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ABSTRACT 

The security issues of Cyber-Physical power Systems (CPS) have 

attracted widespread attention from scholars. Vulnerability 

assessment emerges as an effective method to identify the critical 

components and thus increase the system resilience. While efforts 

have been made to study the vulnerability features of power 

systems under the occurrence of a single, discrete disturbance or 

failure at a specific time instant, this paper focuses on identifying 

the critical components of the cyber-physical system considering 

time-varying operational states. To investigate the potentially 

ever-changing CPS vulnerability features, in this paper we 

construct a database of cascading failure chains using quasi-

dynamic simulations to capture the vulnerability relationships 

among components under time-varying operational states. Then, 

by adopting sequential mining algorithms, we mine the most 

frequent cascading failure patterns and identify the critical 

components based on the data mining results. Simulation studies 

are conducted on IEEE 39-bus and IEEE RTS-96 systems to 

evaluate the effectiveness of the proposed method for the 

identification of critical components at both cyber and physical 

layers. 
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1  Introduction 

With the rapid development of Information and Communication 
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Technologies (ICTs) and Operational Technologies (OTs), the 

power grids are now tightly coupled with communication 

infrastructures in an unprecedented way, which forms a complex, 

interdependent Cyber-Physical System (CPS). Digitalization is 

expected to increase power grid sustainability, affordability, and 

resiliency. However, cyber-related vulnerabilities are inevitably 

introduced in the cyber-physical system, which can be exploited 

by adversaries and thus weaken power grid robustness and 

security of supply. Furthermore, they also exacerbate the breadth 

and depth of cascade propagation when CPS experiences 

disturbances, which increase the overall system vulnerability with 

catastrophic potential consequences. 

Vulnerability assessment is typically used to enhance cyber-

physical system security by identifying the weak points in the 

system. The current vulnerability assessment methods for CPS 

can be broadly grouped into two categories: (i) topology-based 

methods [1][2], which abstract the CPS into an interdependent 

network and evaluate the systematic vulnerabilities from a 

structural perspective, and (ii) operation-based methods [3][4], 

which consider the CPS operational aspects, e.g., power flow and 

information communication, in either or both cyber-physical 

domains. For topology-based methods, Buldyrev et al. [1] adopt 

percolation theory to prove that a broader degree distribution 

increases the vulnerability of the interdependent networks to 

random failures. Complex network theory [2] is also a popular 

method to construct indices and evaluate the vulnerability of 

system components, e.g., degree, closeness, and betweenness. 

However, topology-based methods naturally neglect the 

heterogeneity of nodes in both cyber and physical layers and focus 

on the structure of the interdependent network. Consequently, the 

inherent physical mechanisms, e.g., power flows and routing 

protocols, at both CPS layers are ignored, which may result in 

unrealistic conclusions. To this end, Falahati et al. [3] use a linear 

programming model to maximize the data connection at the cyber 

layer and adopt a DC optimal power flow model to minimize the 

load curtailment. Furthermore, Ye et al. [4] define an interaction 

model to simulate the cascading failures in CPS. 

Although efforts have been made on modeling and systematic 

evaluation of CPS vulnerability, the current literature has an 

obvious drawback. The existing work only evaluates the CPS at a 

single time instant. However, we argue that this may not always 

be the case. Instead of considering CPS disturbances or failures as 

single-occurrence events, in this research we treat them as a set of 

sequential discrete events. Disturbances and failures can occur at 

any time instant during CPS operation over a certain time period. 

Meanwhile, the operational states, e.g., loads and power flows, are 

constantly varying in time. Under such assumption, the 

vulnerability features generated by the existing static methods, 
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which aim at a particular time instant may not be applicable to 

time-varying CPS operational states. To this end, a fundamentally 

new approach is needed to systematically capture the vulnerability 

characteristics and identify the most critical CPS components to 

develop effective and economic mitigation strategies. 

To address these issues, in this paper, we propose a novel 

cascading failure model considering the interaction between cyber 

and physical layers for every single time instant. Based on quasi-

dynamic simulations, we generate a database of cascading failure 

chains. This contains various operating conditions. We adopt the 

PrefixSpan sequential mining algorithm [5] to identify the 

frequent sequential cascading patterns. Vulnerability indices are 

constructed based on complex network theory to evaluate the 

importance of components in the cascading failure process and 

identify the critical components in CPS. The contributions of this 

paper are summarized as follows: 

1) This paper proposes a novel vulnerability assessment method 

for the identification of critical components in CPS considering 

the time-varying operational states. 

2) This paper investigates CPS modeling from both topological 

and operational perspectives. From a topological perspective, the 

cyber topology and structural interdependency between cyber and 

physical layers are thoroughly investigated. From an operational 

perspective, we present a detailed modeling process considering 

the interaction between cyber and physical layers. 

3) Based on the constructed CPS model, a database of cascading 

failure chains is constructed containing systematic vulnerability 

features. Moreover, we introduce sequential data mining 

algorithms to identify the frequent cascading failure patterns and 

design vulnerability metrics to identify the critical cyber-physical 

system components. 

The remainder of this paper is organized as follows. Section II 

discusses the system vulnerability under time-varying operational 

states. Section III provides the modeling and simulation process of 

cascading failures. Section IV presents the identification of 

critical components. The case study and conclusion are presented 

in Section V and Section VI, respectively. 

2  System Vulnerability Considering Time-

varying Operational States 

Operation 

status

t2 t3 t4 t5 t6 t7

t1: Cascading Failure Chains 

t2: Cascading Failure Chains 

t3: Cascading Failure Chains 

t4 : Cascading Failure Chains 

t5: Cascading Failure Chains 

t6: Cascading Failure Chains 

t7: Cascading Failure Chains 

Cascading Failure Chain Database

t1

Fn: Failure

F1 F2 F3

Figure 1: The time-varying operational states of CPS. 

 

In previous discussion, we argue that the current vulnerability 

assessment methods may not be applicable or even feasible when 

considering the change of CPS operational status. As shown in 

Fig. 1, in a real-world scenario, the operational states of CPS are 

constantly changing, which means the system will react to failures 

or disturbances differently at various time instants. More 

concretely, the cyber-physical system may show different 

cascading failure patterns under time-varying operational states, 

which will directly change the vulnerability features. In this 

context, we first model a failure, e.g., line tripping, in CPS to 

trigger the cascading failures at a specific time instant, e.g., 2t , 

4t  or 
6t as represented in Fig. 1. To thoroughly investigate the 

vulnerability characteristics of CPS at a specific time instant, we 

consider that any component in the cyber-physical system may 

fail, and we generate possible cascading failure chains for all 

components. These cascading failure chains contain the detailed 

vulnerability features of CPS at the time instant. By combining 

cascading failure chains of all-time instants, a cascading failure 

chain database is generated, which captures the intricate 

relationships among components and reveals the fault propagation 

mechanism of CPS under different operating conditions. For 

instance, for a certain time interval  1
,

u
t t , suppose the cascading 

failure chain set includes  1CF tX  at 1t ,  2CF tX  at 2t ,..., 

 CF utX  at ut , then the cascading failure chain database DX  can 

be presented as: 

   1D CF ut u U X = X  (1) 

The definition of  CF utX  can be found in Section III, Part C. At 

last, we intend to employ sequential data mining algorithms to 

mine the cascading failure database and identify the critical 

components of CPS. Generally, the sequential data mining 

algorithms return the patterns that are frequently shown in the 

database. For cyber-physical systems, if a cascading failure 

pattern frequently appears in 
DX , it means that the 

corresponding components play a critical role in the cascading 

process. If such critical components are reinforced and cyber 

secure, the system resilience will be greatly improved. 

3  Modeling of CPS and Cascading Failures 

In this Section, we investigate CPS modeling from both 

topological and operational perspective. We model the cascading 

failures at each time instant to show how CPS will react to 

disturbances under different operating conditions. Then, by 

collecting the cascading failure chains at each time instant, a 

database is generated to further reveal the systematic vulnerability 

features of the cyber-physical system. 

3.1 Topological Modeling of CPS 

In this paper, we abstract the CPS into an interdependent network, 

in which nodes and edges are used to represent the cyber-physical 

system components and interconnections among them, 

respectively. 
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Physical Layer: the generators, substations and loads are 

considered as physical nodes, while the transmission lines and 

transformers are considered as physical edges. Consequently, we 

can directly map a power grid into an undirected and unweighted 

graph based on its own topology. 

Cyber Layer: the Supervisory Control and Data Acquisition 

(SCADA) system in the control center and station control systems 

in substations are abstracted into cyber nodes, while their 

communication links are considered as cyber edges. It is worth 

mentioning that for the cyber layer we only consider the influence 

of the cyber layer topology on the physical layer operation. In this 

research, we do not consider the detailed communication 

mechanisms, e.g., routing protocols. Typically, the 

communication networks for power grids are implemented as 

double-star or mesh networks [6][7] From the perspective of 

complex network theory, double-star networks are scale-free 

networks [8]. The control centers are considered hub nodes with 

higher degrees in the system. If one of these nodes fail, the cyber-

physical system will suffer severe consequence. The double star 

networks are sensitive to intentional cyber-physical attacks, but 

resilient to random failures. On the other hand, mesh networks, as 

opposite to double-star networks, show the feature of small-world 

[9], which indicates that mesh networks have a broader degree 

distribution and are more vulnerable to random failures. 

Generally, a broader degree distribution increases the robustness 

of complex networks. However, when cyber and physical layers 

are coupled to form an interdependent network, a broader degree 

distribution increases the vulnerability of the interdependent 

networks to random failures [1]. Meanwhile, the research of Ye et 

al. [4] also shows that power grids coupled with double-star 

communication network have a lower probability of catastrophic 

failures than with mesh networks. Therefore, in this paper, we 

adopt the double-star network to model the topology of the cyber 

system. 

Structural Interdependency: in this paper, we consider the 

interdependence between cyber and physical layers as a “one-to-

one” correspondence [1]. The number of nodes in the cyber layer 

is the same as in the physical layer, and a cyber node is 

exclusively interconnected with a physical node. Parshani et al. 

[10] defines the interdependency of networks as intersimilarity 

from a topology perspective and investigates the robustness of 

interdependent networks under different intersimilarities. The 

results show that for scale-free networks, the interdependency 

should be “degree-to-degree”, which means that the node with the 

highest degree in the cyber layer should be interconnected with 

the node with the highest degree in the physical layer. 

3.2 Operational Modeling of CPS 

Failures such as protection maloperation or loss of 

communications may trigger cascading effects in the cyber-

physical system. Furthermore, when power grids are tightly 

coupled with communication infrastructures, the extent of fault 

propagation in CPS may be significantly increased considering the 

complex interdependencies between the cyber and physical layers. 

For example, one disturbance in one network may simultaneously 

have an influence within the network and on its interdependent 

networks. In this subsection, we present the simulation process of 

generating the cascading failure chains for every time instant used 

to generate the cascading failure chain database. 

When the power system is congested, system operators redispatch 

generation or even shed load to ensure that the power grid is 

securely and economically operated. Therefore, an optimal DC 

power flow model represented by equations (2) – (7) is used to 

minimize the load shedding when disturbances occur in the cyber-

physical system. 

 min y y dy

y D

W p P


  (2) 

 . .s t  =F AP  (3) 

 
1

0
n

x

x

p


  (4) 

 0,dy yP p y D    (5) 

 
min max

,gx x gxP p P x G    (6) 

 
max max ,l l l lF F F L   L  (7) 

where G  and D  are the set of generators and loads, 

respectively, yW  is the cost of load shedding, 

 1,2,...,l lL l N L  is the set of branches in the power grid and 

 
T

1 2, ,..., ,...kp p pP  is the vector of power node injections. 

Equation (3) represents the DC power flow equation. A  is the 

nodal admittance matrix and  1 2, ,..., ,...lF F FF  is the vector of 

branch power flows. 
yp   represents the load of node y. dyP  

represents the rated load at node y. 
xp   represents the output 

power of generator x.
max

gxP  and 
min

gxP  are the upper and lower 

limits of the output power of generator x, respectively. 
max

lF is the 

transmission capacity of the l-th branch. 

Ye et al. [4] propose an interaction model and analyses the system 

performance under both intentional attacks and random failures. 

Dong et al. [11] propose a probabilistic failure model to simulate 

the cascading process between cyber and physical layers. Based 

on these works, an interactive model is used to capture the main 

features of both cyber and physical layers and give a rough 

approximation to describe the interdependency between the two 

layers, which is presented as follows. 

Cascading failures in the same layer: we consider that 

cascading failures in power grids are mainly caused by load 

redistribution when branches are disconnected and by hidden 

failures. Due to a hidden failure [12], the outage of branch 
lL  
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may cause the failure of its neighbors with a low probability 
1P . 

When a branch is overloaded due to system load redistribution, 

we assume that the branch will be disconnected with a probability 

2P . We do not consider the mutual influence among cyber nodes, 

i.e., the failure of a cyber node will only influence the data 

communication and will not cause a failure of other cyber nodes. 

The impact of disturbances in the cyber layer to the physical 

layer: we consider that the cyber nodes are directly coupled with 

the physical nodes of power grids. When a cyber node is out of 

service, the control center loses the remote monitoring and control 

capabilities of the physical node and all corresponding branches in 

the substation. Consequently, when these branches are 

overloaded, they will operate in an insecure state and will be 

eventually disconnected by system protection after a period of 

time. On the other hand, a failed cyber node may be on the 

communication path between the control center and another cyber 

node. Under such circumstances, we consider that the control 

center also loses the monitoring and control capabilities of the 

associated physical nodes. 

3.3 Construction of Cascading Failure Chain 

Database 

In this paper, we investigate systematic cyber-physical system 

vulnerabilities. Therefore, we include various cascading failure 

scenarios by assuming that each component is possible to fail at 

every time instant. More specifically, we trip all the branches one 

by one to collect all possible cascading failure chains at every 

time instant. Then, by repeating the same process, the cascading 

failure chains are combined to generate the cascading failure 

chain database as shown in Fig. 1. The detailed simulation process 

of one single time instant is presented in Fig. 2. A disconnected 

branch is removed from the power grid topology. The updated 

topology is represented by Nreal. Furthermore, we consider Ncontrol 

to be a subset of Nreal for which the system operator still has 

monitoring and control capabilities. The branches connected to 

the physical nodes affected by the failure of their corresponding 

cyber nodes are removed from Ncontrol. We consider that the cyber 

nodes are vulnerable to cyber attacks and some will fail due to 

malicious attacks or other contingencies in each iteration. The 

cyber nodes will be removed with a small probability 
3P . 

The cascading failure process at time instant 
Ut  starts by 

disconnecting branch 
lL  and scanning for cyber and hidden 

failures. The Nreal and Ncontrol CPS topologies are updated. The DC 

power flow is first calculated based on the updated Nreal. If there 

are overloaded branches, we calculate the optimal DC power flow 

based on the updated Ncontrol. The results of the optimal DC power 

flow give the power injections for the physical nodes in Ncontrol. 

The redispatch of generation with minimum load shedding costs is 

implemented using Nreal. We calculate load redistribution based 

on the new power injections and previously available 

measurements for the physical nodes affected by the failure of 

their cyber nodes. The overloaded branches are disconnected with 

their corresponding probabilities. It is worth mentioning that a 

branch may be disconnected based on local measurements by 

protection relays and control commands from the control center. 

When a branch is overloaded, system operators will adjust the 

generation or initiate load shedding. If the overload is not 

mitigated, the branch will be tripped by overload protection. 

Therefore, in our paper, we assume that when a branch is 

overloaded, it is tripped by local protection with a probability 
2P . 

The process is repeated until there are no further overloaded 

branches. The cascading failure chain is exported to the database. 

 

Figure 2: Simulation process of cascading failures. 

It is worth mentioning that the simulation process illustrated in 

Fig. 2 is used to generate the cascading failure chain  lL

CF utX  

initiated by the disconnection of branch 
lL  at 

ut . To thoroughly 

capture the vulnerability features of CPS and generate the 

cascading failure chain  CF utX at 
ut , this simulation should be 

conducted for every branch in L . This can be represented by 

equations (8) and (9). 

    1 2, , , ,lL

CF u n k Ct C C C C  KX C = V L  (8) 

     lL

CF u CF u lt t L X X L  (9) 

where  1 2 1 2, , , , ,n nC C C C C C    K K .

 0,1,2,...,
C g g

v g N V  represents the set of cyber nodes at the 

cyber layer. The cascading failure chain database
DX can be 

generated based on equations (1) and (9). 

Start

Trip branch Ll

Update CPS topology: 

Nreal, Ncontrol

Solve DC power flow 

based on Nreal

Branch overloaded?

Solve optimal DC power 

flow based on Ncontrol and 

obtain injected power of 

nodes

Branch overloaded?

Calculate load 

distribution based on 

injected power and Nreal

Trip the overloaded 

branches with 

probability P2

Trigger hidden failure 

and remove cyber nodes 

with probability P3

N

Y

Y

N

Export the cascading 

failure chain

End

Branch tripped?

Y

N
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4  Critical Components Identification from a 

Data Mining Perspective 

In this section, we take advantage of the fact that  lL

CF utX can be 

viewed as a sequence for data mining and employ the PrefixSpan 

sequential data mining algorithm to capture the most frequent 

cascading failure sequence, i.e., CPS vulnerable sequence. Based 

on the identified patterns, we propose a vulnerability metric to 

further quantify the vulnerability of each component in the cyber-

physical system. 

4.1 Identification of Vulnerable Cascading Failure 

Sequence 

For a cyber-physical system, the cascading failure chain database 

can be very large, in which some cascading failure patterns may 

show up repeatedly. We use the frequency of these patterns to 

quantify the vulnerability of each CPS component. The cascading 

failure patterns are defined as candidate sequences waiting to be 

evaluated whether they are vulnerable sequences or not. 

Definition 1 (candidate sequence): Based on the definition of 

 lL

CF utX , if there exists    1 2 1 2, , , , , ,
j j jz nC C C C C CK K

, a 

sequence  1 2
= , , ,

j j jz
C C C  K

 is called a subsequence of a 

cascading failure chain  lL

CF utX , which can be denoted as

 lL

CF ut > X . 

Normally, the frequency of a candidate sequence indicates the 

vulnerability of its associated components. To quantify such 

frequency, the definition of vulnerability degree is defined as 

follows: 

Definition 2 (vulnerability degree): for a candidate sequence 

 1 2
= , , ,

j j jz
C C C  K

, the vulnerability degree is defined as: 

      =D D      >V X  (10) 

Based on the definitions above, PrefixSpan can be adopted to 

identify the vulnerable sequence with higher vulnerability 

degrees. The details of PrefixSpan are reported in [5]. 

4.2 Vulnerability Metric for Critical Components 

Identification 

Based on the vulnerable sequences identified above, in this part, 

we propose a vulnerability metric to further quantify the 

vulnerability of each CPS component. As discussed in Section III, 

for each cascading failure chain  lL

CF utX , the components highly 

positioned in the chain result in high vulnerabilities. Therefore, 

we propose a metric named total sequential vulnerability to 

identify the critical components in the cyber-physical system. 

Definition 3 (total sequential vulnerability): for a vulnerable 

sequence  = ..., , ...m iC  , the sequential vulnerability  
m iS C  

of component 
iC in 

m  is defined as 

     1
m m mi iS C N C      (11) 

where 
m

N 
is the number of components in

m  and  
m iC is 

the order of 
iC in 

m . Based on equation (11), by combining the 

sequential vulnerability of component 
iC in all M  vulnerable 

sequences containing 
iC  , the total sequential vulnerability of 

iC  can be represented as 

    
1

m

M

i i

m

S C S C


  (12) 

5  Case Study 

In this section, we conduct experiments on IEEE 39-bus and IEEE 

RTS-96 models to evaluate the effectiveness of the proposed 

method. Their cyber-physical systems and the proposed method 

are implemented in Python. The probabilities for the simulation of 

cascading failure chains are set as follows: 
1 0.05P  , 

2 0.95P  , 

3 0.01P  .  

5.1 Generation of Cyber Layer 

As discussed in Section III, we use a scale-free network to 

simulate the cyber layer. Based on the Barabási–Albert (BA) 

model [8], Fig. 3 shows the generated cyber topologies of IEEE 

39-bus and IEEE RTS-96 system, respectively. 

         

    (a)                                                     (b) 

Fig. 3: Cyber layer topology: (a) IEEE 39-bus system, (b) 

IEEE RTS-96 bus system. 

5.2 Critical Components Identification 

The method proposed in Section III is used to generate the 

vulnerable sequences of IEEE 39-bus and IEEE RTS-96 system. 

For IEEE RTS-96 system, we use the peak loads of each week for 

a 52-week load profile to simulate the time-varying operational 

states of CPS. For IEEE 39-bus system, we change the load 

proportionally in each simulation over 52 weeks. In the final 
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database, there are 1901 cascading failure chains for IEEE 39-bus 

system and 6479 cascading failure chains for IEEE RTS-96 

system. Fig. 4 shows all the vulnerable sequences identified for 

the two test systems. Furthermore, based on equations (11)-(12), 

the total sequential vulnerabilities are calculated to quantify the 

vulnerabilities of CPS components in the test systems. Table I and 

II show the top 5 components in both cyber and physical layers 

with the highest total sequential vulnerabilities. 

          

(a)                                          (b) 

Fig. 4: Vulnerable Sequence Identification: (a) IEEE 39-bus 

system, (b) IEEE RTS-96 bus system. The cyber nodes are 

represented with blue, while the power system branches are 

represented with red. 

From the perspective of degree distribution, in Fig. 4(a), the 

components with the highest degree are branches 2, 15 and 29. 

This ranking is different from the ranking of total sequential 

vulnerability. This is because the total sequential vulnerability 

also considers the position of components in a vulnerable 

sequence. When a component frequently appears at the start 

position of a sequence, it means this component has a more 

significant impact on other components in the system. If the 

cyber-physical security of such components can be strengthened, 

then the scale of cascading failures will be reduced and thus the 

system will be more resilient. It is worth mentioning that although 

the degree distribution and total sequential vulnerability of power 

nodes are much higher than the ones of the cyber nodes, they are 

equally important for cyber-physical systems. 

TABLE I. VULNERABLE COMPONENTS OF IEEE39-BUS SYSTEM SORTED 

BY TOTAL SEQUENTIAL VULNERABILITY 

Branches in Physical Layer Nodes in Cyber Layer 

Ranking 
ID of 

Branches 
 iS C  Ranking 

ID of 

Nodes 
 iS C  

1 2 50 1 3 5 

2 15 24 2 16 4 

3 1 5 3 11 3 

4 35 4 4 15 3 

5 23 4 5 8 3 

TABLE II. VULNERABLE COMPONENTS OF IEEE RTS-96 SYSTEM SORTED 

BY TOTAL SEQUENTIAL VULNERABILITY 

Branches in Physical Layer Nodes in Cyber Layer 

Ranking 
ID of 

Branches 
 iS C  Ranking 

ID of 

Nodes 
 iS C  

1 18 93 1 27 3 

2 20 64 2 5 2 

3 16 25 3 18 1 

4 26 23 4 21 1 

5 17 17 5 20 1 

 

On the other hand, as shown in Table I and II, we can observe that 

the span of  iS C  is quite large, which means, taking IEEE 39-

bus system as an example, branch 2 is more vulnerable than 

branch 23, and by extension, other branches ranked behind branch 

23 in the system. Such results indicate that for cyber-physical 

systems, there is a limited number of critical components, which 

must be reinforced and cyber secure. In our case, Table I and II 

give the top 5 critical components in both cyber and physical 

layers of the IEEE 39-bus and IEEE RTS-96 systems. 

6  Conclusion and Future Work 

This paper focuses on revealing the vulnerability features of 

cyber-physical systems considering the time-varying operational 

states. First, we model the cascading failures considering the 

interaction of cyber and physical layers. By combining cascading 

failure chains of all-time instants, a cascading failure chain 

database is generated. This captures the intricate relationships 

among components and reveals the fault propagation mechanism 

of CPS under different operating conditions. The PrefixSpan 

sequential data mining algorithm is adopted to identify the 

vulnerable sequences. The total sequential vulnerability metric is 

proposed to quantify the vulnerabilities of CPS components. The 

simulation results show that there is only a limited number of 

critical CPS components. The resilience of the cyber-physical 

system can be greatly improved if these critical components are 

reinforced and cyber secured. This paper provides a new 

perspective on CPS vulnerability assessment. As an extension to 

this paper, one can perform an in-depth study of considering the 

cyber-related operational mechanisms, e.g., routing protocols and 

information flows, when modeling the cascading failures between 

the cyber-physical layers. 
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