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ABSTRACT 

Though many enhancements are still possible and 
needed, data analytics software packages invaded 
all segments of industrial businesses. Since product 
designers are not specialized data analysts, an op-
portunity of enhancement is to provide advice by 
smart data analytics toolboxes (SDATBs). For in-
stance, SDATBs can provide guidance at selecting 
commercially available data analytics tools (DATs) 
for a specific design-related task. The reported work 
focused on the implementation of a recommendation 
functionality for selecting DATs for different appli-
cations. The paper presents the proposed solution, 
which (i) interprets the designer’s input, (ii) pro-
poses a description of the problem identified by the 
designer, (iii) reasons with the warehoused DATs 
and (iv) recommends DATs matching the designer’s 
task at hand. Besides presenting the needed func-
tionality, the rules used for selecting DATs are dis-
cussed and the computational algorithms are speci-
fied. A computational feasibility testing of the tool 
recommendation functionality has been done con-
sidering the application case of enhancing a wash-
ing machine by white goods designers. The testing 
process showed that the realized functionality works 
correctly from a computational point of view and 
that it achieves sufficiently good tool matching. It 
compensates for the knowledge lack of product de-
signers concerning selection of data analytics tools 
and reduces time and effort for tools selection. The 
outcomes of this study will be used in a follow up 
research to develop a SDATB providing even more 
comprehensive support for product designers. 

KEYWORDS 

Smart data analytics toolbox, task-relevant recom-
mendation, machine learning tools, data analytics 

tools, product enhancement, white goods, support 
for designers. 

1. INTRODUCTION  

1.1. Setting the stage 

Part of integrated software packages, data analytics 
tools (DATs) are used in multiples fields such as 
business, engineering, information technology, en-
vironmental studies, information systems and health 
informatics (Kalaian et al., 2019). Among others, 
they are used to extract valuable information and 
knowledge from huge amounts of data generated by 
products (Naaz & Siddiqui, 2019). Once the tools 
have sophisticated functionalities, they facilitate in-
formation integration and provide powerful insights 
to meet costumers needs and future market trends 
(Wang et al., 2018). In this decade, DATs have be-
come a critical component to support decision-mak-
ing processes in firms (Ghasemaghaei et al., 2018). 

However, as sophistication and complexity of the 
tools increase, their application by non-experts is be-
coming less intuitive. They also become more pro-
gramming intensive and need the know-how and 
background knowledge of data analysts and experts 
to get properly and efficiently used (Adhikari et al., 
2018). Otherwise they diverge from their main ob-
jectives: to be transparent for all kinds of users and 
to be able to rapidly analyze data (Fleckenstein & 
Fellows, 2018). It has been observed by many re-
searchers that the current DATs are hard to use by 
none data experts because they require high skill 
level and high efforts (Jin et al., 2017). In addition, 
designing smart products in a smart manner also 
raises new expectations towards integrated data an-
alytics software packages.  

Supporting designers and design processes of smart 
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products in a smart manner needs a reconsideration 
of both the strategy of data analytics and the func-
tionality of the DATs. Since product designers are 
far from being data analysts, they need both proce-
dural advice and decision support. Among other, 
these have been conceived as new functionalities for 
next generation data analytics software packages, 
called smart data analytics toolboxes (SDATBs). 
They need a reconsideration and functional adapta-
tion of the purpose and process of using data analyt-
ics tools and they have to keep up with the era of 
smart products. 

There are many new application contexts and func-
tionalities foreseen. For instance, since product de-
signers are far from being data analysts, their task 
completion can be supported by providing advices 
by a SDATB. A specific context considered in the 
paper, is to provide guidance at selecting data ana-
lytics tools (DATs) for a specific design-related task 
from the arsenal of commercially available tools. 
Due to the dynamic developments and the wide va-
riety of the machine and deep learning tools, non-
data scientist product designers strongly need this 
support (Ghoneim, 2018). 

The several challenges presented by data analytics 
tools, especially when it comes to the satisfaction of 
product designers’ needs, was investigated in one of 
our previous studies (Aboueddahab & Horváth, 
2018). Specifically, this study investigated the 
needs, dissatisfactions and expectations of designers 
of white goods regarding a next generation of DATs. 
The major findings were that white goods designers 
miss: (i) advising concerning applicability of data 
analytics tools and assistance in using them, (ii) sup-
port of acquiring and combining data from multiple 
data sources, (iii) combined and complementary use 
of qualitative and quantitative input data and (iv) 
means for fusing the output data of various commer-
cialized tools. 

To check the consistency of what was reflected by 
this investigation, the principles of axiomatic theory 
fusion approach were used to combine five compo-
site theories (Horváth, 2019). These theories dealt 
with (i) the explicit needs of designers, (ii) the issues 
of interoperability, principles of decision-making, 
(iii) the evolution of data analytics and (iv) the evo-
lution of enabling technologies and (v) the product 
design process. They proved to be useful constitu-
ents to build a robust and comprehensive conceptual 
basis for a knowledge platform for a SDATB. The 
results of the theory fusion study were in line with 

the findings of the first study. This confirmed our 
beliefs that there is a need to integrate support/help 
functionalities into SDATBs for designers, which 
assist them in their choices make them able to inter-
pret their data and select the most relevant tools and 
generate outputs proper in the given design context. 

1.2. Research interest and challenges 

The studied literature mainly focused on (i) big data 
handling and its challenges such as data capturing, 
curation, storage and data processing performances 
(Srinivasan & Kumari, 2018), or (ii) big data chal-
lenges related to interoperability issues, usability 
and programming using analytics frameworks (El-
shawi et al., 2018). The investigation related to data 
analytics tools concerned either (i) comparison and 
ranking of tools from the points of view of perfor-
mance and usage (Imran et al., 2018), or (ii) provid-
ing a goal-driven description (Saggi & Jain, 2018) 
and analysis of the offered functionality (Gautam & 
Pandey, 2019). 

Unfortunately, no work has been dedicated to the is-
sue of using DATs by product designers in the con-
text of product enhancement or other specific design 
tasks. While familiarity with data analytics pro-
cesses are crucial for product designers, they still 
miss knowledge on how to select the adequate tools 
for processing different types of massive data sets 
(Aboueddahab & Horváth, 2018). Consequently, the 
main assumption of our research was: 

Assumption: ‘Success of designers in product en-
hancement and innovation is negatively influ-
enced by the lack knowledge about the most ad-
vanced DATs included in SDATBs’. 

The objective of the research was to address the as-
sociated challenge driven by the following guiding 
research question: 

‘What functionalities are to be included in a data 
analytics toolbox to help designers (white goods) 
choose the best tool to accomplish their task?’ 

The hypothesis towards an explanatory theory for 
the research has been formulated as follow: 

Hypothesis: ‘A recommendation service concerning 
the selection of the most relevant and effective 
tools will support the activities of white goods de-
signers as well as enhance their experience with 
using DATs’. 

The objective of the research was to go beyond what 
was discussed in the literature and to deal with the 
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technical challenges of handling big data and data 
analytics tools. The conceived solution was develop-
ing a recommendation functionality that considers 
the context and specific tasks of designers and rec-
ommends the most adequate DATs for designers in 
order to aid data processing in a given context.  

1.3. The contents and structure of the 
rest of the paper 

The structuring of the paper’s content reflects the 
procedural logic of the realized research activities. 
The next section presents the research design, in-
cluding the reasoning model of the study, the differ-
ent types of recommendations, as well as, the re-
quirements of the realization of the recommendation 
functionality based on our approach. Section 3 intro-
duces and details deeply the recommendation func-
tionality, presenting their functional and algorithmic 
specifications. Section 4 is a demonstration of the 
recommendation in a real-life application case. It in-
cludes, the setting up, the realization and the inter-
pretation of the testing. Finally, Section 5 discusses 
the results of the study, concludes about the findings 
and sketches up shorter-term and longer-term re-
search activities. 

2. RESEARCH DESIGN 

2.1. Reasoning model of the study 

The research addressed in this paper was framed 
methodologically as a design inclusive research 
(DIR) (Horváth, 2007). It was organized in three 
phases (i) explorative, (ii) constructive and (iii) con-
firmative. The explorative phase started with deter-
mining the research objective based on a detailed 
analysis of the researched phenomenon and the ob-
served knowledge gap, driven by our research inter-
est. The objective was used to generate the idea and 
the requirement for the recommendation generation. 
As results, the fundamental concept of the function-
ality was specified. The outputs of this phase were 
used in the constructive phase, were the concept was 
generated, the functional decomposition established 
and the high level architecture built. These elements 
were used in defining computational techniques and 
algorithms to be implemented. The confirmative 
phase focused on testing the feasibility and the of all 
computational constructs and validate their results. 
In this phase an application case of a washing ma-
chine enhancement by white goods designers was 
used.  

2.2. Categories of recommendation 
functionalities 

Based on its smart recommendation functionality, a 
recommendation system typically generates and 
provides personalized suggestions to users from a 
large space of alternatives or items (Srivastava & 
Roy, 2018). There are two main types of recommen-
dation: (i) content-based filtering (Figure 1) and (ii) 
collaborative filtering (Figure 2). The first type con-
siders the previous preferences of the user and learns 
a preference model using feature-based representa-
tion of the content of recommendable items. The 
second type of recommendation identifies prefer-
ence patterns in the community of the user (Lops et 

 

Figure 1: Content-based filtering recommenda-
tion 

 

Figure 2: Collaborative filtering recommendation 

 

Figure 3: Hybrid recommendation 
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al., 2019). Another type of recommendation called 
hybrid recommendation was also found in the liter-
ature (Figure 3). It is a combination of content-based 
filtering and collaborative filtering approaches. Its 
objective is to attempt overcoming the short come of 
both approaches (Fu et al., 2018). 

The objective of the recommendation in this re-
search is to help product designers choose the best 
tool for processing data based on a specific design 
task from a set of data analytics tools. Consequently, 
the recommendation approach consists of recom-
mending an item (s) (in term of DATs) to a user (de-
signer) for whom the preferences are unknown. 
Based on provided user input (design task), a filter-
ing is applied to offer a ranked and limited set of 
tools that are proper for purpose and can meet user’s 
expectations. If two users provide the same input, a 
collaborative filtering is applied to provide similar 
best matching tools (Figure 4). 

The adopted approach is further detailed in the up-
coming sections of the paper and converted into 
functional specification, architecture, computational 
algorithms and rules. Going through these steps was 
challenging, not only for the novelty of the topic in 
product design context, but also for studying the 
computational feasibility and coding of the function-
ality. 

2.3. Requirements for developing the 
recommendation functionality 

Building a recommendation system is a task for soft-
ware engineering. Requirements engineering is 

known to be one of the most critical phases in soft-
ware development projects (Felfernig et al., 2013). 
If the requirements are poorly defined, the project 
often fails (Hofmann & Lehner, 2001). To define the 
requirements for the discussed project, a detailed in-
vestigation of the literature of existing recommenda-
tion systems and their requirements has been done 
(Ricci et al., 2011) (Felfering et al., 2014) (Bouzekri 
et al., 2017) (Li, 2019).  

The list of requirements was compiled so as to guide 
the specification of the functionality that is supposed 
to be provided in our specific context. The require-
ments have been organized into three categories, 
namely (i) basic requirements (BRx), (ii) require-
ments supporting designers’ needs (DRx) and (ii) 
technical requirements (TRx). All categories are de-
tailed below: 

 BR1: Computation of the recommendation func-
tionality should be robust and in the context 
of data analytics tools 

 BR2: The recommendation functionality should 
understand the input (design task) received 
by the designer 

 BR3: The recommendation functionality should 
semantically interpret the input received by 
the designer 

 

Figure 4: Recommendation for this research 

 

Figure 5: Reasoning model of the research  
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 BR4: The computational mechanism for the rec-
ommendation functionality should be line-
arly computable 

 DR1: Find some / all items (DATs) 

 DR2: Find a recommended sequence of items 

 DR3: Browse recommended items 

 DR4: Annotate in context the considered item  

 DR5: Reduce time for choosing item 

 DR6: Improve designer’s experience 

 TR1: Level of recommendation functionality 
must be identified 

 TR2: Development methods used for the recom-
mendation must be adequate with the level 
of recommendation 

 TR3: Tasks performed by the designer should be 
explicitly described 

 TR4: Presentation and interaction with the recom-
mendation functionality must not be error 
prone 

 TR5: Behavior of the functionality should be de-
scribed 

The established requirements will be used in all the 
remaining sections of this paper. 

3. DETAILING OF THE RECOMMENDA-
TION FUNCTIONALITY 

3.1. Introduction of the recommenda-
tion functionality 

The specific objective of the recommendation func-
tionality is to recommend the most adequate DATs 
for data processing in a given task context for de-
signers. This way, time and efforts associated with 
tool selection will be reduced. It is assumed that rec-
ommendation functionality (i) offers a semantic in-
terpretation of designer’s input, (ii) proposes a de-
scription of the problem identified by the designer, 
(iii) reasons with a wide range of DATs and (iv) rec-
ommends matching tools to use based on designer’s 
task. 

For the realization of this recommendation, inputs, 
outputs, principles and steps of the functionality are 
to be defined. As inputs, the functionality requires 
designers’ tasks (DTx). These DTx are to be identi-
fied and semantically analyzed to be matched with a 

set of DATx included in a warehouse of tools. The 
matching tools are to be ranked and the most serving 
one for designer’s purpose is to be displayed to de-
signer. Figure 6 shows the general idea underpinning 
the implementation of the recommendation func-
tionality.  

At this level some questions are to be answered to 
determine principles of the recommendation func-
tionality: ‘If we suppose that we have sets of DTx and 
DATx, how to match them? And if we are able to 
match them, how to select the best DATs to recom-
mend for a specific DT?’ 

To answer these questions, two categories of selec-
tion criteria have been specified. For the first ques-
tion, it was assumed that matching required the iden-
tification of similar features between tasks and tools. 
In this case, the common criteria between them need 
to be about “what is processed?”. So, three criteria 
have been considered: (i) data source of the dataset 
to be analyzed (DS), (ii) data category of the dataset 
(DC) and (iii) output of data analytics (DO). These 
element help creating a matching matrix between 
DATx and DTx.  

Concerning the ranking or the choice of the best tool, 
the focus in only on DATx and their performances. 
The criteria are about “how it is processed?”. So, 
three criteria have been identified (i) graphic capa-
bilities (C1), (ii) speed of computation (C2) and (iii) 

 
(1) DTx  
(2) DATx warehouse  
(3) DTx identification  
(4) Characterization of DTx and DATx  
(5) Matching DTx and DATx  
(6) Selection of probable DATx is offered 

Figure 6: Concept of recommendation function-
ality 
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computational performance (C3). A matrix of 
weights (W) has been allocated to all DAT based on 
their Cx to help ranking tools based on best/worst 
performances and propose to the designer the ones 
with the best computational performances. The 
(transpose) vector of weights is represented as: 
W*(WC1, WC2, WC3).  

In the next paragraph these elements and the logic 
behind them will be used to determine the functional 
specification of the recommendation functionality. 

3.2. Functional specification of the rec-
ommendation functionality 

The first step towards the functional specification of 
the recommendation functionality is the explicit 
specification of (i) the recommendation functional-
ity (RF), (ii) designers input for RF (DI) and (iii) the 
expected output (O).  

⎩
⎪
⎨

⎪
⎧

𝑹𝑭: Recommendation for probable data 
analytics tools

𝑫𝑰: 𝐷𝑒𝑠𝑖𝑔𝑛𝑒𝑟 𝑡𝑎𝑠𝑘 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦 ℎ𝑖𝑚/ℎ𝑒𝑟               
𝑶: 𝐹𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝐴𝑇𝑠 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑡𝑜   

𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑟

 

The second step is to determine the pre-established 
fixed elements included in the database of the DATB 
needed to achieve RF. These elements are the global 
inputs (Ix) for the functionality realization (system 
inputs) and they are: 

⎩
⎪
⎨

⎪
⎧

𝑆𝑒𝑡 𝑜𝑓 𝐷𝑇௫                                    

𝑆𝑒𝑡 𝑜𝑓 𝐷𝑆𝑇௫                                 
𝐿𝑖𝑏𝑟𝑎𝑟𝑦 𝑜𝑓 𝐷𝐴𝑇௫                        
𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝐷𝐴𝑇௫             
𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝐷𝑆𝑇௫              
𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝐷𝐴𝑇௫

 

DSTx presented above is a set of designers sub-tasks. 
It was added for the reason that task provided by a 
designer might be incomplete, insufficient or not 
concrete enough. So, it was decided to add DST to 
have bigger chances to cover all designer’s tasks. 
This means that every DT includes a set of DSTs. 

Before going deep into the decomposition of the 
functions for the recommendation. Let’s get familiar 
with the steps towards the recommendation (the high 
level functions). These steps are shown in Figure 7.  

The objective of a functional decomposition is to 
break down a system (in this case the recommenda-
tion functionality), starting with its main function 
and carry on with the intermediate levels functions 
up to the level of elementary functions (Erden, 

1998). As the main function is known and the inter-
mediate level functions are determined. Now, there 
are going to be used to obtain the lower level func-
tions. The decomposing is explained below. 

In order the system be able to recognize a DT speci-
fied by a designer (RF1,1), it should execute a number 
of few steps. When the designer specifies his task 
using his own words, the system should be able to 
compare this specification of the DT with already 
stored DTs and DSTs, by calculating the syntactic 
distance between designer’s inputs and the stored 
DTs and DSTs, and to select and retrieve the ones 
with the minimum distance. Since DSTs is more spe-
cific and provides more details than DTs, then the 
output of this sub-function is to retrieve the closest 
DSTs to DT written by designer. This output is used 
as input for the second sub-function dedicated to 
characterization of the chosen DST (RF1,2). As men-
tioned above, a DST is characterized by DS, DC and 
DO.  

The objective of the mentioned sub-function is to de-
termine all these characteristics for DST and to build 
a vector using these pieces of information, so as 
DST = [DS, DC, DO]*. This vector is used as input 
for the third sub-function to match DST with DAT 
(RF1,3). To do so, the same vector needs to be built 
for all DAT. Afterwards, they are used to calculate 
the distance between DST vector and all DAT vec-
tors. The tools retrieved are the ones with minimum 
distance to DST. In this step, the weights of the se-
lected tools are retrieved to be used together with the 
tools as inputs for the fourth sub-function (RF1,4) to 
rank DATs based on their Ws.  

The sum of weights for C1, C2 and C3 of every tool 
has to be calculated, then sorted from high to low 
value. This ranks the tools from the high matching 
to low matching with DTs. The DATs ranking is 
used as input for the fifth and last sub-function 

 

Figure 7: High level decomposition of RF 
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(RF1,5) that offers a finite list of ranked tools. To 
achieve this output, the tools with maximum sum 
value are selected and a final matrix of best matching 
DATs is produced. Figure 8 shows the low level of 
the functional decomposition of RF. 

3.3. Architectural design of the recom-
mendation mechanism 

The RF as mentioned earlier in the paper is part of a 
software package for data analytics. The whole sys-
tem is a next generation SDATB made for the pur-
pose of satisfying white goods designers’ needs. It 

facilitates their processing of data and supports them 
achieving their goal of enhancing white goods prod-
ucts based on product data. So, the RF is one module 
of the SDATB. In the architecture presented in this 
section, only the RF module is considered. Also, 
since it is the architecture of the module itself, the 
interactions between the system and the user are not 
detailed. 

In section 3.2, the global inputs for the accomplish-
ment of RF were discussed. As it can be seen, they 
are not all of the same nature. Correspondingly, 
while they are stored in the same database they re-
quire different manager units to interact with them. 
The DTs and DSTs are of the same nature, so one 
manager is able to deal with both. On the other hand, 
data analytics tools need a separate manager. The ar-
chitecture includes the system user interface from 
where the DT written by designer is gotten and 
where the finite set of DAT is sent back to the de-
signer. It is the way for the designer to communicate 
with the SDATB. Also, the database is represented. 
It includes sets of all global inputs.  

The architecture of the RF module is shown in Fig-
ure 9. First, the design task specified by the designer 
is transferred from the interface to the design task 
explorer for identification. The written task goes 
though similarity calculator that uses a search engine 
to compare it with DTs included in the database. 
When the matching happens, the task will be sent to 
the interface going through a query task manager for 
interpretation of the task. The same procedure will 
happen for the DST identification. A sub-task de-
scriptor is used to characterize DSTs to be used in 
the tools selection. This characterization is taken to 
the DATs explorer for matching. The explorer will 
search for tools in the database via the search engine 
and send them to the tools descriptor to look for ad-
equate tools to DSTS. The results are sent to the rec-
ommender agent to choose the best DATs to pro-
pose. This output is then interpreted via a query 
manager for DATs and the final best matching data 
analytics tools are sent to the system user interface 
to be seen by the designer. 

3.4. Specification of the algorithms 

The realization of RF requires a number of compu-
tational rules algorithms. The functional specifica-
tion and the architecture of the functionality show-
ing how all components of the module are coming 
together is the entry point to understand what is ex-
pected from the computation and according to what 

 

Figure 8: Low level decomposition of RF 
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logic and order. All algorithms are written with the 
resources of the Matlab software package.  

To realize the function RF1,1, a function calculating 
the minimum distance between DT of designer and 
available DTs in the system needs to be defined. 
This function is known as “EditDistance”. It is a 
standard dynamic programming problem. Given two 
strings s1 and s2 (e.g., words, sentences), the 
EditDistance between s1 and s2 is the minimum 
number of operations required to convert string s1 to 
s2. Using Matlab, the edit distance is defined as fol-
lows: 
 

1:    function [V,v] = EditDistance(string1,string2) 
2:         m = length(string1); 
3:         n = length(string2); 
4:         v = zeros(m+1,n+1); 
5:         for i = 1:1:m 
6:               v(i+1,1) = i; 
7:         end 
8:         for j = 1:1:n 
9:               v(1,j+1) = j; 

10:       end 
11:       for i = 1:m 
12:             for j = 1:n 
13:                   if (string1(i) == string2(j)) 
14:                       v(i+1,j+1) = v(i,j); 
15:                   else 
16:                       v(i+1,j+1) = 1+min(min(v(i+1,j), 

v(i,j+1)), v(i,j)); 
17:                   end 
18:             end 
19:       end 
20:       V = v(m+1,n+1); 
21:    end 
 

In the case of RF, s1 is the DT given by designer and 
instead of s2, all DTs saved in the system will be 
considered. This can be done by define-ng a charac-
ter array (char), that is a sequence of vectors (textual, 
numerical). The objective is not to calculate EditDis-
tance, but its minimum between DT of designer and 
char of DTs known to the system (general input 
number 1: I1) and DST (I2). The output is the DST 
closest to designer’s DT. To implement this func-
tionality, Algorithm 1 was implemented as shown 
above. 

The objective of RF1,2 is to characterize obtained 
DST based on DS, DC and DO. In order to deter-

 

Figure 9: Architecture of the recommendation 
system 

Algorithm 1. Retrieve DST with minimum dis-
tance to DT given by designer 

Inputs:           I1 = {DT1, DT2, ..., DTn} 
                       I2 = {DST1, DST2, ..., DSTn} 
                       I3 = DTx written by designer 
Outputs:       DSTx closest to I3  
1:    DTX = ' I3 '; 
2:    str = char(I2(1)); 
3:    s = 1000; 
4:    aux = str; 
5:    for idx1 = 1: length(I2) 
6:          str = char (I2(idx1)); 
7:          if   (EditDistance (DTX, str)<s) 
8:                s = EditDistance (DTX, str); 
9:                aux = str; 
10:              IND = idx 1; 
11:        end 
12:  end 
13:  if (IND < numerical value 1) 
14:        DTX = DT1; 
15:  elseif (IND < numerical value 2) 
16:        DTX = DT2; 

(continue until DTn-1) 
17:  else  
18:        DTX = DTn; 
19:  end 
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mine these characteristics, patterns have to be recog-
nized. For example, if the expression of DSTx re-
trieved starts with the word “analyzing” then DSTx 
can have one of two alternative characterizations, 
DCx = DC1 and Ox = [O1, O2], else DCx = DC2 and Ox 

= [O6, O8, O10]. For this sub-function, an implicit 
transformation matrix is used, which enables a 
slightly more complicated pattern recognition for 
DSx. The procedure consists of converting the tex-
tual description of DSTs to a vector of words, then 
compare it with constant character vectors represent-
ing relationships between DSTx and DSx. Two func-
tions are needed for this matter, (i)  “strsplit” to split 
strings (DSTx) and  (ii) “strcmp” to compare them. 
The output of RF1,2 is a DST vector including DS, 
DC and O. Algorithm 2 was implemented to achieve 
the output. The mentioned example is used to sim-
plify the writing of the algorithm. 
 
Algorithm 2. Build DSTs vectors 
Inputs:           I4 = {DS1, DS2, ..., DSn} 
                       I5 = {DC1, DC2, ..., DCn} 
                       I7 = {DAT1, DAT2, ..., DATn} 
Outputs:        DSTX vector [DSx, DCx, Ox]  
1:    DSTXVEC = strsplit(DSTX); 
2:    if (strcmp (DSTXVEC(1), ' word 2 ')) 
3:         DCX = DC1; 
4:         OX = {O1, O2}; 
5:    else   
6:         DCX = DC2; 
7:         OX = {O6, O8, O10}; 
8:    end  
9:    for idx1 = 2 : length (DSTXVEC) 
10:        if (strcmp (DSTXVEC(idx1), ' word 3 ' == 1 )  
11:             DSX = DS1; 
12:        end 
13:        if (strcmp (DSTXVEC(idx1), ' word 4 ' == 1 )  
14:             DSX = DS2; 
15:        end 
10:        if (strcmp (DSTXVEC(idx1), ' word n ' == 1 )  
11:             DSX = DSn; 
12:        end 
13:    end 

 
To realize RF1,3, first a cell array VectorTools need 
to be built for all DATs as shown in Algorithm 3. To 
better illustrate the logic of the algorithm flow and 
functioning, examples of possible inputs characteri-
zation have been used (e.g. Line 3 of Algorithm 3). 

Algorithm 3. Build vector DAT 
Inputs:        I4 = {DS1, DS2, ..., DSn} 
                    I5 = {DC1, DC2, ..., DCn} 
                    I6 = {O1, O2, ..., On} 
                    I7 = { DAT1, DAT2, ..., DATn } 

Outputs:    DATX vector [DSx, DCx, Ox] 
1:    for idx1 = 1 : length (I7) 
2:          if (idx1 == 1 | | idx == 4| | idx1 == 8)  
3:               DAT = [DS2  DS4  DC1];  
4:          else 
5:               DAT = [DS1  DS3  DS5  DS6  DC1  DC2]; 
6:         end 
7:         if (idx == 1) 
8:              DAT = [DAT  O5]; 
9:        else if (idx==4) 
10:            DAT = [DAT  O4]; 
11:        else  
12:            DAT = [DAT  O1]; 
13:        end 
14:        VectorTools {idx1} = DAT 
15:    end 

 
As a second step, Algorithm 4 calculates the distance 
between vectors DST and DAT. To do so, two func-
tions introduced (i) “strfind” determines patterns 
within strings and (ii) “isempty” checks whether a 
string is empty or not.  
 
Algorithm 4. Calculate distance between DSTs 

and DAT vectors  
Inputs:           no new inputs 
Outputs:        distance between DSTX and DATX 
1:    for idx = 1 : length (VectorTools) 
2:          distance = 0; 
3:          for idx2 = 1: length (DSTVECTOR) 
                   distance = distance + isempty (strfind (char 

(VectorTools (idx1)), DSTVECTOR 
(idx2))); 

4:          end 
5:          distanceVector(idx1) = distance; 
6:    end 

 
The third step is to sort DATs included in I7 accord-
ing to their distance to DAT. This is done by Algo-
rithm 5, shown below. The computational essence of 
the used algorithm is “bubble sort”, also known as 
sinking sort. It is a sorting algorithm that steps 
through a list, compares adjacent elements and shift 
them if they are in the wrong order. Its logical spec-
ification is as follows: 

Algorithm 5. Sorting DATs 
Inputs:           I7 = { DAT1, DAT2, ..., DATn } 

Outputs:        DATX sorted by distance 
1:    for idx = 1 : length (I7) : -1 : 1 
2:          for idx2 = 2 : idx1 
3:                if (distanceVector (idx2-1) > distanceVector 

(idx2)) 
4:                    tmp = I7 (idx2-1); 
5:                    I7 (idx2-1) = I7(idx2); 
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6:                    I7(idx2) = tmp; 
7:                    tmpd = distanceVector(idx2-1); 
8:                    distanceVector (idx2-1) = distanceVec-

tor(idx2);  
9:                    distanceVector (idx2) = tmpd; 
10:              end 
11:        end 
12:    end 

 
Once the distance is calculated, all DATs that have 
equal minimum distance (the most similar vectors to 
DST) are retrieved. The tools weights (I8) are also 
retrieved to be used later on. The computational de-
tails can be seen in the specification of Algorithm 6. 

Algorithm 6. Retrieve most similar DAT vectors 
to DST vector 

Inputs:           I8 = {W1, W2, ..., Wn} 
                       I7 = {DAT1, DAT2, ..., DATn} 
Outputs:        DATs with equal minimum distance 
                       to DST 
1:    distance = distanceVector (1); 
2:    DATs = [I7 (1)]; 
3:    weightsSimilarVector = [I8 (1)]; 
4:    i = 2; 
5:    While (distance == distanceVector (i))   
6:         DATs = [DATs  I7(i)]; 
7:         weightsSimilarVector = [weightsSimilarVector 

I8(i)]; 
              i = i+1; 
8:           if (i > length(distanceVector)) 
9:               break; 
10:         end 
11:    end 

In order to rank the tools with minimum distance to 
DAT, the matrix of weights is used. Every tool has 
3 different weights, one for each criterion (Cx). First, 
a vector of weights sum is generated. Then, the sum 
vector is sorted in a descendant order (RW: weights 
sorted or ranked). Correspondingly, the tools are 
also sorted (RT: ranked tools). The step is imple-
mented by Algorithm 7. 

The final step is to select tools of maximum sum and 
present the final set of the best matching tools to de-
signer. The function used is maxSom that deter-
mines the maximum sum of weights (MW). The 
simple logic of the considered algorithm is presented 
below (Algorithm 8). 

Algorithm 8. Retrieve best finite set of DATs 
Inputs:           no new inputs 
Outputs:        Matrix of DATs with high weights 
1:    MW = max(somWC1(1)); 
2:    FinalMatrixTi = []; 
3:    for i = 1: length(MW) 

4:          FinalMatrixTi(i) = [FinalMatrixTi, Tis(d(i))]; 
5:    end 

 
Considering the specification of the algorithms and 
the presented architecture of the recommendation, 
the relationship between algorithms was established. 
Figure 10 shows the communication between algo-
rithms, data exchanges and conditions. The elements 
in green are the data inputs and outputs of each al-
gorithm. It can be seen in the figure that some boxes 
do not belong to any algorithm. These are to be de-
termined when studying the type of interactions sys-
tem/system and system/designer, mentioned in the 
architecture as query managers and system user in-
terface. In this paper and in the demonstration pre-
sented in the next section, the focus is on evaluating 
the feasibility of RF from a computational point of 
view. For this reason, interactions and interface de-
velopment are not presented. 

4. A DEMONSTRATIVE APPLICATION 

4.1. Activation of the SDATB recom-
mendation function 

The goal of this demonstrative application is to acti-
vate the recommendation function (included in a 
next generation SDATB) in the case of a concrete 
application. For testing the feasibility of RF, we de-
cided to target an application related to white goods. 
This interest came from the fact that white goods 
cover a large field of product. They are heavy con-
sumer durables that include all home appliances re-
lated to refrigeration, cooking, washing and drying 
equipment, as well as, heating and cooling. Also, 
these products are equipped with advanced control 
units and a relatively high number of sensors able to 

Algorithm 7. Ranking DATs 
Inputs:           I8 = {W1, W2, ..., Wn} 
                       I7 = {DAT1, DAT2, ..., DATn} 
Outputs:        DATs sorted from high to low 
1:    for idx1 = 1 : length (weightsSimilarVector) 
2:          W = char(weightsSimilarVector(idx)); 
3:          WC1 = W(1); 
4:          WC2 = W(2); 
5:          WC3 = W(3); 
6:          somWC1 (idx1) = WC1 + WC2 + WC3; 
7:    end 
8:    RW = sort(somWC1, 'descend');  
9:    [c,d] = sort (somW1, ‘descend’); 
10:  RT = []; 
11:  for i = 1: length(somWC1) 
12:                 RT = [RT, Tis(d(i))]; 
13:  end 
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collected product data. The majority of them is 
known by the continues evolution towards smart 
products. In this sense, the agreement was to use the 
RF to recommend the appropriate DATs for design-
ers in the process of enhancement of a particular 
connected washing machine using SDATB. 

Before jumping into the testing of RF, the global in-
puts have to be specified. The first step is the identi-
fication of DTs and their related DSTs as I1 and I2. 
For the sake of simplification, three DTx are selected 
and DST will be represented as DTx,y (where x is the 
code of the main DT and y the order of the DST): 

 DT1: Enhancement of product performance: 

 DT1,1: Analyzing energy consumption 
 DT1,2: Analyzing water consumption 
 DT1,3: Analyzing temperature settings 
 DT1,4: Analyzing loading  
 DT1,5: Analyzing detergent usage 

 DT2: Enhancement of product design: 
 DT2,1: Analyzing most used features 
 DT2,2: Analyzing relationships between most 

 used features 
 DT2,3: Analyzing least used features 

 DT3: Enhancement of product life cycle: 
 DT3,1: Analyzing product components 

 

Figure 10: Logical flowchart of the recommendation functionality  
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 DT3,2: Scheduling of predictive maintenance 
 DT3,3: Scheduling of preventive maintenance 

 
The second step is the identification of DS of the 
washing machine. Seven data sources have been 
identified: 

 DS1: Temperature sensor (for DT1,3) 
 DS2: Water flow sensor (for DT1,2) 
 DS3: Load sensor (for DT1,4) 
 DS4: Detergent level sensor (for DT1,1, DT1,5) 
 DS5: Event log (for DT2,1, DT2,2, DT2,3, DT3,1) 
 DS6: Maintenance history (for DT3,2) 
 DS7: Maintenance report (for DT3,3) 
 
The third step is the identification of DC. For sim-
plification, two main categories of data were identi-
fied: 

 DC1: Big data (coming from DS1, DS2, DS3, DS4, 
 DS5) 

 DC2: Small data (coming from DS6, DS7) 
 
The fourth step is the identification of possible Ox 

based on data category. Since the testing is a feasi-
bility testing, a limited number of outputs is used: 

 O1: Plots (possible for DC1, DC2) 
 O2: Hierarchical tree (possible for DC1, DC2) 
 O3: Dendrogram (possible for DC2) 
 O4: Hyperplane (possible for DC2) 
 
The fifth step is the identification of DATs that are 
included in the SDATB (referred to as Tx, for sim-
plification and avoiding coding errors later on). For 
the purpose of demonstration, some machine learn-
ing tools from the “Statistics and machine learning 
toolbox” of Matlab were considered, as listed below: 

 T1: Support vector machines (can analyze DC2, 
 and provide O4) 

 T2: Decision trees (can analyze DC1 and DC2 and 
 provide O2) 

 T3: Classification trees (can analyze DC1, DC2, 
 O2) 

 T4: K-nearest neighbor (can analyze DC2 and 
 provide O1) 

 T5: K-means (can analyze DC1 and DC2 and 
 provide O1) 

 T6: K-medoids (can analyze DC1 and DC2 and 
 provide O1) 

 T7: Hierarchical clustering (can analyze DC2 and 
 provide O3) 

 T8: Gaussian mixture models (can analyze DC2 
 and O1) 

The last step is the identification of weight matrix 
for each of the tools according to C1, C2 and C3. If 
our algorithm was a machine learning one, the 
weights can be automatically defined. To avoid fun-
damental mistakes, it is important to mention that the 
weights were arbitrary generalized for the purpose 
of the testing purpose of RF and how the tools with 
high weights value were chosen. Below is the list of 
eight weight matrixes for the corresponding eight 
tools: 

 W1 = [3 10 5]; 
 W2 = [2 7 4]; 
 W3 = [8 3 1]; 
 W4 = [1 6 8]; 
 W5 = [7 5 5]; 
 W6 = [7 4 7]; 
 W7 = [10 1 1]; 
 W8 = [1 3 6]; 
 
Figure 6 is revisited, adapted and specialized to the 
application case, as shown in Figure 11. On the left 
side of Figure 6, abbreviations of designers tasks and 
sub-tasks that are detailed previously are cited. On 
the right side of the same figure, abbreviations of 
data analytics tools for testing are listed. In the mid-
dle of the figure is the matching matrix between de-
signer’s tasks and tools based on DS, DC and O cri-
teria. This figure is generated for the purpose of 
checking the validity of the RF. If the design task 
specified by the designer is closer to a specific DTx 
and DTx,y, as shown in Figure 11, then the DATs to 
be recommended for the designer should be the tools 
most corresponding to DTx and DTx,y in the list rep-
resented on the right side in Figure 11. The next step 

 

Figure 11: Adaptation of recommendation princi-
ple in a particular application case  
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is to test the feasibility of RF. 

4.2. Computational feasibility valida-
tion by processing the algorithms 

The testing of RF was completed by using Matlab. 
The starting point was the input of data from a white 
goods design exercise for which DATs will be se-
lected. The objective was to demonstrate that RF is 
computationally feasible. First, the sets of RF inputs 
and codes corresponding to all algorithms are in-
serted and written in a new “Matlab script”. Then, in 
order to be able to compile the script, the functions 
used in the algorithms and that are unknown to 
Matlab (all functions are presented in section 3.4) 
have to be defined (e.g. EditDistance).  
 
The sets of inputs are defined and inserted in Matlab 
as:  
 

%--------Designers Tasks-------- 
DT1 = 'Enhancement of product performance'; 
    DT11 = 'Analyzing energy consumption'; 
    DT12 = 'Analyzing water consumption'; 
    DT13 = 'Analyzing temperature settings'; 
    DT14 = 'Analyzing loading'; 
    DT15 = 'Analyzing detergent usage'; 

DT2 = 'Enhancement of product design'; 
    DT21 = 'Analyzing most used features'; 
    DT22 = 'Analyzing relationships between most 

used features'; 
    DT23 = 'Analyzing least used features'; 

DT3 = 'Enhancement of product life cycle'; 
    DT31 = 'Analyzing product components'; 
    DT32 = 'Scheduling of predictive maintenance'; 
    DT33 = 'Scheduling of preventive maintenance'; 

%--------Machine Learning tools-------- 
T1 = 'Support vector machines'; 
T2 = 'Decision trees'; 
T3 = 'Classification trees';  
T4 = 'K-nearest neighbor' ; 
T5 = 'K-means'; 
T6 = 'K-medoids';  
T7 = 'Hierarchical clustering'; 
T8 = 'Gaussian mixture models'; 

%--------Data Sources-------- 
DS1 = 'Temperature sensor'; 
DS2 = 'Water flow sensor'; 
DS3 = 'Load sensor'; 
DS4 = 'Detergent level sensor'; 
DS5 = 'Event log'; 

DS6 = 'Maintenance history'; 
DS7 = 'Maintenance report'; 

%--------Data categories-------- 
DC1 = 'Big Data'; 
DC2 = 'Small Data'; 

%--------Outputs expected-------- 
O1 = 'Plots'; 
O2 = 'Hierarchical tree'; 
O3 = 'Dendrogram'; 
O4 = 'Hyperplane'; 

 %--------Weights-------- 
W1 = [3 10 5]; 
W2 = [2 7 4]; 
W3 = [8 5 4]; 
W4 = [1 9 8]; 
W5 = [7 6 2]; 
W6 = [2 4 7]; 
W7 = [10 1 1]; 
W8 = [1 3 6]; 

 %--------GLOBAL INPUTS-------- 
ISB11 = {DT1, DT2, DT3};  
%set of tasks 
ISB12 = {DT11, DT12, DT13, DT14, DT15, 
DT21, DT22, DT23, DT31, DT32, DT33};  
%set of subtasks 
ISB14 = {T1, T2, T3, T4, T5, T6, T7, T8}; 

 

Figure 12: Process and outputs of RF1,1  
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%set of machine learning tools 
ISB110 = {W1, W2, W3, W4, W5, W6, W7, W8}; 
%weight matrix 
 
Now, it is time for the designer to write down his 
design task as an entry point to RF. In this test case, 
we consider that the designer wants to analyze a 
washing machine loading. We assume that he wrote 
the design task without “verb” as follow: DTX = 
‘washing machine load’.  

The pre-defined algorithms in Section 3.4 were con-
verted into codes in the particular application case 
and inserted in Matlab as well as the textual formu-
lation of DTX. Running the RF codes made us 
achieve the following: 

RF1,1 is represented in Figure 12. The obtained out-
puts are: DTx = DT1 =‘Enhancement of product per-
formance’ and DTx,y = DT1,4 = ‘Analyzing loading’. 
RF1,2 is represented in Figure 13.  

The output is a vector characterizing DT1,4 in terms 
of data source, data category and outputs. These 
characteristics are: DSx = DS3 = load sensor, DCx = 
DC1 = big data, O1 = plots and O2 = hierarchical tree. 
RF1,3 is represented in Figure 14. The output is a vec-
tor of data analytics tools matching DT1,4. These 
tools are: T2 = Decision trees, T3 = Classification 
trees, T5 = K-means, and T6 = K-medoids. 

RF1,4 is represented in Figure 15. The outputs 
are the matrix of sum of weights [18, 13, 17, 12] 
and the ordering of the sum matrix [18, 17, 13, 

12]. Finally, the ordering of tools is [T6, T5, T2, 
T3]. 

Finally, RF1,5 is represented in Figure 16. Two out-
puts are expected and obtained, the maximum sum 
of weights (18) and the corresponding tools to offer 
to designer, [T6].  

 

 

Figure 14: Process and outputs of RF1,3 

 

Figure 13: Process and outputs of RF1,2 

 

Figure 15: Process and outputs of RF1,4 
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By referring to Figure 11, the tools selected based on 
DTX (DT1) are [T2, …, T6] and the recommended 
one based on weight sum is [T6] (by calculating the 
weights sum). This means that RF provides the best 
match. 

4.3. Interpretation of test results 

The objective of the realized testing is to check the 
feasibility and the functionality of the recommenda-
tion. It consists of verifying if the algorithms do 
what they are supposed to do and if the requirements 
are fulfilled. In other words, the correctness of the 
computation and the achievement of sub-functions 
are evaluated. 

The results of the computational feasibility testing 
are shown from Figure 12 to Figure 16. By analyzing 
these figures from a feasibility perspective, the fol-
lowing points were identified: (i) the algorithms can 
be implemented, (ii) they are computationally cor-
rect, (iii) the codes do not contain any errors, (iv) 
each algorithm set of inputs and outputs is identical 
to the expected results presented in the algorithms 
description in section 3.4, (v) the algorithms com-
municate with each other, since the output of one al-
gorithm is the input for the following one, also (vi) 
no conversions of inputs or outputs were needed all 
along the functionality implementation. 

Based on the outcome of the computational feasibil-
ity testing, we may conclude that the flow of algo-
rithms is coherent and that recommendation function 
is dependable. By analyzing the whole of the com-
putational process, it was observed that starting from 
the initial input DTX given by the designer, the out-
put was a finite matrix of DATs with high weights 

values. This was also confirmed in section 4.2, 
where RF provided the same results both computa-
tionally and manually. If the designer provides the 
needed sufficiently complete specification of the in-
tended task, the tools to be used could be found (rec-
ommended) automatically. This leads to the conclu-
sion that the computational implementation of the 
RF module achieves the desired output. RF is also 
performant, since it (i) facilitates the choice process 
of designers, (ii) saves time and efforts related to this 
matter, and (iii) compensates for the lack of 
knowledge of the designer regarding DATs. 

Having the RF implemented as part of the next gen-
eration SDATB, semantic support can be provided 
for product designers. Instead of getting lost in the 
huge amount of DATs and their new updates, the de-
signers will get the information about the most suit-
able tools in seconds, while it would take long hours 
without this smart functionality. The proposed FR 
makes it possible for them to focus on their main-
stream design tasks enabling product enhancements, 
rather than being stuck with learning the capabilities 
of novel DATs when they want to get information 
from MoLD. They may avoid getting busy with in-
vestigating, studying and comparing DATs that 
might or might not be suitable for their DTX. 

5. DISCUSSION, CONCLUSIONS AND 
FUTURE WORK OF THE RESULTS 

5.1. Discussion 

The objective of the research presented in this paper 
is the specification and the implementation of a RF 
for a next generation SDATB in terms of algorithms 
and data constructs. Based on research actions dedi-
cated for this purpose, some limitations were recog-
nized. 

 Using machine learning algorithms might have re-
duced the time for code building. Since some in-
puts (e.g. weights, tools) can be generated and ad-
justed automatically. This is to be considered for 
future improvements of RF. 

 DTX are supposed to be known for the system. 
Syntactic matching is being implemented. This 
one of the RF limitations. A semantic matching 
based on synonyms is to be considered for the fu-
ture. 

 For the testing a small range of all system inputs 
are considered (DTX, DATs, ...) which made the 
computing easy to realize. In case of wide range of 

 

Figure 16: Process and outputs of RF1,5 
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inputs, the computing might be time consuming 
and human mistakes are likely to happen. In the 
future, automation methods for inputs insertion are 
to be studied. 

 The RF is being individually implemented which 
does not reflect the performance of the whole 
SDATB to which it belongs. RF needs to be tested 
in the future as part of the complete next genera-
tion SDATB.  

5.2. Conclusions 

The testing process and results showed that the rec-
ommendation functionality works correctly from a 
computational point of view. In our research, we did 
not test RF is a real-life environment, for the reason 
that it will go beyond the scope of the work that con-
sists of offering tools into solving design problems 
using machine learning tools. Another aspect not 
considered was: what to do if the tools proposed are 
with low weight or even no tool is proposed? This 
problem means that new tools are to be included in 
the SDATB, which remains a knowledge engineer 
task. 

The main conclusions of this work based on testing 
results are: 

 RF is able to interpret designer’s inputs and pro-
pose a description of the DTX identified. 

 RF reasons with DATs and recommends the best 
matching one to DTX. 

 The rule for DATs selection and recommendation 
is captured by their weight and the matching ma-
trix between DTs and DATs. 

 The recommended tool was proven to be the most 
adequate one based on DTX. 

 The recommendation function compensates for 
knowledge deficiency of DATs by product de-
signers in particular task. 

 The recommendation function reduces time and 
efforts associated with tool selection. 

5.3. Future research 

The on-going part of the research is to improve the 
recommendation functionality considering the rec-
ognized limitations. The outcomes of this study will 
be used in a follow up research to a develop a smart 
data analytics toolbox providing comprehensive 
support for product designers. 

Based on past studies a set of global set of needs and 
expectations of SDATB was determined. After fil-
tering of this set based on needs and expectations 
covered of partially covered by the literature, a final 
reduced set of needs and expectations of the SDATB 
was kept for further investigation. This final set will 
be used in the conceptualization of the next genera-
tion data analytics toolbox. It includes: (i) adaptation 
of the toolbox to the user, (ii) semantic interpretation 
of the analysis outcomes, (iii) learning from toolbox 
applications, (iv) affording permanent accessibility 
of the toolbox, and (v) offering a step by step assis-
tance all along the SDATB usage. In this sense, fu-
ture research activities consist of conceptualizing, 
architecting and computationally realizing all func-
tionalities to answer white goods designers needs 
presented in our background study. The structural 
and computational means for these functionalities 
combination will be studied. Finally, the set of func-
tionalities will be used to build a next generation 
smart data analytics toolbox tailored for white goods 
designers’ needs. The SDATB will include smart 
reasoning and learning mechanisms. These are 
needed to address meanings and semantic interpre-
tations in the process of analyzing design tasks.  This 
will make it easy for designer not only to analyze 
data but also to interpret them and make decisions 
about them. The smartness of SDATB will help in 
keeping up with the fast improvement of smart prod-
ucts.  
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