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Abstract

In this paper we discuss the numerical solution of the Helmholtz equation with mixed boundary conditions on a 2D physical
omain Ω . The so called radiation problem depends on the constant wavenumber k, that in some medical applications can be

of order of thousands. For these values of k the classical Finite Element Method (FEM) faces up several numerical difficulties.
To mitigate these limitations we apply the Isogeometric Analysis (IgA) to compute the approximated solution uh . Main steps
of IgA are discussed and specific proposals for their fulfillment are addressed, with focus on some aspects not covered in
available publications. In particular, we introduce a low distortion quadratic NURBS parametrization of Ω that represents
exactly its boundary and contributes to the accuracy of uh . Our approach is non-isoparametric since uh is a bicubic tensor
product polynomial B-spline function on Ω . This allows to improve the numerical solution refining the approximation space
and keeping the coarser parametrization of the domain. Moreover, we discuss the role of the number of degrees of freedom in
the directions perpendicular and longitudinal to wave front and its relationship with the noise and the shift in amplitude and
phase of uh . The linear system derived from IgA discretization of the radiation problem is solved using GMRES and we show
through experiments that the incomplete factorization of the Complex Shifted Laplacian provides a very good preconditioner.
To solve the radiation problem, we have implemented IgA approach using the open source package GeoPDEs. A comparison
with FEM is included, to provide evidence that IgA approach is superior since it is able to reduce significantly the pollution
error, especially for high values of k, producing additionally smoother solutions which depend on less degrees of freedom.
© 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

Keywords: Isogeometric analysis; Helmholtz equation; Radiation problem

1. Introduction

Wave problems have been intensively studied since they are relevant in multiple fields. The solution of wave
quation is usually written as the product of a function of time and a function u(x, y) which only depends on

spacial variables. In acoustic problems, for instance, the time function is chosen as eiω t , where ω is the angular
frequency of the propagating wave and i is the imaginary unit. With this time harmonic dependence, the wave
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equation is reduced to the Helmholtz equation

−△u(x, y) − k2u(x, y) = 0

where k = 2π/λ is the number of waves per unit of distance, called wavenumber, and λ is the wavelength.
Helmholtz equation is very important in acoustic applications, including seismic wave propagation, acoustic

oise control, non destructive testing and medical ultrasound. In particular, therapeutic applications of ultrasound
nvolve focused beams directing the ultrasound energy into the tissue region that needs the treatment. Currently,
igh Intensity Focused Ultrasound (HIFU) therapy method is known as one of the most advanced surgical [36] and

lso physio-therapeutical techniques [32]. In most clinical applications, HIFU transducers are excited at a single
requency in the range 0.5–8 MHz. From the mathematical point of view, Pennes’ bioheat equation [47] is used
o model thermal diffusion effects of HIFU. This equation relates the temperature distribution in time and space
ith the absorbed ultrasound energy, which is computed from the acoustic pressure field u(x, y) solution of the

Helmholtz equation.
The numerical solution of Helmholtz equation is in general a challenge. When the wavenumber k is small, it

can be handled using low degree Finite Element Method (FEM). But the design of robust and efficient numerical
algorithms for high values of k is difficult. In practice, many numerical difficulties appear. For high values of k the
function u(x, y) is very oscillatory, thus to obtain an accurate approximation of u(x, y) with finite elements it is
necessary to use a large number N of degrees of freedom. Moreover, it is known [5,6,35], that even if we require
that kh is a small constant, with h denoting the mesh size, (and in consequence N is large) the errors of continuous
Galerkin finite element approximations increases when k becomes larger. In the literature, this non-robust behavior
with respect to k, is known as the pollution effect. According to [23] pollution can be understood as the gap between
the error of Galerkin solution and the best approximation that is possible with the underlying Galerkin basis. In [42]
it is shown that FEM solution of degree p is quasi-optimal, if h p k(p+1) is a sufficiently small constant. It means that
even when the pollution still affects high order methods, it can be reduced by increasing p. But for high values of
k the condition h p k(p+1) small leads to prohibitively large linear systems with high computational cost. Moreover,
for engineering applications the most important issue is that the solution attains a prescribed accuracy even if it is
not the best approximation. In this sense, it is common to apply the rule of thumb h ≈ λ/τ , where τ ≥ 10 denotes
the number of degrees of freedom per wavelength.

The standard variational formulation of the Helmholtz equation is sign-indefinite (i.e. not coercive). Hence,
another difficulty for the numerical solution of the Helmholtz equation is that for k sufficiently large, the coefficient
matrix is indefinite and non-normal. As a consequence, iterative methods to solve the corresponding linear systems
behave extremely bad if the system is not preconditioned [24,28]. To face this problem researches have proposed
several preconditioners, such as multigrid methods with Krylov smoothers, domain decomposition, and complex
shifted Laplacian preconditioner. The last one was introduced in [27] and further developed and successfully
generalized in [31,54,55].

Dealing with wave problems, the small discrepancies between the boundary of the mesh constructed by FEM
and the boundary of the physical domain Ω , can significantly increase the error of the FEM approximated
solution [20,43]. This is more evident in 3D industrial applications, where the surface of the physical domain
is usually represented in terms of Nonuniform Rational B-spline functions (NURBS) [48]. Since B-spline spaces
include as a particular case the piecewise polynomial spaces commonly used in FEM, it was natural to think of the
possibility of writing the approximated solution of the partial differential equation (PDE) in terms of the B-spline
basis functions. This idea led to the emergence of the Isogeometric Analysis (IgA), introduced by Hughes et al.
in 2005 [34], as a modern method to solve PDE. IgA uses B-spline functions to parametrize the geometry Ω and
as shape functions to approximate the solution of the PDE. In this sense, it combines the variational techniques of
FEM, with the classical functions in computer design systems. IgA and FEM are based on the same principle, the
Galerkin method, but IgA approach has a very important advantage: B-spline basis functions may be constructed
to have high smoothness. This is crucial in problems with smooth solutions, where improved accuracy per degree
of freedom is obtained in comparison with the classical FEM. It explains the wide range of applications solved

successfully with IgA approach and its extensions, see for instance [12,15,25,33,44,49,52,60,63,69].
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1.1. Related work

The literature dealing with the solution of Helmholtz equation with IgA is extensive and recent, see for
nstance [18,23,24,26,37,61]. In [37] the performance of IgA to solve exterior scattering problems is investigated,
sing an absorbing boundary condition on a fictitious boundary to truncate the infinite space. It is shown that IgA
s a robust approach to reduce the effects of the pollution error and therefore it is a promising tool to solve high
requency acoustic problems. In [18] IgA is used to solve Helmholtz equation with several boundary conditions in
D regions. The results of a convergence study are presented confirming that IgA outperforms FEM for similar
egrees of freedom, specially when the frequency of the waves increases. In [23] the effect of higher continuity
f B-spline basis function on the pollution error is studied. The numerical experiments for several basis function
egrees p show that for a given p, and a fixed number of degrees of freedom, the error drops by an order of
agnitude when using IgA compared to FEM. In [24] the Helmholtz equation with Robin boundary condition

s tackled using IgA. GMRES method for solving the linear system resulting from IgA is investigated, including
he use of preconditioners such as ILU with a complex shift and complex shifted Laplace. The study concludes
hat, for all wavenumbers, GMRES converges at a fewer iterations with IgA compared to FEM. Moreover, the
ollution error is significantly reduced with IgA, even when it is not completely eliminated. In [26], the focus is on
he numerical solution of the linear system derived from IgA discretization of Helmholtz equation. The system is
olved with GMRES and its convergency is accelerated using a deflation technique, combined with the approximated
omputation of the inverse of the CSLP with a geometric multigrid method. Numerical results for one, two and
hree dimensional problems are shown, confirming scalable convergence with respect to the wavenumber and the
rder of the B-spline basis functions. The recent paper [61] handles acoustic scattering problems using a general
ML formulation based on the spline space in which the numerical solution is sought. This enables the PML to be

ruly matched to any convex and smooth artificially boundary.
For acoustic problems and another engineering applications, several comparisons between IGA and standard

EM have been published confirming the better accuracy of IgA approach and its extensions, see [3,4,12,22,25,38].
Another approach that has been extensively used for approximating the solution of the Helmholtz acoustic

quation is the boundary element method (BEM) that, in comparison to FEM, is advantageous since it handles
nbounded domains by modeling only the inner boundaries without the introduction of any truncation surfaces
which are sources of truncation errors). BEM can also be coupled with IgA giving rise to the so-called IGABEM.
n PhD thesis [49] several Helmholtz acoustic problems are solved with two BEM methods, IGABEM and eXtended
sogeometric BEM (XIBEM), obtaining higher accuracy in comparison with standard BEM. IGABEM and XIBEM
re used in different engineering and acoustic problems giving very accurate results for frequencies between 50 Hz
nd 22 kHz. Refs. [13–17,44–46,50–52,56,60,64] provide a good, but not exhaustive, sample of relevant references
n IGABEM and XIBEM analysis of acoustics.

In order to reduce the number of degrees of freedom and to achieve higher accuracy on coarser meshes, an
pproach that is common to conventional FEM, IgA and BEM schemes is to use approximation spaces enriched
y a set of wave-like functions depending on the wavenumber. This idea led first to the Partition of Unity Finite
lement Method (PUFEM) [41,43], that was combined later with IgA in PUIGA method [22]. The approximation
pace of IGABEM is enriched in a partition of unity sense in [44–46], where XIBEM is introduced and favorably
ompared to conventional BEM and IGABEM. The ill-conditioned linear systems are solved with singular value
ecomposition (SVD) for small-medium frequencies.

In the attempt to capture fine geometric details, the usual tensor product of NURBS may produce an unnecessary
ncrease of computational cost for IgA approach. Some alternatives have been proposed based on unstructured
epresentations, such as T-splines [11], or polynomial splines over hierarchical T-meshes (PHT-splines) [62]. An
coustic IGABEM method based on T-splines is proposed in [57] for problems with low frequency. For problems of
ime-harmonic acoustics modeled by the Helmholtz equation, some relevant references of these alternative adaptive
ocal refinements may be found in [49].

.2. Our contribution

The main contribution of this paper is the application of IgA approach to the solution of a radiation problem,

athematically modeled with the 2D Helmholtz equation with mixed boundary conditions and very high values of

916
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the wavenumber k. Details concerning the main steps of IgA method are discussed, with focus on some aspects not
overed in available publications. With the open source software GeoPDEs [21] we have implemented an in-house
ode and by means of a wide experimentation we study different issues of IgA approach. In particular, we show that
he quality of the parametrization has a important influence in the precision of uh(x, y), even when the domain has

simple geometry. Moreover, it becomes clear that the error of uh(x, y) also depends on the number of B-splines
functions. In particular, the number m of B-splines functions in the wave propagation direction y is tied up to the
noise of the absolute value of uh(x, y) restricted to y axis, |uh(0, y)|. On the other hand, the number n of B-splines
functions in the direction x perpendicular to the wave propagation is related to the phase and amplitude shifts of
|uh(0, y)|. Furthermore, we show that the matrix obtained from the incomplete (ILU) factorization of the Complex
Shifted Laplacian, is a good preconditioner for the linear system derived from IgA discretization of Helmholtz
equation with mixed boundary conditions, even when k is large. Finally, we compare the results of the numerical
implementation of IgA with the solutions obtained using classic FEM, for high values of k. The superiority of the
performance of IgA is shown by means of several experiments, which confirm that using less degrees of freedom,
IgA provides smoother approximated solutions with a substantially reduced pollution.

2. Physical problem and variational formulation

2.1. The radiation problem

In this paper we are interested in acoustic wave applications. Under the assumption that the acoustic wave
propagation is linear and also that the amplitude of shear waves in the media are much smaller than the amplitude
of the pressure waves, nonlinear effects and shear waves may be neglected. In consequence, the acoustic wave
pressure is a complex function solution of the Helmholtz equation.

Our problem is inspired by the experiments to measure focused ultrasound induced heating in a tissue
phantom [9,58]. In 3D, our simplified problem models an infinite right prism with semicircular basis PS =

{(x, y, z), y ≥ 0, x2
+ y2

≤ r2
} and the transducer is an infinity strip of width 2a, {(x, 0, z), |x | ≤ a}, that

emits a pulse of constant amplitude C . The applied pulse acts in the x–y plane and does not vary in the z direction.
The volume enclosed by the semicircular right prism PS is filled with an homogeneous tissue, thus the wavenumber
k is a positive constant. In this work we consider a simpler 2D plane strain model in the x–y plane. The physical
2D domain is the semicircle of radius r and center on the origin of coordinates Ω = {(x, y), y ≥ 0, x2

+ y2
≤ r2

}.
Moreover, a transducer of width 2a, with 0 < a < r , and flat geometry is located at the origin, see Fig. 1. The
transducer emits a pulse of high frequency f of order 106 Hz, with speed c and constant amplitude equal to C > 0.
Since k = 2π f/c, for c of order 103 m s−1 the value of k is of order 103 m−1.

Dirichlet boundary condition u(x, y) = C is imposed on ΓD := {(x, y), |x | ≤ a, y = 0}. Additionally, boundary
ΓN := {(x, y), a < |x | < r, y = 0} is simulated as an acoustically rigid wall by setting the normal velocity equal to
zero. Dirichlet and Neumann boundary conditions are known in the literature as rigid and free baffle respectively.

Finally, it is necessary to require that ΓR := {(x, y), x2
+ y2

= r2, y > 0} behaves as a non-reflecting boundary.
The simplest approximation of non-reflecting boundary condition is obtained imposing the Robin condition (4)
on ΓR . Robin condition is the first member of the Bayliss–Turkel infinite hierarchy of boundary conditions to
simulate outgoing radiation [8]. Robin condition is inexact, and it is specially inaccurate when wave incidence is
not perpendicular to ΓR or when sources are close to ΓR [7,29]. In our problem we assume that a ≪ r and that

is such that the number of wave lengths between ΓR and the transducer is large. Under these assumptions, the
wave front impinges ΓR almost perpendicularly and ΓR is far away from the source. Thus, for convenience we
choose Robin condition as non-reflecting boundary condition, since this approximation is of sufficient accuracy for
the application and it is simpler to implement. Better approximations of non-reflecting boundary could be obtained
imposing Perfectly Matched Layers (PML) boundary condition [61].

In the rest of the paper we call radiation problem to the solution of equation

−△u(x, y) − k2u(x, y) = 0, (x, y) ∈ Ω (1)

ith mixed boundary conditions

u(x, y) = C on ΓD (2)
∂u(x, y)

= 0 on ΓN (3)

∂
−→n

917
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Fig. 1. Physical domain of radiation problem. The boundary Γ is subdivided in three curves: ΓD,ΓN and ΓR . A transducer of width 2a
is located in the origin of coordinates.

∂u(x, y)
∂
−→n

+ i ku(x, y) = 0 on ΓR (4)

here −→n denotes the normal vector to the boundary ΓN or ΓR and i denotes the imaginary unit.
Near the transducer, in the near field area, there are significant fluctuations in the ultrasound intensity. However,

rom some point on the pressure waves form a relatively uniform front that spreads out in a pattern originating from
he center of the transducer. This area is called the far field and it is important in applications, since optimal detection
ccur at the start of far field, where the sound wave is well behaved and attains its maximum strength. The near
eld length N f defines the transition point between the near field and the far field. This point, sometimes referred

o as the “natural focus”, can be calculated as N f =
a2

λ
, where λ =

2π
k is the wavelength. In our experiments, we

always select r ≥ 2 N f in order to guarantee that N f is included in the domain Ω . The value of the semi-width a
s fixed by physical considerations, see Sections 4.2.2 and 4.3.2.

.2. Variational formulation

Denote by V0 the subspace of H 1(Ω )

V0 = {v : Ω → C, v ∈ H 1(Ω ), v(x, y) = 0 for (x, y) ∈ ΓD} (5)

o obtain the variational formulation, we multiply (1) by v, the complex conjugate of v ∈ V0, integrate on Ω and
apply Green’s first identity. Denoting by ∇v =

(
∂v
∂x ,

∂v
∂y

)t
and taking into account the mixed boundary conditions

we arrive to the variational formulation of the radiation problem:

Find u ∈ H 1(Ω ) with u = C onΓD, such that a(u, v) = 0 for all v ∈ V0 (6)

here the sesquilinear form a(u, v) : H 1(Ω ) × H 1(Ω ) → C is given by,

a(u, v) =

∫ ∫
Ω

(∇u(x, y)t
∇v(x, y) − k2u(x, y)v(x, y)) dΩ + ik

∫
ΓR

u(x, y)v(x, y) dΓR (7)

Assume that the physical domain Ω has been parametrized by a function F(ξ, η) : Ω̂ −→ Ω , defined on the unit
square Ω̂ and with piecewise smooth inverse. With the help of F(ξ, η) the double integral in (7) may be transformed
into an integral over Ω̂ . Denote by JF(ξ, η)−t the transpose of the inverse of the Jacobian matrix of F(ξ, η). Then
a(u, v) can be written as,

a(u, v) =

∫ 1

0

∫ 1

0

(
JF(ξ, η)−t

∇u(F(ξ, η))
)t (

JF(ξ, η)−t
∇v(F(ξ, η))

)
| det JF(ξ, η)| dξ dη

− k2
∫ 1

0

∫ 1

0
u(F(ξ, η))v(F(ξ, η)) | det JF(ξ, η)| dξ dη + ik

∫
ΓR

u(x, y)v(x, y) dΓR (8)

o obtain a formulation in Ω̂ we still have to rewrite the last integral in (8). In Section 3.2 we explain how to
onstruct F(ξ, η) in such a way that ΓD ∪ ΓN = F(ξ, 0), 0 ≤ ξ ≤ 1. Moreover, we subdivide ΓR in three
onsecutive circular arcs: cl , ct and cr and require that
F(0, η) = cl(η), 0 ≤ η ≤ 1 (9)

918
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F(ξ, 1) = ct (ξ ), 0 ≤ ξ ≤ 1 (10)
F(1, η) = cr (η), 0 ≤ η ≤ 1 (11)

Taking into account that F(ξ, η) = (x(ξ, η), y(ξ, η)), from (9), (10) and (11) we obtain an expression for the integral
on ΓR that only depends on ξ and η. Substituting this expression in (8) we obtain,

a(u, v) =

∫ 1

0

∫ 1

0
∇u(F(ξ, η))t (JF(ξ, η)t JF(ξ, η))−1

∇v(F(ξ, η)) | det JF(ξ, η)| dξdη

− k2
∫ 1

0

∫ 1

0
u(F(ξ, η))v(F(ξ, η)) | det JF(ξ, η)| dξdη + ik

∫ 1

0
u(F(0, η))v(F(0, η))∥c′

l(η)∥2 dη

+ ik
∫ 1

0
u(F(ξ, 1))v(F(ξ, 1))∥c′

t (ξ )∥2 dξ + ik
∫ 1

0
u(F(1, η))v(F(1, η))∥c′

r (η)∥2 dη (12)

. Galerkin method with isogeometric approach

The Galerkin method solves the variational problem assuming that the approximated solution belongs to a finite-
imensional subspace V h of V0. In the classical FEM, V h consists of piecewise polynomials functions with global
0 continuity. In the general isogeometric approach [19], V h is generated by tensor product NURBS functions
ith higher global continuity. Moreover, the physical domain Ω is also parametrized by a tensor product NURBS

unction F(ξ, η).

.1. B-splines

For the sake of completeness and also in order to introduce the notation, we present briefly the B-spline functions,
hich are the core of IgA method. To define B-splines of order p (degree p − 1), we need a nondecreasing knot

equence t = {t1, t2, . . . , tn+p}. Using t , it is possible to construct n univariate B-splines of order p, that we denote
y B p

1,t (ξ ), . . . , B p
n,t (ξ ). These functions are obtained from Cox–de Boor recursion formula [48],

B p
i,t (ξ ) =

ξ − ti
ti+p−1 − ti

B p−1
i,t (ξ ) +

ti+p − ξ

ti+p − ti+1
B p−1

i+1,t (ξ ) (13)

starting with B-splines of order 1,

B1
i,t (ξ ) =

{
1 for ti ≤ ξ < ti+1
0 otherwise

Spline space generated by functions B p
i,t is denoted by Sp,t .

Univariate NURBS basic functions of order p with knots t are given by,

R p
i,t (ξ ) =

wi B p
i,t (ξ )∑n

l=1wl B p
l,t (ξ )

, i = 1, . . . , n (14)

here wi are the weights.
In order to define bivariate B-spline functions two nondecreasing knot sequences t ξ = {t ξ1 , t ξ2 , . . . , t ξn+p1

} and
η

= {tη1 , tη2 , . . . , tηm+p2
} are necessary. In terms of these sequences, tensor product polynomial B-splines of order

p1 and p2 in ξ and η directions respectively are defined by,

B p1,p2
i, j (ξ, η) := B p1

i,tξ (ξ )B p2
j,tη (η), i = 1, . . . , n, j = 1, . . . ,m (15)

s in the univariate case, bivariate NURBS basic functions R p1,p2
i, j are defined from polynomial B-splines as,

R p1,p2
i, j (ξ, η) :=

wi, j B p1
i,tξ (ξ )B p2

j,tη (η)∑n
l=1

∑m
s=1wl,s B p1

l,tξ (ξ )B p2
s,tη (η)

, i = 1, . . . , n, j = 1, . . . ,m (16)

here wi, j are the weights. To simplify the notation, in the rest of the paper we do not write the subindex t ξ or tη

f the B-spline functions when it is clear from the context.
In the next two sections we use quadratic NURBS to parametrize Ω and polynomial B-splines to generate the

h
pace V . It means that in our IgA approach basis functions for parametrizing the geometry are not the same that
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Fig. 2. Parametrization F(ξ, η) mapping Ω̂ in Ω . The semicircle is subdivided in three curves.

those defining the approximation space. This non-isoparametric approach is very useful, since it allows to improve
the numerical solution refining locally the approximation space and keeping the same coarser parametrization of
the domain.

3.2. Parametrization of the domain

The parametrization of the physical domain Ω is the first step of IgA approach. In general it is assumed that
the map F(ξ, η) parametrizing Ω is computed also a NURBS function. In some problems, the boundary Γ of Ω is
available from CAD systems and the computation of F(ξ, η) is reduced to the parametrization of the interior of Ω .
Since in our problem the geometry of Ω is simple, it is possible to parametrize it with a tensor product NURBS
function F(ξ, η), composed by only one patch and defined on the unit square Ω̂ .

In order to construct the map F(ξ, η) = (x(ξ, η), y(ξ, η)) we start parametrizing Γ . As we already mentioned
the semicircle is subdivided in 3 circular sectors, see Fig. 2, and we denote by cl(η) and cr (η), with 0 ≤ η ≤ 1, the
parametrization of the “left” and “right” curves respectively. Moreover, we assume that both curves have the same
arc length. The arc of circle defining the “top” curve is represented by ct (ξ ), with 0 ≤ ξ ≤ 1 and we denote by
cb(ξ ), 0 ≤ ξ ≤ 1 the segment of line passing through the points (−r, 0) and (r, 0) and defining the “bottom” curve.
Let θ, 0 < θ < π/2, be the angle in the counterclockwise between the positive x axis and the ray from the origin
and the common point between curves cr (η) and ct (ξ ).

It is well known that circular arcs can be written exactly as quadratic NURBS [48], which are piecewise conic
curves. In particular, the arc of a circle corresponding to a central angle ≤ π/2 can be written in terms of a quadratic
NURBS composed by an unique conic section. In that case the sequence of knots tη defining the functions in (14)
has not interior knots. Since by hypotheses θ < π/2, curves cl(η) and cr (η) are in this case. For the top curve ct (ξ )
we consider two possibilities. If θ ≥ π/4, then the central angle corresponding to ct (ξ ) is less or equal than π/2
nd ct (ξ ) is written as linear combination of functions R3

i,tξ (ξ ) for a knot sequence t ξ with no interior knots. On
the other hand, if θ < π/4, then the central angle corresponding to ct (ξ ) is greater than π/2 and ct (ξ ) is written in
erms of the quadratic NURBS for a sequence of knots t ξ with one interior knot. Elevating the degree of cb(ξ ) [48],
his curve can be also represented in terms of functions R3

i,tξ .
Once that cb(ξ ), ct (ξ ) have been written as quadratic NURBS curves with knots t ξ and cl(η) and cr (η) have

een also written as quadratic NURBS with knots tη, the map Fθ (ξ, η) parametrizing Ω is defined as the bilinearly
lended Coon’s patch interpolating them [48] and given by,

Fθ (ξ, η) =

nF∑
i=1

m F∑
j=1

Pi, j R3,3
i, j (ξ, η) (17)

here Pi, j are the control points and R3,3
i, j (ξ, η) are the functions (16) for p1 = p2 = 3 and knots t ξ and tη. Observe

hat Fθ (ξ, η) satisfies the interpolation conditions (9), (10) and (11) and also Fθ (ξ, 0) = cb(ξ ), 0 ≤ ξ ≤ 1.
For any θ with 0 < θ < π/2 the map Fθ (ξ, η) : Ω̂ → Ω is bijective. Moreover, if JF denotes the Jacobian

atrix of a given map F, then det JFθ (ξ, η) > 0 on Ω̂ \ {(0, 1), (1, 1)} and det JFθ (0, 1) = det JFθ (1, 1) = 0. Other
roperties of Fθ (ξ, η) depend on the specific value of parameter θ . To illustrate the possible situations consider
wo parametrizations of Ω with r = 0.133, obtained for θ := θ1 = π/20 and for θ := θ2 = π/4. For both
arametrizations curves cl(η), cr (η) are represented as quadratic NURBS curves with knots tη = {0, 0, 0, 1, 1, 1},

ence the number of basic functions in η directions is m F = 3. For the parametrization with θ = θ1, the
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Fig. 3. Left: control mesh of the parametrization Fθ (ξ, η), center: quadrilateral mesh obtained as image by Fθ (ξ, η) of a rectangular mesh
in Ω̂ , right: mean ratio Jacobian Jr (ξ, η). First row correspond to parametrization Fθ1 (ξ, η) and second row to parametrization Fθ2 (ξ, η).

entral angle of the top curve ct (ξ ) is greater than π/2 and ct (ξ ) is represented as a NURBS curve with knots
ξ

= {0, 0, 0, 1/2, 1/2, 1, 1, 1}. The corresponding NURBS space has dimension nF = 5 and the control mesh of
θ has 15 control points, see Fig. 3 (left, top). On the other hand, for the parametrization with θ = θ2, the central
ngle of the top curve ct (ξ ) is π/2 and ct (ξ ) is written in terms quadratic NURBS with knots t ξ = {0, 0, 0, 1, 1, 1}.
t means that nF = 3 and the control mesh of Fθ (ξ, η) has in this case 9 points, see Fig. 3 (left, bottom).

The quality of a parametrization F(ξ, η) of Ω influences the precision of the solution computed with isogeometric
pproach [40]. In this sense, a good uniformity and orthogonality of the isoparametric curves of F(ξ, η) is desirable.

very popular measure of the quality of the parametrization in the point F(ξ, η) is the mean ratio Jacobian [39]
iven by,

Jr (ξ, η) =
2 det JF(ξ, η)

∥Fξ (ξ, η)∥2
2 + ∥Fη(ξ, η)∥2

2
(18)

here Fξ (ξ, η) =

(
∂x
∂ξ
,
∂y
∂ξ

)
and Fη(ξ, η) =

(
∂x
∂η
,
∂y
∂η

)
are the tangent vectors to the isoparametric curves and ∥ · ∥2

denotes the Euclidean norm. If the map F(ξ, η) is injective, then det JF(ξ, η) does not change sign. Assuming that
it is positive it holds that 0 < Jr (ξ, η) ≤ 1. A value of Jr equal to 1 at a point P0 = F(ξ0, η0) indicates that the
soparametric curves are orthogonal at P0 and the map F(ξ, η) produces the same length distortion at P0 in both

parametric directions ξ and η.
In the center of Fig. 3 we show the mesh Fθ (Q) in Ω with vertices computed as the image by Fθ (ξ, η) of

the vertices of a rectangular mesh Q in Ω̂ . Observe that for θ = π/4 (second row and center of Fig. 3) the
parametrization Fθ preserves the geometry of the quadrilaterals in Q almost everywhere, except in small areas near
the two points S−

:= Fθ (0, 1) and S+
:= Fθ (1, 1). Moreover, the vertical isolines of Fθ intersect almost orthogonally

the boundary of Ω at y = 0, where Dirichlet and Neumann boundary conditions are defined. On the other hand, for
= π/20 more deformations are observed in the quadrilaterals of Fθ (Q) (first row and center of Fig. 3). A value

of π/4 ≪ θ < π/2 is not recommended, since in that case the points S− and S+ become too close to the most
nteresting region |x | ≤ a, where the highest pressure values are located (see Fig. 4 (left)).

On the right of Fig. 3 we show a color map, where colors correspond to the values of Jr (ξ, η) according to
18). A yellow color indicates that Jr ≥ 0.8. Hence, the distortion introduced by the parametrization Fθ (ξ, η) for
= π/4 is small almost everywhere, except on the two blue areas (values of Jr close to 0.4) near the points S−

nd S+, where the distortion is higher. Observe that blue areas are not contained in the interest region |x | ≤ a.
In Section 4.2.1 we show the effect of the parametrization in the accuracy of the solution computed with

sogeometric approach. In this sense, the parametrization F with θ = π/4 has the best performance. Since F is
θ π/4
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close to be optimal in the mean ratio Jacobian metric in the region of interest, it is used in the rest of the paper to
parametrize Ω . Starting from Fπ/4, the parametrization could be improved using more sophisticated methods that
ompute the best parametrization by means of nonlinear optimization [1,67,68]. An analysis-suitable parametrization
ay be also constructed as an inverse of a bijective mapping from the target domain to the parametric space [53,66].
nother appealing approach is the construction of a high-quality patch-meshing with few singularities, which may
e obtained by means of the robust planar domain partition framework proposed in [65].

.3. Galerkin method with B-spline functions

Galerkin method replaces the infinite dimensional space V0 by a finite dimensional space V h . In this paper V h

s defined using tensor product B-spline functions (15) and the map given by (17). To simplify the notation in this
ection we omit the dependence of θ of the parametrization and denote it by F(ξ, η). Given n and m, the knots t ξ

nd tη are defined by,

t ξ = (

p1−1 times  
0, . . . , 0 , ξ1, ξ2, . . . , ξn−p1+2,

p1−1 times  
1, . . . , 1 ) (19)

tη = (

p2−1 times  
0, . . . , 0 , η1, η2, . . . , ηm−p2+2,

p2−1 times  
1, . . . , 1 ) (20)

here 0 = ξ1 < ξ2 < · · · < ξn−p1+2 = 1 are the breakpoints in the direction ξ and 0 = η1 < η2 < · · · < ηm−p2+2 =

are the breakpoints in the direction η. The sequences of breakpoints define a rectangular mesh in [0, 1] × [0, 1]
with vertices (ξi , η j ), i = 1, . . . , n − p1 + 2, j = 1, . . . ,m − p2 + 2.

Functions B p1,p2
i, j are a basis of the tensor product space Sp1,tξ

⨂
Sp2,tη . Due to the assumptions on the

parametrization F(ξ, η), functions

φi, j (x, y) = (B p1,p2
i, j ◦ F−1)(x, y), i = 1, . . . , n, j = 1, . . . ,m (21)

are linearly independent in Ω .

.3.1. IgA approximated solution
Denote by V h the space,

V h
= span{φi, j (x, y), i = 1, . . . , n, j = 1, . . . ,m} (22)

alerkin method computes the approximated solution uh(x, y) of the variational problem (6) as a function in V h .
t means that uh(x, y) is written as,

uh(x, y) =

n∑
i=1

m∑
j=1

γi, jφi, j (x, y) (23)

or certain unknown coefficients γi, j ∈ C. Denote by V h
0 the subspace of V h constituted by functions in V h vanishing

n ΓD ,

V h
0 = span{φi, j (x, y), such that φi, j (x, y) = 0 for all (x, y) ∈ ΓD} (24)

To determine which are the functions φi, j in V h
0 we have to compute the preimage by F(ξ, η) of the points

−a, 0) and (a, 0) delimiting ΓD . Since F(ξ, 0) with 0 ≤ ξ ≤ 1 is ΓD ∪ ΓN , it is clear that there exist ξa− and ξa+

oth in (0, 1) such that,

F(ξa− , 0) = (−a, 0), F(ξa+ , 0) = (a, 0) (25)

Assume that ξa− and ξa+ are not already in the knot sequence t ξ and it holds: t ξi1 < ξa− < t ξi1+1 and
ξ

i2
< ξa+ < t ξi2+1 with i1 ≤ i2. Since ΓD = F(ξ, 0) with ξa− ≤ ξ ≤ ξa+ and B p2

j,tη (0) = 0, for j = 2, . . . ,m,
e conclude that the B-splines not identically null in ΓD are φi,1 for i1 − p1 + 1 ≤ i ≤ i2 and

φ (x, 0) = B p1,p2 (F−1(x, 0)) = B p1 (ξ )B p2 (0) = B p1 (ξ ) (26)
i,1 i,1 i,tξ 1,tη i,tξ
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Hence,

V h
0 = span{φi, j (x, y), 1 ≤ i ≤ n, 2 ≤ j ≤ m, and φi,1(x, y), i /∈ [i1 − p1 + 1, i2]} (27)

In order to obtain a system of linear equations for the unknowns γi, j it is convenient to vectorize the basis
unctions and the corresponding coefficients in (23) introducing the change of indices

q = q(i, j) := n( j − 1) + i, i = 1, . . . , n, j = 1, . . . ,m (28)

ith this transformation we rewrite the expression (23) as

uh(x, y) =

N∑
q=1

αqψq (x, y) (29)

here N := nm and

α : = (α1, . . . , αN ) = (γ1,1, . . . , γn,1, . . . , γ1,m, . . . , γn,m) (30)

(ψ1(x, y), . . . , ψN (x, y)) = (φ1,1(x, y), . . . , φn,1(x, y), . . . , φ1,m(x, y), . . . , φn,m(x, y)) (31)

Thus, in the new notation V h
= span{ψq (x, y), q = 1, . . . , N }. Denote by I0 the set containing the global indices,

computed using (28), of functions on V h
0 . Then ψq (x, y) = 0 for (x, y) ∈ ΓD and q ∈ I0. In other words,

V h
0 = span{ψq (x, y), q ∈ I0} and dim(V h

0 ) = n0, where n0 is the size of I0. Similarly, denote by Ig the set
f global indices of functions φi,1(x, y) with i1 − p1 + 1 ≤ i ≤ i2 and let ng be the size of Ig . With this notation
0 + ng = N and uh(x, y) can be written as

uh(x, y) = uh
0(x, y) + uh

g(x, y) (32)

here uh
0(x, y) =

∑
q∈I0

αqψq (x, y) and uh
g(x, y) =

∑
q∈Ig

αqψq (x, y). Observe that function uh
0(x, y) ∈ V h

0 . Hence,
o obtain the Galerkin formulation we substitute in a(u, v) = 0, with a(u, v) given by (12), u by uh(x, y) defined
y (29) and v by a basis function ψr (x, y), r ∈ I0 of V h

0 . The result is,

N∑
q=1

αq

(
sr,q − k2 mr,q + i k er,q

)
= 0 r ∈ I0 (33)

here (omitting the dependence of functions of (ξ, η) when it is clear)

sr,q =

∫ 1

0

∫ 1

0
(∇ψq )t (JFt JF)−1

∇ψr | det JF| dξdη (34)

mr,q =

∫ 1

0

∫ 1

0
ψqψr | det JF| dξdη (35)

er,q =

∫ 1

0
ψq (F(0, η))ψr (F(0, η))∥c′

l(η)∥2 d η +

∫ 1

0
ψq (F(ξ, 1))ψr (F(ξ, 1))∥c′

t (ξ )∥2 dξ

+

∫ 1

0
ψq (F(1, η))ψr (F(1, η))∥c′

r (η)∥2 dη (36)

inally we have to impose the Dirichlet boundary condition on ΓD . For that we fix

αq = C, q ∈ Ig (37)

et (̃x, 0), with −a ≤ x̃ ≤ a, be a point in ΓD . Then, from (32) we get,

uh (̃x, 0) = uh
0 (̃x, 0) + uh

g (̃x, 0) = 0 +

∑
q∈Ig

αqψq (̃x, 0) = C
∑
q∈Ig

ψq (̃x, 0) (38)

y construction, F(ξ, η) maps the boundaries of the unit square on the boundaries of Ω . Hence, from (25) we know
hat there exists ξ̃ such that F(̃ξ, 0) = (̃x, 0) with,

t ξ < ξ − ≤ ξ̃ ≤ ξ + < t ξ (39)
i1 a a i2+1
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Since Ig is the set of global indices of functions φi,1(x, y), with i1 − p1 +1 ≤ i ≤ i2, from (26) and (38) we obtain,

uh (̃x, 0) = C
i2∑

i=i1−p1+1

φi,1 (̃x, 0) = C
i2∑

i=i1−p1+1

B p1
i,tξ (̃ξ ) (40)

But taking into account (39) it is clear that functions B p1
i,tξ vanish in ξ̃ , for i ≤ i1 − p1 and for i ≥ i2 + 1. Hence,

(40) can be rewritten as,

uh (̃x, 0) = C
n∑

i=1

B p1
i,tξ (̃ξ ) = C

where the last equality holds because the B-splines satisfy the unit partition property. Summarizing, with the
selection (37) Dirichlet boundary condition holds exactly.

Without loss of generality, assume that unknowns αq , q = 1, . . . , N have been reorganized in such a way that
the first n0 unknowns correspond to indexes in I0 and the last ng unknowns correspond to indexes in Ig . Then,
taking into account (37) the linear equations (33) can be written as,

n0∑
q=1

αq ar,q = −C
N∑

q=n0+1

ar,q r = 1, . . . , n0 (41)

where ar,q = sr,q − k2 mr,q + i k er,q . In the literature matrices S = (sr,q ) and M = (mr,q ) for r, q = 1, . . . , n0 are
nown as stiffness matrix and mass matrix respectively. Let α̃ = (α1, . . . , αn0 ), then system (41) can be written in
atrix form as,

A α̃ = b (42)

here b = (br ) = −C
∑N

q=n0+1 ar,q for r = 1, . . . , n0 and A = (ar,q ), r, q = 1, . . . , n0 is given by

A = S − k2 M + i k E (43)

ith E = (er,q ), r, q = 1, . . . , n0.

emarks.

1. From (42) it is clear than the actual number n0 = N − ng of free parameters of our solution is slightly
smaller than the dimension N = nm of the approximation space Sp1,tξ

⨂
Sp2,tη . Nevertheless, in the rest of

the work we refer to N as the total number of degrees of freedom.
2. Enforcing exact Dirichlet conditions on [−a, a], some basic functions ψq with support that contains points

in [−a, a] and outside of [−a, a] have prescribed coefficients αq = C . This deteriorates the satisfaction of
Neumann condition near ±a. In order to mitigate this effect it is convenient that the sequence t ξ includes
knots close to ξa− from the left and knots close to ξa+ from the right. In particular, it is recommendable to
include the points ξa− and ξa+ in t ξ . Observe that if ξa− = t ξi1 and ξa+ = t ξi2 then Ig is the set of global
indices of functions φi,1(x, y) with i1 − p1 + 1 ≤ i ≤ i2 − 1. The knot sequences t ξ of the experiments in
Section 4.3 are constructed including the points ξa− and ξa+ in t ξ .

.3.2. The dimension of IgA approximation space
In this work we are interested in applications where the frequency f is near or greater than 1 MHz. Hence, the

avelength λ is of order 10−3 m, which means that the solution u(x, y) is highly oscillatory. To face this problem
lassic FEM uses a mesh of size hF E M , with hF E M ≤

λ
10 , resulting in a high number NF E M of degrees of freedom.

IgA does not require the construction of a mesh in the physical domain Ω . But taking into account that a
parametrization F(ξ, η) of Ω is available, it is possible to define a mesh in Ω as follows. Associated with B-splines

reakpoints ξi , i = 1, . . . , n − p1 + 2 and η j , j = 1, . . . ,m − p2 + 1, in directions ξ and η respectively, there
s a mesh Q in [0, 1] × [0, 1] composed by rectangular elements [ξi , ξi+1] × [η j , η j+1]. Computing the image by
(ξ, η) of the points (ξi , η j ), we define a quadrilateral mesh K in Ω . The vertices of elements in K are the points
(ξi , η j ). Moreover, two vertices in K are joined by an edge, if their pre-images are the extreme points of an edge

n Q. We denote by h the size of the mesh K.
Ig A
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From the previous definition it is clear that h Ig A depends on the selection of the values of n and m, that is the
dimensions of spline spaces Sp1,tξ and Sp2,tη respectively. In Section 4.3.1 we show through several experiments,
that in order to obtain a high accuracy IgA solution, it is enough to select n and m in such a way that h Ig A ≤

λ
6 .

Moreover, studying the behavior of |uh(0, y)|, we show in Section 4.2.3 that n and m play different roles in the
uality of the approximation computed with nm degrees of freedom.

.4. On the linear system obtained from IgA discretization

For large values of k, the numerical solution of the linear system (42) is a challenge. First, A is very large,
since u(x, y) is highly oscillatory and therefore many degrees of freedom N are necessary to obtain accurate
approximations. Moreover, A is sparse but it gets denser if we increase the order of B-splines.

In consequence, direct solvers are prohibitively expensive and it is necessary to appeal to iterative solvers.
urthermore, for medium to large values of k, A happens to be indefinite.

Since the convergence rate of iterative methods strongly depends on the condition number κ(A) of matrix A, it
s important to obtain bounds for κ(A) as a function of the mesh size and also as function of the order of B-splines.
n [30] bounds for the condition number of the stiffness and mass matrices of IgA discretizations of elliptic PDE
re obtained. In general, it is shown that their condition numbers grow quickly with the inverse of mesh size and
he polynomial degree p.

Thus, the matrix A in (43) is in general ill conditioned and the convergence of a Krylov subspace methods, like
MRES, requires a previous preconditioning of A. One of the most successful preconditioners, introduced in FEM

ontext in [27], is the Complex Shifted Laplacian (CSLP). It depends on a parameter β > 0 and it is given by

Aβ = A + iβ k2 M (44)

here M is the mass matrix. It is known [31] that the Shifted Laplacian (44) is a good preconditioner for FEM
iscretization (in the sense that ∥I − A−1

β A∥ is small) if β k is of order ≤ k.
Since near-zero eigenvalues hamper the convergence of Krylov subspace methods, it is important to study

he spectrum of the preconditioned matrix A−1
β A. In the next Proposition we show some properties of the

atrices arising from IgA approach of Galerkin method applied to Helmholtz equation (1) with mixed boundary
onditions (2)–(4). Moreover, we show that the eigenvalues of A−1

β A are located on or inside a circle in the complex
lane that passes through the origin.

roposition 1. If A, S, E and M are the matrices given in (43) arising from the isogeometric approach of Galerkin
ethod applied to Helmholtz equation (1) with mixed boundary conditions (2)–(4), then it holds

(1) S and E are symmetric positive semi-definite real matrices. Moreover, M is a symmetric positive definite
real matrix.

(2) A is a symmetric, and non Hermitian matrix.
(3) For all β > 0, the eigenvalues of the preconditioned matrix A−1

β A, with Aβ given by (44), are inside or on
the circle in the complex plane with center c0 = ( 1

2 , 0) and radius r0 =
1
2 .

Proof. For u, v ∈ V0, let us consider the following sesquilinear forms,

aS(u, v) =

∫ ∫
Ω

∇ut
∇v dΩ , aM (u, v) =

∫ ∫
Ω

uv dΩ , aR(u, v) =

∫
ΓR

uv dΓR

Let uh
∈ V h

0 ⊂ V0 be different from 0. Then, uh
=

∑n0
q=1 αq ψq (x, y) with αq ∈ C. Hence, aS(uh, uh) =

∥∇uh
∥

2
L2(Ω) ≥ 0. Since aS(u, v) is sesquilinear, we obtain from (34)

0 ≤ aS(uh, uh) = aS

⎛⎝ n0∑
q=1

αq ψq (x, y),
n0∑

r=1

αr ψr (x, y)

⎞⎠ =

n0∑
q=1

n0∑
r=1

αq αr

∫ ∫
Ω

∇ψr (x, y)t
∇ψq (x, y) dΩ

=

n0∑ n0∑
αq αr

∫ 1

0

∫ 1

0
(JF−t

∇ψr (x, y))t (JF−t
∇ψq (x, y)) |det JF| dξ dη
q=1 r=1
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Hence,

0 ≤ aS(uh, uh) = (α1, . . . , αn0 ) S (α1, . . . , αn0 )t

From the last inequality, S is a n0 × n0 symmetric positive semi-definite real matrix. On the other hand, for
h

∈ V h
0 ⊂ V0 different from 0, it holds 0 < ∥uh

∥
2
L2(Ω)

=
∫ ∫

Ω uhuh dΩ = aM (uh, uh). Thus, according to
(35) we obtain,

0 < aM (uh, uh) =

n0∑
q=1

n0∑
r=1

αq αr

∫ 1

0

∫ 1

0
ψr (x, y)ψq (x, y) |det JF| dξ dη = (α1, . . . , αn0 ) M (α1, . . . , αn0 )t

hich means that M is a n0 × n0 symmetric positive definite real matrix. Finally, recalling that a function
h

∈ V h
0 ⊂ V0 different from 0 may vanish on ΓR , from (36) we obtain,

0 ≤

∫
ΓR

uhuh dΓR = aR(uh, uh) =

n0∑
q=1

n0∑
r=1

αq αr er,q = (α1, . . . , αn0 ) E (α1, . . . , αn0 )t

ence, E is a n0 × n0 symmetric positive semi-definite real matrix. This finishes the proof of (1).
To prove (2), we observe that S,M and E are real symmetric matrices. Hence, from (43) and for k > 0 it holds

A − A
t
= 2 i k E ̸= 0, thus A is not Hermitian.

The proof of (3) is based on Theorem 3.5 in [59]. Set L = S, C = k E and M =
1
c2 M . Then, clearly L and

C are symmetric positive semi-definite real matrices and M is a symmetric positive definite real matrix. Moreover,
using (43) and (44) we can write,

A = S + i k E − k2 M = L + i C − z1 M
Aβ = S + i k E − k2(1 − iβ)M = L + i C − z2 M

with z1 = k2c2 and z2 = (1 − iβ) k2 c2. Since β2 := Im(z2) = −β k2 c2 < 0, the hypothesis of Theorem 3.5
in [59] is fulfilled. Hence, the eigenvalues of A−1

β A are inside or on the circle in the complex plane with center

0 =
z1−z2
z2−z2

=
1
2 and radius r0 =

⏐⏐⏐ z2−z1
z2−z2

⏐⏐⏐ =
1
2 . ■

In order to reduce the computational cost and the memory requirements, CSLP matrix (44) is approximated in
practice by Ãβ = L ·U , where L ,U are the matrices resulting from ILU factorization (with threshold and pivoting)
of Aβ . The drop tolerance ε of the incomplete LU factorization controls the accuracy of Ãβ as approximation of Aβ .
The smaller ε the better is the approximation Ãβ , but at a higher computational cost. The preconditioned system

Ã−1
β Aα̃ = Ã−1

β b (45)

is solved calling to GMRES, and passing as argument the name of a function that uses the factors L and U
previously computed. In Section 4.2.2 we make several experiments to select free parameters: β for CSLP and
ε of ILU factorization. Moreover, we fix the maximum number of GMRES iterations and the tolerance for the
relative residual.

4. Numerical results and discussion

To solve the radiation problem, we have implemented IgA approach in an in-house code, using the open source
package GeoPDEs [21] to compute the matrix and the right hand side of the linear system (42). IgA results reported
here were obtained in a PC with i7-8565U processor, CPU @ 1.80 GHz and 8 Gb of RAM. In our simulations of
acoustic radiation, the Dirichlet constant in (2) is C = 1 and the sound propagation speed is c = 1 500 m s−1. We
compute λ =

c
f , and k = 2π/λ.

4.1. Simulation of acoustic radiation for a typical problem

In this section we solve a model radiation problem, assuming that the transducer emits a pulse of frequency
f = 1.0 MHz, hence k = 4 188.8 m−1. The semi-width is a = 0.01 m and r = 2 N f = 0.133 m. The radiation

roblem is solved with bicubic B-splines, i.e p1 = p2 = 4. Moreover, we choose n = 1000 and m = 600 and
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Fig. 4. Left: 2D view of function |uh (x, y)| for f = 1.0 MHz computed with bicubic B-splines with uniform knots and N = 600 000 dof
(n = 1000, m = 600). Right: Graph of the function |uh (x, 0)|.

Fig. 5. Graphs of the functions |uh (0, y)|, Re(uh (0, y)) and Im(uh (0, y)) for f = 1.0 MHz, computed with bicubic B-splines with uniform
knots and N = 600 000 dof (n = 1000, m = 600).

uniform knot sequences t ξ and tη in the directions ξ and η respectively. Hence, the total number of degrees of
freedom (dof ) is N = nm = 600 000. The parametrization Fθ (ξ, η) is computed as described in Section 3.2 for
the parameter θ = π/4. The preconditioned linear system (45) is solved with GMRES with matrix Ãβ obtained
from ILU factorization of Aβ with β = 0.5. More details about the parameters for GMRES convergence are given
in Section 4.2.2.

In Fig. 4 (left), we show a 2D view of the function

|uh(x, y)| = ((Re uh(x, y))2
+ (Im uh(x, y))2)

1
2 (46)

Colors in this figure indicate that most oscillations of acoustic pressure are in the strip −a ≤ x ≤ a. Moreover, the
region of the highest acoustic pressure has an elliptical shape and it is located after the natural focus N f = 0.066 m.
In Fig. 4 (right) we show the function |uh(x, 0)| for −r ≤ x ≤ r . Observe that Dirichlet boundary condition holds in
the interval [−a, a], while in the rest of the line y = 0 the function |uh(x, 0)| is smooth. The behavior of the function
|uh(0, y)| is shown in Fig. 5, where we also include the graphs of the highly oscillatory functions Re(uh(0, y)) and
Im(uh(0, y)).

4.2. Discussion about the IgA approach

The practical implementation of IgA approach requires a careful selection of the degree and knots of B-spline
functions in each parametric direction, the number of degrees of freedom, the parametrization F(ξ, η) of the physical
domain Ω and the numerical solver for the linear equations derived from the discretization. In this section we study
the influence of these aspects in the quality and accuracy of the approximated solution uh(x, y) computed by IgA
approach. In all the experiments of this section we use bicubic B-splines with uniform knots t ξ and tη.

4.2.1. Influence of the parametrization
To examine the effect of the parametrization in the numerical solution uh(x, y) we solve again the model problem

considered in the previous section (with k = 4 188.8 m−1, a = 0.01 m and r = 0.133 m), using two parametrizations
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Fig. 6. Graph of the function |uh (0, y)| for frequency f = 1.0 MHz, computed with bicubic B-splines with uniform knots. Left:
arametrization Fθ1 (red), right: parametrization Fθ2 (blue). In black the graph of |uh (0, y)| computed with FEM. The total number of
egrees of freedom is NIg A = 500 000 and NF E M = 3 330 886. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

f Ω . More precisely, we consider the parametrizations Fθ1 (ξ, η) and Fθ2 (ξ, η) of Ω described in Section 3.2 for
he parameters θ1 = π/20 and θ2 = π/4 respectively. In both cases we study the behavior of the function |uh(x, y)|
iven by (46). Since the maximum amplitude of the acoustic wave pressure is attained on the profile x = 0 in the
ext experiments we only plot |uh(0, y)|.

Fig. 6 shows in color the graphic of |uh(0, y)|, computed with bicubic B-spline functions with uniform knots,
= 1000, m = 500, and parametrizations Fθ1 (ξ, η) (left) and Fθ2 (ξ, η) (right). For comparison, we also show

n black the function |uh(0, y)| computed in COMSOL [2] with FEM, using cubic Lagrange polynomials. The
umbers NF E M and NIg A of degrees of freedom for FEM and IgA approximations are respectively NIg A = 500 000

and NF E M = 3 330 886. Observe that in the experiments NIg A is the same for parametrizations Fθ1 (ξ, η) and
θ2 (ξ, η). From the comparison with FEM solutions it is easy to realize that IgA function |uh(0, y)| obtained from

he parametrization Fθ2 (ξ, η) is closer to FEM, than those obtained from parametrization Fθ1 (ξ, η).
From similar experiments with parametrizations computed for several values of θ , we conclude that the quality

f the parametrization has a strong influence in the precision of the approximated solution computed with IgA. In
articular, we have observed that for the class of parametrizations Fθ (ξ, η) constructed in Section 3.2, depending on
he parameter θ , the best results are obtained when θ = π/4. In other words, for a fixed number NIg A of degrees of
reedom, the function |uh(0, y)| computed with IgA approach using the parametrization Fπ/4(ξ, η) is an excellent
pproximation of the function |u(0, y)|, assuming that NIg A is large enough.

.2.2. Performance of GMRES with ILU factorization of CSLP
In this section we perform several numerical experiments to choose suitable values for the parameters β and ε,

ecessary to define the preconditioner Ãβ in (45). We solve the radiation problem always with Dirichlet constant C =

, and for relatively low frequencies since we want to compute some eigenvalues of A−1
β A. For these frequencies,

he semi-width a is fixed as a = 2.5λ = 5π/(2k) and the radius r is equal to r = 2.5 N f = 2.5
(

a2 k
2π

)
= 2π (2.5)3/k.

Hence, the area of Ω in inversely proportional to k2. The frequencies f and the corresponding values of k, as well
as a and r are contained in Table 1, for problems considered in the experiments. To compute IgA solution we use
bicubic B-splines with uniform knots. In Table 1 we also report the values of the IgA input parameters n and m and
also the mesh size h Ig A as function of the wavelength λ. Note that as f increases, k also increases, therefore the
solution u(x, y) is more oscillating and more degrees of freedom N are necessary to obtain good approximations
of u(x, y), even when the area of Ω is reduced.

In our experiments we always solve the linear systems with GMRES restarting every 30 iterations; the maximum
number of iterations is fixed to 6000 and the tolerance for the relative residual is fixed to 10−6.

As we already mentioned, near-zero eigenvalues make difficult the convergence of a Krylov subspace method
ike GMRES. Hence, it is important to study the spectrum of the preconditioned matrix A−1

β A, that depends on the

value of β. In the next experiments we consider two values of β, which are independent of k, β = 0.1 and β = 0.5.
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Table 1
Data for IgA solution of the radiation problem.

f (MHz) k (m−1) a (m) r (m) N h Ig A (m)

0.10 418.9 0.0375 0.234 30 000 (n = 200, m = 150) λ/6.18
0.30 1 256.6 0.0125 0.078 37 400 (n = 220, m = 170) λ/6.81
0.50 2 094.4 0.0075 0.047 50 000 (n = 250, m = 200) λ/7.75

Fig. 7. First row: 50 smallest eigenvalues of A−1
β A with β = 0.1. Second row: 50 smallest eigenvalues of Ã−1

β A, matrix Ãβ computed with
= 0.1 and ε = 10−2. Each column corresponds to a problem in Table 1.

n the first row of Fig. 7 we show the (50) smallest in magnitude eigenvalues of A−1
β A, for β = 0.1 and for data

onsidered in Table 1. Observe that as theory predicts (see Proposition 1), all the eigenvalues are inside the circle
n the complex plane with center ( 1

2 , 0) and radius 1
2 . For β = 0.5 and all values of k considered, the (50) smallest

eigenvalues of A−1
β A also inside the circle but more clustered around (0.05, 0).

In our first experiment we solve the linear system preconditioned with matrix Aβ for β = 0.1 and β = 0.5.
The results are reported in Table 2. Observe that as the value of k is increased, the order N of the linear system is
bigger and the CPU time to reach GMRES convergence is increased. However, the relative residual in the last step
of GMRES is of order 10−7 in all cases.

In practice CSLP matrix (44) is approximated by Ãβ obtained from ILU factorization of Aβ with drop tolerance
ε. In the second row of Fig. 7 we show the (50) smallest in magnitude eigenvalues of Ã−1

β A, for Ãβ computed
with β = 0.1, ε = 10−2. Comparing the first and the second row of Fig. 7, we observe that the eigenvalues of
Ã−1
β A are relatively good approximations of the eigenvalues of A−1

β A, even when ILU factorization of Aβ has a
low computational cost, since it was computed with a relatively high drop tolerance ε = 10−2. The approximation˜ −2
of the eigenvalues is even better if Aβ is computed with β = 0.5 and ε = 10 . But this is not always the case, for
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Table 2
Performance of GMRES preconditioned with CSLP Aβ .

k (m−1) N Time GMRES (s) # iter GMRES Rel. residual

β = 0.1 β = 0.5 β = 0.1 β = 0.5 β = 0.1 β = 0.5

418.9 30 000 29.93 120.69 23 88 7.40 × 10−7 7.03 × 10−7

1 256.6 37 400 41.85 164.33 23 89 6.73 × 10−7 7.16 × 10−7

2 094.4 50 000 60.42 241.66 23 88 7.06 × 10−7 7.10 × 10−7

Table 3
Performance of GMRES preconditioned with Ãβ obtained with ILU factorization of CSLP Aβ with β = 0.1 and two values of ε : ε1 = 10−4

nd ε2 = 10−2.

k (m−1) N Time ILU (s) Time GMRES (s) Total time (s) # iter GMRES

ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2

418.9 30 000 10.47 1.69 3.87 2.85 14.34 4.54 24 81
1 256.6 37 400 15.19 4.98 5.19 7.81 20.38 12.79 24 89
2 094.4 50 000 21.76 3.05 6.85 11.64 28.61 14.69 24 211

Table 4
Performance of GMRES preconditioned with Ãβ obtained with ILU factorization of CSLP Aβ with β = 0.5 and two values of ε : ε1 = 10−4

nd ε2 = 10−2.

k (m−1) N Time ILU (s) Time GMRES (s) Total time (s) # iter GMRES

ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2

418.9 30 000 3.53 1.25 6.02 4.37 9.55 5.62 89 147
1 256.6 37 400 4.98 1.72 7.81 6.16 12.79 7.88 89 163
2 094.4 50 000 10.56 2.52 11.04 8.65 21.60 11.17 89 177

instance for β = 1/k and ε = 10−2 the eigenvalues of Ã−1
β A are a very poor approximation of the eigenvalues of

A−1
β A and some of them are even outside of the circle.
In Tables 3 and 4 we summarize the performance of GMRES, with the preconditioner Ãβ computed with β = 0.1

and β = 0.5 respectively. In both cases two values of drop tolerance for ILU factorization are considered: ε1 = 10−4

and ε2 = 10−2. In columns 3 and 4 of both tables we report respectively the time (in seconds s) for computing
ILU factorization of Aβ and the time for GMRES convergence. Since N is increased with k, both times are also
increased with k. Column 5 contains the sum of the times for ILU factorization and GMRES convergence. Observe
that the number of GMRES iterations reported in column 6 is increased with k for ε2 and remains constant for ε1.

he relative residual of the preconditioner system is of order 10−7 for all values of k, β and ε included in the study.
Comparing the times reported in Table 2 (column 3 for β = 0.1) and Table 3 (columns 5 and for both ε1 and ε2)

t is clear that preconditioner Ãβ is computationally more efficient than the exact CSLP preconditioner Aβ , since
MRES takes advantage of the factors L and U obtained from ILU factorization, for the solution of a sequence
f systems with matrix Ãβ (and different right hand side). Similar observation holds comparing times reported in
able 2 (column 3 for β = 0.5) and Table 4 (column 5 for both ε1 and ε2). For each value of k we highlight

n Tables 3 and 4 the minimum total time required for solving the linear system. Note that for both: β = 0.1 and
= 0.5, the matrix Ãβ computed with drop tolerance ε2 = 10−2 is the best preconditioner in the sense that GMRES

onverges in the minimum time.
From our experiments we conclude that matrix Ãβ obtained from ILU factorization of CSLP matrix Aβ with
= 0.5 and drop tolerance ε = 10−2, is a very good preconditioner if GMRES is used to solve the linear system

42) derived from IgA discretization of radiation problem.

.2.3. Selecting the dimension of IgA approximation space
The application of IgA approach requires the selection of the numbers n and m defining the dimension NIg A =

m of the IgA spline approximation space. In this section we show, by means of several experiments, that the
930
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Fig. 8. IgA bicubic solution of radiation problem with f = 1.0 MHz for n = 400 and m = 600. Left: function |uh (x, 0)|, right |uh (0, y)|.
lack: function |uF E M (0, y)| computed with cubic FEM.

Fig. 9. IgA bicubic solution of radiation problem with f = 1.0 MHz for n = 1 000 and m = 600. Left: function |uh (x, 0)|, right |uh (0, y)|.
lack: function |uF E M (0, y)| computed with cubic FEM.

umbers n and m play different roles in the accuracy of the IgA solution of the radiation problem. Moreover, we
ive some recommendations about the selection of n and m for the geometry of the domain considered in the paper.

From the physics of the radiation problem, it is known that most oscillations of acoustic pressure hold for
a ≤ x ≤ a. Hence, our analysis is based on the study of the behavior of the function |uh(0, y)| for 0 ≤ y ≤ r .
To illustrate the typical situation we solve the radiation problem for f = 1.0 MHz, in the semicircle Ω with
= 0.133 m and a = 0.01 m. Since n is the number of degrees of freedom in the direction x , perpendicular to
ave front, if n is not large enough the function |uh(x, 0)| is not a good approximation of |u(x, 0)|, in particular

for x tending to one of the extremes of the transducer, with |x | > a. In Fig. 8 left, we observe this situation
hen radiation problem is solved with n = 400 and m = 600. In this case the approximated solution behaves
hysically like the exact solution corresponding a width larger than 2a. This is observed in Fig. 8 right, where we
ompare |uh(0, y)| with the function |uF E M (0, y)| computed with cubic Lagrange FEM and 3 338 722 degrees of
reedom. FEM solution used as reference was obtained after a convergence study for several mesh sizes. Observe
hat function |uh(0, y)| has a different phase and amplitude than the reference function |uF E M (0, y)|. This behavior
as been already observed in FEM [5], solving a 1D Helmholtz problem, for which exact solution is known. In
ig. 9 we show the effect of increasing the value of n from 400 to 1000 (preserving m = 600). For increasing n, the
orresponding solution |uh(x, 0)| becomes a better approximation of |u(x, 0)| and the error in phase and amplitude
etween |uh(0, y)| and |uF E M (0, y)| is significantly reduced, see Fig. 9, right.

Concerning the number m of degrees of freedom in direction y, longitudinal to wave front, we have observed
that it is tied up with the noise. More precisely, if m is not large enough, then the quality along y axis of the
pproximated solution is poor. Hence, the graph of the function |uh(0, y)| is noisy, specially in far field region,

which is the most interesting in ultrasonic applications. In Fig. 10 left we show the graph of |uh(0, y)| obtained
h
with IgA approach for n = 1000 and m = 300. Observe that for this value of m, |u (0, y)| suffers from a severe
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Fig. 10. Solution of the radiation problem with f = 1.0 MHz. Black: function |uF E M (0, y)| computed with cubic FEM. Blue: function
uh (0, y)| computed with bicubic IgA for increasing m. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

oise. This problem is solved gradually if we increase the value of m first to m = 350 (Fig. 10 center) and later to
= 400 (Fig. 10 right).
To guarantee the accuracy of the numerical solution both FEM and IgA require that mesh size be fine enough.

n practice the rule of thumb h Ig A = λ/τ = 2π/(τ k) is frequently used, where τ ≥ 10 denotes the number of
egrees of freedom per wavelength. Nevertheless, for high values of k this is not enough, since for h Ig A satisfying
he rule of thumb, the pollution error is reduced significantly but it does not disappear [23,26].

By definition the mesh size h Ig A is the maximum length of an edge of the mesh K, with vertices Fθ (ξi , η j ) for
= 1, . . . , n − 2 and j = 1, . . . ,m − 2. Thus, the value of h Ig A not only depends on n and m, but also on the
arametrization Fθ (ξ, η) of Ω . This dependency is nonlinear and in consequence it is not feasible to find explicit
xpressions for n and m in terms of the input parameters r, τ and k in order to achieve h Ig A = λ/τ . Nevertheless, it

is possible to obtain lower bounds for n and m that are useful in practice. Let be hx = 2r/(n−3) and h y = r/(m−3).
Since Fθ (ξ, η) maps linearly (ξ, 0), 0 ≤ ξ ≤ 1 in (x, 0) with −r ≤ x ≤ r , it is clear that h Ig A ≥ hx . Moreover,
taking into account that Ω is symmetric with respect to y-axis and that Fθ (ξ, η) satisfies the symmetry condition
Fθ ( 1

2 − ε, η) = Fθ ( 1
2 + ε, η), it holds that h Ig A ≥ h y . Hence h Ig A > 2r/n and h Ig A > r/m. From the rule of thumb

h Ig A = λ/τ we obtain the following lower bounds for n and m,

n >
2rτ
λ
, m >

rτ
λ

(47)

or n and m big enough the lower bounds in (47) are very close to n and m, in consequence it is recommended
o choose n ≥ 2m. On the other hand, to select n = µm with µ ≫ 2 is not a good strategy since in comparison

with the case n = 2m, the number of degrees of freedom is larger, thus the computational cost is bigger, while the
mesh size remains equal.

4.3. Comparing IgA with FEM

In this section we evaluate the performance of isogeometric approach comparing the IgA approximation with
the solution of the radiation problem obtained using classic FEM. In order to do a fair comparison we perform first
a convergence study to select the IgA approximated solution that will be used as reference for comparison with
FEM.

In the rest of the section, IgA approximated solution uh is sought in a bicubic tensor product spline space
S4,tξ

⨂
S4,tη , where the sequence tη with m + 4 knots has uniform breakpoints. The sequence of knots t ξ is

constructed inserting the points ξa− and ξa+ defined by (25) as simple knots in the sequence t̂ ξ with µm + 4
knots and uniform breakpoints. Observe that the total number n of elements of t ξ is now n + 4 with n = µm + z,
where z is equal to 0,1 or 2 depending on whether the points ξa− and ξa+ were already contained in t̂ ξ . Imposing
that ξa− and ξa+ belong to t ξ the solution space is enriched at x = ±a and the eventual spillover restrictions on
basis functions outside (−a, a) due to Dirichlet boundary condition is mitigated. Consequently, Neumann condition
is better approximated resulting in a more accurate numerical solution uh .
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Table 5
Data for convergence study for k = 3 141.6 m−1.

n 392 412 432 452 472 492 512 532 552 612
m 195 205 215 225 235 245 255 265 275 305
τ 3.68 3.87 4.06 4.25 4.44 4.63 4.83 5.02 5.21 5.79

Table 6
Data for convergence study for k = 4 188.8 m−1.

n 702 732 782 812 862 892 942 972 1022 1102
m 350 365 390 405 430 445 470 485 510 550
τ 3.74 3.90 4.17 4.33 4.60 4.76 5.03 5.19 5.46 5.89

Fig. 11. Relative errors (48) for IgA bicubic solutions of the radiation problem for k = 3 141.6 m−1 (left) and k = 4 188.8 m−1 (right).

.3.1. Convergence study
Our aim in this section is to perform a brief convergence study based on h refinement for computing IgA

olution of the radiation problem. For each value m of an increasing sequence, we compute the uniform sequence
η and the knot sequence t ξ as explained before with µ = 2. The approximated solution uh with nm degrees
f freedom is computed with IgA bicubic B-spline functions using the parametrization Fθ introduced in 3.2 with
= π/4. We solve two radiation problems in a semicircular domain Ω with width a = 0.01 m. In the first problem
= 3 141.6 m−1, and r = 0.100 m. In the second problem k = 4 188.8 m−1, and r = 0.133 m. In Tables 5 and 6 we

ummarize the input values of n and m for each problem. The corresponding mesh size h is written as h = λ/τ . In
he third row of both tables it is included the number τ of degrees of freedom per wavelength. We use as reference
olution uh

re f , the IgA approximation computed with the parameters reported in bold in the last column of Tables 5
nd 6. Moreover, we compute the relative errors,

relerr =
∥uh

re f − uh
∥L2(Ω)

∥uh
re f ∥L2(Ω)

(48)

In Fig. 11 we show the log–log plot of the relative error versus the mesh size h. For reference, we also show in the
graph the line with slope 4. It is clear that the rate of convergence of the relative error is h4, as theory predicts [10]
for a bicubic IgA approximation. In the next section we use these reference solutions (and the reference solution
computed similarly for k = 5 235.9) for comparison with FEM solution.

.3.2. Comparison
Unfortunately, it is difficult to compare with FEM approximations of similar problems obtained by other authors,

ince most of them do not report all the information needed to set up a fair comparison, such as the type of elements
nd the number of degrees of freedom. Hence, in this section we solve the radiation problem with FEM and IgA
pproaches, using in both cases piecewise cubic polynomials. FEM approximation was computed with COMSOL [2]
sing a PC with an i5 processor of 10th generation and 32 Gb of RAM.
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Table 7
Parameters for IgA solution of the radiation problem for comparison with FEM.

f (MHz) k (m−1) r (m) n m h Ig A (m)

0.75 3 141.6 0.100 612 305 3.45 × 10−4
= λ/5.79

1.00 4 188.8 0.133 1102 550 2.54 × 10−4
= λ/5.89

1.25 5 235.9 0.166 1802 800 2.18 × 10−4
= λ/5.50

In the next experiments we consider three values of frequency: f = 0.75 MHz, f = 1.0 MHz and f = 1.25 MHz.
The semi-width a is always fixed as 0.01 m, but the radius r of the semicircle depends on the frequency and it is
computed as r = 2N f =

a2k
π

. Since the wavelength λ and the frequency f are inversely proportional, if f is of
order 1 MHz, then λ is of order 10−3 m, which means that the solution u(x, y) is highly oscillatory. As we already
mentioned, for such values of frequency, classic FEM solves the Helmholtz equation using a mesh of size hF E M ,
with hF E M ≤

λ
10 . As a consequence, the approximated solutions depend on a high number of degrees of freedom.

EM approximation is computed with cubic Lagrange polynomials defined on a quadrilateral mesh. The problem
as solved with FEM several times using different values of hF E M , with λ

5 ≤ hF E M ≤
λ
10 . Since the results obtained

were very similar, we select the solution with less degrees of freedom (corresponding to hF E M =
λ
5 ) as the reference

for the comparison with IgA. For computing IgA solution we use the bicubic B-splines with the knots sequences t ξ

nd tη constructed as explained at the beginning of Section 4.3. Moreover, the domain Ω is parametrized by means
f the map Fθ (ξ, η) described in Section 3.2 for θ = π/4.

In Table 7 we summarize, for each frequency f , the values in the experiments of the wavenumber k, the radius r
nd the numbers n, m defining the dimension NIg A = nm of the bicubic B-spline approximation space. Moreover,
n the last column of the table we report the size h Ig A of the mesh K defined in Section 3.3.2. In our experiments
e have observed that for obtaining a precise approximated solution uh(x, y) of the radiation problem, it is enough

o select the dimension NIg A of the approximation space (22) in such a way that h Ig A ≈ λ
6 .

Since the maximum amplitude of the acoustic wave pressure is attained on the profile x = 0, our comparison
focus on the behavior of the function |uh(0, y)|. In Fig. 12 we show the graph of the functions |uh(0, y)| obtained
using FEM (first row) and IgA (second row) approaches. From the physical point of view, we observe that both
provide solutions with similar behavior: for increasing frequency the number of oscillations of |uh(0, y)| in the
near field region grows, but in any case from the natural focus on there are no more oscillations and the maximum
amplitude of the acoustic wave is reached.

Nevertheless, comparing the functions |uh(0, y)| computed with FEM and IgA it is clear that, for all values of
frequencies, FEM approximation has more noise, even when the number NF E M of degrees of freedom used for
its computation is several times bigger (5.66, 5.51 and 5.65 for frequencies f = 0.75 MHz, f = 1.0 MHz and
f = 1.25 MHz respectively), than the number NIg A of degrees of freedom used for the computation with IgA
pproach. In Fig. 13 we show a zoom of the rectangular area in right column of Fig. 12. Observe that the noise of
he function |uh(0, y)| computed with FEM has higher frequency and larger amplitude than the noise of the function
uh(0, y)| computed with IgA for the same f = 1.25 MHz.

. Conclusions

Radiation problem appears in several important applications, where high values of the wavenumber are handled.
e have solved this problem in a 2D scenario, with one transducer emitting a pulse of constant amplitude and high

requency. The unknown of the radiation problem is the acoustic pressure field, that from the mathematical point
f view is the solution of Helmholtz equation with mixed boundary conditions.

For high values of the wavenumber, the classical method of Finite Element suffers from the pollution error and
equires a large number of degrees of freedom to obtain accurate solutions. Isogeometric Analysis was proposed as
n advantageous alternative to FEM. Fundamental steps of the method were discussed with focus on several details
hat are not usually described in the literature. In particular, we proposed a quadratic NURBS parametrization of the
hysical domain Ω , that represents exactly its boundary and depends on a free parameter. The approximated solution
h was computed using a non-isoparametric approach, where uh is a bicubic tensor product polynomial B-spline
unction on Ω . This approach turned out to be very useful in practice, since it allows to improve the accuracy of uh
efining the approximation space and keeping the coarser parametrization of Ω . For the problem under consideration

934



V. Hernández, E. Moreno, J. Estrada et al. Mathematics and Computers in Simulation 225 (2024) 914–938

q
c
c

w
T
t
r
p
c
s
C
o

t

Fig. 12. Graphs of the function |uh (0, y)| for several values of the frequency f . Top: uh (x, y) computed with cubic Lagrange FEM with a
uadrilateral mesh. Center: uh (x, y) computed with cubic B-splines. The total number of degrees of freedom is given for each case. Bottom:
omparison between FEM and IgA solutions for the same frequency. Left column: f = 0.75 MHz, center column: f = 1.0 MHz, right
olumn: f = 1.25 MHz.

e obtained a deeper understanding of the role of the number of degrees of freedom in each parametric direction.
hrough several experiments we have shown that increasing the degrees of freedom in the direction longitudinal

o wave front reduces the noise of uh , while increasing the degrees of freedom in the perpendicular direction
educes the phase and amplitude shifts of uh . Moreover, the experiments also bring evidences of the impact of the
arametrization on the accuracy of uh . For both, FEM and IgA approaches, the discretization process leads to large,
omplex and ill-conditioned linear systems, as k grows. We studied the performance of GMRES to solve the linear
ystem derived from IgA discretization of the radiation problem. Our studies have confirmed that in IgA context,
omplex Shifted Laplacian is also a very good preconditioner for the linear system derived from the discretization
f Helmholtz equation with mixed boundary conditions.

We have implemented IgA approach using the open source package GeoPDEs. The experiences obtained from
he intensive experimentation with our code confirm that compared to FEM, IgA produces smoother solutions with
935
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Fig. 13. Zoom of rectangular area shown in right column of Fig. 12 ( f = 1.25 MHz). Left: function |uh (0, y)| computed with FEM, right:
function |uh (0, y)| computed with IgA.

smaller pollution errors and substantially less degrees of freedom. Thanks to the skills and experiences acquired in
the solution of the 2D homogeneous radiation problem, we will be able in the near future to tackle more realistic
radiation problems, where an array of transducers emits the pulse in an heterogeneous medium.
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