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Abstract—Network recoverability refers to the ability of a 

network to recover to a desired performance level after suffering 

topological perturbations such as link failures. The minimum 

number of driver nodes is a typical metric to denote the network 

controllability. In this paper, we propose closed-form analytic 

approximations for the minimum number of driver nodes to 

investigate the recoverability of network controllability under 

link-based perturbations in two scenarios: 1) only the links which 

are damaged in the failure process can be recovered and 2) links 

can be established between any pair of nodes that have no link 

between them after the failure process. Results show that our 

approximations fit well with simulation results both in synthetic 

networks and real-world networks, such as swarm signaling 

networks and some communication networks. 

Keywords—recoverability, controllability, complex networks, 

failures 

I. INTRODUCTION 

Real-world networks are often confronted with topological 
perturbations such as failures or malicious attacks. For in- 
stance, in power grids, the breakdown of connections between 
different substations can be interpreted as random failures due 
to circuit aging or natural disasters. In transportation networks, 
betweenness-based targeted attacks can have a significant 
impact on normal operation [1]. Network robustness is 
interpreted as the change of network performance in response 
to perturbations or challenges imposed on the network [2], 
which has been widely studied. As the indicators of network 
performance, different metrics are investigated in face of 
topological perturbations, such as the effective graph resistance 
[3], the viral conductance [4], the size of the giant component 
[5], betweenness and eigenvector centrality, etc. 

In recent years, as the research on network 
controllability attracted more attention [6]-[9], the robustness 
of network controllability has been a hot topic. 
Controllability is an essential property for the safe and 
reliable operation of real-life infrastructures. A system is said 
to be controllable if it can be driven from any initial state to 
any desired final state by external inputs in finite time [9]. The 
robustness of the network controllability can be assessed by 
quantifying the increase in the minimum number ND of driver 
nodes, under perturbation of the network topology. Pu et al. 
[10] found that degree-based attacks are more efficient on 
network structural controllability than random attacks and 
cascading failures can also do great harm to network 
controllability. Nie et al. [11] found that the vulnerability of 
controllability under random and intentional attacks behave 
differently as the removal fraction increases. Lu et al. [12] 

discovered that a betweenness-based strategy is quite 
efficient to harm the controllability of real-world networks. 
Thomas et al. [13] identified that the potency of a degree-
based attack is directly related (on average) to the 
betweenness centrality of the edges being removed. 

Though the work mentioned above focuses on 
measuring the robustness of network controllability under 
failures and attacks, the recovery process after failures is not 
considered and the investigation on the ability of a network 
to recover from failures is lacking. In a broad sense, network 
robustness is also related to the ability of a network to return to 
a desired performance level after failures [14] which is 
interpreted as network recoverability in [15]. He et al. [15] 
proposed a general topological approach and recoverability 
indicators to quantify the network recoverability by applying 
the effective graph resistance and the network efficiency as 
robustness metrics. Based on the types of the recovery process, 
two scenarios are considered: 1) only the links which are 
damaged in the failure process can be recovered and 2) links 
can be established between any pair of nodes that have no link 
between them after the failure process. In this paper, we 
inherit the general topological approach but use network 
controllability as the robustness metric. Furthermore, we 
propose closed-form analytic approximations for network 
controllability denoted by the minimum number of driver 
nodes to investigate the recoverability of network 
controllability. 

This paper is organized as follows. In Section II, we 
introduce some basic concepts and definitions in network 
controllability proposed in [6] and illustrate the analytical 
approach to estimate the minimum number of driver nodes by 
generating functions. In Section III, we investigate the impact 
of topological perturbations on network controllability. In 
Section IV, we propose analytic approximations for the 

minimum number of driver nodes 
DN  in two scenarios and 

compare the performance of our approximations with 
simulation results. In Section V, we compare the efficiency of 
different recovery strategies in recovering network 
controllability. Section VI concludes the paper. 

II. NETWORK CONTROLLABILITY 

A. Structural Controllability Theory 

A system is controllable if it can be driven from any initial 
state to any desired final state by proper variable inputs in finite 
time [16]. Though most processes on real-world networks are 
non-linear, the controllability of nonlinear systems is in many 
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aspects structurally similar to that of linear systems [6]. We 
consider the linear time-invariant (LTI) dynamics of a directed 
network with N  nodes, which is described as: 

 ( )
( ) ( )

dx t
Ax t Bu t

dt
= +  () 

where the vector 
1 2( ) ( ( ), ( ), , ( ))T

Nx t x t x t x t=   is the state of 

N  nodes at time t ; the N N  matrix A  describes the 

network topology and the interaction strength between nodes. 
We assume that A  has no self-loops, i.e. all entries on the 
diagonal of A  are zero. The ( )N M M N   matrix B  is 

the input matrix which identifies the interaction between the 
internal nodes and external control. The 

vector
1 2( ) ( ( ), ( ), , ( ))T

Mu t u t u t u t=   expresses the signals that 

are imposed on the M internal nodes each of which is 
controlled by an external control. The M  internal nodes are 
referred to as driver nodes. 

A LTI system is controllable if the matrix 

 2 1( , , , , )NC B AB A B A B−=  () 

has full rank, i.e., ( )rank C N= . This criterion is called 

Kalman’s controllability rank condition [17].  

For a complex network system for which the matrix A 
is given, one needs to find a suitable input matrix B such 
that the system satisfies Kalman’s controllability condition 
which makes the network controllable. Liu et al. [6] 
introduced a feasible method to find the minimum number of 
driver nodes to control the network considering: (1) the 
specific weights between the nodes of the networks are usually 
unknown while only the topology of the network is known for 
real-world networks; (2) all nodes can be driver nodes which 
are attached to external controls to make the system fully 
controllable. However, it would be better if fewer nodes in 
the network are selected to control the whole   system. 

Liu et al. [6] proved that the minimum number of driver 
nodes needed for structural controllability, where the input 
signals are injected to control the directed network, can be 
obtained through the ``maximum matching'' of the network. 
The matching links of a directed graph G  is a set of links 

such that any two links in this set do not share any start or end 
nodes. A node is matched if it is an end node of a matching 
link. Otherwise, it is unmatched. Unmatched nodes are 
selected as driver nodes which are attached to external 
controls to make the network controllable. The minimum 

number 
DN  of driver nodes to fully control a directed 

network depends on the maximum matching of this network: 

 *{ ,1}DN max N M= −  () 

where N  is the size of the network and *M  denotes the size 

of the maximum matching 
*M  of the directed network. 

With the maximum matching, we are able to find the 
minimum number of driver nodes in our simulations as long as 

the topology of a network described by the matrix A  is 
known. 

B. Analytical Approximations for the Minimum Number of 

Driver Nodes 

The generating function is an important method in 
combinatorics, which relates a discrete number sequence to a 
formal power series. Generating functions can also be used in 
complex networks. In Li’s paper [18], the generating function 
is used to express the probability that all links of a randomly 
chosen node are in a specific state, which is written as: 

 

0

( ) k

k

k

G x p x


=

=   () 

where x  is the probability that a link is in a certain state, and 

kp  is the probability that this node has degree k . Let 1x = , 

then we obtain 
0

(1) 1kk
G p



=
= = . Besides, the average 

degree k  of the network can be expressed as: 

 '

0

(1) .k

k

k G kp


=

  = =    () 

We can also use the excess degree distribution [18] see Eq. 
6, to express the probability of a node with degree k  being 

reached through a randomly chosen link: 

 

0

.k k
k

kk

p k p k
q

kp k


=

= =
 

  () 

Therefore, the generating function for the excess degree 
distribution can be written as: 

 
'

1

'
1

( )
( ) .

(1)

k

k

k

G x
H x q x

G


−

=

= =   () 

Liu et al. proposed a method to compute the minimum 

fraction /D Dn N N=  of driver nodes [6]. The authors used 

approaches from statistical physics to derive the minimum 

fraction Dn  of driver nodes by using generating functions of 

out-degree and in-degree distributions. 

The general expression for the minimum fraction Dn  of 

driver nodes that Liu et al. [6] obtained is: 

 2 1 2

1 1 2 1 2

1
ˆ{ ( ) (1 ) 2 ( )

2

ˆ ˆ ˆ(1 ) ( (1 ) (1 ))},

D
D in in out

out

N
n G G G

N

G k

  

    

= = + − − +

+ − + − + −

 () 

where 
DN  is the minimum number of driver nodes, N  is the 

size of this network, k  is the average out-degree, ( )inG   and 

( )outG   are generating functions for the in-degree and the out-
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degree distribution, respectively. Besides, 1 , 2 , 1̂ , 2̂  

satisfy: 

 1 2
ˆ( ),outH =  () 

 2 1
ˆ1 (1 ),outH = − −  () 

 1 2
ˆ ( ),inH =  () 

 2 1
ˆ 1 (1 ),inH = − −   () 

where ( )inH   and ( )outH   are generating functions for the 

excess in-degree and the excess out-degree distribution, 

respectively. Letting 1 21 = −  and 1 2
ˆ ˆ1 = −  [19], the 

set of Eqs. 9-12 reduces to the pair of equations Eq. 9 and Eq. 
12. Thus, by applying the out- and in-degree distribution of a 

network into Eq. 8, the minimum fraction 
Dn  of driver nodes 

can be calculated. 

C. Networks for Case Study 

In Section II.A and II.B, we introduced the method to find 

the minimum number Dn  of driver nodes and the analytical 

approximation for Dn , respectively. In this section, we 

introduce the networks we used in this paper for case study and 
compare the analytical approximation with simulation results. 

1) Erdős-Rényi networks: Erdős-Rényi Network (ER 

network) consists of N  nodes, and the probability of a link 

between each pair of nodes is p . The degree distribution of 

the ER networks has the binomial distribution which 

approximates the Poisson distribution: 

 ( ) (1 )
!

k k
k N k

N k e
p k p p

k k

− 
−   

= −  
 

 () 

where ( 1)k p N  = −  is the average degree. 

We use the ( , )G N L  model to generate a directed ER 

network, i.e., a graph with N  isolated nodes is generated and 

then L  directed links are placed randomly. For ( , )G N L , the 

ER networks have N  nodes and L  links and its average out-

degree is /outk L N  = . 

For ER networks, the generating functions of the degree 
distributions are: 

  
(1 )( ) ,k x

outG x e− −=  () 

 
(1 )( ) ,k x

inG x e− −=   () 

 
(1 )( ) ,k x

outH x e− −=  () 

 
(1 )( ) .k x

inH x e− −=  () 

Then we deduce that the expression of the minimum 

fraction Dn  of driver nodes follows: 

 1 1 1

1( ) 1k k k

Dn e exp ke k e  − − −= + − − +  () 

where 
1  satisfies: 

 1

1 ( ).kexp ke  −= −   () 

We generate 1000 ER networks with the size 20000N =  

but with different out-degree k , ranging from 1 to 8 to 

compute the fraction of driver nodes. Figure 1 compares the 
average simulation results with the analytical approximation 

from Eq. 8. Each simulation result is the average value of Dn  

over 1000 ER networks with the same out-degree k . As shown 

in Figure 1, the discrepancy between simulation and analytical 
values is very tiny, which indicates that Eq. 8 can well estimate 

the minimum fraction Dn  of driver nodes to control the ER 

networks. 

 

Fig. 1. Performance comparison of the approximation Eq. 8 and simulations 

for 
Dn  of ER networks with 20000 nodes. 

2) Swarm signalling networks (SSNs): Kamareji et al. [20] 

discussed the resilience and controllability of dynamic 

collective behaviors. They investigated the dynamics of 

information transfer channels in swarm signaling networks 

based on a specific topology. A SSN is modeled as a directed 

network with k -regular out-degree distribution and Poisson 

in-degree distribution with average k  as: 

 ( ) ,
!

ink k

in in

in

k e
p k

k

−

=   () 

 ( ) ( ).out out outp k k k= −  () 

The basic generating algorithm of ( , )SSN N k  is as below: 

Step1: Generate a graph with N  isolated nodes; 

Step2: Iterate each node and randomly add k  directed links 

pointing to k  nodes that are randomly chosen. 
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The generating functions of SSN's degree distributions can 
be expressed as: 

 ( ) ,k

outG x x=  () 

 
(1 )( ) ,k x

inG x e− −=   () 

 
1( ) ,k

outH x x −=  () 

 
(1 )( ) .k x

inH x e− −=  () 

We deduce that for SSNs, the minimum fraction Dn  of 

driver nodes follows: 

 2 2 2(1 ) (1 ) (1 )

2(1 ) 1 (1 )k k kk

Dn e e k e  − − − − − −= − − + + −  () 

where
2  satisfies: 

 2(1 ) 1

21 (1 ) .k ke  − − −− = −  () 

In our simulations, we generate 1000 SSNs with the same 
number of nodes 20000 but with different out-degree k , 

ranging from 1 to 8, to compute the fraction of driver nodes by 
applying the maximum matching algorithm. The performance 
comparison of the average results from simulations and the 
analytical approximation is shown in Figure 2. Each simulation 

result is the average value of Dn  over 1000 SSNs with the 

same out-degree k . As shown in Figure 2, the approximation 

fits very well with simulation results, which means Eq. 8 has 

high accuracy in estimating the minimum fraction Dn  of driver 

nodes for SSNs. 

 

Fig. 2. Performance comparison of the approximation Eq. 8 and simulations 

for 
Dn  of SSNs with 20000 nodes. 

3) Real-world networks: We use some communication 

networks from the Topology Zoo [21] and the Network 

Repository [22] for the case study. The properties of the 4 

real-world networks are illustrated in Table I. where k   is 

the average out-degree, which equals the average in-degree. 

TABLE I. TOPOLOGICAL PROPERTIES OF 4 REAL-WORLD NETWORKS 

Networks N  L  k 

 Cogentco 197 243 1.234 
kdl 754 895 1.187 

routers 2114 6632 3.137 

WHOIS 7500 56900 7.587 

 
For real-world networks, the generating function of the 

degree distribution satisfies: 

 
1(0) (1) ( 1)

( )
nx n x

G x
N

−+  +    + − 
=   () 

where N  is the total number of nodes in the network, ( )m  

is the number of nodes whose degree equals m . 

III. NETWORK CONTROLLABILITY UNDER PERTURBATIONS 

As discussed in Section II.B, Eq. 8 provides us a method to 
analytically calculate the fraction of driver nodes in a network 
when the degree distribution is known. However, Eq. 8 is not 
directly applicable when perturbations occur in the network, 
such as when a fraction p  of links are randomly removed in 

an attack or a fraction f  of links are randomly added to the 

original network. In this section, we propose methods to 
calculate the minimum fraction of driver nodes for networks 
under perturbations. 

A. Removal of a Fraction p  of the Links at Random 

According to [23], the degree distribution after randomly 
removing a fraction p  of links, is given by 

 
0

1

[ ] (1 ) [ ]
N

i j i

G G

j i

j
Pr D i p p Pr D j

i

−
−

=

 
= = − = 

 
  (29) 

where /p i L= , i  is the number of removed links and L  is 

the initial number of links in the network. 
0

[ ]GPr D j=  is the 

degree distribution of the original network. 

Given the generating function ( )G x  for the initial network, 

the generating function ( )G x  of the degree distribution for the 

resulting network after removing at random a fraction p  of 

the links, satisfies: 

 ( ) ( (1 ) ),G x G p p x= + −  () 

See also [23]. It follows from Eq. 30 that the average 
degree after removal of a fraction p  of the links becomes 

(1 ) '(1).p G− From Eq. 7, we also obtain 

( ) ( (1 ) )H x H p p x= + − . By replacing the generating 

function ( )G x  in Eq. 8 with the generating function ( )G x , 

we can calculate the fraction of driver nodes in a network 
where a fraction p  of links is randomly removed. 
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1) Results for SSNs: After substituting the new generating 

functions ( )G x  into Eq. 8, the fraction Dn  of driver nodes in 

SSNs after a fraction p  of the links are removed satisfies [19]: 

 
2

2 2

(1 )(1 )

(1 )(1 ) (1 )(1 )

2

( (1 )(1 )) 1

(1 )(1 ) .

k p k

D

k p k p

n p p e

e k p e



 

− − −

− − − − − −

= + − − −

+ + − −
 () 

Applying Eq. 9, Eq. 12 and using the expressions for 
inH  

and 
outH , we obtain 

2  by solving: 

 2(1 )(1 ) 1

21 ( (1 )(1 )) .k p kp p e  − − − −− = + − −  () 

In our simulations, we generate SSNs with the same 
number of nodes 10000 but with different fixed out-degree k , 

which ranges from 1 to 8. For a SSN with a specific out-
degree, we randomly remove a fraction p  of links, where 

0p = , 0.2 or 0.5. The simulation results are the average 

values of Dn  for 1000 different attacked SSNs. In Figure 3, 

we compare the average simulation values and analytical 
values. 

When there is no link removal, i.e. 0p = , Eq. 31 gives 

the minimum fraction Dn  of driver nodes in the original 

network. As the value of p  increases from 0.2 to 0.5, the 

value of Dn  increases since more driver nodes are needed to 

make the network controllable. Figure 3 also illustrates that 
dense networks are easier to control than sparse networks, 
which have a smaller average degree. As Figure 3 shows, the 
simulations fit very well with the approximation Eq. 31. 

 

Fig. 3. Fraction of driver nodes for SSN with 10000 nodes as function of k  

for different values of p  under links removal. 

2) Results for ER networks: Following the same procedure 

as before, we obtain the analytical expression of Dn  for ER 

networks as follows: 

 
2

2 2

(1 )(1 )

(1 )(1 ) (1 )(1 )

2

exp( (1 ) ) 1

(1 )(1 ) ,

k p

D

k p k p

n k p e

e k p e



 

− − −

− − − − − −

= − − −

+ + − −
 () 

where 
2  satisfies the equation: 

 2(1 )(1 )

2 1 exp( (1 ) ).k pk p e  − − −= − − −  () 

 

Fig. 4. Fraction of driver nodes for ER networks with 10000 nodes as 

function of k  for different values of p  under links removal. 

We then compare the analytical results obtained by Eq. 33 
with simulation results. Each simulation result is the average 

values of Dn  over 1000 different attacked ER networks. As 

shown in Figure 4, our approximation for ER networks still 
fits well with the simulation results. 

B. Addition of a Fraction f  of the Links at Random 

According to [23], the degree distribution for adding a 
fraction f  of links at random, is given by 

 
0

0

1
[ ] (1 ) [ ]

i
N i i j i

G G

j

N j
Pr D i f f Pr D j

i j

− − −

=

− − 
= = − = 

− 
  () 

where ( )
2

N
f K L

 
= − 

 

, K  is the number of added links, 

2

N
L

 
− 

 

 is the number of all possible links to add.  Given the 

generating function ( )G x  for the initial network, the 

generating function ˆ( )G x  for the resulting network after 

randomly adding a fraction f  of links satisfies: 

 1ˆ ( ) (1 (1 )) ( )
1 (1 )

N x
G x f x G

f x

−= − −
− −

 () 

See [24]. It follows from Eq. 36 that the average degree 
after randomly adding a fraction f  of links becomes 

(1 ) '(1) ( 1)f G f N− + − . By replacing the generating function 

( )G x  in Eq. 8 by the generating function ˆ( )G x , we can 

calculate the fraction of driver nodes in a network where a 
fraction f  of links is added at random. 

1) Results for SSNs: After replacing the original 

generating function ( )G x  with the new generating functions 
ˆ( )G x  into Eq. 8, the fraction Dn  of driver nodes in SSNs after 

a fraction f  of the links is randomly added satisfies [24]: 

 
2 2 2

2

(1 ) (1 ) (1 ) 1

(1 )

2

(1 ) (1 )

1 (1 ) ,

k k kk N k

D

k

n e e fe

k e

  



− − − − − − − −

− −

= + − −

− + −

 () 
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where ( 1 )k k f N k= + − −  and 
2  satisfies: 

 
2 2

2

(1 ) (1 )1

2

(1 ) 2

(1 ) (1 ) ( ( 1) )

(1 ) .

k kk

k N k

k e k f N e

fe

 



 − − − −−

− − − −

− = −  − −

 −

() 

In our simulations, we generate SSNs with 10000 nodes but 
with different fixed out-degree k  that ranges from 1 to 8. For 

1000 SSN with specific degree, we randomly add a fraction f  

of links, where 63 10f −=   and 43 10f −=  . Figure 5 

compares the values from simulation and analytical 
approximations. 

The approximations exhibit a very good fit for the 

simulation when 63 10f −=  . However, when 43 10f −=  , 

there is a gap between the tail of the analytical approximation 
and that of the simulation, which means that when 

43 10f −=  , the analytical approximations do not fit with the 

simulations well when the degree is large. The reason is that 
according to Eq. 3, the number of driver nodes obtained 

through simulation is at least 1. Therefore Dn  is always at 

least 1/ N  where N  is the size of the network. Therefore, for 

10000N = , we can only validate values of Dn  larger than 

410− . 

 

Fig. 5. Fraction of driver nodes for SSNs with 10000 nodes as function of k  

for adding probability f  under links recovery. 

2) Results for ER networks: Following the same procedure 

as before, we obtain the analytical expression of Dn  for ER 

networks: 

 1 1 1

1( ) 1k k k

Dn e exp ke k e  − − −= + − − +   () 

where ( 1 )k k f N k= + − −  and 1

1 ( )kexp ke  −= − . We also 

generate ER networks with 10000 nodes but with different out-
degree that ranges from 1 to 8. The randomly links addition 

probability f  is set as 63 10f −=  . For a specific average 

degree k  and the probability f , 1000 ER networks are used 

for simulation. Figure 6 compares the average values of 
simulations with analytical approximations, and again shows a 
good fit between them. 

 

Fig. 6. Fraction of driver nodes for ER networks with 10000 nodes as 

function of k  for adding probability f  under links recovery. 

IV. RECOVERABILITY OF NETWORK CONTROLLABILITY 

In Section III, we investigated the impact of random link 

failures and random link additions on the fraction Dn  of driver 

nodes separately. However, it is natural and common in real 
life to consider recovering a network after failures occur in the 
network. He et al. [15] proposed a general topological 
approach to quantify the network recoverability which refers to 
the ability of a network to return to a desired performance level 
after suffering topological perturbations such as link failures. 
Based on the types of the recovery process, two scenarios are 
considered; Scenario A: links can be established between any 
pair of nodes that have no link between them after the failure 
process and Scenario B: only the links which are damaged in 
the failure process can be recovered. In this paper, we inherit 
the general topological approach but use network 
controllability as the robustness metric. 

A. R-Value 

The robustness of a network can be expressed in a 
mathematical way, through the so-called R-value, which 
quantifies the robustness of a network [2]. In our work, we use 

the normalized value of Dn  as the R-value whose value is 

between 0 and 1. The definition of R-value in this paper is: 

 

0

1
,

1

D

D

n
R value

n

−
− =

−
 () 

where 
0Dn  is the fraction of driver nodes in the original 

network, Dn  is the fraction of driver nodes during the attack 

phase and recovery phase. When Dn  is equal to 
0Dn , R equals 

1, which reflects the network’s controllability does not change. 
When the R-value equals 0, it means the network 
controllability is completely destroyed, and all nodes need to 

be controlled ( 1Dn = ) to control the whole network. 

A challenge indicates an event that changes the network 
topology and thus possibly changes the R-value. In this paper, 
we assume that changes do not happen at the same time. For 
link-based attack and recovery, an elementary challenge is one 
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link removal in the attack phase or one link addition in the 
recovery phase. Each challenge can change the network 
topology and the R-value. As a result, every perturbation in the 

attack and recovery process has its associated Dn  and R-value. 

A sequence of R-values can describe any realization with a 

number M  of elementary challenges, denoted by 1[ ] k MR k   , 

where k  is the sequence number of challenges. 

B. Envelopes 

As we discussed above, the impact of any realization of a 
failure and subsequent recovery process on the network's 
functionality can be expressed as a sequence of R-values 

[ ]R k , where k  is the sequence number of elementary 

challenges. To investigate the recoverability of networks, we 
need to know the number of challenges needed to make the 
original R-value (which is normalized to 1) decrease to a 
predefined R-threshold 1   in the failure process and also 

the number of challenges needed to increase the R-threshold   

back to the original R-value. This confines us to investigate the 
number of challenges K  as a function of a specific R-value r , 
i.e., { [ ]}K r . Thus, each value in { [ ]}K r  is the number of 

challenges that is needed to change the R-value to a specific R-
value r  for each realization. Considering that it is impossible 
to list all values of r  between the R-threshold   and the 

original R-value, we evenly sampled 1000H =  different r  

values in the interval [ ,1] . Thus, ( 1)(1 )

1
j

j
r

H




− −
= +

−
 

where j  is the j -th value of r . The envelope is constructed 

using all sequences { [ ]}K r  for 
1 2{ , ,..., }Hr r r r . The 

boundaries of the envelope are given by the extreme number of 
challenges K  

min 1 2[ ] {min( [ ]),min( [ ]),...,min( [ ])},HK r K r K r K r   (41) 

max 1 2[ ] {max( [ ]),max( [ ]),...,max( [ ])},HK r K r K r K r (42) 

which gives the best- and worst-case values of the robustness 
metrics for a network after a given number of recovery 
challenges. The expected number of challenges K  leading to 

the topological approach 
jr  is 

 
1 2[ ] { ( [ ]), ( [ ]),..., ( [ ])}.avg HK r E K r E K r E K r  () 

Since [ ]K r  defines a probability density function (pdf), we 

are interested in the percentiles of [ ]K r  

 
% % 1 % 2 %[ ] { [ ], [ ],..., [ ]},m m m m HK r K r K r K r  () 

where %[ ]mK r  are the points at which the cumulative 

distribution of [ ]K r  crosses /100m , namely 

%[ ] Pr[ [ ] ]
100

m

m
K r t K r t=   = . 

We apply the envelopes to present the behavior of the 
failure and recovery processes on a network [2], [25]. The 
envelope profiles the pdf of the random variables of the 

number of challenges K , which is the probability of a random 
variable to fall within a particular region. The area of the 
envelope can be regarded as the variation of the robustness 
impact of a certain series of challenges, which quantifies the 
uncertainty or the amount of risk due to perturbations [26]. 

C. Recovery in Scenario A 

In this paper, the R-value is the controllability metric of a 
network ( , )G N L . Attacking this network would make its 

minimum fraction Dn  of driver nodes increase. Thus, the R-

value decreases, which denotes the degradation of network 
controllability. The links are removed one by one until the R-
value reaches a predefined threshold R-threshold. The number 
of removed links that makes the R-value reach the predefined 

threshold is denoted as 
aK . Then the recovery process starts 

from the remaining network ( , )attacked aG N L K− . Scenario A 

assumes that the recovered links can be added between any two 
nodes in the complement of the graph after attacks if the 
elementary challenges are link-based removals and additions. 

For link-based random attack and random recovery in 

Scenario A, the generating function ( )G x  (given in Eq. 30) 

during the attack process and the generating function ( )G x  

during the subsequent recovery process [24] can be deduced 
following the method introduced in Section III: 

 
1

Attack : ( ) ( (1 ) ),

ecovery : ( ) (1 (1 )) ( ),
1 (1 )

N

G x G p p x

x
R G x f x G

f x

−

 = + −



= − −  − −

 () 

where /ap m L= , 
( 1)

r

a

m
f

N N L K
=

− − +
, am  is the 

number of removed links during the attack process and rm  is 

the number of recovered links in the recovery process. Recall 

that 
aK  denotes the number of removed links at the end of the 

attack process. The generating function ( )G x  in Eq. 45 can be 

deduced by replacing the generating function ( )G x  in Eq. 36 

with the generating function ( )G x . By applying Eq. 45 to Eq. 

8, we can approximate the fraction Dn  of driver nodes and the 

corresponding R-values in the random attack and recovery 
process. When a fraction p  of links is randomly attacked, the 

approximation for the fraction Dn  of driver nodes in SSNs 

follows Eq. 31. When a fraction f  of links is randomly 

recovered in the network after attack, the approximation for the 

fraction Dn  of driver nodes in SSNs follows: 

 
* *

1 2

1 2

ˆ(1 ) ( (1 ) ( 1 (1 )))

ˆ(1 ) 1 ( ),

D

in out

n k p f N k p

G G

 

 

= −  − + − − −

+ − − +
 () 

where * /ap K L= , 
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 1 * *( ) (1 (1 )) ( (1 ) ) ,
1 (1 )

N k
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x
G x f x p p

f x

−= − −  + −
− −

 () 
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1 1 (1 )( ) (1 (1 )) ,

x
k p

N f x

inG x f x e
− − −

− − −= − −    () 

and 
1  and 

2̂  follow from Eq. 9 and Eq. 12, after using the 

appropriate expressions for ( )outH x  and ( )inH x , which can be 

derived by applying Eq. 7 to ( )outG x  and ( )inG x  given above. 

In our simulation, the R-threshold is set to 0.9. We generate 
100 SSNs with the size 500N =  and the out-degree 2k = . Each 

realization consists of an attack process and the subsequent 
recovery process. 

Based on Eq. 45, the controllability of the attacked network 
can be analytically expressed during the subsequent recovery 
process in Scenario A. The top two sub-figures in Figure. 7 
exemplify the envelopes of the challenges in SSN for the 
controllability metric R-value in Scenario A, under the random 
attack and recovery strategy. The approximation fits very well 
with the simulation, which indicates the general formula Eq. 45 
works well. As shown in the bottom two sub-figures of Figure 
7, our approximation also fits well with the simulation results 
in real-world networks. We notice that our analytical 
approximations for network controllability perform better for 
kdl than Cogentco, as the method is based on statistical physics 
and performs better for large networks. 

D. Recovery in Scenario B 

The attack process in Scenario B is the same as in Scenario 
A. In the recovery process in Scenario B, all the links that are 
removed in the attack process are randomly added until the 
network returns to the original state under the link-based 
recovery. A symmetric method is used in Scenario B to express 
the generating function in the recovery process. By using the 

same notation as before, ( )G x  [27] and ( )G x  refer to the 

generating functions in the attack process and the subsequent 
recovery process, respectively. 

 
* *

Attack : ( ) ( (1 ) ),

ecovery : ( ) ( (1 ) ).

G x G p p x

R G x G p p x

 = + −


= + −

  () 

In the link-based attack process, /p m L=  is the fraction 

of the removed links, and m  is the number of removed links. 

In the link-based recovery process, * 2 aK m
p

L

−
= , where 

aK  is 

the number of removed links that makes the R-value reach the 
R-threshold. After applying Eq. 49 to Eq. 8, we can 

approximate the fraction Dn  of driver nodes and the 

corresponding R-values for Scenario B. 

When a fraction p  of links is randomly attacked, the 

approximation for the fraction Dn  of driver nodes in SSNs still 

follows Eq. 31. When the attacked links are randomly 

recovered, the approximation for the fraction Dn  of driver 

nodes in SSNs follows: 

 *

1 2 1 2
ˆ ˆ(1 ) 1 ( ) (1 ) (1 ),D in outn G G k p   = − − + + −  −  () 

where 

 * *( ) ( (1 ) ) ,k

outG x p p x= + −   () 

 
*(1 )(1 )( ) .k p x

outG x e− − −=   () 

In our simulations, we generate 100 SSNs with specific 

nodes number ( 500N = ) and a specific out-degree ( 2outk =  

or 4outk = ). Each network is simulated 100 times. We also use 

two real-world networks for simulations. For a specific real-
world network, we simulate 10000 times. Each realization 
consists of a link-based random attack process and a 
subsequent link-based random recovery process in Scenario B. 
Figure 8 illustrates the method predicts the network 
controllability well during the whole process, not only for SSN, 
but also for real-world networks. 

Comparing the figure for Scenario A and Scenario B, 
although the attack process is the same, the total number of 

challenges a rK K+  in Scenario A is larger than that in 

Scenario B. It means Scenario B can recover the network's 
controllability faster than Scenario A because Scenario B 
assumes it just recovers the attacked links. 

V. RECOVERY STRATEGIES 

For simplicity, we only consider the random attack strategy 
in the attack process and investigate the influence of different 
recovery strategies on network controllability. 

A. Scenario A 

In Scenario A, links can be added between any two nodes 
in the complement of the graph after attacks. Thus, the possible 
number of steps that is needed to recover the network 
controllability under the metric-based recovery strategies can 
be very large. Thus they are not suitable for Scenario A. In the 
following, three recovery strategies are discussed: 

Random Recovery. Random recovery is the easiest way 
that can be regarded as a self-repairing method after failures or 
a recovery method without scheduling. 

Greedy Recovery. The greedy recovery strategy is adding 
the link that makes the R-value increase the most in each 
challenge. However, there are many options to add links in 
each step. Thus, it is a computationally prohibitive task for 
large networks as the greedy strategy needs to compute all 
results and pick the best choice. 

Connect Recovery. The Connect recovery strategy is 
extended from [28], which proposed a general approach to 
optimize the controllability of complex networks by 
judiciously perturbing the network structure. There are three 
steps to use the connect recovery strategy: 

1. finding the minimum number of independent 
matching paths; 

2. randomly ordering all found matching paths; 
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3. linking the ending nodes of each matching path to the 
starting nodes of the matching paths next to it in order. 

There are three topologically structural cases [28] of a 
matching path, shown in Figure 9: 

(a) a chain: a path starts from an unmatched node and ends 
at a matched node without outgoing link belonging to the set of 
maximum matching; 

(b) a directed loop: a path starts from an arbitrary node in a 
directed loop and ends at the “superior” node that points at the 
starting node; 

(c) isolated node: a node without any link belonging to the 
set of the maximum matching. 

 

Fig. 7. Envelopes of the challenges for SSNs with 500 nodes and different average out-degree ( 2outk =  and 4outk = ) and two real-world networks (Cogentco 

and kdl) in Scenario A, by random attack and random recovery strategy. The threshold of the R-value is 0.9. Each envelope is based on 410  realizations. 

 

Fig. 8. Envelopes of the challenges for SSNs with 500 nodes and different average out-degree ( 2outk =  and 4outk = ) and two real-world networks (Cogentco 

and kdl) in Scenario B, by random attack and random recovery strategy. The threshold of the R-value is 0.9. Each envelope is based on 410  realizations. 
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As shown in Figure 10, both the greedy strategy and the 
connect strategy recover the controllability at the fastest speed. 

The number DN  of driver nodes becomes one less after every 

step under the two strategies. And their recovery speed is upper 
bounded by the random recovery envelopes. However, greedy 
recovery is a computationally prohibitive task for large 
networks as it needs to compute all possible outcomes and pick 
the best choice. The average computation time used for one 
realization is 8531s. In comparison, connect recovery strategy 
only costs 0.04s for one realization on average. The reason that 
the connect strategy just needs a little time to compute is that it 
only computes once before recovery to find all independent 
paths. Considering both the steps and time, the connect strategy 
is optimal for Scenario A. The second recommendation is the 
greedy strategy if the time is less important than the number of 
steps and the network is not too large. 

 

Fig. 9. Three cases of independent path. Unmatched nodes are shown in red 

and matched nodes are shown in blue. 

 

Fig. 10. Comparisons of different recovery strategies for SSN(500,2) in 

Scenario A. 

B. Scenario B 

Scenario B assumes that it only recovers the links that are 
removed during the attack process. Thus, the computational 
effort is much less than for Scenario A. We also divide the 
strategies into three categories: 

Random Recovery. The random recovery strategy refers to 
adding the removed links uniformly at random during the 
recovery process. 

Metric-based Recovery. The metric-based strategy 
determines the sequence of adding links that were attacked, by 
the topological metrics of links. Four recovery strategies based 
on metrics of links between node i  and node j  are considered: 

the minimum product of degree ( ( )i jmin d d ), the maximum 

product of degree ( ( )i jmax d d ), the minimum product of 

eigenvector centrality ( ( )i jmin c c ), and the maximum product 

of eigenvector centrality ( ( )i jmax c c ). In each challenge step 

during the recovery process under a specific strategy, a link 
with the related optimal metric is added. 

Greedy Recovery. The greedy recovery strategy is 
choosing the link to add in each step to increase the R-value the 
most from the links removed during the attack process. 

 

Fig. 11. Comparisons of different recovery strategies for SSN(500,2) in 

Scenario B. 

As shown in Figure 11, the greedy strategy outperforms 
other strategies as expected. And because links to be added are 
the removed links, the greedy strategy is scalable for large 
networks. The strategies which select and restore the link with 
the minimum degree product or minimum eigenvector 
centrality product perform better than random recovery. It is 
worth noting that the R-value as function of the number of 
challenges k  under the greedy strategy, minimum-degree 

product, and minimum-evc product are concave in the recovery 
process, which demonstrates the returns property of the 
recovery measures are diminishing. In contrast, the functions 
under the recovery strategies based on maximum degree-
product and maximum evc-product are convex, and the 
function under random recovery is approximately linear. What 
is more, the number of steps needed to make the R-value return 
to 1 in random recovery, the maximum degree-product strategy, 
and the maximum-evc product is the same because Scenario B 
recovers the links that are removed in the attack phase. 

VI. CONCLUSION 

In this study, we derived analytical approximations for the 

minimum number DN  of driver nodes needed to control 

networks during link-based random attacks and random 
additions respectively. Results show that our approximations 
fit well with simulation results both for random attacks and 
random link additions. Besides, we inherit the general 
topological approach but use network controllability as the 
robustness metric. Furthermore, we propose closed-form 
analytic approximations for network controllability to 
investigate the recoverability of network controllability for two 
scenarios. We validated that our approximations have high 
accuracy in estimating the fraction of driver nodes in some 
real-world and swarm signalling networks. We also found that 
the Connect Recovery strategy is comparable with Greedy 
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Recovery strategy in recovering controllability of networks but 
takes much less time for Scenario A. 
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