

Delft University of Technology

Recommendation functionality for smart data analytics toolbox to support choosing task-
relevant data analytics tools

Abou Eddahab, F.; Horvath, I.

Publication date
2020
Document Version
Proof
Published in
Tools and Methods of Competitive Engineering

Citation (APA)
Abou Eddahab, F., & Horvath, I. (2020). Recommendation functionality for smart data analytics toolbox to
support choosing task-relevant data analytics tools. In Tools and Methods of Competitive Engineering
https://www.researchgate.net/publication/376681955_Recommendation_functionality_for_a_smart_data_ana
lytics_toolbox_to_support_choosing_task-relevant_data_analytics_tools
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://www.researchgate.net/publication/376681955_Recommendation_functionality_for_a_smart_data_analytics_toolbox_to_support_choosing_task-relevant_data_analytics_tools
https://www.researchgate.net/publication/376681955_Recommendation_functionality_for_a_smart_data_analytics_toolbox_to_support_choosing_task-relevant_data_analytics_tools

Proceedings of TMCE 2020, 11-15 May, 2020, Dublin, Ireland, edited by I. Horváth and G. Keenaghan
 Organizing Committee of TMCE 2020, ISBN -----------------------------

 1

Recommendation functionality for a smart data analytics toolbox
to support choosing task-relevant data analytics tools

Fatima-Zahra Abou Eddahab
Department of Design Engineering

Delft University of Technology
f.aboueddahab@tudelft.nl

Imre Horváth

Department of Design Engineering
Delft University of Technology

i.horvath@tudelft.nl

ABSTRACT

Though many enhancements are still possible and
needed, data analytics software packages invaded
all segments of industrial businesses. Since product
designers are not specialized data analysts, an op-
portunity of enhancement is to provide advice by
smart data analytics toolboxes (SDATBs). For in-
stance, SDATBs can provide guidance at selecting
commercially available data analytics tools (DATs)
for a specific design-related task. The reported work
focused on the implementation of a recommendation
functionality for selecting DATs for different appli-
cations. The paper presents the proposed solution,
which (i) interprets the designer’s input, (ii) pro-
poses a description of the problem identified by the
designer, (iii) reasons with the warehoused DATs
and (iv) recommends DATs matching the designer’s
task at hand. Besides presenting the needed func-
tionality, the rules used for selecting DATs are dis-
cussed and the computational algorithms are speci-
fied. A computational feasibility testing of the tool
recommendation functionality has been done con-
sidering the application case of enhancing a wash-
ing machine by white goods designers. The testing
process showed that the realized functionality works
correctly from a computational point of view and
that it achieves sufficiently good tool matching. It
compensates for the knowledge lack of product de-
signers concerning selection of data analytics tools
and reduces time and effort for tools selection. The
outcomes of this study will be used in a follow up
research to develop a SDATB providing even more
comprehensive support for product designers.

KEYWORDS

Smart data analytics toolbox, task-relevant recom-
mendation, machine learning tools, data analytics

tools, product enhancement, white goods, support
for designers.

1. INTRODUCTION

1.1. Setting the stage

Part of integrated software packages, data analytics
tools (DATs) are used in multiples fields such as
business, engineering, information technology, en-
vironmental studies, information systems and health
informatics (Kalaian et al., 2019). Among others,
they are used to extract valuable information and
knowledge from huge amounts of data generated by
products (Naaz & Siddiqui, 2019). Once the tools
have sophisticated functionalities, they facilitate in-
formation integration and provide powerful insights
to meet costumers needs and future market trends
(Wang et al., 2018). In this decade, DATs have be-
come a critical component to support decision-mak-
ing processes in firms (Ghasemaghaei et al., 2018).

However, as sophistication and complexity of the
tools increase, their application by non-experts is be-
coming less intuitive. They also become more pro-
gramming intensive and need the know-how and
background knowledge of data analysts and experts
to get properly and efficiently used (Adhikari et al.,
2018). Otherwise they diverge from their main ob-
jectives: to be transparent for all kinds of users and
to be able to rapidly analyze data (Fleckenstein &
Fellows, 2018). It has been observed by many re-
searchers that the current DATs are hard to use by
none data experts because they require high skill
level and high efforts (Jin et al., 2017). In addition,
designing smart products in a smart manner also
raises new expectations towards integrated data an-
alytics software packages.

Supporting designers and design processes of smart

2 Fatima-Zahra Abou Eddahab and Imre Horváth

products in a smart manner needs a reconsideration
of both the strategy of data analytics and the func-
tionality of the DATs. Since product designers are
far from being data analysts, they need both proce-
dural advice and decision support. Among other,
these have been conceived as new functionalities for
next generation data analytics software packages,
called smart data analytics toolboxes (SDATBs).
They need a reconsideration and functional adapta-
tion of the purpose and process of using data analyt-
ics tools and they have to keep up with the era of
smart products.

There are many new application contexts and func-
tionalities foreseen. For instance, since product de-
signers are far from being data analysts, their task
completion can be supported by providing advices
by a SDATB. A specific context considered in the
paper, is to provide guidance at selecting data ana-
lytics tools (DATs) for a specific design-related task
from the arsenal of commercially available tools.
Due to the dynamic developments and the wide va-
riety of the machine and deep learning tools, non-
data scientist product designers strongly need this
support (Ghoneim, 2018).

The several challenges presented by data analytics
tools, especially when it comes to the satisfaction of
product designers’ needs, was investigated in one of
our previous studies (Aboueddahab & Horváth,
2018). Specifically, this study investigated the
needs, dissatisfactions and expectations of designers
of white goods regarding a next generation of DATs.
The major findings were that white goods designers
miss: (i) advising concerning applicability of data
analytics tools and assistance in using them, (ii) sup-
port of acquiring and combining data from multiple
data sources, (iii) combined and complementary use
of qualitative and quantitative input data and (iv)
means for fusing the output data of various commer-
cialized tools.

To check the consistency of what was reflected by
this investigation, the principles of axiomatic theory
fusion approach were used to combine five compo-
site theories (Horváth, 2019). These theories dealt
with (i) the explicit needs of designers, (ii) the issues
of interoperability, principles of decision-making,
(iii) the evolution of data analytics and (iv) the evo-
lution of enabling technologies and (v) the product
design process. They proved to be useful constitu-
ents to build a robust and comprehensive conceptual
basis for a knowledge platform for a SDATB. The
results of the theory fusion study were in line with

the findings of the first study. This confirmed our
beliefs that there is a need to integrate support/help
functionalities into SDATBs for designers, which
assist them in their choices make them able to inter-
pret their data and select the most relevant tools and
generate outputs proper in the given design context.

1.2. Research interest and challenges

The studied literature mainly focused on (i) big data
handling and its challenges such as data capturing,
curation, storage and data processing performances
(Srinivasan & Kumari, 2018), or (ii) big data chal-
lenges related to interoperability issues, usability
and programming using analytics frameworks (El-
shawi et al., 2018). The investigation related to data
analytics tools concerned either (i) comparison and
ranking of tools from the points of view of perfor-
mance and usage (Imran et al., 2018), or (ii) provid-
ing a goal-driven description (Saggi & Jain, 2018)
and analysis of the offered functionality (Gautam &
Pandey, 2019).

Unfortunately, no work has been dedicated to the is-
sue of using DATs by product designers in the con-
text of product enhancement or other specific design
tasks. While familiarity with data analytics pro-
cesses are crucial for product designers, they still
miss knowledge on how to select the adequate tools
for processing different types of massive data sets
(Aboueddahab & Horváth, 2018). Consequently, the
main assumption of our research was:

Assumption: ‘Success of designers in product en-
hancement and innovation is negatively influ-
enced by the lack knowledge about the most ad-
vanced DATs included in SDATBs’.

The objective of the research was to address the as-
sociated challenge driven by the following guiding
research question:

‘What functionalities are to be included in a data
analytics toolbox to help designers (white goods)
choose the best tool to accomplish their task?’

The hypothesis towards an explanatory theory for
the research has been formulated as follow:

Hypothesis: ‘A recommendation service concerning
the selection of the most relevant and effective
tools will support the activities of white goods de-
signers as well as enhance their experience with
using DATs’.

The objective of the research was to go beyond what
was discussed in the literature and to deal with the

 3

technical challenges of handling big data and data
analytics tools. The conceived solution was develop-
ing a recommendation functionality that considers
the context and specific tasks of designers and rec-
ommends the most adequate DATs for designers in
order to aid data processing in a given context.

1.3. The contents and structure of the
rest of the paper

The structuring of the paper’s content reflects the
procedural logic of the realized research activities.
The next section presents the research design, in-
cluding the reasoning model of the study, the differ-
ent types of recommendations, as well as, the re-
quirements of the realization of the recommendation
functionality based on our approach. Section 3 intro-
duces and details deeply the recommendation func-
tionality, presenting their functional and algorithmic
specifications. Section 4 is a demonstration of the
recommendation in a real-life application case. It in-
cludes, the setting up, the realization and the inter-
pretation of the testing. Finally, Section 5 discusses
the results of the study, concludes about the findings
and sketches up shorter-term and longer-term re-
search activities.

2. RESEARCH DESIGN

2.1. Reasoning model of the study

The research addressed in this paper was framed
methodologically as a design inclusive research
(DIR) (Horváth, 2007). It was organized in three
phases (i) explorative, (ii) constructive and (iii) con-
firmative. The explorative phase started with deter-
mining the research objective based on a detailed
analysis of the researched phenomenon and the ob-
served knowledge gap, driven by our research inter-
est. The objective was used to generate the idea and
the requirement for the recommendation generation.
As results, the fundamental concept of the function-
ality was specified. The outputs of this phase were
used in the constructive phase, were the concept was
generated, the functional decomposition established
and the high level architecture built. These elements
were used in defining computational techniques and
algorithms to be implemented. The confirmative
phase focused on testing the feasibility and the of all
computational constructs and validate their results.
In this phase an application case of a washing ma-
chine enhancement by white goods designers was
used.

2.2. Categories of recommendation
functionalities

Based on its smart recommendation functionality, a
recommendation system typically generates and
provides personalized suggestions to users from a
large space of alternatives or items (Srivastava &
Roy, 2018). There are two main types of recommen-
dation: (i) content-based filtering (Figure 1) and (ii)
collaborative filtering (Figure 2). The first type con-
siders the previous preferences of the user and learns
a preference model using feature-based representa-
tion of the content of recommendable items. The
second type of recommendation identifies prefer-
ence patterns in the community of the user (Lops et

Figure 1: Content-based filtering recommenda-
tion

Figure 2: Collaborative filtering recommendation

Figure 3: Hybrid recommendation

4 Fatima-Zahra Abou Eddahab and Imre Horváth

al., 2019). Another type of recommendation called
hybrid recommendation was also found in the liter-
ature (Figure 3). It is a combination of content-based
filtering and collaborative filtering approaches. Its
objective is to attempt overcoming the short come of
both approaches (Fu et al., 2018).

The objective of the recommendation in this re-
search is to help product designers choose the best
tool for processing data based on a specific design
task from a set of data analytics tools. Consequently,
the recommendation approach consists of recom-
mending an item (s) (in term of DATs) to a user (de-
signer) for whom the preferences are unknown.
Based on provided user input (design task), a filter-
ing is applied to offer a ranked and limited set of
tools that are proper for purpose and can meet user’s
expectations. If two users provide the same input, a
collaborative filtering is applied to provide similar
best matching tools (Figure 4).

The adopted approach is further detailed in the up-
coming sections of the paper and converted into
functional specification, architecture, computational
algorithms and rules. Going through these steps was
challenging, not only for the novelty of the topic in
product design context, but also for studying the
computational feasibility and coding of the function-
ality.

2.3. Requirements for developing the
recommendation functionality

Building a recommendation system is a task for soft-
ware engineering. Requirements engineering is

known to be one of the most critical phases in soft-
ware development projects (Felfernig et al., 2013).
If the requirements are poorly defined, the project
often fails (Hofmann & Lehner, 2001). To define the
requirements for the discussed project, a detailed in-
vestigation of the literature of existing recommenda-
tion systems and their requirements has been done
(Ricci et al., 2011) (Felfering et al., 2014) (Bouzekri
et al., 2017) (Li, 2019).

The list of requirements was compiled so as to guide
the specification of the functionality that is supposed
to be provided in our specific context. The require-
ments have been organized into three categories,
namely (i) basic requirements (BRx), (ii) require-
ments supporting designers’ needs (DRx) and (ii)
technical requirements (TRx). All categories are de-
tailed below:

 BR1: Computation of the recommendation func-
tionality should be robust and in the context
of data analytics tools

 BR2: The recommendation functionality should
understand the input (design task) received
by the designer

 BR3: The recommendation functionality should
semantically interpret the input received by
the designer

Figure 4: Recommendation for this research

Figure 5: Reasoning model of the research

 5

 BR4: The computational mechanism for the rec-
ommendation functionality should be line-
arly computable

 DR1: Find some / all items (DATs)

 DR2: Find a recommended sequence of items

 DR3: Browse recommended items

 DR4: Annotate in context the considered item

 DR5: Reduce time for choosing item

 DR6: Improve designer’s experience

 TR1: Level of recommendation functionality
must be identified

 TR2: Development methods used for the recom-
mendation must be adequate with the level
of recommendation

 TR3: Tasks performed by the designer should be
explicitly described

 TR4: Presentation and interaction with the recom-
mendation functionality must not be error
prone

 TR5: Behavior of the functionality should be de-
scribed

The established requirements will be used in all the
remaining sections of this paper.

3. DETAILING OF THE RECOMMENDA-
TION FUNCTIONALITY

3.1. Introduction of the recommenda-
tion functionality

The specific objective of the recommendation func-
tionality is to recommend the most adequate DATs
for data processing in a given task context for de-
signers. This way, time and efforts associated with
tool selection will be reduced. It is assumed that rec-
ommendation functionality (i) offers a semantic in-
terpretation of designer’s input, (ii) proposes a de-
scription of the problem identified by the designer,
(iii) reasons with a wide range of DATs and (iv) rec-
ommends matching tools to use based on designer’s
task.

For the realization of this recommendation, inputs,
outputs, principles and steps of the functionality are
to be defined. As inputs, the functionality requires
designers’ tasks (DTx). These DTx are to be identi-
fied and semantically analyzed to be matched with a

set of DATx included in a warehouse of tools. The
matching tools are to be ranked and the most serving
one for designer’s purpose is to be displayed to de-
signer. Figure 6 shows the general idea underpinning
the implementation of the recommendation func-
tionality.

At this level some questions are to be answered to
determine principles of the recommendation func-
tionality: ‘If we suppose that we have sets of DTx and
DATx, how to match them? And if we are able to
match them, how to select the best DATs to recom-
mend for a specific DT?’

To answer these questions, two categories of selec-
tion criteria have been specified. For the first ques-
tion, it was assumed that matching required the iden-
tification of similar features between tasks and tools.
In this case, the common criteria between them need
to be about “what is processed?”. So, three criteria
have been considered: (i) data source of the dataset
to be analyzed (DS), (ii) data category of the dataset
(DC) and (iii) output of data analytics (DO). These
element help creating a matching matrix between
DATx and DTx.

Concerning the ranking or the choice of the best tool,
the focus in only on DATx and their performances.
The criteria are about “how it is processed?”. So,
three criteria have been identified (i) graphic capa-
bilities (C1), (ii) speed of computation (C2) and (iii)

(1) DTx
(2) DATx warehouse
(3) DTx identification
(4) Characterization of DTx and DATx
(5) Matching DTx and DATx
(6) Selection of probable DATx is offered

Figure 6: Concept of recommendation function-
ality

6 Fatima-Zahra Abou Eddahab and Imre Horváth

computational performance (C3). A matrix of
weights (W) has been allocated to all DAT based on
their Cx to help ranking tools based on best/worst
performances and propose to the designer the ones
with the best computational performances. The
(transpose) vector of weights is represented as:
W*(WC1, WC2, WC3).

In the next paragraph these elements and the logic
behind them will be used to determine the functional
specification of the recommendation functionality.

3.2. Functional specification of the rec-
ommendation functionality

The first step towards the functional specification of
the recommendation functionality is the explicit
specification of (i) the recommendation functional-
ity (RF), (ii) designers input for RF (DI) and (iii) the
expected output (O).

⎩
⎪
⎨

⎪
⎧

𝑹𝑭: Recommendation for probable data
analytics tools

𝑫𝑰: 𝐷𝑒𝑠𝑖𝑔𝑛𝑒𝑟 𝑡𝑎𝑠𝑘 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑏𝑦 ℎ𝑖𝑚/ℎ𝑒𝑟
𝑶: 𝐹𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝐴𝑇𝑠 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑡𝑜

𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑟

The second step is to determine the pre-established
fixed elements included in the database of the DATB
needed to achieve RF. These elements are the global
inputs (Ix) for the functionality realization (system
inputs) and they are:

⎩
⎪
⎨

⎪
⎧

𝑆𝑒𝑡 𝑜𝑓 𝐷𝑇௫

𝑆𝑒𝑡 𝑜𝑓 𝐷𝑆𝑇௫
𝐿𝑖𝑏𝑟𝑎𝑟𝑦 𝑜𝑓 𝐷𝐴𝑇௫
𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝐷𝐴𝑇௫
𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝐷𝑆𝑇௫
𝑀𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝐷𝐴𝑇௫

DSTx presented above is a set of designers sub-tasks.
It was added for the reason that task provided by a
designer might be incomplete, insufficient or not
concrete enough. So, it was decided to add DST to
have bigger chances to cover all designer’s tasks.
This means that every DT includes a set of DSTs.

Before going deep into the decomposition of the
functions for the recommendation. Let’s get familiar
with the steps towards the recommendation (the high
level functions). These steps are shown in Figure 7.

The objective of a functional decomposition is to
break down a system (in this case the recommenda-
tion functionality), starting with its main function
and carry on with the intermediate levels functions
up to the level of elementary functions (Erden,

1998). As the main function is known and the inter-
mediate level functions are determined. Now, there
are going to be used to obtain the lower level func-
tions. The decomposing is explained below.

In order the system be able to recognize a DT speci-
fied by a designer (RF1,1), it should execute a number
of few steps. When the designer specifies his task
using his own words, the system should be able to
compare this specification of the DT with already
stored DTs and DSTs, by calculating the syntactic
distance between designer’s inputs and the stored
DTs and DSTs, and to select and retrieve the ones
with the minimum distance. Since DSTs is more spe-
cific and provides more details than DTs, then the
output of this sub-function is to retrieve the closest
DSTs to DT written by designer. This output is used
as input for the second sub-function dedicated to
characterization of the chosen DST (RF1,2). As men-
tioned above, a DST is characterized by DS, DC and
DO.

The objective of the mentioned sub-function is to de-
termine all these characteristics for DST and to build
a vector using these pieces of information, so as
DST = [DS, DC, DO]*. This vector is used as input
for the third sub-function to match DST with DAT
(RF1,3). To do so, the same vector needs to be built
for all DAT. Afterwards, they are used to calculate
the distance between DST vector and all DAT vec-
tors. The tools retrieved are the ones with minimum
distance to DST. In this step, the weights of the se-
lected tools are retrieved to be used together with the
tools as inputs for the fourth sub-function (RF1,4) to
rank DATs based on their Ws.

The sum of weights for C1, C2 and C3 of every tool
has to be calculated, then sorted from high to low
value. This ranks the tools from the high matching
to low matching with DTs. The DATs ranking is
used as input for the fifth and last sub-function

Figure 7: High level decomposition of RF

 7

(RF1,5) that offers a finite list of ranked tools. To
achieve this output, the tools with maximum sum
value are selected and a final matrix of best matching
DATs is produced. Figure 8 shows the low level of
the functional decomposition of RF.

3.3. Architectural design of the recom-
mendation mechanism

The RF as mentioned earlier in the paper is part of a
software package for data analytics. The whole sys-
tem is a next generation SDATB made for the pur-
pose of satisfying white goods designers’ needs. It

facilitates their processing of data and supports them
achieving their goal of enhancing white goods prod-
ucts based on product data. So, the RF is one module
of the SDATB. In the architecture presented in this
section, only the RF module is considered. Also,
since it is the architecture of the module itself, the
interactions between the system and the user are not
detailed.

In section 3.2, the global inputs for the accomplish-
ment of RF were discussed. As it can be seen, they
are not all of the same nature. Correspondingly,
while they are stored in the same database they re-
quire different manager units to interact with them.
The DTs and DSTs are of the same nature, so one
manager is able to deal with both. On the other hand,
data analytics tools need a separate manager. The ar-
chitecture includes the system user interface from
where the DT written by designer is gotten and
where the finite set of DAT is sent back to the de-
signer. It is the way for the designer to communicate
with the SDATB. Also, the database is represented.
It includes sets of all global inputs.

The architecture of the RF module is shown in Fig-
ure 9. First, the design task specified by the designer
is transferred from the interface to the design task
explorer for identification. The written task goes
though similarity calculator that uses a search engine
to compare it with DTs included in the database.
When the matching happens, the task will be sent to
the interface going through a query task manager for
interpretation of the task. The same procedure will
happen for the DST identification. A sub-task de-
scriptor is used to characterize DSTs to be used in
the tools selection. This characterization is taken to
the DATs explorer for matching. The explorer will
search for tools in the database via the search engine
and send them to the tools descriptor to look for ad-
equate tools to DSTS. The results are sent to the rec-
ommender agent to choose the best DATs to pro-
pose. This output is then interpreted via a query
manager for DATs and the final best matching data
analytics tools are sent to the system user interface
to be seen by the designer.

3.4. Specification of the algorithms

The realization of RF requires a number of compu-
tational rules algorithms. The functional specifica-
tion and the architecture of the functionality show-
ing how all components of the module are coming
together is the entry point to understand what is ex-
pected from the computation and according to what

Figure 8: Low level decomposition of RF

8 Fatima-Zahra Abou Eddahab and Imre Horváth

logic and order. All algorithms are written with the
resources of the Matlab software package.

To realize the function RF1,1, a function calculating
the minimum distance between DT of designer and
available DTs in the system needs to be defined.
This function is known as “EditDistance”. It is a
standard dynamic programming problem. Given two
strings s1 and s2 (e.g., words, sentences), the
EditDistance between s1 and s2 is the minimum
number of operations required to convert string s1 to
s2. Using Matlab, the edit distance is defined as fol-
lows:

1: function [V,v] = EditDistance(string1,string2)
2: m = length(string1);
3: n = length(string2);
4: v = zeros(m+1,n+1);
5: for i = 1:1:m
6: v(i+1,1) = i;
7: end
8: for j = 1:1:n
9: v(1,j+1) = j;

10: end
11: for i = 1:m
12: for j = 1:n
13: if (string1(i) == string2(j))
14: v(i+1,j+1) = v(i,j);
15: else
16: v(i+1,j+1) = 1+min(min(v(i+1,j),

v(i,j+1)), v(i,j));
17: end
18: end
19: end
20: V = v(m+1,n+1);
21: end

In the case of RF, s1 is the DT given by designer and
instead of s2, all DTs saved in the system will be
considered. This can be done by define-ng a charac-
ter array (char), that is a sequence of vectors (textual,
numerical). The objective is not to calculate EditDis-
tance, but its minimum between DT of designer and
char of DTs known to the system (general input
number 1: I1) and DST (I2). The output is the DST
closest to designer’s DT. To implement this func-
tionality, Algorithm 1 was implemented as shown
above.

The objective of RF1,2 is to characterize obtained
DST based on DS, DC and DO. In order to deter-

Figure 9: Architecture of the recommendation
system

Algorithm 1. Retrieve DST with minimum dis-
tance to DT given by designer

Inputs: I1 = {DT1, DT2, ..., DTn}
 I2 = {DST1, DST2, ..., DSTn}
 I3 = DTx written by designer
Outputs: DSTx closest to I3
1: DTX = ' I3 ';
2: str = char(I2(1));
3: s = 1000;
4: aux = str;
5: for idx1 = 1: length(I2)
6: str = char (I2(idx1));
7: if (EditDistance (DTX, str)<s)
8: s = EditDistance (DTX, str);
9: aux = str;
10: IND = idx 1;
11: end
12: end
13: if (IND < numerical value 1)
14: DTX = DT1;
15: elseif (IND < numerical value 2)
16: DTX = DT2;

(continue until DTn-1)
17: else
18: DTX = DTn;
19: end

 9

mine these characteristics, patterns have to be recog-
nized. For example, if the expression of DSTx re-
trieved starts with the word “analyzing” then DSTx
can have one of two alternative characterizations,
DCx = DC1 and Ox = [O1, O2], else DCx = DC2 and Ox

= [O6, O8, O10]. For this sub-function, an implicit
transformation matrix is used, which enables a
slightly more complicated pattern recognition for
DSx. The procedure consists of converting the tex-
tual description of DSTs to a vector of words, then
compare it with constant character vectors represent-
ing relationships between DSTx and DSx. Two func-
tions are needed for this matter, (i) “strsplit” to split
strings (DSTx) and (ii) “strcmp” to compare them.
The output of RF1,2 is a DST vector including DS,
DC and O. Algorithm 2 was implemented to achieve
the output. The mentioned example is used to sim-
plify the writing of the algorithm.

Algorithm 2. Build DSTs vectors
Inputs: I4 = {DS1, DS2, ..., DSn}
 I5 = {DC1, DC2, ..., DCn}
 I7 = {DAT1, DAT2, ..., DATn}
Outputs: DSTX vector [DSx, DCx, Ox]
1: DSTXVEC = strsplit(DSTX);
2: if (strcmp (DSTXVEC(1), ' word 2 '))
3: DCX = DC1;
4: OX = {O1, O2};
5: else
6: DCX = DC2;
7: OX = {O6, O8, O10};
8: end
9: for idx1 = 2 : length (DSTXVEC)
10: if (strcmp (DSTXVEC(idx1), ' word 3 ' == 1)
11: DSX = DS1;
12: end
13: if (strcmp (DSTXVEC(idx1), ' word 4 ' == 1)
14: DSX = DS2;
15: end
10: if (strcmp (DSTXVEC(idx1), ' word n ' == 1)
11: DSX = DSn;
12: end
13: end

To realize RF1,3, first a cell array VectorTools need
to be built for all DATs as shown in Algorithm 3. To
better illustrate the logic of the algorithm flow and
functioning, examples of possible inputs characteri-
zation have been used (e.g. Line 3 of Algorithm 3).

Algorithm 3. Build vector DAT
Inputs: I4 = {DS1, DS2, ..., DSn}
 I5 = {DC1, DC2, ..., DCn}
 I6 = {O1, O2, ..., On}
 I7 = { DAT1, DAT2, ..., DATn }

Outputs: DATX vector [DSx, DCx, Ox]
1: for idx1 = 1 : length (I7)
2: if (idx1 == 1 | | idx == 4| | idx1 == 8)
3: DAT = [DS2 DS4 DC1];
4: else
5: DAT = [DS1 DS3 DS5 DS6 DC1 DC2];
6: end
7: if (idx == 1)
8: DAT = [DAT O5];
9: else if (idx==4)
10: DAT = [DAT O4];
11: else
12: DAT = [DAT O1];
13: end
14: VectorTools {idx1} = DAT
15: end

As a second step, Algorithm 4 calculates the distance
between vectors DST and DAT. To do so, two func-
tions introduced (i) “strfind” determines patterns
within strings and (ii) “isempty” checks whether a
string is empty or not.

Algorithm 4. Calculate distance between DSTs

and DAT vectors
Inputs: no new inputs
Outputs: distance between DSTX and DATX
1: for idx = 1 : length (VectorTools)
2: distance = 0;
3: for idx2 = 1: length (DSTVECTOR)
 distance = distance + isempty (strfind (char

(VectorTools (idx1)), DSTVECTOR
(idx2)));

4: end
5: distanceVector(idx1) = distance;
6: end

The third step is to sort DATs included in I7 accord-
ing to their distance to DAT. This is done by Algo-
rithm 5, shown below. The computational essence of
the used algorithm is “bubble sort”, also known as
sinking sort. It is a sorting algorithm that steps
through a list, compares adjacent elements and shift
them if they are in the wrong order. Its logical spec-
ification is as follows:

Algorithm 5. Sorting DATs
Inputs: I7 = { DAT1, DAT2, ..., DATn }

Outputs: DATX sorted by distance
1: for idx = 1 : length (I7) : -1 : 1
2: for idx2 = 2 : idx1
3: if (distanceVector (idx2-1) > distanceVector

(idx2))
4: tmp = I7 (idx2-1);
5: I7 (idx2-1) = I7(idx2);

10 Fatima-Zahra Abou Eddahab and Imre Horváth

6: I7(idx2) = tmp;
7: tmpd = distanceVector(idx2-1);
8: distanceVector (idx2-1) = distanceVec-

tor(idx2);
9: distanceVector (idx2) = tmpd;
10: end
11: end
12: end

Once the distance is calculated, all DATs that have
equal minimum distance (the most similar vectors to
DST) are retrieved. The tools weights (I8) are also
retrieved to be used later on. The computational de-
tails can be seen in the specification of Algorithm 6.

Algorithm 6. Retrieve most similar DAT vectors
to DST vector

Inputs: I8 = {W1, W2, ..., Wn}
 I7 = {DAT1, DAT2, ..., DATn}
Outputs: DATs with equal minimum distance
 to DST
1: distance = distanceVector (1);
2: DATs = [I7 (1)];
3: weightsSimilarVector = [I8 (1)];
4: i = 2;
5: While (distance == distanceVector (i))
6: DATs = [DATs I7(i)];
7: weightsSimilarVector = [weightsSimilarVector

I8(i)];
 i = i+1;
8: if (i > length(distanceVector))
9: break;
10: end
11: end

In order to rank the tools with minimum distance to
DAT, the matrix of weights is used. Every tool has
3 different weights, one for each criterion (Cx). First,
a vector of weights sum is generated. Then, the sum
vector is sorted in a descendant order (RW: weights
sorted or ranked). Correspondingly, the tools are
also sorted (RT: ranked tools). The step is imple-
mented by Algorithm 7.

The final step is to select tools of maximum sum and
present the final set of the best matching tools to de-
signer. The function used is maxSom that deter-
mines the maximum sum of weights (MW). The
simple logic of the considered algorithm is presented
below (Algorithm 8).

Algorithm 8. Retrieve best finite set of DATs
Inputs: no new inputs
Outputs: Matrix of DATs with high weights
1: MW = max(somWC1(1));
2: FinalMatrixTi = [];
3: for i = 1: length(MW)

4: FinalMatrixTi(i) = [FinalMatrixTi, Tis(d(i))];
5: end

Considering the specification of the algorithms and
the presented architecture of the recommendation,
the relationship between algorithms was established.
Figure 10 shows the communication between algo-
rithms, data exchanges and conditions. The elements
in green are the data inputs and outputs of each al-
gorithm. It can be seen in the figure that some boxes
do not belong to any algorithm. These are to be de-
termined when studying the type of interactions sys-
tem/system and system/designer, mentioned in the
architecture as query managers and system user in-
terface. In this paper and in the demonstration pre-
sented in the next section, the focus is on evaluating
the feasibility of RF from a computational point of
view. For this reason, interactions and interface de-
velopment are not presented.

4. A DEMONSTRATIVE APPLICATION

4.1. Activation of the SDATB recom-
mendation function

The goal of this demonstrative application is to acti-
vate the recommendation function (included in a
next generation SDATB) in the case of a concrete
application. For testing the feasibility of RF, we de-
cided to target an application related to white goods.
This interest came from the fact that white goods
cover a large field of product. They are heavy con-
sumer durables that include all home appliances re-
lated to refrigeration, cooking, washing and drying
equipment, as well as, heating and cooling. Also,
these products are equipped with advanced control
units and a relatively high number of sensors able to

Algorithm 7. Ranking DATs
Inputs: I8 = {W1, W2, ..., Wn}
 I7 = {DAT1, DAT2, ..., DATn}
Outputs: DATs sorted from high to low
1: for idx1 = 1 : length (weightsSimilarVector)
2: W = char(weightsSimilarVector(idx));
3: WC1 = W(1);
4: WC2 = W(2);
5: WC3 = W(3);
6: somWC1 (idx1) = WC1 + WC2 + WC3;
7: end
8: RW = sort(somWC1, 'descend');
9: [c,d] = sort (somW1, ‘descend’);
10: RT = [];
11: for i = 1: length(somWC1)
12: RT = [RT, Tis(d(i))];
13: end

 11

collected product data. The majority of them is
known by the continues evolution towards smart
products. In this sense, the agreement was to use the
RF to recommend the appropriate DATs for design-
ers in the process of enhancement of a particular
connected washing machine using SDATB.

Before jumping into the testing of RF, the global in-
puts have to be specified. The first step is the identi-
fication of DTs and their related DSTs as I1 and I2.
For the sake of simplification, three DTx are selected
and DST will be represented as DTx,y (where x is the
code of the main DT and y the order of the DST):

 DT1: Enhancement of product performance:

 DT1,1: Analyzing energy consumption
 DT1,2: Analyzing water consumption
 DT1,3: Analyzing temperature settings
 DT1,4: Analyzing loading
 DT1,5: Analyzing detergent usage

 DT2: Enhancement of product design:
 DT2,1: Analyzing most used features
 DT2,2: Analyzing relationships between most

 used features
 DT2,3: Analyzing least used features

 DT3: Enhancement of product life cycle:
 DT3,1: Analyzing product components

Figure 10: Logical flowchart of the recommendation functionality

12 Fatima-Zahra Abou Eddahab and Imre Horváth

 DT3,2: Scheduling of predictive maintenance
 DT3,3: Scheduling of preventive maintenance

The second step is the identification of DS of the
washing machine. Seven data sources have been
identified:

 DS1: Temperature sensor (for DT1,3)
 DS2: Water flow sensor (for DT1,2)
 DS3: Load sensor (for DT1,4)
 DS4: Detergent level sensor (for DT1,1, DT1,5)
 DS5: Event log (for DT2,1, DT2,2, DT2,3, DT3,1)
 DS6: Maintenance history (for DT3,2)
 DS7: Maintenance report (for DT3,3)

The third step is the identification of DC. For sim-
plification, two main categories of data were identi-
fied:

 DC1: Big data (coming from DS1, DS2, DS3, DS4,
 DS5)

 DC2: Small data (coming from DS6, DS7)

The fourth step is the identification of possible Ox

based on data category. Since the testing is a feasi-
bility testing, a limited number of outputs is used:

 O1: Plots (possible for DC1, DC2)
 O2: Hierarchical tree (possible for DC1, DC2)
 O3: Dendrogram (possible for DC2)
 O4: Hyperplane (possible for DC2)

The fifth step is the identification of DATs that are
included in the SDATB (referred to as Tx, for sim-
plification and avoiding coding errors later on). For
the purpose of demonstration, some machine learn-
ing tools from the “Statistics and machine learning
toolbox” of Matlab were considered, as listed below:

 T1: Support vector machines (can analyze DC2,
 and provide O4)

 T2: Decision trees (can analyze DC1 and DC2 and
 provide O2)

 T3: Classification trees (can analyze DC1, DC2,
 O2)

 T4: K-nearest neighbor (can analyze DC2 and
 provide O1)

 T5: K-means (can analyze DC1 and DC2 and
 provide O1)

 T6: K-medoids (can analyze DC1 and DC2 and
 provide O1)

 T7: Hierarchical clustering (can analyze DC2 and
 provide O3)

 T8: Gaussian mixture models (can analyze DC2
 and O1)

The last step is the identification of weight matrix
for each of the tools according to C1, C2 and C3. If
our algorithm was a machine learning one, the
weights can be automatically defined. To avoid fun-
damental mistakes, it is important to mention that the
weights were arbitrary generalized for the purpose
of the testing purpose of RF and how the tools with
high weights value were chosen. Below is the list of
eight weight matrixes for the corresponding eight
tools:

 W1 = [3 10 5];
 W2 = [2 7 4];
 W3 = [8 3 1];
 W4 = [1 6 8];
 W5 = [7 5 5];
 W6 = [7 4 7];
 W7 = [10 1 1];
 W8 = [1 3 6];

Figure 6 is revisited, adapted and specialized to the
application case, as shown in Figure 11. On the left
side of Figure 6, abbreviations of designers tasks and
sub-tasks that are detailed previously are cited. On
the right side of the same figure, abbreviations of
data analytics tools for testing are listed. In the mid-
dle of the figure is the matching matrix between de-
signer’s tasks and tools based on DS, DC and O cri-
teria. This figure is generated for the purpose of
checking the validity of the RF. If the design task
specified by the designer is closer to a specific DTx
and DTx,y, as shown in Figure 11, then the DATs to
be recommended for the designer should be the tools
most corresponding to DTx and DTx,y in the list rep-
resented on the right side in Figure 11. The next step

Figure 11: Adaptation of recommendation princi-
ple in a particular application case

 13

is to test the feasibility of RF.

4.2. Computational feasibility valida-
tion by processing the algorithms

The testing of RF was completed by using Matlab.
The starting point was the input of data from a white
goods design exercise for which DATs will be se-
lected. The objective was to demonstrate that RF is
computationally feasible. First, the sets of RF inputs
and codes corresponding to all algorithms are in-
serted and written in a new “Matlab script”. Then, in
order to be able to compile the script, the functions
used in the algorithms and that are unknown to
Matlab (all functions are presented in section 3.4)
have to be defined (e.g. EditDistance).

The sets of inputs are defined and inserted in Matlab
as:

%--------Designers Tasks--------
DT1 = 'Enhancement of product performance';
 DT11 = 'Analyzing energy consumption';
 DT12 = 'Analyzing water consumption';
 DT13 = 'Analyzing temperature settings';
 DT14 = 'Analyzing loading';
 DT15 = 'Analyzing detergent usage';

DT2 = 'Enhancement of product design';
 DT21 = 'Analyzing most used features';
 DT22 = 'Analyzing relationships between most

used features';
 DT23 = 'Analyzing least used features';

DT3 = 'Enhancement of product life cycle';
 DT31 = 'Analyzing product components';
 DT32 = 'Scheduling of predictive maintenance';
 DT33 = 'Scheduling of preventive maintenance';

%--------Machine Learning tools--------
T1 = 'Support vector machines';
T2 = 'Decision trees';
T3 = 'Classification trees';
T4 = 'K-nearest neighbor' ;
T5 = 'K-means';
T6 = 'K-medoids';
T7 = 'Hierarchical clustering';
T8 = 'Gaussian mixture models';

%--------Data Sources--------
DS1 = 'Temperature sensor';
DS2 = 'Water flow sensor';
DS3 = 'Load sensor';
DS4 = 'Detergent level sensor';
DS5 = 'Event log';

DS6 = 'Maintenance history';
DS7 = 'Maintenance report';

%--------Data categories--------
DC1 = 'Big Data';
DC2 = 'Small Data';

%--------Outputs expected--------
O1 = 'Plots';
O2 = 'Hierarchical tree';
O3 = 'Dendrogram';
O4 = 'Hyperplane';

 %--------Weights--------
W1 = [3 10 5];
W2 = [2 7 4];
W3 = [8 5 4];
W4 = [1 9 8];
W5 = [7 6 2];
W6 = [2 4 7];
W7 = [10 1 1];
W8 = [1 3 6];

 %--------GLOBAL INPUTS--------
ISB11 = {DT1, DT2, DT3};
%set of tasks
ISB12 = {DT11, DT12, DT13, DT14, DT15,
DT21, DT22, DT23, DT31, DT32, DT33};
%set of subtasks
ISB14 = {T1, T2, T3, T4, T5, T6, T7, T8};

Figure 12: Process and outputs of RF1,1

14 Fatima-Zahra Abou Eddahab and Imre Horváth

%set of machine learning tools
ISB110 = {W1, W2, W3, W4, W5, W6, W7, W8};
%weight matrix

Now, it is time for the designer to write down his
design task as an entry point to RF. In this test case,
we consider that the designer wants to analyze a
washing machine loading. We assume that he wrote
the design task without “verb” as follow: DTX =
‘washing machine load’.

The pre-defined algorithms in Section 3.4 were con-
verted into codes in the particular application case
and inserted in Matlab as well as the textual formu-
lation of DTX. Running the RF codes made us
achieve the following:

RF1,1 is represented in Figure 12. The obtained out-
puts are: DTx = DT1 =‘Enhancement of product per-
formance’ and DTx,y = DT1,4 = ‘Analyzing loading’.
RF1,2 is represented in Figure 13.

The output is a vector characterizing DT1,4 in terms
of data source, data category and outputs. These
characteristics are: DSx = DS3 = load sensor, DCx =
DC1 = big data, O1 = plots and O2 = hierarchical tree.
RF1,3 is represented in Figure 14. The output is a vec-
tor of data analytics tools matching DT1,4. These
tools are: T2 = Decision trees, T3 = Classification
trees, T5 = K-means, and T6 = K-medoids.

RF1,4 is represented in Figure 15. The outputs
are the matrix of sum of weights [18, 13, 17, 12]
and the ordering of the sum matrix [18, 17, 13,

12]. Finally, the ordering of tools is [T6, T5, T2,
T3].

Finally, RF1,5 is represented in Figure 16. Two out-
puts are expected and obtained, the maximum sum
of weights (18) and the corresponding tools to offer
to designer, [T6].

Figure 14: Process and outputs of RF1,3

Figure 13: Process and outputs of RF1,2

Figure 15: Process and outputs of RF1,4

 15

By referring to Figure 11, the tools selected based on
DTX (DT1) are [T2, …, T6] and the recommended
one based on weight sum is [T6] (by calculating the
weights sum). This means that RF provides the best
match.

4.3. Interpretation of test results

The objective of the realized testing is to check the
feasibility and the functionality of the recommenda-
tion. It consists of verifying if the algorithms do
what they are supposed to do and if the requirements
are fulfilled. In other words, the correctness of the
computation and the achievement of sub-functions
are evaluated.

The results of the computational feasibility testing
are shown from Figure 12 to Figure 16. By analyzing
these figures from a feasibility perspective, the fol-
lowing points were identified: (i) the algorithms can
be implemented, (ii) they are computationally cor-
rect, (iii) the codes do not contain any errors, (iv)
each algorithm set of inputs and outputs is identical
to the expected results presented in the algorithms
description in section 3.4, (v) the algorithms com-
municate with each other, since the output of one al-
gorithm is the input for the following one, also (vi)
no conversions of inputs or outputs were needed all
along the functionality implementation.

Based on the outcome of the computational feasibil-
ity testing, we may conclude that the flow of algo-
rithms is coherent and that recommendation function
is dependable. By analyzing the whole of the com-
putational process, it was observed that starting from
the initial input DTX given by the designer, the out-
put was a finite matrix of DATs with high weights

values. This was also confirmed in section 4.2,
where RF provided the same results both computa-
tionally and manually. If the designer provides the
needed sufficiently complete specification of the in-
tended task, the tools to be used could be found (rec-
ommended) automatically. This leads to the conclu-
sion that the computational implementation of the
RF module achieves the desired output. RF is also
performant, since it (i) facilitates the choice process
of designers, (ii) saves time and efforts related to this
matter, and (iii) compensates for the lack of
knowledge of the designer regarding DATs.

Having the RF implemented as part of the next gen-
eration SDATB, semantic support can be provided
for product designers. Instead of getting lost in the
huge amount of DATs and their new updates, the de-
signers will get the information about the most suit-
able tools in seconds, while it would take long hours
without this smart functionality. The proposed FR
makes it possible for them to focus on their main-
stream design tasks enabling product enhancements,
rather than being stuck with learning the capabilities
of novel DATs when they want to get information
from MoLD. They may avoid getting busy with in-
vestigating, studying and comparing DATs that
might or might not be suitable for their DTX.

5. DISCUSSION, CONCLUSIONS AND
FUTURE WORK OF THE RESULTS

5.1. Discussion

The objective of the research presented in this paper
is the specification and the implementation of a RF
for a next generation SDATB in terms of algorithms
and data constructs. Based on research actions dedi-
cated for this purpose, some limitations were recog-
nized.

 Using machine learning algorithms might have re-
duced the time for code building. Since some in-
puts (e.g. weights, tools) can be generated and ad-
justed automatically. This is to be considered for
future improvements of RF.

 DTX are supposed to be known for the system.
Syntactic matching is being implemented. This
one of the RF limitations. A semantic matching
based on synonyms is to be considered for the fu-
ture.

 For the testing a small range of all system inputs
are considered (DTX, DATs, ...) which made the
computing easy to realize. In case of wide range of

Figure 16: Process and outputs of RF1,5

16 Fatima-Zahra Abou Eddahab and Imre Horváth

inputs, the computing might be time consuming
and human mistakes are likely to happen. In the
future, automation methods for inputs insertion are
to be studied.

 The RF is being individually implemented which
does not reflect the performance of the whole
SDATB to which it belongs. RF needs to be tested
in the future as part of the complete next genera-
tion SDATB.

5.2. Conclusions

The testing process and results showed that the rec-
ommendation functionality works correctly from a
computational point of view. In our research, we did
not test RF is a real-life environment, for the reason
that it will go beyond the scope of the work that con-
sists of offering tools into solving design problems
using machine learning tools. Another aspect not
considered was: what to do if the tools proposed are
with low weight or even no tool is proposed? This
problem means that new tools are to be included in
the SDATB, which remains a knowledge engineer
task.

The main conclusions of this work based on testing
results are:

 RF is able to interpret designer’s inputs and pro-
pose a description of the DTX identified.

 RF reasons with DATs and recommends the best
matching one to DTX.

 The rule for DATs selection and recommendation
is captured by their weight and the matching ma-
trix between DTs and DATs.

 The recommended tool was proven to be the most
adequate one based on DTX.

 The recommendation function compensates for
knowledge deficiency of DATs by product de-
signers in particular task.

 The recommendation function reduces time and
efforts associated with tool selection.

5.3. Future research

The on-going part of the research is to improve the
recommendation functionality considering the rec-
ognized limitations. The outcomes of this study will
be used in a follow up research to a develop a smart
data analytics toolbox providing comprehensive
support for product designers.

Based on past studies a set of global set of needs and
expectations of SDATB was determined. After fil-
tering of this set based on needs and expectations
covered of partially covered by the literature, a final
reduced set of needs and expectations of the SDATB
was kept for further investigation. This final set will
be used in the conceptualization of the next genera-
tion data analytics toolbox. It includes: (i) adaptation
of the toolbox to the user, (ii) semantic interpretation
of the analysis outcomes, (iii) learning from toolbox
applications, (iv) affording permanent accessibility
of the toolbox, and (v) offering a step by step assis-
tance all along the SDATB usage. In this sense, fu-
ture research activities consist of conceptualizing,
architecting and computationally realizing all func-
tionalities to answer white goods designers needs
presented in our background study. The structural
and computational means for these functionalities
combination will be studied. Finally, the set of func-
tionalities will be used to build a next generation
smart data analytics toolbox tailored for white goods
designers’ needs. The SDATB will include smart
reasoning and learning mechanisms. These are
needed to address meanings and semantic interpre-
tations in the process of analyzing design tasks. This
will make it easy for designer not only to analyze
data but also to interpret them and make decisions
about them. The smartness of SDATB will help in
keeping up with the fast improvement of smart prod-
ucts.

REFERENCES

[1] Abou Eddahab, F.Z., & Horváth, I. (2018). What do
designers miss regarding the outputs of data analyt-
ics tools in the context of possible product improve-
ments?, In: Proceeding of the 12th Symposium on
Tools and Methods of Competitive Engineering, 1-
14.

[2] Adhikari, B.K., Zuo, W.L., Maharjan, R., & Yadav,
R.K. (2018). Use of big data analytics in wash sec-
tor. In: Proceeding of Second International Confer-
ence on Intelligent Computing and Control Systems.
IEEE, 1185-1190.

[3] Bouzekri, E., Canny, A., Fayollas, C., Martinie, C.,
Palanque, P. A., Barboni, E., ... & Gris, C. (2017). A
list of pre-requisites to make recommender systems
deployable in critical context. In: Proceeding of En-
CHIReS@EICS, 42-55.

[4] Elshawi, R., Sakr, S., Talia, D., & Trunfio, P.
(2018). Big data systems meet machine learning
challenges: Towards big data science as a service.
Big Data Research, 14, 1-11.

 17

[5] Erden, Z., Erkmen, A.M., & Erden, A. (1998). A Pe-
tri net-based design network with applications to
mechatronic systems. Journal of Integrated Design
and Process Science, 2, 32-48.

[6] Felfernig, A., Ninaus, G., Grabner, H., Reinfrank,
F., Weninger, L., Pagano, D., & Maalej, W. (2013).
An overview of recommender systems in require-
ments engineering. Managing Requirements
Knowledge. Springer, 315-332.

[7] Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F.,
Reiterer, S., & Stettinger, M. (2014). Basic ap-
proaches in recommendation systems. Recommen-
dation Systems in Software Engineering. Springer,
15-37.

[8] Fleckenstein, M., & Fellows, L. (2018). Data analyt-
ics. Modern Data Strategy. Springer, Cham, 133-
142.

[9] Fu, W., Liu, J., & Lai, Y. (2018). Collaborative fil-
tering recommendation algorithm towards intelli-
gent community. Discrete & Continuous Dynamical
Systems-S, 12(4 & 5), 811-822.

[10] Gautam, C.S., & Pandey, P. (2019). A review of big
data environment, tools and challenges. Journal of
Emerging Technologies and Innovative Research,
6(6), 569-575.

[11] Ghasemaghaei, M., Ebrahimi, S., & Hassanein, K.
(2018). Data analytics competency for improving
firm decision making performance. The Journal of
Strategic Information Systems, 27(1), 101-113.

[12] Ghoneim, O.A. (2018). Traffic jams detection and
congestion avoidance in smart city using parallel k-
means clustering algorithm. In: Proceeding of the
International Conference on Cognition and Recog-
nition. Springer, 21-30.

[13] Hofmann, H.F., & Lehner, F. (2001). Requirements
engineering as a success factor in software projects.
IEEE Software, (4), 58-66.

[14] Horváth, I. (2007). Comparison of three methodo-
logical approaches of design research. In: Proceed-
ing of the 16th International Conference on Engi-
neering Design, 361-362.

[15] Horváth, I. (2019). Combining unmergeables: a
methodological framework for axiomatic fusion of
qualitative design theories. In: Proceeding of the In-
ternational Conference on Engineering Design, De-
sign Society, 3591-3600.

[16] Imran, M., Ahamad, M.V., Haque, M., & Shoaib, M.
(2018). Big data analytics tools and platform in big
data landscape. In: Handbook of Research on Pat-
tern Engineering System Development for Big Data
Analytics, IGI Global, 80-89.

[17] Jin, Z., Anderson, M.R., Cafarella, M., & Jagadish,
H.V. (2017). Foofah: a programming-by-example
system for synthesizing data transformation pro-
grams. In: Proceeding of the 2017 ACM Interna-
tional Conference on Management of Data, 1607-
1610.

[18] Kalaian, S.A., Kasim, R.M., & Kasim, N.R. (2019).
Descriptive and predictive analytical methods for
big data. Web Services: Concepts, Methodologies,
Tools, and Applications. IGI Global, 314-331.

[19] Li, Y. (2019). Utilizing dynamic context semantics
in smart behavior of informing cyber‐physical sys-
tems. Doctoral dissertation, Delft University of
Technology.

[20] Lops, P., Jannach, D., Musto, C., Bogers, T., &
Koolen, M. (2019). Trends in content-based recom-
mendation. User Modeling and User-Adapted Inter-
action, 29(2), 239-249.

[21] Naaz, S., & Siddiqui, F. (2019). Application of big
data in digital epidemiology. Intelligent Systems for
Healthcare Management and Delivery. IGI Global,
285-305.

[22] Ricci, F., Rokach, L., & Shapira, B. (2011). Intro-
duction to recommender systems handbook. In: Rec-
ommender Systems Handbook. Springer, 1-35.

[23] Saggi, M.K., & Jain, S. (2018). A survey towards an
integration of big data analytics to big insights for
value-creation. Information Processing & Manage-
ment, 54(5), 758-790.

[24] Srinivasan, S., & Kumari, T.T. (2018). Big data an-
alytics tools a review. International Journal of En-
gineering & Technology, 7(2.33), 685-687.

[25] Srivastava, S.K., & Roy, S.N. (2018). Recommen-
dation system: A potential tool for achieving perva-
sive health care. Next-Generation Mobile and Per-
vasive Healthcare Solutions. IGI Global, 111-127.

[26] Wang, Y., Kung, L., & Byrd, T.A. (2018). Big data
analytics: understanding its capabilities and poten-
tial benefits for healthcare organizations. Techno-
logical Forecasting and Social Change, 126, 3-13.

