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Reinforcement learning (RL) agents can learn to control a nonlinear systemwithout using a model of the system. However, having
a model brings benefits, mainly in terms of a reduced number of unsuccessful trials before achieving acceptable control per-
formance. Several modelling approaches have been used in the RL domain, such as neural networks, local linear regression, or
Gaussian processes. In this article, we focus on techniques that have not been usedmuch so far: symbolic regression (SR), based on
genetic programming and local modelling. Using measured data, symbolic regression yields a nonlinear, continuous-time analytic
model. We benchmark two state-of-the-art methods, SNGP (single-node genetic programming) and MGGP (multigene genetic
programming), against a standard incremental local regression method called RFWR (receptive field weighted regression). We
have introduced modifications to the RFWR algorithm to better suit the low-dimensional continuous-time systems we are mostly
dealing with. &e benchmark is a nonlinear, dynamic magnetic manipulation system. &e results show that using the RL
framework and a suitable approximation method, it is possible to design a stable controller of such a complex system without the
necessity of any haphazard learning. While all of the approximation methods were successful, MGGP achieved the best results at
the cost of higher computational complexity. Index Terms–AI-based methods, local linear regression, nonlinear systems,
magnetic manipulation, model learning for control, optimal control, reinforcement learning, symbolic regression.

1. Introduction

A reinforcement learning (RL) agent interacts with the
system to be controlled by measuring its states and applying
actions according to a policy so that a given goal state is
attained. &e policy is iteratively adapted in such a way that
the agent receives the highest possible cumulative reward,
which is a scalar value accumulated over trajectories in the
system’s state space. &e reward associated with each
transition in the state space is described by a predefined
value function.

Existing RL algorithms can be divided into critic-only,
actor-only, and actor-critic variants. &e critic-only variants
optimize the value function (V-function) that is then used to
derive the policy; the actor-only variants work directly on

the policy optimization without any need for a value
function; and actor-critic variants optimize both functions
simultaneously. An example of the actor-only RL variant,
often called Q-learning, can be found in [1] and that of the
actor-critic variant in [2].

From a different point of view, RL algorithms can be also
divided into model-based and model-free variants. Exam-
ples of both approaches can be found in [3, 4]. &e model-
based variants include a model representation of the system
to be controlled and can be pretrained in simulation (offline)
and then updated when controlling the actual system
(online). Model-free methods learn online exclusively
through trial and error. Both variants have their specific
advantages and disadvantages. We can often find remarks
about the model-free approach requiring much more data,
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especially in high-dimensional cases [1]. In this paper, we
employ the model-based, critic-only variant without any
online training so that we can compare different modelling
approaches.

We focus on two promising categories of approximation
algorithms: genetic programming and local linear regression.
Our aim is to contribute to the methodology of choosing the
optimal out of dozens of existing modelling algorithms when
presented with a specific RL task.&is problem arises not only
in connection with the RL framework (see [5]) but in
modelling of a dynamical system in general [6, 7].

Genetic algorithms (GA) and their many variations are
well established as a tool for modelling or parameter esti-
mation of dynamical systems [8, 9]. However, genetic
programming as a modelling approach used within RL is
relatively new and promises good results with high-di-
mensional systems where other approaches fail. It creates a
continuous-time, globally nonlinear model described by an
analytical equation built of combinations of predefined
functions [10]. As it is common with genetic optimization
algorithms, these methods tend to be computationally de-
manding. On the other hand, local regression is a well-
established modelling approach for model-based RF agents
where the model is composed of local linear models, offering
fast and computationally cheap approximation. &ere are
several variants of local modelling methods; comprehensive
examples of grid-based local linear model structure and
data-based local linear regression (LLR) are described in
[11, 12], respectively. Even though the use of local regression
techniques within RL has been researched in the past, it was
mainly based on simple, memory-based approximation
methods such as the LLR, which is thoroughly described and
examined in [13, 14], and more complex incremental
methods such as the receptive field weighted regression
(RFWR) [15, 16] or locally weighted projection regression
(LWPR) [17] were omitted, with the exception of [18], where
the RFWR algorithm was used as a critic approximator. &e
RFWR and LWPR methods provide significant benefits in
lower memory use and higher stability by employing op-
timization-based (RFWR) or statistical (LWPR) methods to
discover the optimal distribution of the local models’ areas of
validity, that is, the receptive fields.

It is important to benchmark the modelling methods
because of the large number of existing approaches, which
aim at similar tasks, while there are no simple guidelines on
the method choice. Also, the presented algorithms are not
yet well established within the RL domain. Finally, studying
control algorithms for magnetic manipulation systems has
importance on its own because of its application in many
industrial fields (medical applications, magnetic levitation
systems, etc.), thus leading to the two separate aims of this
paper: exploring control algorithms suitable for control of
precise magnetic manipulator systems and benchmarking
different modelling approaches.

When dealing with real magnetic manipulator systems,
we also need to address practical issues that are often
neglected in simulations, that is, nonlinearities such as ac-
tuator dead zones, saturations, Coulomb friction, signal
delays, and so on. &ese present significant obstacles then

implementing the control algorithm on a real system. In
some cases, the dead zone and saturation problem can be
addressed by nonlinear or adaptive control laws. For ex-
ample, [19] shows an approach using fuzzy control with
Gaussian membership functions, which is in practice similar
to the RFWR method, and [20] describes a gain-scheduling
adaptive approach to deal with internal system bounds.
Using RL to find a control law for a nonlinear system also has
the advantage that it can often deal with such disturbances
on its own through the optimization process; for example,
only a limited range of the actor outputs may be limited,
which is the approach utilized in this paper.

In this paper, we also present minor adjustments to the
RFWR algorithm in Section 3, proposed to lower the
computational complexity while preserving stability when
working with low-dimensional problems.

2. Methods

2.1. Magnetic Manipulator. Genetic programming was al-
ready applied to nonlinear systems like an inverted pen-
dulum or a collaborative robot [2, 10, 21]. To further
investigate the approximation capabilities of these methods,
we use a different system–a magnetic manipulator (Mag-
man). &is system consists of four coils that are indepen-
dently operated by separate current controllers and a steel
ball that can move freely over the coils; see Figure 1. To
ensure that the ball moves only in the measured direction
with limits on the edges, it is placed in a groove with 10mm
in size. In this case, we decided to limit the system to the first
two coils only, as a system with four inputs is much more
complex in terms of the RL computational complexity, while
it does not enrich the system with different nonlinearities as
it only spatially repeats the same kind of nonlinear
behaviour.

&e steel ball can be positioned by properly controlling
the current and thereby the magnetic force of the coils. &e
magnetic force a coil exerts on the ball is highly dependent
on the distance of the ball from the coil’s centre, which
introduces a significant nonmonotonic nonlinearity
[22–24].

All experiments and simulation were scripted in
MATLAB. &e coil currents are controlled by stabilized
current source modules, which communicate that MATLAB
through a USB/RS232 transceiver using the virtual COM
port (VCP) protocol on Windows OS. As the ball position is
measured with a laser sensor with analog (voltage) output,
the Humusoft MF634 IO card was used tomeasure the signal
in real time from the MATLAB environment with a sam-
pling period of 5ms. Even though the Window OS is not an
RTOS, with this sampling frequency, the period jitter is
negligible (below 0.1%), and thus, the system can be con-
sidered real time.

Table 1 lists the parameters of the magnetic manipulator
we use in our experiments. With the task being a precise
positioning of an object in a magnetic field, similar concepts
can be found in many real-world applications, for example,
maglev, microrobots, contactless stirring of chemicals, and
so on.
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Approximate equations of motion inferred using the first
principle method can be found in [24]. &e system pa-
rameters were either measured directly or estimated using
MATLAB parameter estimation toolbox based on measured
data.

Generally, the system can be described by a continuous-
time, nonlinear state-space model as follows:

x
.

� f(x, u), (1)

where x � [x, _x]⊤ is the state vector composed of the po-
sition x and velocity _x of the ball, forming the continuous
system state space x ∈ X ⊂ R2; x

.
in _X ⊂ R2 is the state

vector derivative; and u � [u1, u2]
⊤ is the input (action)

vector composed of the coil currents. u1, u2 form the system
input space u ∈ U ⊂ R2. &e nonlinear vector function
f: X × U⟶ _X thus describes the system dynamics.

In this paper, by modelling the system, we mean ap-
proximating the underlying real function f using various
methods, which all build upon experimentally measured
input-output data. Each data point is formed by corre-
sponding assumed inputs and outputs of the function f

– (x
.

k, xk, uk). In practice, these data points are corrupted by
noise and other disturbances that are assumed to be with
zero means.

2.2. SNGP. Single-node genetic programming (SNGP) is a
graph-based genetic programming algorithm evolving a
population organized as an ordered linear array of inter-
linked individuals, each representing a single program node
[2, 10, 21]. Generally, symbolic regression algorithms try to
find a model in the form of an analytical expression for a
given data set by forming and evolving the expression out of
elemental functions and operations. In our case, the algo-
rithm is based on the assumption that the nonlinear function
f in (1) can be efficiently approximated by the following
equation:

x
.

� f(x, u) � 

nf,ns

i,j

βifi xj, uj , (2)

where the nonlinear function fi, called the feature, is de-
veloped by means of genetic programming with nf being the
maximum number of features, ns number of states, and the
coefficients βi estimated by the least-squares method. &e
features are constructed from a list of elementary functions
that are assumed to be able to produce the required fitting
approximation of the presented data. &e features can be
combined by common operators or nested, but the maximal
depth of the expression is limited to avoid overfitting. &e
symbolic model is evolved so that the mean-squared error
over the training data is minimized.

2.3. MGGP. &e second GP algorithm we used is called
multigene genetic programming (MGGP). As opposed to
SNGP, it combines the features defined also by 2 into tree-
like structured expressions called genes. &e final expression
is formed by a linear combination of these genes, which act
as the individual features in equation (2). &e parameters of
this top-level linear combination are again estimated
through least squares. Further details about the algorithm
can be found in [25]. &e actual MGGP implementation we
used is extended with linear combinations of features [26]
that enable the algorithm to find affine transformations of
the feature space via a backpropagation-like technique, thus
making it easier for the driving genetic programming al-
gorithm to approximate the nonlinearities.

2.4. Receptive Field Weighted Regression. Receptive field
weighted regression (RFWR) is an incremental approxi-
mation method that creates a set of local linear models and
the corresponding Gaussian basis functions called the re-
ceptive fields and gradually updates them to fit the input-
output data. &e set of local linear models is updated with
new data points (called the query points) using a weighted
variant of the recursive least squares (RLS) method and the
basis functions are updated through a gradient search with
the help of heuristic decision rules. It can continually im-
prove the set of models while still providing the best esti-
mation of the approximated function at each query point
based on the previously provided data. &e original algo-
rithm, first presented in [15, 16], which is the basis we build
upon, can be best described by the following pseudocode:

(1) For each new query point (x. k, xk, uk)

(2) For each existing local model
(3) Calculate model weight w according to (4)
(4) If w> activation limit wact

(5) Update model parameters using RLS according to
(6) and (7)

(6) Update the corresponding receptive field using (12)
and (14)

(7) End
(8) End

Figure 1: A schematic drawing of the magnetic manipulator
system.

Table 1: Magnetic manipulator parameters.

Parameter Value Unit
Ball mass 53 g
Ball diameter 20 mm
Distance between edge coils and the ball position
limit 20 mm

Distance between coils 25 mm
Maximal coil current 0.6 A
Sampling period 0.005 s

Complexity 3



(9) If no model was activated
(10) Place a new model at the query point using (15)
(11) Else if two or more models were activated with

weight w> pruning limit wprun

(12) Prune the model with the smaller receptive field
(13) End
(14) Calculate the model output as a weighted average of

the activated local models
(15) End

Usually, the receptive field activation limit is set as
wact � 0.001. &is parameter represents the weight limit
for a local model to be updated according to the new data
and to be included in the output estimation through a
weighted average with another activated model. &e
pruning limit is usually set as wprun � 0.7, which repre-
sents the highest acceptable overlap of neighbouring re-
ceptive fields.

&e RFWR variant described in this paper follows the
main outline of the original algorithm [15] with several
adjustments and improvements for the sake of stability
and computational complexity for low-dimensional
problems. &is mainly concerns the rules for adding new
local models, adjusting their receptive fields, and gen-
eralizing the algorithm in a way that the receptive fields
are placed and optimized in a lower number of di-
mensions than the order of the models. &is is especially
useful in cases when the nonlinearities are significant
mainly in one or two dimensions of the state space of the
system. &is algorithm, in its original implementation, is
successfully being used to approximate inverse models of
nonlinear systems to be used as a feedforward com-
pensator [27, 28]. Figure 2 shows an example approxi-
mation of a complex univariate nonlinear function by the
RFWR algorithm.

Each of the local models is represented by a parameter
vector b � [b1, b2, . . . , bn]⊤. With the input vector (a query
point) Xq � [x1, x2, . . . , xn]⊤, the output yq is calculated by

yq � X
⊤
q b. (3)

&e weight w of a local model at a query point Xq is
determined by its Gaussian receptive field as follows:

w(X) � e
− 1/2 Xq− c( 

⊤
C−1 Xq− c( 

, (4)

with c � [c1, c2, . . . , cn] the vector of model centre coordi-
nates and C− 1 the distance inducing matrix of the basis
function (receptive field). &e overall output is then cal-
culated as a weighted average of the outputs of the activated
local models.

&e output estimate of the set of local models and their
receptive fields is calculated by the following equation:

y �
1


n
i�1wi



n

i�1
wiyi. (5)

We modified the original RFWR algorithm described in
[15] to be used for low-dimensional problems. &ese
modifications consist of the following:

(1) Precise placement of new receptive fields that takes
into account the location and dimensions of the
existing surrounding receptive fields (see section 3.3)

(2) Heuristic rules for stable updating of the receptive
fields (see section 3.1)

(3) Receptive fields can be distributed along a lower
number of dimensions than the dimension of the
data space (see section 3.2)

2.4.1. Updating parameters of Local Models. When a new
query point is acquired, the activated local models are
updated using the recursive least-squares algorithm (RLS)
according to

P
n+1

�
1
λ

P
n

−
P

n
X

T
q XqP

n

λ/w + XqP
n
X

T
q

⎛⎝ ⎞⎠,

b
n+1

� b
n

+ wPn+1
X

T
q e,

e � yq − Xqb,

(6)

x

y

Nonlinear function approximation by RFWR

Nonlinear function
Local models

x

Re
ce

pt
iv

e fi
el

d 
w

ei
gh

t

Receptive fields

Figure 2: Example of RFWR approximation of a complex non-
linear function and the distribution of receptive fields.
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where P is the covariance matrix of the estimate, λ is a
forgetting parameter, and yq is the acquired output for the
actual system state Xq called the query point. &e covariance
matrix P needs is usually initialized as a diagonal matrix.

2.4.2. Updating dimensions of Basis Functions. To avoid
calculating the matrix inversion in (4) for every local model,
an upper triangular matrix M is used instead of C. Because
of symmetry and positive definiteness, these matrices relate
according to

C
−1

� M
T

M. (7)

To update the receptive field, we update M using a
gradient-descent optimization

M
i+1

� M
i
− α

zJ(M)

zM
, (8)

of the cost function J as follows:

J �
1


n
i�1wi



n

i�1
wi yq − yi 

2
, (9)

where wi is the activated receptive field weight, yi is the
estimated output of the respective model at the query point
(yq; Xq), and n is the number of local models.&e parameter
α is the gradient optimization step size. As the calculation of
the cost function J according to (9) is computationally very
complex, we simplified the optimization algorithm through
a set of heuristic decision rules and implemented the op-
timization as follows:

M
i+1

� M
i
− αp

zw(M)

zM

zw(M)

zM
�

z e
− 1/2 Xq− c( 

⊤
MTM Xq− c( 

 

zM
�

� − Xq − c 
⊤

M Xq − c e
−
1
2

Xq − c 
⊤

M
T
M Xq − c 

.

(10)

&is implementation introduces a parameter p, which is
an expression of a simple heuristic to decide whether the
value of a basis function (weight) at the actual query point
should be increased or decreased. &is enables to stop
updating the distance inducing matrix when a precision
criterion is met and to limit the maximal number of local
models to avoid overfitting.

Parameter p can be determined by various decision
rules. A simple yet effective set, which was used in this
research, can be created by using a long-term (cumulated
over time) MSE of a particular model according to the data
points, which can be described by

p �
−1, if MSE>MSElim

1, if MSE<MSElim
 (11)

2.4.3. Adding New Local Models. During the optimization
process, it is possible that no model exceeds the activation
limit wact. In such a case, a new local model with a receptive
field is added to the approximation set. &e centre of the
receptive field is automatically placed at the actual query
point, and the model parameters are initialized to fit the
measured output of the approximated system. What needs to
be determined is the area in the state space that should be
covered by the newly created receptive field. &e original
algorithm uses a default diagonal distance inducingmatrix for
every local model. However, an optimal distance inducing
matrix can be determined. Intuitively, the new receptive field
should cover the gap between the already existingmodels.&e
distance inducing matrix should be initialized as a diagonal
matrix with parameters that ensure that the new receptive
field does not overlap with any existing onemore than a preset
limit. In our case, the limit was set to 0.5wprun. Since this
would be a complex optimization task not suitable for real-
time calculation, we simplified the criterion so that the
maximal overlapping weight of two models is analyzed only
over the line segment connecting their centres. In that case,
the distance parameter for initializing the distance inducing
matrix can be determined by the following equation.where
vi � cn − ci is a vector between the new centre cn and the
centre of a neighbouring receptive field ci. A two-dimensional
example is shown in Figure 3. &is method yields a better
estimate of the distance inducing matrix of the new receptive
field than the fixed initial dimension matrix in the original
algorithm as it requires fewer iterations to stabilize and to
cover the gap between neighbouring receptive fields.

di � −
2 log wprun/2 

vi


 −

����������������������

−2 log wprun/2 /viM
T
i Mivi

 , (12)

&e distance parameter di has to be calculated for every
existing local model, and the minimal distance dmin is used
to initialize the distance inducing matrix according to

M
0
n � I

����

dmin



, (13)

where I is a unity matrix of the corresponding order.
In the specific case of the magnetic manipulator, the

inputs of the local models would correspond to (x, u) and
the output to x

.
.

2.5.ReinforcementLearning. Consider the following discrete
deterministic state-space model of a system to be controlled:

xk+1 � f xk, uk( , (14)

where k ∈ Z denotes discrete time instants,
xk, xk+1 ∈ X ⊂ Rn is the state vector, and uk ∈ U ⊂ Rm is the
input vector. An RL agent learns to control the system so that
it achieves the maximal cumulated reward on a trajectory
from the initial state to the desired state [10]. At each state
transition, as described by (14), the agent receives a scalar
reward according to
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r � ρ xk, uk, xk−1( . (15)

&e reward function ρ is usually based on the distance of
the current state to the goal state. &e optimal control law,
called the policy, π: X⟶ U is determined as follows such
that it maximizes the cumulative reward, called the return:

R
π

� E 
∞

k�0
c

kρ xk, π xk( , xk+1( 
⎧⎨

⎩

⎫⎬

⎭, (16)

where c ∈ (0, 1) is the discount factor and the initial state x0
is selected from the state space domainX. &e return for any
permissible initial state x is captured by the value function
V: X⟶ R defined as follows:

V(x) � E 
∞

k�0
c

kρ xk, π xk( , xk+1( 
⎧⎨

⎩

⎫⎬

⎭, x0 � x. (17)

An approximation of the optimal V-function V(x) can
be found by solving the Bellman equation as follows:

V(x) � maxu∈U[ρ(x, π(x), f(x, u)) + cV(f(x, u))].

(18)

&e optimal action can be found as the action that steers
the system to a state with maximal value [21]. &is corre-
sponds to maximization of the right-hand side of (18):

u � argmax
u′∈U

ρ x, u′, f x, u′( (  + cV f x, u′( (  . (19)

3. Experimental Results

We prepared training and validation I/O data sets measured
on the magnetic manipulator with random input signals as a
list of data points in the form (x

.

k, xk, uk). &e random input
signals (coil currents) were generated in the way that only
one coil was active at a time that eliminated possible elec-
tromagnetic interactions between them (the coil current was
controlled by an HW-based current feedback controller
module rendering the transient times negligible). Figure 4
shows an example of a training data set.

Even though the ball’s position measurement is very
precise, it still contains significant noise. For that reason, the
time-domain derivatives of the position (velocity and ac-
celeration) needed for the dynamic model approximation
were determined using the Savitzky–Golay filter, which is an
FIR filter based on least-squares polynomial approximation
able to perform numerical differentiation while filtering the
noise simultaneously [29, 30].

Especially for the RFWR implementation, it is important
to note that the system’s nonlinearity is mainly significant
along the position of the ball and the system can be seen as
linear in parameters along the other dimensions (acceler-
ation and velocity). In this case, the general model (1) can be
rearranged as follows:

€x � f(x, u) + b0sign( _x) + b1 _x + b2 _x
2
, (20)

where the function f(x, u) represents the significant non-
linearity suitable for local approximation, the term
b0 sign( _x) represents a simple model of dry friction, the term
b1 _x represents the viscous friction, and the last term b2 _x2

models nonlinear damping caused by electromagnetic in-
duction influencing the steel ball while moving rapidly
through a magnetic field. Despite being nonlinear, all of the
terms are linear in their parameters and can be modelled
globally, which means that the local models share param-
eters b0 through b2.

&e term b0 sign( _x) in the (20) is quite important in
practical situations where Coulomb friction is not negligible.
&e sign function is often being used to approximate the
effects of Coulomb friction wherever there is no significant
stiction (difference between static and dynamic friction
effects). &ere are better approximations for simulation
purposes, for example, the sigmoid function; however, most
of them are not linear in parameters and thus not applicable
for RLS parameter estimation.

&e same data set was presented to all of the approxi-
mation methods (RFWR, SNGP, and MGGP). Due to the
stochastic nature of the two algorithms based on genetic
programming, the same process was repeated with different
pseudorandom seeds. Overall, 30 runs for SNGP andMGGP
and 1 run for RFWRwere made. Table 2 shows the summary
of the MSE results.

Since the MSE of the models with respect to the training
set is not sufficient to decide which models are better, two

Receptive fields - 2D

Receptive fields - 1D section

Old receptive field
New receptive field

X2

X1

ci

ci

wmax

w

cn
X

cn
SECTIO

N PLANE

Figure 3: Demonstration of adding a new reference field to the set
of RFWR local models and matching its dimensions to fit the
surrounding reference fields.
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separate data sets were measured: one was used for the
training of the models and one for validation. However,
since the magnetic manipulator is not open-loop stable, the
common open-loop validation is not suitable, as everymodel
diverges quickly even though the parameters may be close to
ideal due to errors introduced by numerical integration.
&erefore, the models were validated in several steps-ahead

prediction mode. As we also suspected that only one-
sample-ahead validation could be influenced by the
remaining noise in the measured signals, we validated the
model for 1, 3, 5, 10, 50, 100, and 250 samples ahead. We
used the five-step-ahead prediction (5-SAP) as a baseline for
selecting the best models for further experiments.&e reason
to choose five samples is based on an experimentally

0 0.5
t (s)

1 1.5 2

0 0.5
t (s)

1 1.5 2

0

20

40

60

80

x 
(m

m
)

U
 (A

)
Measured

0

0.2

0.4

0.6

Coil 1
Coil 2

Figure 4: Random input signal (generalized binary noise with random coil switching) with only one coil active at a time for training and
validation sets generation.

Table 2: Statistical results of the best models.

Model Training MSE 5-SAP validation MSE Control MSE
SNGP 3 6.53 · 10−2 5.71 · 10−12 4.02 · 10−5

SNGP 7 6.78 · 10−2 5.77 · 10−12 2.46 · 10−4

SNGP 10 5.89 · 10−2 5.36 · 10−12 4.23 · 10−5

SNGP 13 7.28 · 10−2 6.37 · 10−12 4.28 · 10−5

SNGP 17 7.48 · 10−2 5.84 · 10−12 1.28 · 10−4

SNGP 18 7.23 · 10−2 5.79 · 10−12 2.06 · 10−4

SNGP 21 7.65 · 10−2 6.41 · 10−12 3.40 · 10−3

SNGP 27 5.32 · 10−2 6.57 · 10−12 1.16 · 10−4

SNGP 29 5.85 · 10−2 6.19 · 10−12 9.60 · 10−5

SNGP 30 6.93 · 10−2 5.99 · 10−12 3.75 · 10−5

MGGP 5 5.94 · 10−2 5.49 · 10−12 6.34 · 10−5

MGGP 8 4.87 · 10−2 5.13 · 10−12 4.14 · 10−5

MGGP 9 5.69 · 10−2 6.18 · 10−12 3.80 · 10−5

MGGP 13 6.59 · 10−2 5.67 · 10−12 4.13 · 10−5

MGGP 16 5.96 · 10−2 5.29 · 10−12 6.59 · 10−5

MGGP 17 5.99 · 10−2 5.08 · 10−12 5.46 · 10−5

MGGP 18 7.35 · 10−2 6.28 · 10−12 1.50 · 10−4

MGGP 21 5.60 · 10−2 5.92 · 10−12 6.74 · 10−5

MGGP 22 5.55 · 10−2 5.74 · 10−12 8.84 · 10−5

MGGP 23 6.00 · 10−2 5.82 · 10−12 3.56 · 10−5

RFWR 6.25 · 10−2 1.24 · 10−11 6.57 · 10−5
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validated assumption that shorter intervals do not show the
model’s imprecision and longer intervals cause even very
precise models to diverge randomly.

&e n-step-ahead prediction validation is based on a
moving frame of n consecutive data points, where the first
data point is applied as the initial condition for numerical
integration (using the ode45 solver) of the dynamical model
being tested. When the simulation reaches the n-th step, an
MSE residual is calculated between the corresponding data

point and the model prediction. &e resulting model vali-
dation metric is then calculated as the sum of residuals over
each of the prediction frames.

Figure 5 shows examples of the models constructed by
each algorithm. As the transition model of the system is
four-dimensional, for visualization purposes, the figures
show a two-dimensional situation for the input vector set to
u � [0, 0.6]T.&is corresponds to the situation when the first
coil is turned off and the current through the second coil is
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set to the maximal value.&e plotted functions were cropped
in the parts of the state space that are not reachable by the
system (typically high velocities close to the edge of the
frame).

Based on the 5-SAP validation results, 21 best models
(10x SNGP, 10x MGGP, and 1x RFWR) were chosen to be
used for RL control of the magnetic manipulator. Based on
these models, we calculated the approximations of the op-
timal V-functions using the fuzzy value iteration [10, 21].
Furthermore, we used equation (19) to calculate the cor-
responding policies. Figure 6 shows examples of the value
functions that resulted in the policies shown in Figure 7.

All the policies were tested on the actual magnetic
manipulator. A sequence of five consecutive goal states was
chosen as a goal state trajectory, and a corresponding
V-function and policy were calculated for each one. During
the actual control process, a new policy is used every time the
goal state changes. Figure 8 shows an example of the control
experiments with an RL controller based on the model
SNGP 10. Furthermore, Figure 9 shows the ball’s trajectory
in the state space plotted over the V-function and the policy.

To conduct all of the experiments, we measured the ball’s
position using a laser distance sensor, and a PCIe I/O card
Humusoft MF634 was used to capture the sensor’s analog
output signal. &e coil currents were driven by a custom
dual-channel current controller. Both of the devices are
operated from MATLAB.

3.1. Results. We compared the performance of various
models of a complex nonlinear system created with three
different approximation methods, two of which were based
on genetic programming and the third was based on a
modified local linear approximation algorithm (RFWR).
Based on these models, we used a model-based critic-only
RL agent to control the system and validate the results.

Table 2 shows the resulting MSE values from the esti-
mation, validation, and control processes.

Most of the models selected for the actual control ex-
periments were successful in achieving stable control, al-
though they differ in precision. &e histogram in Figure 10
shows the number of models for the two GP-based algo-
rithms (SNGP and MGGP), which fall into several MSE
categories. &e MSE describes the control precision as the
mean-squared error between the goal and the actual tra-
jectory of the closed-loop controlled system.

4. Conclusions

First of all, the results show that it is possible to construct
even such a complex nonlinear system using the RL
framework.&e results are not significant in terms of control
precision, which depends highly on the specific system,
amount of experimental data, and many other factors. An
important achievement is a fact that all of the modelling
algorithms demonstrated in this paper provide a viable al-
ternative to the commonly used methods while being much
less computationally expensive (in the case of RFWR) or
muchmore user-friendly (in the cases of SNGP andMGGP).

Also, it was proven that the commonly used RL framework
may be built even on tom of imperfect models.

It is clear from the results that the methods that at least
partially depend on random number generation (SNGP and
MGGP) need to be run repeatedly in search for the best
solution, which clearly outperforms the result of the local
approximation method (RFWR). On the other hand, the
RFWR method requires significantly less computational
power than the GP-based methods. Also, it seems that both
the SNGP and the MGGP are able to find similarly precise
models with the MGGP having a higher probability of
converging to the best solution. It is interesting to note that
models with better training or validation fit are not always
better for control, as can be seen in Table 2. All of the
methods provide a useful tool to be used within the rein-
forcement learning framework with the main advantage of
the GP-based approximation method being a form of output
(analytical expression) that is understandable and readable
and whose complexity is controllable through intuitive
parameters. Considering the simplifications made during
the simulations and experiments and a relative imprecision
during the control processes, there is space for future re-
search in modifying these methods to be suitable for higher-
dimensional systems, implementing GPU, handling specific
nonlinearities (friction, hysteresis, etc.), and using them also
for an approximation of the V-functions and policies.

Data Availability

Research data in the form of simulation and experimental
results and MATLAB files are available from the corre-
sponding (first) author upon request (martin.brablc@
vutbr.cz).
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