From Static to Dynamic Visualization of the Sea Surface Height on a Web GIS Application

Georgios Dimopoulos

Mentor #1: Peter Van Oosterom

Mentor #2: Martijn Meijers

Deltares supervisors: Fedor Baart

Cindy Van de Vries

Contents

Motivation

Research Objectives

Related Work

Dataset

Methodology

Implementation/Results

Conclusions

Future Work

Contents

Motivation

Research Objectives

Related Work

Dataset

Methodology

Implementation/Results

Conclusions

Future Work

Motivation (General)

- The Climate is changing
- Ice loss in Greenland and Antarctica
- Extreme weather phenomena
- The Oceans are getting affected and they affect the climate

Sea Surface Height

- Ocean Topography
- Sea Surface Height → How much heat is stored in the ocean
- Sea Surface Height → water level of the ocean, indicator for ocean water volume
- Sea Surface Height Anomaly → difference with respect to reference level (typically 1993)
- Dynamic phenomenon (Change through time)
- Different phenomena → Different time scales
- Different spatial scales

Visualization

- A vast amount of spatial data are produced daily
- One of the best way of extracting information is by visualizing the data
- The vision is the most dominant sense within the human sensory system
- One of the oldest visualization techniques is Cartography (6200BC)

Geographic Information Systems

 The invention of the computers led to the development of the Geographic Information Systems (GIS)

"Geographic Information Systems (GISs) are computer-assisted systems for the capture, storage, retrieval, analysis and display of spatial data".

(Clarke, 1984)

The first GIS analysis: Charles Picket (France, 1832)

Interaction

 Advancement of the computer + Digital revolution → Interactivity

 Some scholars believe that even paper maps are interactive (rotate, move, draw, point)

The digital environment affords a wider array of

interactions

Web GIS

- Late 1980s the World Wide Web was invented
- The number of Web applications is in the rise and the GIS related are as well
- Main advantage:
 - Provides the opportunity to the user to access, analyze and visualize geographic information from anywhere at any time

Web GIS (Visualization)

Static

- Early 1990s
- Simple images

Interactive

AJAX

Google Maps, Microsoft Virtual

Earth, Yahoo Maps

Dynamic

- Animation
- First formats: GIF, SVG

TUDelft

OGC Standards

- Combine data from multiple sources
- Platform independence
- Not only for the user but also for software programs
- Need for interface standardization (Interoperability)
- Foundation of Open Geospatial Consortium
- WMS, WFS, WCS, WMTS, WPS, CSW etc
- Maybe now also a WVMS

Contents

Motivation

Research Objectives

Related Work

Dataset

Methodology

Implementation/Results

Conclusions

Future Work

Research Questions

Main:

"What is an optimal WebGIS-architecture for making an interactive - dynamic visualization of the sea-surface height phenomenon?"

Sub-questions:

- Sea surface height is a dynamic phenomenon (2.5D + time), what animation technique should be used and why?
- What elements of **interactivity** are relevant to a web mapping application and which ones should be implemented?
- What type of **architecture** is more appropriate for an implementation with these characteristics?

Research Scope

- No extended data analysis
- Interactivity

 Literature review/related work
- No usability test
- 2D + Time (Height represented with color)
- The architecture will be based on existing applications

Contents

Motivation

Research Objectives

Related Work

Dataset

Methodology

Implementation/Results

Conclusions

Future Work

Google Maps

- One of the first applications that introduced the tiled web maps (for zooming and panning)
- The tiling scheme that it was used is standardized

Google Maps (Tiling Scheme)

256x256 pixels

Origin (Upper left corner)

Bing Maps

TMS

Google Maps (Web Mercator)

- Based on Original Mercator Projection (Cylindrical + con-formal)
- WGS 84 ellipsoid
- Spherical Mercator equation (decreased computational cost)

85.051129 South

- Non conformal
- Lines of constant course are not straight

Animated Web Maps (Slideshow/GIF)

- Slideshow (CSS3/WebGL):
- + Good quality, interactive
- Storage requirements
- GIF:
- + Storage requirements
- Limited interactivity

Animated Web Maps (Video)

- + Interactive, Storage requirements
- Weird tiling scheme (1480x800), not interactive enough

Time Machine

Animated Web Maps (Virtual Globe + Video)

- + More immersive experience
- Limited interactivity

What This Application Looks Like?

Animation (Time Machine Implementation)

+ Google Maps Tilling Scheme

Reset Pause Play RdBu Spectral

+ Extra Interactivity (Coloring, querying, zoom in time)

Contents

Motivation

Research Objectives

Related Work

Dataset

Methodology

Implementation/Results

Conclusions

Future Work

Dataset

"JPL MEaSUREs Gridded Sea Surface Height Anomalies Version 1609" NASA provided dataset

- NetCDF format
- Spatial resolution: 0.17 degree
- Temporal resolution: 5 days
- Time span: 25 years
- 11.07 GiB in compressed TIFF files

Contents

Motivation

Research Objectives

Related Work

Dataset

Methodology

Implementation/Results

Conclusions

Future Work

Methodology (General)

- Answers the research questions
- 3 parts (animation, interactivity, architecture)
- Comparison between the different options and selection of the best solution

Animation (Part 1)

Animation Technique	Compression	Proprietary Status	Browser Compatibility	Interactivity Options
GIF	0	0	+	-
Slideshow	-	0	0	+
Video	+	0	0	+

Animation (Part 2)

- Compression Standards
- Containers
- HTML5 video element

	Compression and Quality	Proprietary Status	Browser Compatibility	Encoding Speed
OGG/Theora	-	0	0	+
MP4/H.264	-	-	+	+
MP4/H.265	0	-	-	0
WebM/VP8	-	+	0	0
WebM/VP9	0	+	0	0
WebM/AV1	+	+	-	-

Interactivity Elements (Handling the x and y coordinates)

- Zooming and Panning
- Tiling

Tiling Scheme	Storage Space	Synchronization Efficiency	Existing Technology Compatibility
Google Maps (256)	0	-	+
Mapbox (512)	+	0	+
Time Machine	-	+	-

Interactivity Elements (Handling the z coordinate)

- Video Filters & Canvas API → CPU
- WebGL → GPU

Coloring Options	Implementation Complexity	Performance	Multi Color Pallets
Video Filters (CSS3)	+	O	_
Canvas API	+	-	+
WebGL API	-	+	+

Interactivity Elements (Handling the Time Dimension)

Zooming in time: Like the zooming in space (global → continental → regional etc) → (yearly → monthly → weekly etc)

Coarse Data → Dense Data

Tiling Scheme	Implementation Complexity	Performance	Storage Requirements
Aggregation on Server (Multiple Directories)	+	+	-
Aggregation on Client (One Directory)	-	-	+

Interactivity Elements (Querying Capabilities)

The canvas element → color picking technic → color values → height values.

System Architecture

Contents

Motivation

Research Objectives

Related Work

Dataset

Methodology

Implementation/ Results

Conclusions

Future Work

Implementation/Results (General)

- Same Structure as the Methodology
- Its part will have 3 sections:
 - Tools Used
 - Implementation
 - Results

Animation (Part 1)

Tools Used: FFmpeg, Python Implementation:

ffmpeg.exe -framerate 10 -i videoTilesPerMonth_mp4/0/0/%03d.png -codec : vlibx264 -crf 22 -r 10 videoTilesPerMonth_mp4/0/0/0.mp4

Animation (Part 2)

Results:

Comparison Element	WebM/VP9	Mp4/H.264
Example File size (KB)	515	863
Bitrate (kbps)	330	270
Example Encoding Time (s)	1467	427

Animation (Part 3)

Results:

Handling the x and y coordinates (Part 1)

Tools Used(Server Side): Google Earth Engine **Implementation** (Server Side):

- For 256x256 pixels: Export.map.CloudStorage(image, polygon, bucket, file format, zoom levels)
- For 512x512 pixels:
 - (2*x, 2*y)
 - (2*x, 2*y+1)
 - $(2^*x+1, 2^*y)$

colu	ımn ow		
0,0	1,0	2,0	3,0
0,1	1,1	2,1	3,1
0,2	1,2	2,2	3,2
0,3	1,3	2,3	3,3

Handling the x and y coordinates (Part 2)

Tools Used(Client Side): Leaflet, Timing Object (advanced stopwatch)

Implementation (Client Side):

gridLayer(tile size, min/max zoom, bounds, buffer, opacity)

```
Src: "videoTiles/'+ coords.z + '/' + coords.x + '/' + coords.y + '.mp4"
```

• Sync:

```
var to = new TIMINGSRC.TimingObject();
var sync = MCorp.mediaSync(tile, to);
```


Handling the x and y coordinates (Part 3)

Results:

Directory size: 27.5 MB (512x512)

31.5 MB (256x256)

15s rule

Comparison Element	256x256	512x512
Loading time of zoom in (from level 1 to level 2)	1.8s	1.5s
Loading time of zoom out (from level 2 to level 3)	1.5s	1.1s
Loading time of panning one row (zoom level 3)	1.9s	1.1s

Handling the x and y coordinates (Part 4)

Results:

Reset Pause Play RdBu Spectral

Handling the z coordinate (Part 1)

Tools Used: Canvas API, d3.js Implementation:

- Create Two canvas elements
- Select pallet (eg. Spectral)
- Interpolation within the colors of the pallet
- ctx1.drawlmage(video)
- ctx1.getImageData
- data[i] = color.r
- data[i+1] = color.g
- data[i+2] = color.b
- ctx2.putImageData

Handling the z coordinate (Part 2)

Results:

Comparison Element	256x256	512x512
Loading time of zoom in (from level 1 to level 2)	1.9s	1.5s
Loading time of zoom out (from level 2 to level 3)	3.9s	2.8 s
Loading time of panning one row (zoom level 3)	2.7s	1.6s
Change of color (zoom level 3)	0.1 s	0.1 s

Handling the z coordinate (Part 3)

Results:

Reset Pause Play RdBu Spectral

Handling the Time Dimension

Tools Used: Google Earth Engine

Implementation:

ee.Filter.calendarRange

Mean (per month/per year)

Results: Reset Pause

Reset Pause Play RdBu Spectral

Querying Capabilities (Part 1)

Tools Used: Leaflet, Canvas API **Implementation**:

- canvas2.getContext('2d')
- ctx2.getImageData(x, y, 1, 1)
- Interpolate the color in order to take the Height

The main challenge was to get access to the canvas

Querying Capabilities (Part 2)

Result:

Reset Pause Play RdBu Spectral

System Architecture

Actor

Contents

Motivation

Research Objectives

Related Work

Dataset

Methodology

Implementation/Results

Conclusions

Future Work

Conclusions (Part 1)

Main research question: What is an optimal WebGIS-architecture for making an interactive - dynamic visualization of the sea-surface height phenomenon?

- Google Earth Engine Timelapse(Only other similar implementation)
- Comparison of the presented architecture with the Timelapse:
 - Similar Animation technique but better quality
 - Better storage handling
 - Better tiling scheme
 - Extra complication with the syncing but solved for the bigger part
 - More interactivity elements
 - More meaningful handling of time dimension

Conclusions (Part 2)

Sea surface height is a dynamic phenomenon (2.5D + time), what type of **animation** should be used and why?

- Slideshow, GIF, Video
- WebM, mp4, Theora
- VP8, VP9, <u>AV1, H.264</u>, H.265, OGG

What **elements of interactivity** are relevant to a web mapping application and which ones should be implemented?

- Handling the x and y coordinates
 - Google Maps(256x256), Mapbox(512x512), Time Machine (1480x800)
 - Timing Object

Conclusions (Part 3)

- Handling the z coordinate
 - CSS3 Filters, Canvas API, WebGL API
- Handling the time dimension
 - Server Side
 - Client Side
- Querying capabilities
 - Canvas API

What type of **architecture** is more appropriate for an implementation with these characteristics?

- Server Side only for preprocessing
- The web server is only for handling the video requests
- Client Side for interactivity elements (majority)

Contribution to the Field of Geomatics

- Dynamic Visualizations
- Video Tiles
- Video Syncing for fluid animation
- Zoom in Time
- Complex interactivity elements
- Real life application: <u>RWS Bathymetry</u>
- Scientific Contribution:
 - Video Map visual stories of change
 - Video Map generating and visualizing video map tiles from EO data

Discussion

- Corrupted Videos
- Syncing issues
- Tiles freezing
- Coloring with Canvas API is rather slow
- Due to client-based architecture it is rather heavy for the user's computer

Contents

Motivation

Research Objectives

Related Work

Dataset

Methodology

Implementation/Results

Conclusions

Future Work

Future Work

Towards a Reliable Working Prototype:

- Improved Use of Timing Object
- Create Interface
- Usability Test

Improving the Working Prototype:

- Use of WebGL API
- Improved querying options
- WVMS

New Applications Ideas

- 3D instead of 2D + color
- Vector data
- No preprocessing of the dataset
- Virtual globe

Thank You!

Questions?

