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ABSTRACT
Combining self-reports inwhich individuals reflect on their thoughts
and feelings (Experience Samples) with sensor data collected via
ubiquitous monitoring can provide researchers and applications
with detailed insights about human behavior and psychology. How-
ever, meaningfully associating these two sources of data with each
other is difficult: while it is natural for human beings to reflect
on their experience in terms of remembered episodes, it is an open
challenge to retrace this subjective organization in sensor data
referencing objective time.

Lifelogging is a specific approach to the ubiquitous monitoring of
individuals that can contribute to overcoming this recollection gap. It
strives to create a comprehensive timeline of semantic annotations
that reflect the impressions of the monitored person from his or
her own subjective point-of-view.

In this paper, we describe a novel approach for processing such
lifelogs to situate remembered experiences in an objective timeline.
It involves the computational modeling of individuals’ memory
processes to estimate segments within a lifelog acting as plausible
digital representations for their recollections. We report about an
empirical investigation in which we use our approach to discover
plausible representations for remembered social interactions be-
tween participants in a longitudinal study. In particular, we describe
an exploration of the behavior displayed by our model for memory
processes in this setting. Finally, we explore the representations
discovered for this study and discuss insights that might be gained
from them.
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1 INTRODUCTION
Experience Sampling Methods (ESMs) refer to a variety of approaches
used by researchers for collecting self-reports (e.g. with question-
naires) from individuals about their subjective impressions, thoughts
and feelings in the scope of their everyday lives [14]. Some studies
have used these methods for the collection of data detailing sub-
jects’ experiences during specific situations, e.g. social interactions
[12] or instances in which addicts experience craving [17].

Recently, studies have begun to combine this form of data col-
lection with ubiquitous monitoring via wearable sensors, e.g. to
investigate long-term team dynamics [11]. Such devices offer addi-
tional information about the behaviors displayed by participants,
as well as their corresponding context. In combination, these two
sources of information hold the potential to provide researchers
with a detailed description of how complex social and psychological
phenomena emerge and evolve over time [16].

However, an open challenge to unlocking the full potential of-
fered by such a synchronized description is to unpack which sensor
readings describe those moments in time that individuals are refer-
ring to in their self-reports. This is a difficult task, because of what
we will refer to in the following as the recollection gap: in contrast
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to sensor data, the subjective impressions that people are sharing in
this way are not referencing objective time periods. Instead, these
are grounded in the recollections of their past as specific Episodes .
These are mental constructs comprising slices of their previous
experience. They are primarily defined in terms of their content
(i.e. "what" they are about) [19], as well as their relative position
within the remembering person’s overarching life story [4].

While it is possible for people to provide an objective time for
the episodes that they remember, it appears difficult for them to
do so accurately or consistently (see e.g. [17]). Consequently, time-
based information alone is of limited help in bridging this gap.
Instead, we need to find a way of situating episodes within an
objective timeline, based on those attributes that define them for the
person undergoing recollection: elements of the episodic content
experienced and associations with their personal history.

Lifelogging is a special approach to ubiquitous monitoring that
can contribute towards such a human-centered approach for bridg-
ing the recollection gap. Instead of merely organizing data into
a timeline, lifelogging provides automatically-generated semantic
annotations along-side it. These are meant to approximate an in-
dividual’s subjective impressions in the situations that he or she
encounters while being monitored [9]. For example, a person may
be equipped with a wearable camera whose recorded images are
then automatically annotated with the labels of places or objects
that are visible in them. Because these labels are based on data that
was captured from a the subjective point-of-view of the person, they
may act as meaningful proxies for the person’s actual perceptions.
To highlight this connection, we will explicitly refer to annotations
created in such a fashion as Perception Proxies.

Importantly, these proxies may support anchoring remembered
episodes in an objective timeline: the places, people, or objects
that an individual experiences as part of an episode, may possess
corresponding proxies within their collected lifelog timeline. Con-
sequently, a segment of this timeline that corresponds with content
of the recollected episode, may serve as a plausible representation
for it. In essence, such Digital Episode Representations (DERs) allow
an estimate of when a given episode may have occurred, and for
how long it may have lasted.

In this article, we propose a novel approach for bridging the
recollection gap by discovering such plausible representations for
episodes of interest from lifelog data. In essence, it takes the form of
a computational model of the memory processes that have resulted
in the recollection of these specific episodes: when provided with a
description of a target episode (an indication what was remembered
by the person), it emulates the process leading to its recollection
by extracting some segment from the lifelog (an indication of what
has been experienced) that corresponds with it.

With respect to this, our primary contributions in this paper are
the following:

• We present an approach for computationally modeling in-
dividuals’ memory processes when responding to specific
requests for information about their past.

• We give a detailed explanation of a computational model for
the specific memory processes displayed by the participants
in a longitudinal study, reflecting about social interactions
with each other.

• We report on a series of empirical investigations in which
we explore the behavior of our model for the recollections
in this particular scenario, as well as the representations it
discovers.

2 RELATEDWORK
Important attributes that distinguish lifelogging from other ap-
proaches to the pervasive monitoring of individuals (such as surveil-
lance) include: 1) a focus on passive and continuous capture of data
related to a single individual [9], 2) the collection of data from a
subjective point-of-view through wearable devices (e.g. [13]), and 3)
a focus on the automatic annotation of data-traces with labels that
describe a person’s subjective impressions (e.g. by naming places,
objects or persons detected in visual data [6, 10]).

Technical approaches to construct lifelogs have adopted events
as a basic unit of organization for timelines [9]. Different methods
have been devised to provide automatic temporal segmentation
of multimodal data streams in such a fashion (e.g. [18]). Similarly,
research on lifelogging applications has explored the aggregation of
semantic annotations in a timeline to provide relevant descriptions
at this event-level [20]. However, the goal of such endeavors is not
to discover representations for specific episodes . Rather, they try
to create meaningful atomic units to manage and access the large
collections of personal data that are being produced by lifelogging
appliances [7, 9]. That is, their purpose is to facilitate generic infor-
mation retrieval tasks. As far as we are aware, no other work in the
lifelogging-domain has attempted to create digital representations
for episodes in the sense that we describe here.

3 OUR APPROACH
In summary, the approach that we propose for discovering repre-
sentations for remembered episodes consists of two steps:

(1) Constructing a computational model for the specific mem-
ory processes that have lead to the recollection of the target
episodes. In particular, this involves the specification of a
process for evaluating a segment of lifelog data for its corre-
spondence with these episodes.

(2) Applying this model to lifelogs from the individuals that
have remembered these target episodes, in order to identify
plausible representations for them.

In Section 4 we provide a general outline of our computational
model for memory processes underlying the recollection of episodes
when being asked for information about one’s past. In Section 5
we describe a dataset that was obtained as part of a longitudinal
study, and contains information describing recollected episodes in
addition to relevant lifelog timelines. It forms the context for an
empirical investigation of our approach in Section 6. There we give
an account of our computational model for participants’ memory
processes in this particular setting, and explore both its behavior
its results when discovering DERs.

4 A COMPUTATIONAL MODEL OF MEMORY
RESPONSES

Contemporary psychology generally agrees that access tomemories
describing personal experiences can take two basic forms: either



Figure 1: Overview of the proposedmodel formemory responses for discovering DERs. TheMemory Encoding Processing splits
a lifelog timeline into segments, which are evaluated for their correspondence with information about the episode at the stage
of Memory Retrieval Processing. The segment with the greatest correspondence is proposed as a candidate for representation.

they emerge on their own, based on associations with cues in one’s
environment, or one deliberately causes them by searching for
information about the past [5]. Requesting someone to provide
information about their past, as is done in experience sampling, can
be seen as instructing a person to initiate such a deliberate search.
In essence, the precise instructions that a person is provided define
some attributes that an episode needs to fulfill to be considered
as relevant for recollection. In the following, we will summarily
refer to all the cognitive processes that are undertaken by a person
to answer such a request about their past as his or her memory
response.

In this section, we introduce a computational model of such
responses for the purpose of discovering DERs. We will provide a
detailed description of the sub-processes constituting it, as well as
the representations that it draws on (see Figure 1 for an overview).

4.1 Memory Encoding Processing
Memory Encoding describes the cognitive process utilized by indi-
viduals to parse their continuous experiences into mental represen-
tations, which are later accessible as distinct episodes. An important
principle in human cognition for integrating experienced stimuli
into the same episodes is their consecutive temporal proximity
to each other [3, 8]. That is, information that is experienced as
occurring relatively close to each other, also tends to be recollected
as part of the same episode.

The sub-process of memory encoding processing in our model
operates according to this specific principle. It’s purpose is to emu-
late the memory encoding that has preceded the recollection of a
specific episode in a psychological plausible way.

When provided with a lifelog timeline, it splits it into a collection
of non-overlapping segments by grouping temporally close percep-
tion proxies together. Each of these segments is then considered to
be a potential candidate for representing the outcome of the mod-
eled memory response, i.e. the episode for which a corresponding
representation should be discovered.

For this purpose, let P = {p0,p1, . . . ,pn } denote a lifelog timeline
wherein each element is a timed perception proxy p. A perception
proxy itself takes the form of a 3-tuple (t ,a,o), were, t is a numerical
timestamp that denotes when the entry has been created, a is a
label that describes the content that it stands in for (e.g. the name
of a specific place or object that was encountered by a person), and
o is a unique identifier for the person from whose perspective it
was created.

The process of memory encoding then is denoted by the function
enc(P ,∆t). It partitions the contents of a lifelog timeline into a
collection of non-overlapping segmentsC = {C0,C1, . . . ,Cn }. This
segmentation is regulated by the parameter ∆t that denotes the
amount of time that can pass between two consecutive perception
proxies in the timeline P , before they are assigned to a different
segment (segmentation specificity):

∀C ∈ C

(
∀i

(
|t(pi+1) − t(pi)| < ∆t ∧ pi ∈ C ∧ pi+1 ∈ C

))
(1)

4.2 Memory Retrieval Processing
This stage approximates those cognitive processes that have re-
sulted in an individual’s willful recollection of a specific episode
as part of the modeled memory response. When provided with a



collection of candidate segments formed from a given lifelog time-
line, it assesses the degree to which each such segment corresponds
with information that is available about the episode for which a
DERs should be discovered.

To this end, it defines a computational evaluation procedure
represented by some function cor (C, s). Here C ∈ C is a specific
candidate segment under evaluation, while s refers to a collection
of available information about an episode that the individual has
recollected as part of the modeled memory response. The computa-
tional procedure for this evaluation of each segment can take any
information into account that is provided by the perception proxies
in its timeline. The outcome is a numerical score in the interval
[0, 1]. A result of 0 describes no correspondence with information
describing the episode, while a 1 stands for the greatest possible
degree of correspondence.

Given this, the lifelog segment that achieves the highest degree
of correspondence is chosen as the most plausible candidate for
representation of the episode:

E = argmax
C ∈C

(
cor (C, s)

)
(2)

5 THE DATASET
The dataset that we use for an empirical exploration of our approach
to discover episode representations was collected as part of a
longitudinal study about the dynamics of team-cohesion, and has
been utilized in previously published work (e.g [21]). It describes
the social interactions of six participants (here coded as P1 to P6)
within an isolated environment in the context of a simulated space
mission.

For our purposes, two types of records that were collected are
particularly relevant: 1) a range of experience samples in which
participants reflect about occurrences of social interactions with
each other, and 2) associated lifelog data from the perspective of
each participant. In the following we will describe relevant aspects
of these records and how theywere collected inmore detail. Because
one of the participants (coded P5) withdrew early from the study
for personal reasons, we disregard those records entirely from both
our description and modeling activities.

5.1 Experience Samples
Participants were instructed to provide structured reports about the
occurrence of social interactions twice-daily at fixed times: once in
the morning and once in the evening. Reports could be voluntar-
ily provided at any time through a computer-based questionnaire.
This questionnaire instructed participants to recollect and evaluate
the most recent social interaction that they had engaged in with
other members of the team. The information that they were re-
quired to provide about this interaction included the identity of
their interaction partners. Moreover, each reported instance could
also be annotated with one or more labels specifying the type of
interaction it pertained to. Choices that participants were provided
with included: Task Interaction related to Team Goals (T), Task Inter-
action related to Individual Responsibilities (I) or Social Interaction
(S). Additional evaluations that were requested from them involved
judgments of their experiences during the interaction, as well as its
perceived effectiveness. Additionally, the time at which participants

started and completed the form was automatically recorded by the
system.

Table 1 lists the experience samples available for each partici-
pants.

Table 1: Experience Samples per Participant.

P1 P2 P3 P4 P6 Total

N 193 197 151 140 190 871

A detailed look at this collection of reports also exemplifies some
of the practical challenges of situating episodes within an objective
timeline. While each experience sample possesses a timestamp for
when itself was provided by a participant, this does not necessarily
allow one to demarcate when the remembered episode itself took
place. Especially problematic w.r.t. this is that participants appear
to often cross the specified sampling intervals when providing
their reports. This can be spotted in Figure 2: there is an over-
proportionally large total share of samples present in the second
half of a days. This clearly indicates instances in which multiple
reports were provided in a narrow range within the same sampling
interval, i.e. in the evening. Because of this, it is no longer possible
to just use the timestamps associated with any report to situate the
episodes that they refer to even at a coarse level of half a day.

Figure 2: Distribution of the time when participants handed
in Experience Samples (hours)

5.2 Lifelog Timeline of Contact Detections
The dataset contains a range of records that have been obtained
through pervasive monitoring of participants’ behaviors during
their daily social interactions throughout the study. These record-
ings were collected by devices known as Sociometric Badges, wear-
able monitoring platforms that continuously sense their users’ rela-
tive motion, acoustic ambiance, and the proximity to other badges.
For an in-depth description of all the data captured by such a device
we refer the reader to [2].

Of relevance for the current study is that badges create a time-
line of annotations that uniquely identify any other badge they
encounter in close proximity. The devices create this informa-
tion through a hardware-based process: each device broadcasts
a uniquely identifiable infrared signal that can be received by other
badges within a reception cone with a 30 degree in a range of about
1.5 meters [1]. Research has demonstrated that this method is reli-
able at detecting co-location of wearers, but that its ability to do so
comprehensively is negatively impacted by barriers and the limited



detection range [1]. We will refer to this data for the remainder of
this article simply as Contact Detections.

Table 2 provides an overview of the total amount of such con-
tact detections that have been registered by the badges of each
participant in the study.

Table 2: Contact Detections per Participant.

P1 P2 P3 P4 P6 Total

N 28194 21840 30018 913 13142 94107

6 EMPIRICAL INVESTIGATIONS
In this section we describe a series of empirical investigations in
which we model the memory responses of participants in the previ-
ously described study to discover representations for the episodes
in our dataset.

As an initial step, we identified properties of the episodes that
participants have recollected as part of their memory response
which a plausible representation should correspond with. For this
we turned towards the data that is available as part of their self-
reported descriptions, as well as the instructions that they were
provided with. We identified the following two attributes:

• Presence: there is a part of participants’ self-reports that
details exactly which other people were present during the
episode that they refer to in their experience sample. This
means any plausible DERs should involve references to this
group of fellow participants.

• Recency: when prompted, participants were explicitly in-
structed to report the most recent instantiation of what they
considered to be a social interaction. Therefor, a plausible
representation will need to be situated in temporal proximity
to the moment of recall. This moment is documented as part
of their self-reported experience samples.

In the following, we first detail how we preprocessed the dataset
for usage in our empirical investigations. We then describe the
correspondence evaluation function that we modeled for the mem-
ory response in this study. Finally, we outline an experiment in
which we explore the degree of similarity of the correspondence in
the representation that our model is able to discover within- and
across-individuals. Finally, we provide an overview of the DERs
that our model proposes for the episodes in this dataset.

6.1 Data Preprocessing and Selection
In this section we account for how we preprocessed and selected
the elements from the dataset that we deemed relevant for discover-
ing representations that display correspondence with participants’
recollections in terms of their presence and recency.

For this purpose, we use information that was provided by par-
ticipants as part of their experience samples S = {s0, s1, . . . , sn },
and the contact detection-data that was recorded by the sociometric
badges of participants. We interpret the latter as a lifelog timeline
of perception proxies P = {p0,p1, . . . ,pm }.

Here, a single experience sample is a record s in the form of a
3-tuple (t ,R,o). Were, t , refers to an integer timestamp denoting

the time at which a sample was handed in by a participant, while
R refers to a set of labels that denote which other participants’
were reported as being present in the episode referred to by the
experience sample. Finally, o is a label denoting the identity of the
participant that is the author of the experience sample.

The available data on contact detections form a lifelog timeline
of individual records p that are timed perception proxies for the
presence of specific other participants. Each instance of such a proxy
is also represented in the form a 3-tuple, (t ,a,o). The meaning of
t is the time at which the record was created, a is the label of the
participant that was detected, and o is the label identifying the
participant from who’s perspective the proxy was recorded.

6.1.1 Preprocessing Experience Samples. We excluded 22 experi-
ence samples from the dataset due to malformed entries, or because
they were likely misreports. Additionally, we re-dated some self-
reports from within the pool of available samples for participants
as part of the preprocessing for our experiment. We modified all
reports that were handed in before 3am in the morning and for
which no available lifelog data exists for this period from within
the same day. In these cases we assumed that a sampling interval
had been skipped by participants, i.e. that they had reported an
episode from the day before. To more accurately reflect participants’
recollection behavior, we associated such samples with the previous
day (11:59:59pm).

6.1.2 Preprocessing Lifelog Data. The perception proxies con-
tained in the lifelog timelines of the study are not mutual. This
means that there exist instances where one participant’s records
indicate contact with another person, without that person’s sensor
producing a matching entry in their own lifelog timeline. However,
we assume that co-location at such close range as is being regis-
tered by the wearable sensor result in mutual perceptions between
participants (i.e. "If I see you, then you see me as well"). To reflect this,
we mirrored entries across participants’ timelines and combined
these mirrored versions with the original lifelogs into an extended
dataset P+. It fulfills the following constraints:

∀px ∈ P+∀py ∈ P+
(
px , py ∧ t(px ) = t(py )

∧ o(px ) = a(py ) ∧ a(px ) = o(py )

)
(3)

6.1.3 Alignment and Selection. Finally, we partitioned our lifelog
dataset P+ into individual segments, each spanning a period of time
in which representations for a specific experience sample should
be discovered. This means from the beginning of the same day on
which the episode has occurred, up to the moment it was reported.
That is, all parts resulting from this partitioning {P+0 , P

+
1 , . . . , P

+
n }

fulfill the following constraints:

∀i
(
∀p ∈ P+i

(
t(p) < t(si ) ∧ day(p) = day(si ) ∧ o(p) = o(si )

))
(4)

The result is an aligned dataset that contains parings of partic-
ipants’ experience samples with relevant segments from within
their lifelog timelines (P+i , si ).



From the total amount of 861 such pairings, not all did meet our
requirements. We removed an additional 220 such pairings, because
there was no lifelog data present for the relevant period of time.

Furthermore, we had to remove a set of 70 samples for which
there was no overlap between the people that were present in
a participant’s description of the episode that he/she recollected
for the experience sample and the associated lifelog data. Table 3
provides an overview of the remaining data pairings that we used
for our experiments split by participants.

Table 3: Final number of data pairs (P+i , si ) selected for usage
in our experiments.

P1 P2 P3 P4 P6 Total

N 152 146 138 24 112 572

6.2 Modeling Participants’ Memory Retrieval
Processing

In this section we describe our computational approach for as-
sessing the degree with which a lifelog segment displays corre-
spondence with the available information about an episode. As
mentioned above, we identified two attributes of the episodes in
this scenario that representations will need to meet: the presence of
specific other participants, and recency w.r.t. the moment of recall.

To assess the degree to which a lifelog segment corresponds with
these properties, we constructed the following evaluation function
cor :

cor (C, P , s) = pres(C, P , s) ∗ rec(C, P , s) (5)
where C is a given candidate segment of a participant’s lifelog

P , s is relevant information about the recollected episode. The total
evaluation of a candidate C consists of two partial functions, each
of which assesses the degree to which one of the correspondence
requirements is met. In our model, plausible representations need
to possess both attributes jointly for achieving maximum corre-
spondence.

6.2.1 Presence Evaluation. For assessing the correspondence
between a lifelog segment in terms of the people that were reported
as present by a participant, we compared the degree to which the
labels of the perception proxies it contains match their description
in the following way:

pres(C, P , s) =
sim(C, s)

simmax (P , s)
(6)

In this function, sim(C, s) is the Jaccard Similarity between the
set of all annotations describing the presence of participants in
the lifelog segment C and the set of labels that denote who was
present in the associated self-report s . We normalized this measure
over a value generated via the operation simmax (P , s). It denotes
the maximum possible overlap between the annotations contained
in the lifelog from which the segment under investigation was
createdP ⊇ C and the self-report s . The reason for this procedure is
that there are cases in which not all individuals that were reported
as present were also detected within the relevant lifelog. This may
be a result of the rather short detection range of the sociometric

badges, causing participants not to be registered, even though they
are perceived as present. Together, this function provides a relative
measure of a segment’s correspondence w.r.t. the presence of other
participants in the range from [0, 1]. A 0 denotes a total discrepancy
between the two accounts, while a 1 forms the best match possible
for a representation created from this particular lifelog timeline.

6.2.2 Recency Evaluation. Next, we devised an evaluation func-
tion to assess the degree to which a lifelog segment C under eval-
uation displays recency w.r.t. the moment at which the memory
response took place, as indicated by the timestamp in the associated
self-report s:

rec(C, P , s) = 1 −
(
(tr el (s, P) − tr el (C, P)

)
(7)

In essence, this function provides a measure between the time
when a self-report was provided, and the beginning of the lifelog
segment under evaluation (i.e. the timestamp of the first perception
proxy). Importantly, these moments transformed to their relative
position within the timeline of the lifelog from which the segment
was created P ⊇ C . This is achieved by normalizing both objective
timestamps over the duration that is covered by the lifelog time-
line, an operation that is denoted by timer el . The resulting overall
measure for recency for any given segment under evaluation falls
within the interval [0, 1], where a 0 denotes a maximally distant
segment (i.e. it is located at the furthers point away in the timeline
of the lifelog), while a 1 is a maximally recent one (it is the closest
point in the relative timeline of the lifelog).

6.3 Exploration of Similarity in Representation
Discovery

An implicit assumption of our model for the memory responses
in this study is that they are highly similar to each other. That is:
prompting individuals to remember experiences in their past using
the same prompt is assumed to result in a very similar form of
recollection for each instance, independently of who is confronted
with it, or when that is. Arguably, the existence of such a shared
memory response is an essential property for experience sampling.
Without it, these methods would not be able to provide comparable
information from different participants in a study and at different
moments in time.

In this section we explore whether our model would display a
behavior that reflects this propertywhen discovering correspondent
representations for episodes in this study.

To gain insights into this, we conducted three experiments us-
ing our preprocessed dataset in different cross-validation schemes.
These allowed us, to study the degree to which a model that was
trained to reflect the memory responses of some subset of our data,
would vary in the correspondence that it produces when being
applied to unseen instances.

6.3.1 Experimental Setup. For the purpose of this exploration
we devised the following three cross-validation schemes:

• WithinCV: For each participant we partitioned all available
pairings of (P+i , si ) into five segments. Each segment was
populated via random sampling without replacement. We



Table 4: Average Results for all Experiments

Type N AvgCor±SD (∆Train) AvgPres±SD (∆Train) AvgRec ±SD (∆Train)

WithinCV 25 .60 ± .09 (−.02) .73 ± .07 (−.01) .85 ± .08 (−.01)
StratCV 5 .59 ± .03 (−.01) .72 ± .03 (−.01) .85 ± .04 (< .00)
LopoCV 5 .58 ± .02 (−.02) .73 ± .07 (+.01) .83 ± .07 (−.02)

used this division in a 5-Fold Cross-Validation procedure for
training and testing of a model for each individual.

• StratCV: This experiment involves training and testing with
a 5-Fold Cross-Validation procedure. Each partition is pop-
ulated by randomly selecting pairings (P+i , si ) without re-
placement. The amount of pairings that are selected from
each participant’s data to populate a segment is proportional
to their share in the overall amount.

• LopoCV: In this experiment, we split all available pairings
(P+i , si ) into 5 segments. Each consists of all the data associ-
ated with a specific individual in the study. Training is then
undertaken in a Leave-One-Participant-Out fashion. That
means, we first train our model on data of 4 participants,
and then apply it to the held-out data from the remaining
individual.

The goal of the WithinCV-procedure was to gain insights into
the similarity of the correspondence-scores produced by our model
when trained and tested based on instances belonging to the same
individual. In contrast, both StratCV and LopoCV provide insights
into the consistency of the correspondence displayed by our model
for instances belonging to different participants in the study.

In order to reflect the memory responses underlying the episodes
described in the study, we train our model to learn a parameter ∆t
that maximizes the average correspondence of proposed represen-
tations over all available pairs of data (P+i , si ) that were assigned
to a particular segment of the training-data:

argmax
∆t

1
n

i=n∑ (
max

C ∈enc(P+i ,∆t )
cor (C, P+i , si )

)
(8)

Since in our scenario the timeline spanned by lifelogs consists
of only a single day, we optimized correspondence during training
with a sweep ∆t over the interval [0, 20000] (seconds). This means,
that two consecutive perception proxies in the lifelog cannot not be
farther apart than 5

1
2 hours from each other to be counted towards

the same segment. In situations where multiple optimal solutions
for ∆t were discovered in a training phase, we selected the one with
the smallest value. This corresponds with a preference for models
with a more specific segmentation over broader ones.

6.3.2 Results. The information in Table 4 represents the aver-
age results that were achieved in these experiments (i.e. averaged
over all folds). The optimized average correspondence for DERs
achieved by our model varied only minimally between the testing
and training phases (∆Train). This is the case independently of
whether it was trained to reflect memory responses within a single
participant, or when spanning data from different persons. More-
over, both the recency and presence components that comprise
these correspondence scores display such a similarity. We see in

this behavior a property that one would expect in an experience
sampling scenario, i.e. a substantial degree of similarity across all
instances of the memory responses. This adds further plausibility
to the representations that are discovered by our model for the
memory response in this scenario.

6.4 Exploration of Discovered Episode
Representations

In this section we explore the DERs that were discovered by our
model for the recollections of participants in this studywhen trained
in a person-independent fashion on all available pairings (P+i , si ).
The discussions in this section are not intended to provide a thor-
ough analysis of participants’ social interactions. Instead, they form
a demonstration of the insights that possession of DERs could pro-
vide to support researchers that undertake such an endeavor.

6.4.1 Time of Occurrence. Most of the discovered DERs are lo-
cated in the afternoon (M = 15.753.83, SD = 3.83, N = 571), but
they cover the entire waking day period of participants. Figure 3a
describes the distribution of where episode representations are sit-
uated, sorted according to how participants labeled the interactions
during them. A potential pattern that can be spotted when looking
at this distribution relates to representations for episodes which re-
volve around a mixture of individual responsibilities and socializing
(i.e. I+S-type interactions). These are generally situated at midday
(M = 13.65, SD = 3.22, N = 30). This is not the case for represen-
tations of episodes that are perceived as either being purely social
(S-type interactions,M = 16.23, SD = 3.86,N = 343), or to entirely
revolve around work (I-type interactions, M = 16.18, SD = 4.01,
N = 11). Both of these tend to be situated rather later in the day.
Together, this could indicate that the activities spanned by I+S in-
teractions describe meetings where individual tasks were discussed
among team-members over shared meals around lunchtime.

6.4.2 Duration. The average duration of the DERs discovered
by our approach was M = 2.25 minutes (SD = 5.12,N = 571).
Figure 3b describes their distribution according to the associated
interaction-type. The discovered DERs for purely social interac-
tions (S-type) tend to have the longest average duration (M = 2.42,
SD = 5.05,N = 343). On the other hand those that were charac-
terized as revolving around individual responsibilities take up the
shortest average amount of time (M = 0.62, SD = 0.74,N = 11).
This could be a result of the strongly task-oriented nature that par-
ticipants ascribe to these interactions, reflecting short and efficient
discussions.

6.4.3 Distance to Recall. Another interesting aspect of the dis-
covered DERs is their relative distance to the point in time at which
participants provided a corresponding self-report (see Figure 3c for



(a) Distribution of the Time of Occurrences for DERs, sorted by
Interaction-Type (in 24h-format).

(b) Distribution of the Duration of discovered DERs(Minutes) by
Interaction-Type.

(c) Distribution of the delay between the discovered DERs and the
moment of participants’ recollection (in Hrs).

Figure 3: Discovered Representations by Interaction Type.
Labels refer to T: Task Interaction related to Team Goals, I:
Task Interaction related to Individual Responsibilities, S: So-
cial Interaction. Labels combined with a ’+’ represent inter-
actions that were labeled as mixed by participants.

the distribution according to Interaction-Type). On average, repre-
sentations are situated around three hours before a participant’s
self-report (M = 2.71, SD = 2.91, N = 571). Such information could,
for example, be helpful in identifying an opportune structure for
requesting self-reports in a study.

7 SUMMARY AND CONCLUSION
The combination of ubiquitous monitoring and self-reported reflec-
tions into a synchronized timeline has potential for increasing our
understanding of how behavior emerges and unfolds in the scope
of everyday lives. We have argued that one principal challenge that
needs to be addressed to make progress towards providing such
a synchronized description, is to organize data in a fashion that
is analogous to how individuals experience their personal past in
recollection.

In this article, we have suggested that lifelogs form a meaningful
source for representations to anchor remembered episodes within
an objective timeline. To this end, we have described an approach for

discovering candidates for such representations by computationally
modeling the memory responses underlying their recollection. We
have applied this approach to a dataset describing recollections of
participants in a longitudinal study, and have argued that this has
resulted in plausible representations for them. Our brief exploration
of these representations has hinted at some of the insights that
might be gained about individuals’ social interactions through their
study.

Undertaking our empirical investigation has revealed several
opportunities for further exploration. First, while we consider the
discovered representations in our scenario as plausible, we did not
demonstrate that they are also accurate. That is, we have not pro-
vided empirical evidence for the degree to which their estimated
position in a timeline corresponds with the period referred to by
participants when providing a self-report. Future research might
explore ways of conducting such evaluations, as well as the collec-
tion of relevant data for it. Second, while annotations in a lifelog
timeline have the potential to indicate information that could have
been perceived by monitored individuals, they are not guaranteed
to reflect what actually was perceived by them. This is primarily
caused by their inability to mirror human attentional processes
when creating annotations. In our opinion, this forms a general
challenge for lifelogging as a research field. A starting point for
addressing it may be found in existing research that explores the
computational modeling of human attentional processes [15].

In summary, we see our approach as a contribution towards
enabling ubiquitous computing applications to create synchronized
descriptions that reflect how people experience their daily lives, as
well as how they behave in them. In our opinion, the information
provided by lifelogs forms a valuable resource for bridging the gap
between remembered experience and objectively collected data, and
its potential in this respect should be the target of further research.
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