift in addition to reducing drag. This design strategy should relieve the (maglev)
levitating system requirements, whereas minimising drag only benefits the propulsive system. They
do not justify why this relieve is required, even though one could argue that design for lift can
create unnecessary instability issues. Drag fluctuations can be compensated by adaptive energy
input by the propulsive system. The maglev system under this increased lift design only requires
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less effort at cruise speeds, just as the propulsive system. The peak energy requirement will thus
remain at low speeds.
They estimate the one dimensional aerodynamic performance as follows. The pressure distribution
on the pod is calculated from the local Mach numbers which are found from the isentropic
mass conservation. Viscous effects from the laminar compressible boundary layer are computed
solving the Karman momentum integral equation. This yields a (wall) friction coefficient and
displacement thickness. Comparing with a two dimensional (2D) computational fluid dynamics
(CFD) simulation, they conclude that the (1D) reduced model is accurate enough. Interestingly,
unlike Opgenoord and Caplan [2018], they conclude neither flow separation nor transition to
turbulent flow occurs on their pod design in tube pressures below 1 kPa.
A full-scale drag minimisation routine has been performed by Wong [2018] for a hyperloop com-
pany. His quasi one-dimensional isentropic nozzle solver conceptually follows the 1D method by
Braun et al. [2017]. On average his model overestimated the pressure by approximately 10 per-
cent, with the largest discrepancies at the nose of the pod, compared to his three dimensional
CFD analysis.
Kim et al. [2011] claim that the three most sensitive parameters that dictate the total drag are
blockage ratio, tube pressure and pod velocity. First, the blockage ratio dictates the “critical
speed”, i.e. the Kantrowitz limit. Secondly, they show that the total drag is linearly proportional
to the tube pressure and to the velocity squared, cf. D = 1

2ρU2CDA.
Wong [2018], then, realised that those three parameters were already fixed by other requirements
before his research initiated. Hence, he had to revert to optimising the shape of the pod, based on
other maglev trains. He notes that the relatively thick boundary layer due to low Reynolds numbers
decreases the bypass area. A sonic throat forms on the transition from constant cross-section to
tail, where the displacement thickness is largest and thus the bypass minimal.
The aerodynamics research discussed above already shows a suitable methodology to analyse and
design the hyperloop. Generally, a simple and quick one-dimensional problem analysis (see Section
2.4) allows to differentiate the relatively good designs from the bad ones. Furthermore, the design
is reduced to a few parameters in order to reduce optimisation effort. The best designs are then
fine-tuned and more thoroughly analysed with more advanced methods: usually CFD software is
used. The hyperloop tube breach however has not been extensively analysed. This is the topic of
the next chapter.
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Chapter 3

Breach aerodynamics

The previous chapter aimed at the hyperloop pod aerodynamics during normal operation. The
focus now shifts to the aerodynamics of a tube breach. Generally, fluids flow from high pressure
to low pressure regions. Therefore, high pressure atmospheric air flows into the low pressure
tube when its walls fail. The hyperloop tube breach can be characterised by two phenomena in
chronological order: blast wave and underexpanded jet.
Figure 3.1 schematically shows the development of the shock and subsequent underexpanded
jet inside a hyperloop tube. First on the left side the tunnel breaches. This initially leads to the
formation of a bow shock, travelling supersonically through the tunnel in the middle subfigure. The
blast wave flattens to two bidirectional normal shock waves, while a quasi-steady underexpanded
jet forms at the hole, and impinges on the opposite tunnel wall. Note that the shocks have
travelled further from the breach location after 1 s than shown (indicated by the break).

(a) t = 0 (b) t ≪ 1 s (c) t > 1 s

Figure 3.1: Introduction to the breach phenomenology: (a) tube breach, (b) bow shock forma-
tion, (c) impinging underexpanded jet (center) and normal shock wave (tube ends).

The hyperloop tube breach may be analysed as a short (convergent-divergent) nozzle emitting
into a low pressure environment. Its length is then the tube thickness. The tube pressure is lower
than the critical pressure using the outside atmospheric pressure in Equation 2.4. If the ambient
pressure inside the tube is lower than the exit pressure of the nozzle, an underexpanded jet forms.
Figure 3.2 shows numerical schlieren images from a large eddy simulation (LES) of the development
of an underexpanded jet due to a 6.5 total pressure ratio. Note that for the hyperloop the total
pressure ratio is in the order of one thousand. Moreover, the jet will impinge on the opposite wall.
The next section (3.1) explains the underexpanded jet in more detail.
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Initially however, the discontinuity of the breach creates a bow shock. A more schematic repre-
sentation of the bow shock is given by Radulescu and Law [2007] in Figure 3.3. The dissimilarity
with the hyperloop tube for this phenomenon is that the depicted bow shock wave is unrestricted,
whereas the tube walls confine the domain. This unsteady effect is analysed after the underex-
panded jet, in Section 3.2. The bow shock that eventually becomes a normal shock is referred to
as the blast wave because the rapid inflow of (kinetic) energy reminds of the shock waves due to
explosions, i.e. rapid chemical energy release.
Hence, Section 3.1 reviews the underexpanded jet, which occurs due to the high pressure inflow
into a low ambient pressure environment. Initially, however, a blast wave propagates through the
tunnel, explained in Section 3.2. This chapter thus considers the following two sub-questions:

• What are the typical aerodynamic phenomena expected during a tube breach?

• What models are useful to simulate those typical phenomena?
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Figure 3.2: The initial stages of the developing underexpanded jet. (From: Vuorinen et al.
[2013])

332 M. I. Radulescu and C. K. Law

(a)

(b)

(d)

(e)

(c) ( f )

Figure 1. Shock transmission in Ar through a slit, giving rise to an under-expanded jet
(adapted from Naboko et al. 1972).
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Figure 2. Physical set-up and sketch of the dynamically similar jet.
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Figure 3.3: Schematic representation of the initial breach. (From: Radulescu and Law [2007])
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26 Breach aerodynamics

quantitative and theoretical results (whenever available) are pre-
sented and discussed. A summary of all the available results is
presented in Table 2.

4.1. The Mach disk

This is certainly the most studied feature in the literature, be it
experimentally [12,30,35,40,43,49,51,56–59,62,64,66–94], theoreti-
cally [13,29,67,76,78,95–109] or numerically [14,20,22,34,41,59,63,75,

81,82,84,91,110–122].Yet, if one tries to understand the reason for
the appearance of a Mach disk, there is still some doubt about the
underlying physical mechanisms. More precisely, in the passage from
a regular reflection to a singular reflection, accompanied by the
appearance of the Mack disk, it is well known that the detachment of
the shock waves occurs because this is the only way for the flow to
adjust to a subsonic regime [10, Chap. 16] or [11, Chap. 7] but
the moment when this phenomenon occurs is quantitatively poorly
known, especially the dependency (and interactions) on the pressure

Fig. 6. Structure of a highly underexpanded jet.

Fig. 7. Structure of a very highly underexpanded jet.

E. Franquet et al. / Progress in Aerospace Sciences 77 (2015) 25–5330

Figure 3.4: Highly underexpanded jet. (From: Franquet et al. [2015])

3.1 Steady underexpanded jet

An underexpanded jet develops when the ambient pressure downstream of a nozzle1 (the back
pressure) is lower than the pressure at the end of the nozzle. If the pressures are equal, isentropic
expansion occurs. If the back pressure is higher than the nozzle exit pressure an overexpanded jet
with oblique shock waves occurs.

The basis for the underexpanded jet theory — isentropic flow — was already discussed in the
previous chapter. If a critical pressure difference is obtained, the mass flow is choked. The ratio
of the pressures upstream and downstream of the nozzle, i.e. the nozzle pressure ratio, yields even
more information about the flow regime.

First, Section 3.1.1 introduces the nomenclature of the underexpanded jet graphically supported
by a typical sketch of this jet showing the details of the flow. Then, Section 3.1.2 quantifies the
Mach disk location based on an empirical formula. Next, Section 3.1.3 discusses how the farfield
may be modelled and Section 3.1.4 explains the effects of a non-circular hole on the underexpanded
jet, supported by Schlieren images. Finally, the non-ideal behaviour of an orifice with respect to
a regular nozzle is corrected by the discharge coefficient, which is introduced in Section 3.1.5.

3.1.1 Introduction

According to Franquet et al. [2015], extremely underexpanded jets occur where the total pressure is
at least seven times the back pressure. The structure of the cross-section of this jet is schematically
represented in Figure 3.4.

1In this introductory stage, the breach hole is considered an ideal nozzle. Section 3.1.5 describes how the
discharge coefficient can compensate for this modelling inaccuracy.
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3.1 Steady underexpanded jet 27

Starting on the left where the flow originates, the exit pressure pe and exit Mach number Me

are indicated. Prandtl-Meyer expansion fans (dashed) emanate from the lips (fat vertical lines)
causing an expansion and acceleration of the downstream flow, increasing the Mach number.
The expansion fans reflect off the dotted jet boundary (JB) and the dashed ambient pressure p∞
streamline. The resulting compression waves converge and intersect, forming an oblique shock
wave or intercepting shock, illustrated with a thick line. At a critical angle, where the intercepting
shock reflects away from the central flow, a normal shock or Mach disk is formed. After the Mach
disk the flow becomes subsonic. The reflection point where the intercepting shock coincides with
the Mach disk, is referred to as the triple point. Note that the jet is axisymmetric about the
(dash-dot) central axis, provided the hole is circular.
A slip stream emanates from the triple point separating the subsonic inner jet from the supersonic
outer jet. At more moderate pressure ratios, the barrel structure may repeat. However, in the case
of a loss of vacuum of the hyperloop tube, the initial total pressure ratio is approximately 1000.
The Mach disk formed then has a diameter larger than the exit (hole) diameter and therefore
cannot form a second barrel. (Chen et al. [2018])

3.1.2 Mach disc

The position of the Mach disk LMD mainly depends on the pressure ratio, and this correlation is
empirically found to be (Franquet et al. [2015])

LMD
De

= 0.65
√

p0
p

(3.1)

Substitution of the breach pressure ratio suggests that the Mach disk initially arise at around
20 times the hole diameter De. In the current configuration, this means that initially the hole
diameter has to be smaller than 50 mm such that a Mach disk can form before the flow hits the
tunnel wall opposite the hole. However, as the pressure in the tube rises, the Mach disk retreats
towards the puncture.2

3.1.3 Farfield zone

The following summarises the identification of the three main zones found in an underexpanded jet
as categorised by Franquet et al. [2015]. The previous discussion focused on the effects relatively
close to the breach, usually called the nearfield zone. This is usually split up into two parts: the
core and the mixing layer. As what their names suggest, the core only consists of fluid particles
originating from the jet, whereas the mixing layer also includes the ambient fluid — in the case of
a breach, the tube air. Figure 3.2(d) shows how turbulence causes mixing of the jet and ambient
(tube) air. The mixing layer completely replaces the core in the so-called transition zone, where
both fluids mix better due to smaller differences in parameters such as pressure.
Eventually, the pressure homogenises to the ambient tube pressure in the fully developed farfield
zone, so the jet is now perfectly expanded. Longitudinally, the temperature and velocity decrease
inversely proportional to the distance from the breach location and radially, the velocity may be

2Note that in Figure 3.2(d) the Mach disk indeed follows Equation 3.1 for which L/D = 1.66.
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28 Breach aerodynamics

5. Farfield zone of a highly underexpanded jet

In comparison with the nearfield zone, this region has focused
less attention in the past (excluding obviously the ideally expanded
jets) however some information may be found concerning the be-
havior of the jet characteristics since both experimental [30,70,
148,39,57,224–232,61,207] and theoretical [28,72,224–226,197,228,
233–241,207] and numerical [34,216,230,242–249,238] papers re-
port thereon. Generally, they deal with risk assessment related to
leakage of flammable material (e.g. natural gas or hydrogen). As
previously explained (see Section 3.3), the jet is now in pressure
equilibrium with the ambient fluid although it may still have a high
velocity (i.e. evolve in the compressible regime) which decays far-
ther downstream. In this context, it has been shown that the be-
havior of underexpanded jets may be treated as usual compressible
fully expanded jets, provided that suitable arrangements are done in
order to find a characteristic length which permits us to scale all the
variables of the jet [28,68,70,224,243,38,197,150]. Thus, as depicted
in Fig. 15, one may view the jet in this region as if it were originated
from a pseudo-source with different characteristics than the actual
exit source. When dealing with practical applications, the aim is thus
to feed industrial codes with proper boundary conditions in order to
avoid the resolution of the whole underexpanded jet which would
be cumbersome (and still very complicated even at the present
time). We present hereafter how this pseudo-source, often referred
to as a notional nozzle, may be described (Fig. 16).

5.1. Notional or fictional or equivalent nozzle

Far downstream from the exit plane, the jet seems to have little
memory of its recent past (the shock wave pattern, the presence of
multiple or a unique Mach disk, etc.). From this observation, it has
long been proposed to replace it by an equivalent flow, whose
characteristics are determined only from stagnation (or exit) state
thanks to some simple physical hypotheses. Let us now present
the available models, in the case of a chocked convergent nozzle
such that the flow is sonic at the exit.

5.1.1. Equivalent diameter [250]
This paper related to reactive jets studies the dimensionless

parameters governing the flame length when there are changes of
jet momentum, and also an excess air ratio. It is generally re-
nowned as the first study introducing the concept of an equivalent
diameter (or nozzle), in order to take into account the density
effects in the axial decay of jets. This equivalent nozzle is supposed
to have the same momentum flux and velocity as the actual nozzle
but with the density of the ambient fluid. Then, without the help
of any hypothesis on the equation of state, conservation equations
for the nozzle fluid mass and momentum lead to the following
equivalent diameter:

D

D 19e

eeq ρ
ρ

=
( )∞

Obviously, for a perfect gas, we may use Eq. (70) to rewrite this
relation:
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5.1.2. Pseudo-diameter approach [224]
It relies on the mass conservation, assuming no entrainment of

ambient air, between the exit plane to an hypothetical state in the
farfield zone where the flow is supposed to be at the same pres-
sure and temperature as the ambient fluid and at a sonic velocity.
This may be summarized as follows:

p p 21eq = ( )∞

T T 22eq = ( )∞

V c 23eq eq= ( )

From the mass balance, we may obtain
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For a fluid governed by the perfect gas equation of state, Eqs. (68)
and (69) may be used to rewrite the mass balance as follows:
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Remark: in the two previous relations, we voluntary omitted the
discharge coefficient present in the original paper in order to have
the same basis when comparing the various results.

5.1.3. Sonic jet approach [57]
This method is almost the same as the pseudo-diameter ap-

proach [224], since it also relies on the mass conservation and
supposes that the equivalent flow is sonic at the ambient pressure
but at the same temperature as in the exit plane. This summarizes
as follows:

p p 26eq = ( )∞

T T 27eq e= ( )

V c 28eq eq= ( )

The effective diameter is then easily found, namely:

D

D
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For a fluid governed by the perfect gas equation of state, Eq. (29)
may be written:
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5.1.4. Momentum-velocity approach [227]
In this method, the diameter of the jet is not modified but an

equivalent velocity is computed so as to preserve the momentum
balance, leading to the following relations:

Transition

a

Farfield (fully developed)

Fig. 15. Flow behavior in the farfield zone and notional nozzle concept.

E. Franquet et al. / Progress in Aerospace Sciences 77 (2015) 25–5340

Figure 3.5: A notational nozzle may be used to omit computing the nearfield zone. (From:
Franquet et al. [2015])

described by a Gaussian bell curve with the peak at the centre line of the jet, see Figure 3.5. The
main benefit in the analysis of the farfield zone is its “little memory of its recent past” (Franquet
et al. [2015]). One could therefore replace the original nozzle with a hypothetical equivalent
nozzle, the notational nozzle, and realise the same resulting flow. The pseudo-source in Figure
3.5 different from the original breach point may then be used to omit the computation of the
nearfield zone.

Nevertheless, the farfield zone is less interesting for a tube breach because the farfield may be
interacting with the wall opposite of the breach hole.

3.1.4 Effect of nozzle geometry

The previous discussions focused on a circular nozzle exit. Unless a hole is purposefully manufac-
tured in the hyperloop tube, a breach will most likely not be perfectly circular. It is nonetheless
the easiest case to analyse.

Rajakuperan and Ramaswamy [1998] performed several experiments on oval nozzles of varying
aspect and pressure ratios, see Figure This showed that low aspect ratio oval exits (e.g. 1.4 in
the experiment) still acted similar to circular exits. For larger aspect ratios, the minor axis plane
showed no shock barrel structure (but an oblique shock instead) and a much higher jet spreading
rate with respect to the major axis. The minor axis plane jet was also more affected by the
pressure ratio. Moreover, the cross-sectional area of the jet was larger for the asymmetrical jet
than for an axisymmetrical jet, so more mixing occurred. The cross-sectional shape evolution of
the asymmetrical jet goes from the exit oval shape to a circle to a larger oval where major and
minor axis switched.

Li et al. [2017] analysed the flow characteristics of circular, elliptic, square and rectangular nozzles
at 5.60 pressure ratio using LES. They conclude that the “key flow features” are similar for a
circular and square nozzle. Also, the ellipse and rectangle show similar results along their minor
and major axes.
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3.1 Steady underexpanded jet 29

Figure 3.6: Schlieren images of free jets from a nozzle with 5.0 aspect ratio at pressure ratios
a. 2.9; b. 5.2; c. 10.3; d. 20.3. (From: Rajakuperan and Ramaswamy [1998])

v.c.

orifice

p0

T0

Figure 3.7: Exaggerated view of a vena contracta (v.c.) after an orifice.
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Figure 3.8: The coefficient of contraction for axisymmetric orifices depends on the pressure ratio.
(From: Patterson et al. [1970])

3.1.5 Discharge coefficient

Up to this point the breach hole was assumed to act as an ideal nozzle, whereas real orifice flows
usually demonstrate a vena contracta effect (Figure 3.7).
The isentropic mass flow equation (2.2) often yields a higher value than the actual obtained mass
flow rate, mainly due to the effect of friction ϕ and contraction κ of the air after the hole. (Jitschin
et al. [1999]) For a thin orifice and high Reynolds number flow, where the boundary layers remain
relatively thin, the friction is negligible: ϕ ≈ 1. The contraction, however, can play a significant
role and is often referred to as the vena contracta, sketched in Figure 3.7. The contraction
coefficient is

κ = Av.c.
Ahole

For axisymmetrical orifices κ can be found using one-dimensional (1D) theory, see e.g. Figure 3.8
from Patterson et al. [1970]. It can be seen that the contraction ratio for the initial breach is
κ = 0.85, whereas near the equilibrium state it decreases to κ = 0.6.3 The ratio of the actual

3Note that the pressure ratio in Figure 3.8 is the vena contracta pressure divided by the total pressure. This is
different from the total pressure ratio in Equation 2.1.
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3.1 Steady underexpanded jet 31

flow and the ideal, isentropic flow is the discharge coefficient Cd, which includes the friction and
contraction effects:

Cd = ϕκ = ṁreal
ṁideal

= ṁ3D
ṁ1D

By definition, then, the discharge coefficient of an ideal nozzle is 1. The discharge coefficient thus
acts as an efficiency factor. Generally, determining the discharge coefficient a priori is not trivial
as it may depend on many parameters. Three works are discussed next to outline a methodology.
By means of a dimensional analysis with the Buckingham π theorem, Binder et al. [2015] suggest
seven dimensionless quantities affect the discharge coefficient for circular orifices of which they
investigate three. They exclude the Reynolds number because Deckker and Chang [1965] have
experimentally shown independence for Re > 104. Moreover, the influence of the Mach number is
excluded, because it highly depends on the pressure ratio (see e.g. the isentropic flow equations).
Keeping the temperature ratio constant during the experiments, they investigate and provide
correlations for the effect of pressure ratio, length-to-diameter ratio and chamfer-to-diameter ratio.
Since adding chamfer increases the similarity with a nozzle, the discharge coefficient increases.
Their focus however lies on the application to turbomachinery, whereas the discharge coefficient
near the choking point is the main interest of the present thesis.
Ward-Smith [1979] studied the influence of the axial length on Cd for choked circular orifices
without chamfer. When the orifice thickness is 1 to 7 diameters, the critical discharge coefficient
remains constant. For higher length-to-diameter ratios, the boundary layer increases friction,
the flow becomes Fanno choked and the discharge coefficient decreases. For smaller ratios, the
discharge ratio increases.
Finally, Linfield [2000] provides an engineering algorithm to find the discharge coefficient based
on cubic splines. It is capable to take into account the effects of pressure ratio, wall angle, area
ratio, specific heat ratio and edge rounding for axisymmetrical and planar flow.
Figure 3.9 compares the contraction coefficient of Patterson et al. [1970] with the discharge
coefficient of Linfield [2000] for air through a sharp edged axisymmetrical orifice dependent on the
pressure ratio. Note that the supersonic flow regime starts at the critical pressure ratio according
to Equation 2.4, i.e. z⋆ = 0.53. For extremely underexpanded jets it is thus to be expected that
the discharge coefficient is 0.85, approximately.
More specifically, Figure 3.9 uses two piecewise cubic splines for the discharge coefficient: one
for the subsonic case above the critical pressure ratio and one for the supersonic case below the
critical pressure ratio. The cubic splines require the value of both the discharge coefficient and
the partial derivative of the discharge coefficient with respect to the pressure ratio z at both end
points, marked with green dots.
For completeness, the used (least squares fit) equations by Linfield [2000] are repeated here for
a π/2 rad wall angle α and air specific heat ratio 1.4 in order of incompressible (z = 1), critical
(z = z⋆) and upper choked flow limit (z = 0).

Cd|z=1 = 1
1 + 2

π

= 0.61 (3.2a)

∂Cd

∂z

∣∣∣∣
z=1

= − Cd|z=1 (1 − Cd|z=1)
γ

= −0.17 (3.2b)
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Figure 3.9: Comparison of methods to derive the discharge coefficient dependence on pressure
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A1 = 1 − 0.5103
(

α

π

)
+ 0.05644

(
α

π

)2
+ 0.1360

(
α

π

)3
= 0.77

B1 = −0.07373
(

α

π

)
+ 0.07731

(
α

π

)2
− 0.02848

(
α

π

)3
= −0.021

Cd|z=z⋆ = A1 + B1γ = 0.75 (3.3a)

A2 = 0.1549 − 0.01177γ = 0.138

B2 = 0.934 + 0.6433γ = 1.83
∂Cd

∂z

∣∣∣∣
z=z⋆

=
α
π

A2 + B2
α
π

= 0.47 (3.3b)

A3 = 1 − 0.2702
(

α

π

)
+ 0.1322

(
α

π

)2
= 0.90

B3 = 0.0488
(

α

π

)
− 0.06124

(
α

π

)2
+ 0.04805

(
α

π

)3
= −0.015

Cd|z=0 = A3 + B3γ = 0.85 (3.4a)
∂Cd

∂z

∣∣∣∣
z=0

= 0 (3.4b)

And the equations used by Patterson et al. [1970] for the subsonic and supersonic regime, respec-
tively, are following, where I = 0.095, II = 0.0293, III = 0.0127

κ =



(γ − 1)(1 − z)
z1/γ − z

(
(I + 0.5) − II(z − 1)

γ
− 2γ − 1

3γ2 III(z − 1)2
)

for z > z⋆

1
(γ + 1)z⋆ − z

(
(z − 1) + 2(z⋆ − 1)I − 2

γ
II(z⋆ − 1)2 − 2

3γ
III(z − 1)3

)
for z < z⋆

(3.5)

MSc Thesis Yorrick Bauer



34 Breach aerodynamics

Figure 3.10: Blast wave by nuclear explosion. (Photo by: Berlyn Brixner [1945])

3.2 Unsteady blast wave

Whereas the previous discussion mainly pertains to the steady flow characteristics locally near
the breach hole, the following discussion emphasises the unsteady effects throughout the tube.
It was seen in Figure 3.2 that a bow shock emanates from the breach hole and initiates the
(extremely) underexpanded jet due to the sudden breach. It turns out that this bow shock
eventually travels as a normal shock wave bidirectionally through the complete hyperloop tube
until complete dissipation.
Shock waves are usually analysed with the Euler equations, the set of partial differential equations
which describes inviscid flow. They are introduced in Section 3.2.1, formulated in three dimensions
in Section 3.2.2 and in quasi-one-dimensional form in Section 3.2.3, from which the Rankine-
Hugoniot equations are derived in Section 3.2.4.
Blast waves are shock waves due to a sudden local eruption of energy. If this energy impulse is
released at the boundary of a semi-infinite domain (i.e. an open field), the blast wave strongly
resembles the bow shock wave of Figure 3.2. For instance, compare the figure with the blast wave
due to the trinity nuclear detonation test in Figure 3.10. Two methods of analysing blast waves
are proposed and compared: the analytical strong shock (Section 3.2.5) and the empirical TNT
shock relations (Section 3.2.6).

3.2.1 Euler equations

The governing formulas as derived in e.g. White [2006], Anderson [2011] are the conservation
of mass, the conservation of momentum and the conservation of energy. Unsteady, inviscid,
compressible flow is described by the Euler equations, the inviscid formulation of the viscous
Navier–Stokes equations. For a three-dimensional problem this yields five quasi-linear hyperbolic
partial differential equations for six unknowns: three components of the velocity, density, pressure
and energy. The system of equations is closed with equations of state.
This system is solved in the domain bounded by boundary conditions and over a time bounded by
initial conditions. A physical boundary condition for inviscid flow is the flow tangency condition
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at the walls. This states that the velocity normal to the wall is zero. In practice, the walls become
streamlines and no mass flow is allowed through the wall. In contrast, for viscous flows the stricter
no-slip condition is applied, imposing zero velocity at the wall. Note that these boundary conditions
dictate the solution at the boundary and are thus Dirichlet (first-type) boundary conditions. For
unsteady flows an initial condition is required, for instance an initially stagnant gas u(t0) = 0
throughout the domain.

The three-dimensional (3D) and quasi-one-dimensional (Q1D) formulation of the Euler equations
without body forces and heat transfer are presented in the next two sections.

3.2.2 Three dimensional formulation

The conservative formulation of the Euler equations consists of the conservation of mass:

∂ρ

∂t
+ ∇ · (ρu) = 0 (3.6a)

The conservation of momentum:

∂(ρu)
∂t

+ u · ∇ (ρu) + ∇p = 0 (3.6b)

And the conservation of energy:

∂(ρE)
∂t

+ ∇ · (u(ρE + p)) = 0 (3.6c)

Here, the dependent variables are density ρ, pressure p, velocity vector u = (u, v, w)T and specific
total energy E = e + |u|2/2. They are functions of two independent variables: position x =
(x, y, z)T and time t. Note that the conservation of momentum consists of three equations and
excludes body forces such as gravity and electromagnetism, besides the viscous surface forces.
No general closed-form solutions have been found (yet) for the Euler equations and they are
difficult to solve analytically. Therefore, usually the system of equations is solved numerically with
computational fluid dynamics (CFD) software. This is done in Chapter 5.

3.2.3 Quasi-one-dimensional formulation

A less ambitious and computationally cheaper option is found in 1D analysis. In order to still
capture the effect of area changes, a Q1D approach is used. That is, A′(x) ̸= 0. Moreover, using
the isentropic flow assumption, the energy equation can be replaced by constant entropy along
a particle path. Then, the governing equations for unsteady Q1D flow without friction, mass
addition and heat transfer are mass continuity:

ρt + uρx + ρux + ρu
A′(x)
A(x)

= 0 (3.7a)
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Conservation of momentum:
ut + uux + 1

ρ
px = 0 (3.7b)

And entropy conservation:
pt + upx − a2 (ρt + uρx) = 0 (3.7c)

Where use has been made of the fact that ds ∝ dp − a2dρ and for a perfect gas the speed of
sound a is

a2 =
(

∂p

∂ρ

)
S

= γp

ρ

With the method of characteristics (MOC) the partial differential equations can be reduced to a
simpler system of ordinary differential equations. The Riemann invariants are along the charac-
teristics

dp± ± ρadu± + ρa2u
A′(x)
A(x)

dt± = 0 on C± ≡
(

dx

dt

)
±

= u ± a (3.8)

dp0 − a2dρ = 0 on C0 ≡
(

dx

dt

)
0

= u (3.9)

One note of caution on using the MOC on the previously discussed overexpanded jet: this is
troublesome for the extremely high pressure ratio of the hyperloop breach. The difference in the
Prandtl-Meyer function at the equally extreme Mach numbers is too small and evaluations quickly
lead to a diverging solution.
Another powerful method is the self-similar analysis employed by Taylor–von Neumann–Sedov
(TvNS) on the spherically symmetrical strong shock wave. The solution is given in Section 3.2.5,
but first the more general Rankine-Hugoniot equations for shock waves are presented in the next
section.

3.2.4 Rankine-Hugoniot equations

The Rankine-Hugoniot relations can be derived from the 1D Euler equations (3.7) and describe
the discontinuous change of flow variables across a normal shock wave:

[ρv] = 0

[p + ρv2] = 0[
ρv

(
h + 1

2
v2
)]

= 0

Where the difference between the pre-shock state 1 and post-shock state 2 is indicated with
square brackets, for instance [x] = x2 − x1. The specific enthalpy h is defined as h ≡ e + p/ρ.
The velocity v is relative to the shock. These jump equations can be rewritten to the following
practical normal shock wave relations only dependent on pre-shock Mach number M1 and specific
heat ratio γ. The pressure ratio:
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z ≡ p2
p1

= 1 + 2γ

γ + 1

(
M2

1 − 1
)

(3.10a)

Density ratio:

ρ2
ρ1

= (γ + 1) M2
1

2 + (γ − 1) M2
1

(3.10b)

And post-shock Mach number

µ2 ≡ M2
2 = (γ − 1)M2 + 2

2γM2 − (γ − 1)
(3.10c)

Similar equations for oblique shock waves are derived in standard compressible gas books such as
by Anderson [2011]. Oblique shock waves have an additional flow velocity component tangent to
the shock, which is not present in normal shocks. The θ-β-M relation for the deflection angle θ
and the oblique shock angle β is repeated here:

tan θ = 2 cot β
M2 sin2 β − 1

M2(γ + cos 2β) + 2
(3.11)

The prior equations have been recorded because are required in the following discussions, the 3D
and 1D inviscid Euler equations, and shock waves are regularly mentioned.

3.2.5 Analytical strong shock

The initial stages of a breach strongly resemble those of an explosion at ground level: in both
cases a hemispherical bow shock emanates from the initial breach or explosion location due to
the rapid energy release. In the case of a breach, this is the sudden influx of kinetic and pressure
energy; in the case of most explosions, this is the rapid conversion of chemical energy into heat
due to an exothermic reaction. Figure 3.10 allows for a qualitative comparison with the shock
wave from the trinity nuclear explosion. Shock waves formed due to a sudden burst of energy in
a small volume are referred to as blast waves.
Taylor [1950], von Neumann [1947], and Sedov [1946] independently derived with a self-similar
analysis the solution for a strong shock due to an energy release E0. The shock radius R as a
function of time t is

R = β

(
E0t2

ρ0

)1/5

(3.12a)

Where ρ0 the ambient air density and constant β = 1.033 for air with γ = 1.4. The shock velocity
us is then found by differentiating with respect to time:

us = Ṙ = 2R

5t
(3.12b)

Finally, the shock overpressure ζ is related to the shock velocity using the normal shock wave
relation

ζ ≡ ∆p

p0

(3.10a)= 2γ

γ + 1

(
u2

s

a2 − 1
)

(3.12c)
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Figure 3.11: Friedlander curve showing the overpressure due to a blast wave.

A typical blast wave overpressure development at a fixed location is displayed in Figure 3.11. The
pressures are given with respect to the ambient pressure p0, i.e. they are gauge pressures. The
further away from the explosion origin the pressure is experienced, the longer it takes before the
positive phase starts at arrival time t0 and the smaller the peak overpressure pp becomes. Due to
the shock wave, the pressure almost instantly rises to the peak overpressure and decreases next.
The decrease results in a negative pressure with respect to the ambient pressure at critical time
t⋆, but it has an absolute value lower than the overpressure. Finally, the pressure returns to the
initial ambient pressure.

The area underneath the pressure curve during the positive phase yields the impulse caused by the
blast wave. A larger area due to a larger peak overpressure or longer positive phase thus leads to
higher damages. The curve is described by the Friedlander equation (Friedlander [1946])

p(t) = p0 + pp

(
1 − t

t⋆

)
H (t − t0) exp

(
−β

t

t⋆

)

The Heaviside step function H is used to initialise the function.

Note that the previous discussion pertains to an idealised blast wave decay into a semi-infinite
isotropic free field. For a hyperloop tube breach, the confinement of the wave adds complexity
to the preliminary analysis given above. Unlike the sudden release of explosive energy, the breach
blast wave is continuously sourced with additional kinetic energy until the tube pressure equals
the outside pressure or the hole has been closed. The Friedlander curve may not be completely
appropriate in this scenario, because after the peak overpressure, the static pressure remains high.

Moreover, depending on the pressure ratio, the strong shock assumption may not be valid. Resort-
ing to empirical shock relations for smaller explosions may then be an option. They are presented
and compared with the strong shock equations in the next section.
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3.2.6 Empirical TNT shock relations

Empirical models based on experimental results have been proposed for the blast wave overpressure
due to an explosion. Cube root scaling laws are popular, where the shock radius has been non-
dimensionalised with the cube root of the energy released divided by preshock pressure pt0 .
For instance, Brode [1959] uses ZB ≡ R/α where α3 ≡ E0/pt0 , in which ZB is indeed di-
mensionless. Alternatively, the Hopkinson-Cranz scaling law defines a reduced distance Z with
released energy in terms of equivalent TNT mass W in kg. The yield energy ε of trinitrotoluene,
C6H2CH3(NO2)3 (TNT) is approximately 4 MJ/kg, and E0 = Wε. The reduced distance in
m/ 3

√
kg is then

Z ≡ R/
3√

W

Note that the preshock pressure is excluded using this scaling method, most likely because the
explosive tests are usually performed around standard atmospheric conditions.
Karlos et al. [2016] give an overview and comparison of frequently used empirical models. Three
models are presented for discussion. First, Henrych [1979] suggests

ζH(Z) =



14.072
Z

+ 5.540
Z2 − 0.357

Z3 + 0.00625
Z4 for 0.05 ≤ Z ≤ 0.3

6.194
Z

− 0.326
Z2 + 2.132

Z3 for 0.3 ≤ Z ≤ 1

0.662
Z

+ 4.05
Z2 + 3.288

Z3 for 1 ≤ Z ≤ 10

(3.13a)

Whereas Kinney and Graham [2013] suggest

ζKG(Z) =
808

[
1 +

(
Z

4.5

)2
]

√√√√[1 +
(

Z

0.048

)2
] [

1 +
(

Z

0.32

)2
] [

1 +
(

Z

1.35

)2
] (3.13b)

And the strong shock limit of TvNS yields after some algebraic manipulation

ζTvNS(Z) (3.12)= 2γ

γ + 1

(
4β5εTNT
25γp0Z3 − 1

)
(3.13c)

Where the overpressure is defined as ζ ≡ ∆p/p0. The three overpressure decay relations are
compared in Figure 3.12. Note the limited application range of the Henrych model (3.13a). The
strong shock limit Z → 0 yields a finite overpressure (ζKG → 808) in the Kinney–Graham model
(3.13b). Both empirical relations are similar. The self-similar analytical solution for the strong
shock overpressure (3.13c) rises indefinitely towards the strong shock limit with slope 3 on a log-
log plot, but this method breaks down for weak shocks. In fact, sound wave overpressure decays
inversely proportional to the distance from the source. The empirical and analytical approaches
overlap around Z = 1.
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Figure 3.12: Comparison of free field decay laws.
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The TNT equivalence principle allows to extend the experimental results for other explosives. The
yield energy of the distinct explosive is compared to that of TNT. This allows to substitute any
sudden release of energy, such as the kinetic energy released due to a loss of vacuum. A caveat
is that its straightforward application is due to possibly invalid assumptions. A few final remarks
on the model limits are therefore appropriate.
Only under specific conditions the equivalency yields correct results. Thus, simply extending the
empirical data for TNT explosions to kinetic energy release due to a breach may lead to large
errors. Note that Equations 3.13a and 3.13b are based upon experiments of explosions under
approximately standard atmospheric conditions. Extrapolating this data to a partial vacuum may
then be troublesome. Assimilating the preshock pressure into the reduced distance may assist in
comparing both cases. Equation 3.13c is able to take into account the ambient pressure p0 and
is derived from the unsteady Euler equations for a spherically symmetric strong shock.
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3.3 State-of-the-art: loss of vacuum accident

A flow field similar to a hyperloop tube breach is encountered in the analysis of a so-called loss
of vacuum accident (LOVA) in a fusion reactor. Confinement of particles is required in order
to achieve a fusion reaction. This can be done in a toroidal chamber with magnetic coils, a
tokamak. The chamber is kept at low pressure to reduce impurities and enhance the fusion
reaction. Coincidentally, the LOVA is usually analysed at a pressure level similar to that inside
the hyperloop tube. Rossi et al. [2019] state that the major risk of the LOVA is resuspension of
“toxic, explosive and radioactive” dust particles off the walls. They are a by-product of the plasma
reaction and shall stay inside the vacuum chamber.

This is why LOVA research generally revolves about two research topics. First, the pressurisation
time has to be determined. Once the torus reaches the external ambient pressure, dust may exit
through the breach location. Second, the wall friction velocity, which is one of the main mobilisers
of the dust particles, has to be determined. Clearly, both parameters are dependent on the scale
of the LOVA. Thus, many numerical and experimental studies vary for instance the hole size and
location, and pressure and temperature ratio. A few research papers are summarised and discussed
next.

One of the first papers investigating a LOVA is due to Gay et al. [1998]. They use a lumped
model to investigate the air leakage into the vacuum vessel for three hole sizes. The total pressure
inside the 3700 m3 vessel rises to the ambient pressure of 1 bar. The time it takes to repressurise
the vessel clearly depends on the hole size, e.g. the vessel is repressurised from 0.9 bar in 20 s by
a 0.3 m2 hole, but in 5 s by a 1 m2 hole. In the former scenario the mass flow is 45 kg/s. Air
inside the vessel is heated by the 100 ◦C surroundings and expands, causing an outflow of 1.4 kg/s
maximum. Even though the hyperloop is usually in thermal equilibrium with the surroundings,
these specific results can readily be used to verify hyperloop breach models.

An example analysis closer to the pressure ratio of the hyperloop is also given: the vessel is
pressurised from 0 to 1 bar. A 0.02 m2 hole yields a constant 5 kg/s mass flow until after 350 s,
when it decreases to 0 kg/s after 700 s. Also, a 0.005 m2 hole yields a constant 1.2 kg/s mass
flow until after 1450 s, decreasing to 0 kg/s after 3200 s. These values agree with the isentropic
mass flow equation (2.2) in Section 2.3.

Lupelli et al. [2014] compared three common Reynolds-averaged Navier–Stokes (RANS) turbulence
models — Zero-Equation (ZE), k-ω, and Shear Stress Transport (SST) — and grid resolutions
with experimental results in the Stardust facility, a cylindrical vacuum chamber. The ZE model
yielded acceptable results with air velocity errors smaller than 20% for all grid resolutions. The k-ω
model performed worse. The SST model performed best, but at the cost of more computational
effort (approximately five times longer than ZE). Another benchmark parameter provided the
reason why Lupelli et al. [2014] prefer the SST model. The LOVA causes a highly underexpanded
jet with a Mach disk which location can be estimated with an empirical analytic relation (as
discussed in Section 3.1). Again the SST model yielded the smallest error (5%).

Xu et al. [2018] present their methodology to obtain results for a wide range of scenarios. First
they vary the number of cells to determine convergence of the solution. Next they compare
three turbulence models on their accuracy. In the end they chose the SST-model, also convinced
by Lupelli et al. [2014]. With this fixed setup they analyse the flow at different pressures and
temperatures. Further, they report maximum velocities of 700 m/s, which exceeds the speed of
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Figure 3.13: Flow velocity fields in the torus and air jet contour 1 s after initial inflow. (From:
Gélain et al. [2015])

sound. Oddly, however, they do not mention any investigation on shock waves. In another report
Xu et al. [2019] varies the hole area from 0.02 to 0.5 m2.
Gélain et al. [2015] modelled the air inflow from the 1 bar atmosphere into the 150 Pa torus.
Figure 3.13 shows a result of their CFD analysis. A few insights are worth mentioning. First,
air enters the low-pressure torus through an underexpanded jet. This jet impinges on the surface
opposite the entrance hole, spreading over the inner wall comparable to a water jet splashing from
the faucet into a sink. The maximum velocity one second after the breach is 250 m/s. This
contradicts the aforementioned lresults by Xu et al. [2018], but better reflects a choked flow.
The previous papers analysed the breach numerically. An example of an experimental analysis is
discussed by Rossi et al. [2019]. Unsatisfied with the initial lack of agreement with results in the
Stardust facility, they use the Buckingham Pi theory to relate the scaled experimental results with
the numerical full-scale results.
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Chapter 4

Quasi 1D model

This chapter treats the next research sub-question: What is the overpressure magnitude through-
out the tube caused by a given breach scenario? The discussed quasi-one-dimensional (Q1D)
models can be used to analyse the transient blast wave confined by the cylindrical tunnel. First,
a one-dimensional (1D) shock tube is analysed as a Riemann problem in Section 4.1. Section 4.2
discusses the development of the shock geometry. Section 4.3 uses an energy based approach,
similar to the analysis of a blast wave due to an explosion. Section 4.4 describes an alternative
planar approach which expands the 1D shock tube analysis. Section 4.5 then compares both
methods.

4.1 Riemann shock tube

A tube in which a diaphragm separates two initially stagnant gases at different pressures can
be described by a Riemann problem. A snapshot of a post-rupture state of the tube is seen in
Figure 4.1. Zone 1 on the left side represents the unperturbed high pressure ambient (outside)
atmosphere, and zone 4 on the right side describes the unperturbed conditions in the low pressure
(inside) hyperloop tube.
Now instantaneously removing the diaphragm simulates the 1D breach: (Poisson, P) expansion
waves travel outwards to the ambient atmosphere and (Hugoniot, H) pressure waves travel into

1 2 3 4

Figure 4.1: Geometry of a Riemann shock tube problem.
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Figure 4.2: The (x, t)-diagram showing the developing expansion wave and shock wave.

the tube. Both waves separate the tube into two additional zones (2 and 3) separated by a
contact discontinuity (CD). Density, specific internal energy and specific entropy jump over this
discontinuity, whereas the pressure and velocity on both zones remain equal, i.e. p2 = p3 and
u2 = u3.
This model uses the following assumptions:

• The diaphragm at x = 0 is instantaneously removed at t = 0.

• Zones 2 and 3 do not mix; no mass flow occurs between the zones.

• No boundary layer formation; fully inviscid except at the shock.

• No three-dimensional (3D) effects.

• Ideal gas and constant specific heat ratio γ.

The shock wave equations (3.10) can be rewritten to find for the shock wave (see e.g. Anderson
[2003])

u3 = a4
γ4

(
p3
p4

− 1
)√√√√√√√

2γ4
γ4 + 1

p3
p4

+ γ4 − 1
γ4 + 1

And the expansion fan with the method of characteristics (MOC) and isentropic flow equations
yields

u2 = 2a1
γ1 − 1

[
1 −

(
p2
p1

)(γ1−1)/2γ1
]

The (implicit) shock tube equation then follows from γ1 = γ4 = γ, p2 = p3 and u2 = u3
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Table 4.1: Breach initial conditions. Compare with Table 2.1

Parameter Symbol Value Unit
Atmospheric (external) pressure p1 101325 Pa
Tube (internal) pressure p4 100 Pa
Temperature outside and inside the tube T1 T4 15 deg C
Speed of sound outside and inside a1 a4 340 m/s
Initial air speed outside and inside u1 u4 0 m/s
Air specific heat ratio γ 1.4 -

p1
p4

= p2
p4

[
1 − (γ − 1)(p2/p4 − 1)(a1/a4)√

(2γ)[2γ + (γ + 1)(p2/p4 − 1)]

]−2γ
γ−1

(4.1)

Solving numerically for the presupposed design conditions in Table 4.1 yields p2 = p3 = 1144 Pa
and u2 = u3 = 805 m/s. Compare these results with the ambient conditions inside the tube: the
overpressure is an order of magnitude higher and the compressive blast wave travels at more than
twice the speed of sound!

This shock tube analysis thus provides a straightforward solution for a full-rupture case, where the
hyperloop tube cross-section is discontinuously exposed. Hence, this is irrespective of the scale of
the breach. A Q1D model can take the hole size into consideration, but requires an understanding
of the shock geometry as described in the next section.

4.2 Shock geometry

α

t0 t1 t⋆

Rh

 Fig. 4.4

Figure 4.3: Critical shock definition.

The blast wave due to the vacuum breach is not immediately spherical. Figure 4.3 shows a
shock travelling rightwards through a hole with radius Rh. This idealised shock front develops
from initially planar at t0 to an intermediate form (in part planar, in part curved) at t1, to a full
(critical) bow shock at t⋆. The shock remains planar in its core, until the critical shock is formed.
Skews [1967] geometrically showed that for this case

tan2 α =
(γ − 1)(M2 − 1)

(
M2 + 2

γ−1

)
(γ + 1)M4
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(a) θ = 0

θ

(b) θ < βmax

•

•

•TP

•

×X⋆

(c) θ > βmax

Figure 4.4: Spatiotemporal development of a confined spherical blast wave. Illustration of the
wall reflections according to the blast wave incident angle θ: (a) incident wave, (b) regular
reflection, and (c) Mach reflection.

It is to be expected that the shock wave pressure jump decays as the shock frontal area increases.
Sloan and Nettleton [1975] measured that the shock wave overpressure indeed did not decay along
the longitudinal axis of the hole, until the critical shock position

R⋆ ≡ R(t⋆) = Rh

tan α

Unlike the semi-infinite domain of a hemispherical blast wave due to a ground explosive in an open
field (recall Figure 3.10), the critical hyperloop breach shock is constrained by the tube walls. Now
consider the projection of Figure 4.3 from the right into the hole.
Figure 4.4 shows how in a tunnel an initially spherical blast wave one-dimensionalises into a normal
shock wave due to a Mach reflection: the oblique shock at the wall becomes a normal shock once
the angle between the wall and the shock θ becomes larger than the maximum deflection angle
βmax. This angle can be laboriously determined using the θ-β-M relation of oblique shock waves
(3.11), but Kinney and Graham [2013] provide a more straightforward approximate hyperbolic
equation to find the limiting angle in degrees

βmax ≈ 1.75
M − 1

+ 39 (4.2)

The triple point (TP) — similarly defined as for the underexpanded jet in Section 3.1 — travels
along the dashed line in Figure 4.4 until point X⋆, where the shock becomes fully planar.
Silvestrini et al. [2009] proposed a straightforward method to take into account the confining
effects of the wall geometry. They summarise the confinement effects in an energy concentration
factor (ECF). For the case of a hyperloop, the free hemispherical propagation of the explosion is
confined by the 1D tunnel. The ECF n is then the ratio of both volumes V

n = V3D
V1D

= 4R2

3D2

Recall that the blast radius is R and the tunnel diameter is D. The new reduced distance for a
1D blast wave is
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Figure 4.5: Free-field and 1D overpressure decay for 1 kg TNT in a 1 m2 tunnel. Left of the
transition (dotted green) the 3D decay applies (solid blue); right of the transition the 1D energy
concentration factor has to be taken into accout (dashed orange). (From: Benselama et al.
[2010])

Z1D = Z3D
3
√

n
= R

3√nW
= 3

√
3RD2

4W

Figure 4.5 shows the overpressure decay over the reduced distance in a 1 m2 tunnel cross-sectional
area for both the free-field law (3.13a) and 1D ECF corrected law. In the near field (Z → 0) the
free-field laws apply, whereas in the far-field (Z → ∞) the ECF has to be applied.
The transition (reduced) location from the initially 3D blast to a 1D normal shock wave due to the
confinement of a tunnel can be found with the correlation proposed by Benselama et al. [2010].
It estimates the transition region based on the initial blast radius relative to the tunnel radius α,
which was validated experimentally. Their proposed correlation is

Z3D→1D = 0.0509
α13/9 (4.3)

This transition region is indicated in Figure 4.5 by the red dotted line for a 1 kg TNT blast load
in the 1 m2 tunnel. The decay of the blast wave then first follows the solid blue line, then at
Z3D→1D jumps to the dashed green line and follows this line to Z → ∞. Once more the trouble
with this correlation model is that the empirical data probably only works for experiments at
standard atmospheric conditions and not for vacuum tunnels.
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4.3 Volumetric energy method

A Q1D framework can be set-up with the empirical blast wave models of Section 3.2.6. The
driving source of those explosive blast waves is due to the sudden release of chemical (or nuclear)
energy. In the breach case, the release is in the form of kinetic and pressure energy. The kinetic
energy inflow can be found similar to the compressible mass flow equation with the ideal gas law
and isentropic relations1

Ėkin = 1
2

ṁU2 = p0AM3

2

√√√√
γ3RT0

(
1 + γ − 1

γ
M2

)− γ+1
γ−1

= p0A

2

√√√√
γ3RT0

( 2
γ + 1

) γ+1
γ−1

This is the ideally choked kinetic energy inflow which has to be corrected with the discharge
coefficient, as discussed in Section 3.1.5. One could either multiply the energy inflow with the
Cd = 0.85 value for high pressure ratios, or use the uncorrected energy inflow Cd = 1 as a
conservative estimate. The breach hole remains choked as long as the pressure inside the tube is
lower than the critical pressure (Equation 2.4). Also note that the kinetic energy increases with
hole area A.
The kinetic energy is found by integrating with respect to time, from breach up to the time of
critical shock t⋆ when the overpressure decay starts:

Ekin =
∫ t⋆

t0
Ėkindt = R⋆Ėkin

u3

The pressure (internal) energy must be determined as well. The energy required to compress the
hemispherical critical shock volume V ⋆ from the tube pressure p4 to the preshock pressure p3 is
found from the equation of state for a perfect gas (Brode [1959])

Epres = (p3 − p4)V ⋆

γ − 1

Now, the reduced distance is independent of the hole size. In fact, it is solely dependent on the
temperature, pressure and fluid medium (air) inside and outside the tube. Explicitly,

Z⋆ = R
3
√

WTNT
= R⋆

3
√

Ekin+Epres
εTNT

p0
p4

=

 π

εTNT

p0
p4

 Cdp0
2u3 tan α

√√√√
γ3RT0

( 2
γ + 1

) γ+1
γ−1

+ 2(p3 − p4)
3(γ − 1) tan3 α




−1/3

The design conditions in Table 2.1 yield a conservative reduced distance of 0.59 m/ 3
√
kg TNT at

1 atm.2 This yields an initial overpressure of between 20 and 31 over the critical shock wave,
depending on the relation used (3.13):

1Note that the total conditions of the high pressure region denoted with subscript 0 are equal to the unperturbed
zone (denoted with subscript) 1.

2Applying the 85% correction factor for the vena contracta at high pressure ratios as determined in Section 3.1.5
would yield a reduced distance of 0.61 m/ 3√kg TNT at 1 atm.
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ζH(Z⋆) = 20 ζKG(Z⋆) = 29 ζKG(Z⋆) = 31

The shock overpressure is larger than the 1D result, but this is its value at the critical shock wave
location. The overpressure decays as the shock wave increases its area. The shock wave decay
due to area increase is quantified in the next section.

4.4 Planar method

Whereas the previous model was based on the empirical models of explosions of Section 3.2.6,
the Chester–Chisnell–Whitham (CCW) model is a Q1D model based on the Euler equations (Sec-
tion 3.2.3). The CCW method (Section 4.4.1) yields a relation between the Mach number and
the area: M(A). It is also referred to as geometric shock dynamics (GSD) (Section 4.4.2), when
this method is generalised from Q1D to 3D.

4.4.1 CCW model

The contributions of each of the three authors of the CCW model is as follows. Chester [1954]
first analysed an asymptotic solution for a shock in a tunnel with small area increment. Because
a large change is due to many small area increments, Chisnell [1957] integrated the asymptotic
solution (in a different formulation) such that Af(z) remains constant. Whitham [1958] then
found a similar result with the MOC, but he related the area to the Mach number instead of
pressure ratio, i.e. the A − M relation.
The Chisnell function displayed in Figure 4.6 monotonically increases with pressure ratio. More
explicitly,

f(z) = z1/γ(z − 1)√
z + γ−1

γ+1

[1 + Γ
1 − Γ

]√γ/2(γ−1)
Γ −

√
γ−1
2γ

Γ +
√

γ−1
2γ

 exp

√ 2
γ − 1

tan−1

 2
γ − 1

√
γz

z + γ+1
γ−1




(4.4)
Where

Γ ≡ 1√
1 + γ+1

(γ−1)z

This model can be used to extend the 1D shock tube model and offers an alternative approach
to the previously discussed empirical TNT shock equivalence method. Its procedure is as follows.
First, the initial pressure ratio is determined with the shock tube equation (4.1). Next, the initial
shock area (i.e. the critical shock hemispherical surface area) is dictated by the hole size. The
final shock area is twice the tunnel area, cf. Figure 4.4. The final overpressure depending on the
hole size is shown in Figure 4.7 for the tunnel diameter of 1 m.
The overpressure decay can be determined if the initial bow shock is approximated by a hemisphere
once the critical shock has formed. The shock area is then A = 2πR2 for R⋆ < R < Rt. The shock
overpressure does not decay once the final tube radius Rt has been achieved, although realistically
the shock overpressure will eventually decay due to viscous effects. One way to introduce the decay
is by employing the ECF to the expanding free field decay, instead of using the final overpressure
beyond Rt.
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Figure 4.6: Chisnell function evaluated for pressure ratios larger than unity.
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Figure 4.7: Final shock pressure for a 1 m diameter tunnel depending on the hole size.
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4.4.2 GSD model

The 3D generalised model is the GSD model. The M -A relation is then

Mλ(M)
M2 − 1

∇M + ∇A

A
+ F = 0

With
λ(M) =

(
1 + 2

γ + 1
1 − µ2

µ

)(
1 + 2µ + 1

M2

)
And the post-shock Mach number µ from (3.10c). The post-shock contributions are small,
F ≈ 0, when the area changes are small or in the strong shock limit. Ridoux et al. [2019] present
a practical method to discretise and numerically evaluate the GSD model. An advantage is that
the discretisation validates the small area change assumption, but shear interaction between the
ray tubes with solid walls is neglected. Because this model is quite involved, it is only briefly
mentioned here as a suggestion for future research.

4.5 Comparison of Q1D models

The blast wave overpressure decay is displayed Figure 4.8 for the (blue) 1D, (green) volumetric,
and (black) planar approach using the initial conditions of Table 4.1. The breach holes have 0.02,
0.2, 0.6 and 1.0 m diameter3 and are placed into a 1.0 m diameter tunnel (as used throughout this
thesis). The grey solid line indicates the critical shock position and the grey dotted line indicates
the transition location according to the correlation by Benselama et al. [2010] in Equation 4.3.
As expected, larger hole size:

• Extends the critical shock position, because it increases proportionally to the hole size, and

• Reduces the transition position, because blast energies scale with the cube of the hole size.
The bow shock flattens closer to the hole location, because the maximum deflection angle
decreases (Equation 4.2).

The transition location is always smaller than the tube diameter. This may either indicate that
the correlation does not apply to the hyperloop tube ambient (pressure) conditions or that the
blast wave almost instantaneously flattens. The former explanation seems more likely, comparing
once more with Figure 4.4.
The 1D overpressure model (horizontal blue solid line) does not yield any decay as previously
discussed, but it presented a starting point for more in-depth Q1D analyses. The 1D model pre-
dictably yields identically the same result irrespective of the hole size, that is, the 1D overpressure
does indeed not depend on hole size.
The green dashed curves are obtained by using the Kinney–Graham empirical blast wave decay
relation (3.13b). The thin dashes are the uncorrected free field blast wave decays. This decay
is faster than the heavy dashes of the blast wave decay corrected with the ECF. In the blast

3Section 4.3 and Section 4.4 briefly show how the breach hole size affects blast wave overpressure and how it is
implemented into the respective models.
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Figure 4.8: Blast wave decay models compared for four breach hole sizes.
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wave decay models the shock continues to decay in the far-field, but with the tube confinement
correction ECF, the decay is less rapid.
The planar Q1D model (black dotted curves) yields a decay until the final shock area has been
achieved and the final overpressure agrees with Figure 4.7. The final overpressure is indicated with
a black solid (horizontal) line. The Q1D model can however be extended as if the tube is infinitely
large, i.e. a free-field decay. This can then be corrected for the confinement of the tunnel with
the ECF. In this case the planar shock strength does decay, but the implementation is an ad-hoc
correction based on expected decay due to viscous effects ignored in the original CCW model.
Close to the hole the overpressure may be enormous due to the steady state underexpanded jet,
but depending on the model and hole size, the overpressure may already decay several orders of
magnitude in only a few meters (or tunnel diameters).
Generally the 1D result represents the maximum attainable overpressure. However, a radial hole
with the size of the tube cross-section, yields an exceptionally high blast wave according to
the (corrected) volumetric energy method. Interestingly, the planar method yields a lower final
overpressure, because the initial blast wave has to travel in both directions through the tube,
whereas the 1D result only accounts for one normal shock wave.
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Chapter 5

CFD model

This chapter discusses the penultimate sub-question regarding the validation of the one-dimensional
model: What is the accuracy of the predictions made by the one-dimensional model? Careful
considerations are required to properly analyse flows using computational fluid dynamics (CFD).
Otherwise, the results may become meaningless. In the present case, the goal of the CFD anal-
ysis is to ensure the quasi-one-dimensional (Q1D) model yields adequate results. Therefore, the
subsequent CFD analyses shall also employ the Euler equations (3.6).
The model setup is declared in Section 5.1 and the results of the analysis are discussed in Section
5.2. Finally, a comparison with the Q1D modelling of the previous chapter is made in Section 5.3.

5.1 Model setup

The fluid solver of Ansys Discovery AIM software is selected. The software integrates geometry,
mesh and physics modelling with solving and post-processing. Details of the selected simulation
options are motivated below.
The solver is based on the finite volume method. This solves the Euler equations in integral form,
not requiring mathematical continuity. In other words, discontinuous shocks are allowed. Anderson
[1995] states that this is why the integral form is “more fundamental” than the differential form.
Another advantage is the applicability to unstructured meshes and of boundary conditions. The
dependent variables — velocity, density, pressure and energy — are evaluated at the cell centres,
whereas the boundary conditions are applied at the boundary faces. Alternative methods used
to numerically analyse partial differential equation (PDE)s are finite difference and finite element
methods.
In order to successfully simulate the physics it is necessary to model the physical domain (hyperloop
tube) and phenomena (conservation and equations of state). The domain and the conservation
equations have to be discretised and linearised in order to transform the PDEs to a system of
linear algebraic equations, which can be numerically solved to find the unknowns, e.g. velocity,
pressure, and temperature. Note that for transient analyses, time shall be discretised as well.
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Figure 5.1: The mesh geometry of a 30 cm radius breach hole setup.

5.1.1 General settings

The following settings selection is mainly based on the software user manual, see ANSYS [2010].
The selected solving method is pressure-based. Historically the density-based approach was de-
veloped for compressible flows, whereas pressure-based solving was developed for incompressible
flows. With current extensions, both methods are able to solve compressible flows. (ANSYS
[2010]) Only the pressure-based solver is available in the used software. Both methods obtain the
velocity field from the momentum conservation equations. The pressure-based approach yields the
pressure field from a combination of all conservation equations. The density-based approach how-
ever only uses the continuity equation to determine the density field first, and finds the pressure
field through the equation of state. The result is that the two approaches linearise the equations
differently.
The aforementioned combination of conservation equations are coupled and non-linear. The
alternative segregated approach solves for pressure by sequentially solving the equations iteratively
until the convergence of results. The coupled approach, on the other hand, solves the continuity
and momentum equations simultaneously and next the energy equation iteratively. The advantage
is a faster convergence rate, but it is at the cost of an increased memory requirement. A coupled
approach is advised for large time steps and low quality meshes. The coupled pressure-based
algorithm is used instead of a segregated one (such as SIMPLE, PISO). (ANSYS [2010])
It is also advised by ANSYS [2010] to reduce the under-relaxation factor for the momentum
equations in inviscid simulations, to enhance the solving stability in the pressure-based approach.
The first 10 time steps to be resolved were small at 0.01 µs. Moreover, the inlet boundary was
velocity based instead of mass flow or pressure definition.
The time discretisation is second order backward Euler which is common for transient analyses
according to (ANSYS [2010]). This approach is implicit (which is more stable than explicit time
schemes) and more accurate in time. The discretisation is iterative instead of non-iterative time-
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advancing (NITA). The latter may have given a faster convergence rate because the fully coupled
set of equations are not always accurately resolved in time, and as long as the error lies within the
truncation error, this would be sufficient.
The pressure is interpolated with the second order upwind scheme, which is recommended by
ANSYS [2010] for compressible flows. The spatial discretisation is second order upwind as well.
Although a first order scheme converges more easily, its downside is the high numerical diffusion
if the mesh is not aligned with the flow.1

Gradients and derivatives are determined using the least-squares cell-based method. For unstruc-
tured meshes, this method is accurate similarly to node-based Green-Gauss, but faster. The
method is also preferred over the cell-based Green-Gauss method.
The tolerances of the residuals are required to be less than 10-5 and each time step is allowed
10 iterations to converge. The final maximum residual is 10-3 for continuity, 10-4 for the three
mutually orthogonal velocity vectors and the total enthalpy. The temporal error tolerance is 10-3.
The largest residuals occur at the expansion at the breach hole due to the right angle turn the
flow encounters at the wall.

5.1.2 Initial and boundary conditions

The simulated medium is continuous (because Kn ≪ 1) air as a compressible ideal gas (because
M > 0.3). The stagnant initial condition (u0 = 0) is at an absolute pressure of 101 Pa at 15 °C
temperature. It is important to set the gauge pressure to zero, because all pressures are with
respect to an absolute vacuum.
As previously mentioned, only a tangent flow condition (i.e. no mass transfer) suffices at the walls
of the Euler equations, because a no-slip condition would be excessive. In other words, the walls
behave as streamlines. The sonic inflow is at 340 m/s with static (critical) pressure 53528 Pa —
i.e. 101325 Pa total pressure — at the temperature of 15 °C. The inflow is constant over the full
time domain of 0.01 s, because the breach hole remains choked during this time.
The (non-reflective) outflow is at 100 Pa. Again the temperature is imposed for the energy
equation at 15 °C. The outflow condition is subsonic, because the simulation is stopped before
the shock reaches the outflow boundary.
Two symmetry planes are used to reduce the computational load. The quartered (symmetrical)
geometry consists of a 7.5 m tunnel length by 1.0 m tunnel diameter. The inlet enters the tunnel
radially and has a 1 m run-up section similar to those used in the loss of vacuum accident (LOVA)
CFD analyses in Section 3.3, compare Figure 3.13 and Figure 5.1. A shock wave travelling (for
example) at a constant speed of 850 m/s originating at the inflow may reach the domain outflow
within the 0.01 s time domain. Based on the results in the previous chapter it is expected that the
shock speed is only slightly lower, namely 805 m/s. The selected hole sizes correspond to those
of the Q1D analysis: 0.02, 0.2 and 0.6 m diameter.

5.1.3 Mesh (convergence)

The domain is discretised into a tetrahedral core with a hexahedral (pseudo) boundary layer. Even
though the flow is inviscid, the boundary layer is added to prevent that the solution diverges.

1This is indeed the case when using an unstructured mesh.
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Figure 5.2: The pressure development along the tunnel center line for several mesh refinements.

Extremely low temperatures due to expansion around the corner of the hole cause peak values in
the solution. Hence, this boundary layer is installed to prevent this. Due to easier implementation,
an otherwise unstructured domain was preferred.
Three mesh refinements have been used to analyse their effect on the solution values. The finest
mesh has smaller model error, but larger computational cost. This is because (1) more cells have
to be resolved and (2) smaller time steps are required to adhere to Courant–Friedrichs–Lewy (CFL)
condition that the Courant number must be smaller than unity to capture the shocks. For the
finest mesh, the maximum allowed time step is in the order of 1 µs.
A coarse mesh does not pinpoint the shock position and approximates the circular geometry only
as a coarse polygon. Also, a coarse mesh leads to high numerical diffusion.
The domain has been discretised into three levels of refinement: coarse, refined, and finest. The
number of elements in each domain is 3401, 7493, and 20810, respectively. Figure 5.2 shows the
pressure development about the tunnel center line for the three mesh refinements. Because all
three results appear similar, and because the residual errors are low, it may be assumed that the
simulation has sufficiently converged to a valid solution.
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5.2 CFD analysis results

This section presents the results of the previously described CFD model. First, sequences of
pressure and velocity contour plots give an understanding of the general aspects of the 3D flow
field and next the pressure results along the tube center line are discussed. The final section of
this chapter compares these results to the Q1D model of the previous chapter.

5.2.1 Pressure contour plots

Figure 5.3 shows the contour plots of the tube midplane pressure over the time domain (0 ≤ t ≤
10 ms) with 1 ms between the frames. This is the result for a 20 cm diameter hole. The air
flow develops as follows. First, atmospheric air from outside the tube enters through the run-up
section of the breach hole similar to the LOVA CFD analysis in Figure 3.13. An underexpanded
jet forms at the breach entrance to the tube while the blast wave travels through the tube. The
blast wave indeed develops from a 3D bow shock to an imperfectly planar normal shock wave: it
is only approximately uniform. A high pressure zone develops opposite of the breach hole due to
the impinging jet.
The color scale of the contour plot is a logarithmic scale to clearly capture the development of the
blast wave front and the full pressure range from critical pressure to tube pressure in one figure.
Although the unperturbed tube is a uniform zone, the preshock conditions2 are not.
The minimum and maximum values and their locations are indicated as well. Note that the
minimum pressure occurs near the underexpanded jet and is lower than the ambient tube pressure
of 0.001 atm. Particularly in the first stages, this pressure approaches absolute vacuum, which
caused diverging solutions. Air moisture would condensate due to the expansion. The maximum
pressure, i.e. the critical pressure, occurs at the air inlet, as expected.

2The definition of preshock condition may be ambiguous in this case. Spatially the zone before the shock (closest
to the breach) is the preshock. It is not meant in a temporal sense (before the shock has passed) which would in
fact be the opposite — enantiosemy.
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Figure 5.3: Tube pressure contour plots in time domain 0 ≤ t ≤ 10 ms with 1 ms time step
showing the blast wave development.
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5.2.2 Velocity contour plots

Figures 5.4 and 5.5 show the velocity magnitude development on the midplane and near the tube
walls respectively. The time step is again 1 ms between each frame over the same time domain
as the pressure contour plots, but the first four time steps are omitted for the tube wall view,
because they do not offer additional information. It is the geometry of the 10 cm breach hole as
well.
The initial highly underexpanded jet indeed displays the contours of Figure 3.4 (turned 90 degrees)
and only consists of one barrel shock due to the high pressure ratio. The core of the barrel slows
down over time. It appears that a high-velocity vortex develops due to the impingement on the
walls opposite the breach hole. This vortex then stays at a fixed position, slowing down as well.
The shock position is again clearly seen marching through the tube.
The maximum velocity location shifts from inlet (i.e. the sonic initial condition), to the under-
expanded jet core, to the impingement vortex core, to the tube walls. Towards the end of the
simulation, high velocities are reached near the preshock zone at the walls, while a lower velocity
occurs at the core flow. The wall velocity would slow down more in a viscous simulation due to the
no-slip condition at the wall. Trivially, the minimum (zero) velocity is the unperturbed postshock
zone.
Using the scale of the tube and time allows an approximate computation of the shock speed. The
normal shock travels on average 3 m in 4 ms, or at a speed of 750 m/s. (A more in-depth analysis
of the shock speed is presented in the next sections.) Nonetheless, the maximum speed of the air
may be locally higher: the maximum probes indicate air speeds above 1000 m/s.
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Figure 5.4: Tube velocity magnitude contour plots in time domain 0 ≤ t ≤ 10 ms with 1 ms
time step showing the blast wave development in the tube midplane.
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Figure 5.5: Tube velocity magnitude contour plots of the tube top view in time domain 4 ≤ t ≤
10 ms with 1 ms time step showing the blast wave development near the walls.
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5.2.3 Overpressure versus hole size

Figures 5.6 and 5.7 show the pressure distribution development along the pod axis for the three
breach hole sizes at low and high pressure scale, respectively. The line thickness of the pressure
signal increases with time. Indeed the peak pressure increases with hole size, recall Figure 4.7.
Pressure peaks at the x-location of the hole (X = 0) due to the underexpanded jet. In contrast,
the unperturbed tube region remains around 100 Pa. Moreover, a pressure dip below the ambient
tube pressure is seen near the inlet hole. This is due to the expansion of the flow around the right
angle corner. The travelling waves are clearly seen and autocorrelation of the subsequent pressure
signals may determine the shock speed. Alternatively, the peak overpressures are simply measured
by the pressure scale.
Table 5.1 presents an overview of these results. For each hole diameter Dh, the shock speed us

is determined by dividing the distance travelled by the shock by the time step. This shock speed
is then used to find the overpressure ζs, according to Equation 3.12c. Alternatively, the peak
overpressure ζp is directly retrieved from Figure 5.6, although this is undefined for the largest
hole size, because it has no constant pressure region between the shock and breach origin. The
rightmost column shows the final overpressure according to the planar Q1D approach, see Figure
4.7.
The overpressure found indirectly by the shock speed and directly from the pressure signal do not
perfectly match. This is because the shock speed–overpressure equation (3.12c) describes a steady
normal shock wave. However, as seen in the contour plots, the shock wave only approximately
normalises.
The largest hole demonstrates the largest discrepancy with respect to the Q1D models. Unlike the
smaller breach hole scenarios, the pressure increases towards the breach origin without plateauing.
Moreover, the shock speed and overpressure are considerably larger than the maximum values
expected from the Riemann shock tube analysis. The cause for this discrepancy is hypothesised
in the next section. Note that once the shock reaches outflow boundary condition the solution
diverges, so the largest hole simulation had to be aborted after only 8 ms.

Table 5.1: Overpressure results for each of the analysed hole diameters. (*) The peak overpres-
sure for the 60 cm diameter hole is undefined.

Dh [m] us [m/s] ζs [-] ζp [-] ζQ1D [-]
0.02 405 0.49 0.82 0.25
0.2 647 3.06 3.82 2.02
0.6 1245 14.48 (*) 5.13
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5.3 Comparison of models

The CFD analysis of the three-dimensional (3D) Euler equations on the tube domain reveals that
indeed the overpressure of the blast wave does not decay considerably. This is due to the inviscid
flow: viscosity cannot dissipate the energy of the blast wave. For instance, the no-slip condition at
the tube walls would slow down the preshock air flow. Still, to find the spatiotemporal development
of a normal shock wave, this viscosity is not immediately required. The boundary layer emanates
at the shock position.
Unlike the case of a chemical explosion, the kinetic and pressure energy of the tube breach keep
adding energy to the system even after the initial critical shock. The pressure signal at one location
therefore does not follow the Friedlander curve in Figure 3.11.3 It is this continuous inflow rather
than an impulsive critical shock which invalidates the Q1D model for large breach holes. The
effect due to the incessant addition of energy is mainly discernible at high overpressures. This
also means that overpressures beyond those calculated by the Riemann shock tube scenario are
possible, although a pressure increase more gradual than the discontinuous normal shock wave is
expected.
So although according to the comparison of the CFD computed overpressures with the results
from the Q1D analysis, the CFD analysis does yield higher overpressures, the values still agree
well for smaller hole sizes. Yet, whereas the 1D shock tube displays uniform preshock conditions,
the 3D CFD analysis yields more knowledge of the flow development and interaction with the
tube walls. This however comes at a higher computational cost than the simpler, low-fidelity Q1D
models.
Figure 5.8 is a reiteration of Figure 4.8 and now includes the results of the CFD analysis (see
Table 5.1) to emphasise the differences between both models. The fluctuating constant pressure
zone in the CFD results is visualised by a wide semi-transparent red line. For the 0.6 m diameter
hole (Figure 5.8c), the overpressure continues to increase towards the blast origin, cf. Figure 5.7.
The final Q1D overpressure is the horizontal black line, cf. Figure 4.7. Only the corrected free
field pressure decays due to the equivalent TNT (volumetric) and the CCW (planar) method are
included to not overcrowd the figures. The curves start at the critical shock position. Indeed the
CFD overpressures are systematically higher than those predicted by Q1D methods due to their
lack of including the energy addition after the critical shock formed.

3Sidenote: the pressure signal resembles a pressure drop versus fluid bed velocity graph.

Yorrick Bauer MSc Thesis



5.3 Comparison of models 75

0 2 4 6 8 10
blast radius R [m]

10 2

10 1

100

ov
er

pr
es

su
re

 
 [-

]

CFD
3D-ECF
Q1D-final
Q1D-ECF
critical shock

(a) The hole diameter is 0.02 m for tube diameter 1.0 m.
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(b) The hole diameter is 0.2 m for tube diameter 1.0 m.
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(c) The hole diameter is 0.6 m for tube diameter 1.0 m.

Figure 5.8: Comparison of results obtained by Q1D models and the CFD model.
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Chapter 6

Conclusion

This chapter concludes the thesis with a discussion of the final sub-question and the main research
question:

• What is the magnitude of the expected additional forces?

• What are the additional aerodynamic forces on hyperloop pods that may be expected
in case of a given near-vacuum tube breach scenario according to a validated one-
dimensional analysis?

The overpressure results of the different models that have been discussed in this thesis generally
align with each other: the worst case scenario breach leads to overpressures with an order of
magnitude higher than the ambient tube pressure. Near the breach hole, the underexpanded jet
may locally cause overpressures up to three orders of magnitude higher than the ambient tube
pressure.
This chapter first discusses the validity of the used models in Section 6.1, then presents the
expected additional forces due to a blast wave in Section 6.2 and finally has three recommendations
for future aerodynamic research on the topic of hyperloop tube breach in Section 6.3.

6.1 Model validity

Many sources for errors with respect to reality are introduced in the process of a simulation. Reality
is first reduced to a physical model: conservation laws and equations of state. A large Knudsen
number or extreme temperatures can invalidate these laws respectively. Next this physical model is
mathematically approximated with a system of partial differential equations. Assuming an inviscid
continuum and a perfect gas, this led to the Euler equations. Nevertheless, the unsteady and
compressible effects have to be taken into account. Thecomputational fluid dynamics (CFD) adds
a numerical error due to the spatial and temporal discretisation, iteration and machine (computer
round-off) error. These errors can be reduced by improving grid quality, cell size and time step,
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Table 6.1: Model strengths and weaknesses.

Model Strength Weakness
1D shock tube Straightforward use Limited applicability
Q1D volumetric Decay empirically validated Experiments at standard atmosphere
Q1D planar Direct implementation of Euler Decay is artificially added
Q1D general Low computational cost Excludes energy input after critical shock
CFD validation model Offered new insights Run-up section
CFD general High fidelity High computational cost

selecting a high-order methods and reducing the tolerance of residuals. A programming error may
also be a source of error, but cannot be acknowledged.

Table 6.1 summarises the strength and weaknesses in each of the models used in this thesis.
The 1D shock tube although simple, offered a solid basis for the Q1D models. The TNT-
equivalence model has been empirically validated at standard atmosphere, but not at the low
vacuum environment of the hyperloop tube. The planar formulation directly applied the Euler
equations, which excludes viscous decay. Generally, the Q1D models excluded the additional
energy input after the initial critical shock. The CFD model did include this, but came at a higher
computational cost. Reconsidering the implementation of the CFD model, the run-up section
only allows a cylindrical entry of atmospheric air. Using two connected domains at different initial
pressure may show a more conically shaped inflow from outside the tube.

6.2 Additional drag due to breach blast wave

Figure 6.1 shows the added drag due to a breach blast wave of one order of magnitude higher
than the ambient tube pressure, which simulates a large breach hole. The preshock pressure is
thus 1000 Pa, the tube pressure 100 Pa and shock overpressure is thus 9. In the pod reference
frame the shock approaches with the sum of the pod speed and shock speed, the latter determined
by the overpressure, cf. Equation 3.12c. Now, the methodology used to determine the pod drag
during normal operation (Figure 2.6), is used at the increased tube pressure, i.e. with the added
preshock total pressure. In other words, the figure shows the drag comparison of travelling in the
100 Pa tube versus in the preshock zone.

It is clear that this overpressure causes an enormous drag increase. If the pod is slowed down from
(300 m/s) cruise speed to 70 m/s before the shock wave arrives, due to timely warning by the leak
detection system, then the preshock conditions would increase the pod drag back to the cruise
speed level around 400 N. In absence of a timely response, the drag at cruise speed drastically
increases to 23 kN.

6.3 Recommendations

The hyperloop research field in general still has many challenges ahead. This thesis also left a few
stones unturned. Three major topics come to mind which may yield additional knowledge related
to the aerodynamics of a hyperloop tube breach. First, the Euler equations do not account for
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Figure 6.1: Comparison of total aerodynamic drag during normal operation and due to a tube
breach.
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viscosity and thus the blast wave can travel through the tube unimpeded. Although the viscous
effects have been shown to be minimal for smooth pipes, it may be interesting to (experimentally)
investigate the viscous decay of shock waves through the hyperloop tube. Wall roughness generally
supports the viscous dissipating of flows. Could this alleviate the detrimental effects of the blast
wave due to the tube breach?
The second item is further analysis of the underexpanded jet. This thesis mainly focused on the
unsteady blast wave effects on the hyperloop pods. However, the underexpanded jet creates even
more extreme flow conditions due to the barrel shock and large pressure differences. An analysis
using the method of characteristics was unfruitful, due to the lack of variation in Prandtl-Meyer
function at high Mach numbers. The jet impingement, the interaction with the wall opposite of
the hole may be interesting to analyse.
Finally, the analysis of how the blast wave travels over and interacts with the pods, possibly by use
of geometric shock dynamics and the analysis of how some of the proposed mitigating emergency
plans (sluices) might work, they have both not been described in this thesis.
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Appendix A

Additional information

A.1 Shock between two throats

The flow from the first throat until the shock and the flow after the shock until the second throat
are isentropic. The throat to throat flow is adiabatic, i.e. the total temperature remains constant.
The total pressure, however does not. Substituting the ideal gas law p = ρRT and the definition
of the Mach number M = v/

√
γRT into the mass conservation ṁ = ρAv from the station of

interest e to the first throat, where M⋆ = 1, yields

ṁe = pe

RTe
AeMe

√
γRTe = peAeMe

√
γ

RTe
= ṁ⋆ = p⋆A⋆

√
γ

RT ⋆

Rearranging to

M2
e =

(
A⋆

Ae

p⋆

p01

p01

pe

)2 Te

T0

T0
T ⋆

The total pressure p01 before the shock and constant total temperature T0 have been added.
Substitution of the isentropic flow relations for the temperature ratios Te/T0 and T0/T ⋆ and
pressure ratio p⋆/p0 yields

M2
e

(
1 + γ − 1

2
M2

e

)
=
(

A⋆

Ae

p01

pe

)2 ( 2
γ + 1

) γ+1
γ−1

This quadratic equation is algebraically solved with

a = γ − 1
2

, b = 1, c = −
(

A⋆

Ae

p01

pe

)2 ( 2
γ + 1

) γ+1
γ−1
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Figure A.1: A nozzle with two throats and a normal shock wave (NSW).
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