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Abstract
Local normal form theorems for smooth equivariant maps between infinite-dimensional 
manifolds are established. These normal form results are new even in finite dimensions. 
The proof is inspired by the Lyapunov–Schmidt reduction for dynamical systems and by 
the Kuranishi method for moduli spaces. It uses a slice theorem for Fréchet manifolds as 
the main technical tool. As a consequence, the abstract moduli space obtained by factor-
izing a level set of the equivariant map with respect to the group action carries the struc-
ture of a Kuranishi space, i.e., such moduli spaces are locally modeled on the quotient by 
a compact group of the zero set of a smooth map. The general results are applied to the 
moduli space of anti-self-dual instantons, the Seiberg–Witten moduli space and the moduli 
space of pseudoholomorphic curves.

Keywords Submersion · Immersion · Group action · Equivariant map · Kuranishi 
structure · Moduli space · Anti-self-dual Yang–Mills · Seiberg–Witten · 
Pseudoholomorphic curves

Mathematics Subject Classification 58K70 · 58D27 · 58D19 · 58G05 · 22E65 · 70S15

1 Introduction

Moduli spaces parametrize solutions of partial differential equations up to some natu-
ral notion of equivalence. They play an essential role in theoretical physics as well as in 
pure mathematics. In (gauge) field theory, they represent the reduced phase spaces after 
the (gauge) symmetry has been divided out, see [68] and references therein. The topologi-
cal and inherently non-perturbative aspects of the physical system are often manifested in 
the geometry of the moduli space. On the other hand, the structure of the moduli space 
encodes some astounding topological and geometrical properties. The topological data 
extracted from this auxiliary moduli space serve as a powerful nonlinear invariant of the 
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original manifold. Important examples can be found in many areas: gauge theory (flat con-
nections [4], anti-self-dual instantons [18], Seiberg–Witten monopoles [73]), symplectic 
geometry (pseudoholomorphic curves [32], symplectic field theory [23]), complex geom-
etry [46] and string theory.

For applications in both geometry and physics, a deep understanding of the local struc-
ture of the moduli space is essential. Of particular importance is the formation of sin-
gularities due to points having a non-trivial stabilizer under the symmetry group action. 
Although relying on similar techniques, so far these fundamental features are analyzed 
only on a case by case basis for each moduli space separately.

In this paper, we provide a general framework that gives a unified approach to these 
differential-geometric moduli spaces. Specifically, we establish a convenient normal form 
for a large class of nonlinear differential equations with symmetries. Furthermore, we show 
that the corresponding moduli space of solutions can be endowed with the structure of a 
Kuranishi space, which roughly speaking means that it can be locally identified with the 
quotient of the zero set of a smooth map by the linear action of a compact group. Our 
approach is inspired by the ideas that underlie the Lyapunov–Schmidt reduction for dynam-
ical systems and the Kuranishi method for moduli spaces in differential geometry. As we 
discuss in the last section, our general framework applies to the fundamental moduli spaces 
of anti-self-dual instantons, Seiberg–Witten monopoles and pseudoholomorphic curves, 
leading to simplified and unified proofs that these moduli spaces have natural Kuranishi 
charts.

Our results are phrased in terms of smooth equivariant maps between infinite-dimen-
sional manifolds modeled on locally convex spaces. In field theory and global analysis, the 
maps under consideration are usually given by partial differential operators between spaces 
of sections. As such, they give rise to smooth maps between appropriate Sobolev comple-
tions. On the other hand, the symmetry action often involves compositions of maps and 
thus fails to be differentiable as a map between spaces of sections of a given Sobolev class. 
For example, the group of diffeomorphisms of a fixed Sobolev regularity is a Banach mani-
fold as well as a topological group but not a Lie group, because the group operation is not 
differentiable. When working with smooth objects these problems disappear, and the group 
of smooth diffeomorphisms is a bona fide Lie group modeled on a Fréchet space. In order 
to include these important cases, we consider throughout the paper infinite-dimensional 
manifolds modeled on Fréchet or even more general locally convex spaces. The approach 
via Fréchet spaces has also the advantage that the geometric arguments in the applications 
are simpler, because one does not have to deal with issues originating in the low regularity 
of the sections or in the loss of differentiability.

Beyond the Banach context, the classical Banach inverse function theorem used in the 
proof of Theorem 3.5 has to be replaced by a different version. We will use Glöckner’s 
inverse function theorem for maps between Banach spaces with parameters in a locally 
convex space and the Nash–Moser theorem in the tame Fréchet setting. Moreover, the nor-
mal form theorems are phrased and proved in a modularized way, leading to a flexible gen-
eral framework in which other analytical setups can be included in a “plug and play” fash-
ion based on other inverse function theorems.

As another approach to the issues that composition is not smooth relative to a fixed 
Sobolev regularity, Hofer, Wysocki and Zehnder have introduced the scale calculus, 
see, e.g., [40, 41] and references therein. In this approach, one works with a sequence of 
Banach spaces, while the Nash–Moser approach focuses on the limit space, see [28] for a 
detailed comparison. The scale calculus is tailored to the elliptic setting one encounters in 
symplectic field theory. We emphasize that the Nash–Moser theorem covers these cases as 
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well, see Sects. 3.4 and 5.5, but additionally allows for applications that go well beyond the 
elliptic setting. This will be crucial for problems where classical Banach space methods do 
not apply and more sophisticated Nash–Moser arguments are needed, such as deformation 
and normal form problems in the theory of fibrations [34] and Poisson manifolds [11, 48]. 
Finally, the general framework developed in this paper lays the foundation for the singular 
symplectic reduction in infinite dimensions, which will be presented elsewhere [13, 14].

The paper is structured as follows.
Section 2 We begin by considering the linear setting and determine under which condi-

tions a continuous linear map between locally convex spaces can be brought into a normal 
form; that is, it factorizes through a topological isomorphism. An operator admitting such 
a factorization is called regular. Fredholm operators, and in particular elliptic operators, are 
important examples of regular operators. As a preparation for the nonlinear case, we also 
discuss regularity of families of linear maps depending continuously on a parameter and of 
chain complexes.

Section 3 Next, we discuss the local behavior of a smooth map between locally con-
vex manifolds. Unifying the concepts of immersion, submersion and subimmersion in one 
framework, the notion of a normal form of a nonlinear map is introduced. Using versions 
of the inverse function theorem, we establish Theorems 3.5, 3.7, 3.8, 3.11 and 3.12 which 
show that a given map can be brought into such a normal form in various functional-ana-
lytic settings under suitable conditions. These normal form theorems provide a unified 
approach to the immersion theorem, the level set theorem and the constant rank theorem in 
the setting of locally convex manifolds and tame Fréchet manifolds.

Section 4 We introduce the concept of an equivariant normal form and provide suitable 
conditions which ensure that an equivariant map can be brought into such a normal form, 
resulting in Theorem 4.6 and its variants. Besides the normal form results in Sect. 3, the 
main technical tool is the existence of slices for actions on Fréchet manifolds as established 
in [16]. We investigate the local structure of the moduli space obtained by taking the quo-
tient of a level set of the equivariant map by the group action. Under the assumption that 
the map can be brought into an equivariant normal form, the corresponding moduli space 
has the structure of a Kuranishi space, which roughly speaking means that it can be locally 
identified with the quotient of the zero set of a smooth map with respect to the linear action 
of a compact group. Moreover, we find additional conditions on the normal form which 
ensure that the moduli space is stratified by orbit types. Finally, to show the utility of this 
novel framework, we apply the general theory to the example of the moduli space of anti-
self-dual Yang–Mills connections, to the Seiberg–Witten moduli space and to the moduli 
space of pseudoholomorphic curves. The upshot is that these moduli spaces have natural 
Kuranishi charts. Since no Sobolev techniques are used, the arguments are streamlined and 
simplified. For examples, we do not face any issues coming from functions of low regular-
ity that complicate the analysis in the usual Banach approach.

In Appendix, we summarize without proofs the relevant background material concern-
ing the calculus of infinite-dimensional manifolds with a primary focus on the inverse 
function theorem as well as on Lie group actions.

Most of the material first appeared in the first author’s thesis [13].

1.1  Conventions

Our main references for terminology and notation in the framework of infinite-dimen-
sional differential geometry are [35] for the tame Fréchet category and [57] for the general 
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locally convex case. As the latter is our standard setting, we use the word “manifold” to 
refer to an infinite-dimensional locally convex manifold; further assumptions on the model 
space are designated by additional qualifier such as “Fréchet or finite-dimensional mani-
fold.” For a Lie group action Υ∶ G ×M → M , we also use the “dot notation” and abbrevi-
ate Υ(g,m) ≡ g ⋅ m for g ∈ G and m ∈ M . On the infinitesimal level, for A ∈ � , we write 
the fundamental vector field A∗ as A∗

m
= TeΥm(A) ≡ A.m . Similarly, TmΥg(X) ≡ g.X for 

X ∈ TmM.

2  Normal form of a linear map

In this section, we discuss the normal form of continuous linear maps between locally con-
vex spaces. Recall that every (m × n)-matrix T with rank r can be written in the following 
normal form

where P and Q are invertible matrices of type (m × m) and (n × n) , respectively. As we will 
see, a similar factorization is possible for continuous linear maps between locally convex 
spaces, which are relatively open and whose kernel and image are closed complemented 
subspaces. We call such operators regular and their associated representation (2.1) a normal 
form. As a preparation for the nonlinear case, we define and study regularity of families of 
linear maps depending continuously on a parameter. With a view toward applications, we 
give a brief overview of the theory of Fredholm operators and of elliptic operators in the 
locally convex framework and, in particular, show that these operators are regular.

2.1  Uniform regularity

Let X and Y be locally convex spaces, and let P be a neighborhood of 0 in some locally 
convex space. A continuous map T∶ P × X → Y  is called a continuous family of linear 
maps if, for all p ∈ P , the induced map Tp ≡ T(p, ⋅)∶ X → Y  is linear.

Definition 2.1 A continuous family T∶ P × X → Y  of linear maps between locally convex 
spaces X and Y is called uniformly regular (at 0) if there exist topological decompositions

where CoimT0 and CokerT0 are closed subspaces1 of X and Y, and, for every p ∈ P , the 
map T̃p = prIm T0

◦ (Tp)↾CoimT0
∶ Coim T0 → ImT0 is a topological isomorphism and the 

inverses T̃−1
p

 form a continuous family P × ImT0 → Coim T0 of isomorphisms.

(2.1)T = P

(
0 0

0 �r×r

)
Q,

(2.2)X = Ker T0 ⊕ Coim T0, Y = Coker T0 ⊕ Im T0,

1 The coimage and cokernel of an continuous linear map T∶ X → Y  are defined as Coim T = X∕KerT and 
Coker T = Y∕Im T  , respectively. There exists, of course, no canonical realization of these quotient spaces 
as subspaces of X and Y. Nonetheless, the choice of topological complements A and B of KerT  and ImT  , 
respectively, leads to the identifications Coim T ≃ A and Coker T ≃ B . It is in this sense and with a slight 
abuse of notation that we view Coim T  and Coker T  as subspaces of X and Y, respectively.
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In the case P = {0} , the notion of uniform regularity reduces to the notion of a relatively 
open operator T∶ X → Y  with closed complemented kernel and image. We refer to this 
situation by saying that T is a regular operator.2 Every regular operator T can be written in 
a normal form similar to (2.1):

where Q∶ X → Ker T ⊕ Coim T and P∶ CokerT ⊕ ImT → Y  are the natural isomor-
phisms determined by the decompositions  (2.2), and T̃∶ Coim T → ImT  is a topological 
isomorphism. We call T̃  (together with the isomorphisms Q and P) a normal form of T.

If the space of invertible maps is open in the space of all continuous linear maps, then, 
for every continuous family T∶ P × X → Y  with T0 being regular, one can shrink P to pass 
to a uniformly regular family. This openness property fails when one leaves the Banach 
realm. However, when it does hold, uniform regularity reduces to a condition at one point.

Lemma 2.2 Let T∶ P × X → Y  be a continuous family of linear maps between locally con-
vex spaces X and Y. If ImT0 is finite-dimensional, then T is uniformly regular after possibly 
shrinking P.

Proof Since T0 has a finite-dimensional range, by [45, Proposition 20.5.5], ImT0 is closed 
and has a topological complement. Moreover, Ker T0 has finite codimension in X and 
hence is topologically complemented according to [45, Proposition  15.8.2]. The maps 
T̃p∶ CoimT0 → ImT0 are continuous linear maps between finite-dimensional spaces. Since 
T̃0 is a bijection, the openness of the set of invertible operators implies that T̃p is a topologi-
cal isomorphism for p ∈ P close enough to 0.   ◻

Uniform regularity implies a semi-continuity property of the kernel and the image. Sim-
ilar semi-continuity properties are well known for families of Fredholm operators between 
Banach spaces [42, Corollary 19.1.6].

Lemma 2.3 Let T∶ P × X → Y  be a continuous family of linear maps between locally con-
vex spaces X and Y. If T is uniformly regular, then the following holds:

1. The kernel of T is upper semi-continuous at 0 in the sense that Ker Tp ⊆ Ker T0 for all 
p ∈ P.

2. The image of T is lower semi-continuous at 0 in the sense that ImTp ⊇ ImT0 for all 
p ∈ P .   ◻

Proof The inclusions Ker Tp ⊆ Ker T0 and ImTp ⊇ ImT0 need to be valid, because other-
wise T̃p = prIm T0

◦ (Tp)↾CoimT0
 cannot be an isomorphism from CoimT0 to ImT0 .   ◻

Uniform regularity is tightly connected to the invertibility of an extended operator.

(2.3)T = P

(
0 0

0 T̃

)
Q,

2 We use the word “operator” interchangeably with “continuous linear map.”
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Theorem  2.4 Let T∶ P × X → Y  be a continuous family of linear maps between locally 
convex spaces X and Y. Then, the following are equivalent:

1. T is uniformly regular.
2. There exist locally convex spaces Z± , continuous linear maps T+∶ Z+ → Y  and 

T−∶ X → Z− , and continuous families of linear maps S∶ P × Y → X , S−∶ P × Z− → X , 
S+∶ P × Y → Z+ and S−+∶ P × Z− → Z+ with S−+

0
= 0 such that

holds for all p ∈ P and such that the operators

are invertible for all p ∈ P and their inverses form a continuous family.   ◻

For the proof, we need the following basic result about the invertibility of block matri-
ces in terms of the Schur complement.

Lemma 2.5 Let A11∶ X1 → Y1 , A12∶ X2 → Y1 , A21∶ X1 → Y2 and A22∶ X2 → Y2 be contin-
uous linear maps between locally convex spaces such that

for continuous linear maps Bij for i, j = 1, 2 . 

1. If B22 is a topological isomorphism, then so is A11 , and its inverse is given by

2. If B22 = 0 , then A11B11 and B11A11 are idempotent and satisfy

  ◻

Proof The first statement is [75, Lemma 3.1] and can be verified by a direct calculation. 
The second statement follows from the identity

where we used B11A11 + B12A21 = idX1
 and A11B12 = 0 .   ◻

Proof of Theorem  2.4 First, suppose that T is a uniformly regular family of linear maps. 
Then, by definition, we have topological decompositions X = Ker T0 ⊕ Coim T0 , 
Y = CokerT0 ⊕ ImT0 and, for every p ∈ P , the map

(2.4)
(
Tp T+

T− 0

)−1

=

(
Sp S−

p

S+
p
S−+
p

)
,

(2.5)Γp ≡

(
prKer T0◦ (Sp)↾Coker T0 prKerT0◦ S

−
p

(S+
p
)↾CokerT0 S−+

p

)
∶ Coker T0 ⊕ Z− → Ker T0 ⊕ Z+

(2.6)
(
A11 A12

A21 A22

)−1

=

(
B11 B12

B21 B22

)

(2.7)A−1
11

= B11 − B12B
−1
22
B21.

(2.8)Im (A11B11) = ImA11, Ker (B11A11) = KerA11.

(2.9)A11B11A11 = A11(idX1
− B12A21) = A11,

(2.10)T̃p = prImT0
◦ (Tp)↾CoimT0
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is a topological isomorphism. Set Z+ = Coker T0 and Z− = Ker T0 , and let T+∶ Z+ → Y  
and T−∶ X → Z− be the canonical inclusion and projection, respectively. Moreover, let 
Sp ∶= T̃−1

p
◦ prIm T0

∶ Y → X , and define S−+
p

∶ Z− → Z+ by

Finally, define S±
p
 by 

 Since, by definition, the inverses T̃−1
p

 form a continuous family P × ImT0 → Coim T0 , the 
families S, S±, S−+ are continuous. Furthermore, a direct calculation yields 

 Using these identities, it is straightforward to check that  (2.4) holds for every p ∈ P . 
Moreover, we have

which is clearly invertible with a continuous family of inverses given by

Conversely, let T±, S, S± and S−+ satisfying the assumptions of the second statement of The-
orem 2.4. Since S−+

0
= 0 , Lemma 2.5(2) implies that T0 ◦ S0 and S0 ◦T0 are idempotent with 

ImT0 ◦ S0 = Im T0 and Ker S0 ◦T0 = Ker T0 . Hence, Ker T0 and ImT0 are images of con-
tinuous idempotent operators, and as such they are closed and topologically complemented 
according to [45, Proposition 15.8.1]. As above, denote the complements by CoimT0 and 
CokerT0 , respectively. It remains to show that T̃p = prIm T0

◦ (Tp)↾CoimT0
 is a topological iso-

morphism for all p ∈ P , and that T̃−1
p

 form a continuous family. For this purpose, we write 
all operators in block form with respect to the decompositions X = Coim T0 ⊕ Ker T0 and 
Y = ImT0 ⊕ CokerT0 (note the different order of the summands). Using this convention, 
the identity (2.4) becomes

(2.11)S−+
p

= prCokerT0 ◦ (Tp ◦ T̃
−1
p

◦ prImT0
− idY )◦ (Tp)↾KerT0 .

(2.12a)S+
p
= prCoker T0 ◦ (idY − Tp◦ Sp)∶ Y → Z+,

(2.12b)S−
p
= (idX − Sp ◦Tp)↾Ker T0∶ Z− → X.

(2.13a)Tp ◦ Sp = prImT0
+ prCoker T0◦ Tp◦ T̃

−1
p
◦ prImT0

,

(2.13b)Sp ◦ Tp = prCoimT0
+ T̃−1

p
◦ prIm T0

◦ (Tp)↾KerT0 .

(2.14)Γp =

(
prKerT0◦ (Sp)↾CokerT0 prKer T0◦ S

−
p

(S+
p
)↾CokerT0 S−+

p

)
=

(
0 idKerT0

idCoker T0 S−+
p

)
,

(2.15)Γ−1
p

=

(
−S−+

p
idCokerT0

idKerT0 0

)
.

(2.16)

⎛⎜⎜⎝

T̃p prIm T0
◦ (Tp)↾KerT0 prIm T0

◦ T+

prCoker T0◦ (Tp)↾CoimT0
prCoker T0◦ (Tp)↾KerT0 prCokerT0◦T

+

(T−)↾CoimT0
(T−)↾Ker T0 0

⎞⎟⎟⎠

−1

=

⎛⎜⎜⎝

prCoimT0
◦ (Sp)↾ImT0

prCoimT0
◦ (Sp)↾CokerT0 prCoimT0

◦ S−
p

prKerT0◦ (Sp)↾ImT0
prKerT0◦ (Sp)↾CokerT0 prKerT0◦ S

−
p

(S+
p
)↾ImT0

(S+
p
)↾CokerT0 S−+

p

⎞⎟⎟⎠
.
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These matrices should be read as operators from ImT0 ⊕ CokerT0 ⊕ Z− to 
CoimT0 ⊕ Ker T0 ⊕ Z+ . Note that the lower right two-times-two block of the right-hand 
side coincides with the operator Γp . Since Γp is invertible by assumption, Lemma 2.5(1) 
shows that T̃p is invertible, too. Moreover, the inverses are given by

and thus form a continuous family P × ImT0 → Coim T0 . Hence, T is uniformly regular.   ◻

For the special case of a single operator, we obtain the following.

Corollary 2.6 A continuous linear map T∶ X → Y  between locally convex spaces is regular 
if and only if there exist locally convex spaces Z± , continuous linear maps T+∶ Z+ → Y  , 
T−∶ X → Z− and S∶ Y → X , S−∶ Z− → X , S+∶ Y → Z+ such that

  ◻

Remark 2.7 In the setting of Corollary 2.6, it is straightforward to verify that T ◦ S ◦T = T  
holds. An operator S satisfying such a relation is called a generalized inverse of T, cf. [56, 
64, 66]. In fact, one can show that regularity of an operator is equivalent to the existence of 
a generalized inverse. Since we do not need this point of view in the remainder, we refer to 
[13, 36] for further details.

Remark 2.8 (Uniform regularity in the tame Fréchet category) It is clear that a version of 
Theorem 2.4 holds in the tame Fréchet category if the word “tame” is inserted in the right 
places (see Appendix A for a brief overview of the main concepts of tame Fréchet spaces). 
Let us spell out the details.

Let X and Y be tame Fréchet spaces and let T∶ P × X → Y  be a tame smooth family 
of linear maps. Then, T is called uniformly tame regular if there exist tame decomposi-
tions X = Ker T0 ⊕ Coim T0 and Y = CokerT0 ⊕ ImT0 , and, for every p ∈ P , the map 
T̃p = prIm T0

◦ (Tp)↾CoimT0
∶ Coim T0 → ImT0 is a tame isomorphism such that the inverses 

form a tame smooth family P × ImT0 → Coim T0 . Then, the equivalence of Theorem 2.4 
holds with Z± being tame Fréchet spaces, T± being tame maps and S, S±, S−+,Γ−1 being 
tame smooth families.

2.2  Fredholm operators

An important class of examples of regular operators is given by Fredholm operators. Fred-
holm operators are usually studied as maps between Banach spaces (or Hilbert spaces), but 
most results extend to the locally convex setting, cf. [22, 71, 72].

(2.17)

T̃−1
p

= prCoimT0
◦ (Sp)↾Im T0

−

(
prCoimT0

◦ (Sp)↾CokerT0
prCoimT0

◦ S−
p

)
Γ−1
p

(
prKerT0◦ (Sp)↾Im T0

(S+
p
)↾ImT0

)

(2.18)
(

T T+

T− 0

)−1

=

(
S S−

S+ 0

)
.
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Definition 2.9 A continuous linear map T∶ X → Y  between locally convex spaces is called 
a Fredholm operator if T is relatively open, the kernel of T is a finite-dimensional subspace 
of X, and the image of T is a finite-codimensional closed subspace of Y. The index indT  of 
a Fredholm operator T is defined by

  ◻

Since finite-dimensional subspaces and finite-codimensional closed subspaces of a 
locally convex space are always topologically complemented according to [45, Proposi-
tions 15.8.2 and 20.5.5], every Fredholm operator is regular.

For a continuous family T of linear maps with T0 being a Fredholm operator, the invert-
ibility of the family Γ in Theorem 2.4 is automatic.

Corollary 2.10 Let T∶ P × X → Y  be a continuous family of linear maps between locally 
convex spaces X and Y such that T0 is a Fredholm operator. Then, T is uniformly regu-
lar if and only if there exist finite-dimensional spaces Z± and continuous linear maps 
T+∶ Z+ → Y  and T−∶ X → Z− such that, after possibly shrinking P,

holds for all p ∈ P , where S∶ P × Y → X , S−∶ P × Z− → X , S+∶ P × Y → Z+ and 
S−+∶ P × Z− → Z+ are continuous families of linear maps with S−+

0
= 0.

Proof If T is uniformly regular, then the proof of Theorem 2.4 shows that one can choose 
Z+ = Coker T0 and Z− = Ker T0 . Both spaces are finite-dimensional, because T0 is a Fred-
holm operator. This establishes one direction.

Conversely, let T±, S, S±, S−+ be given as stated above. By Theorem 2.4, it suffices to 
show that the operator

is invertible and that the inverses form a continuous family. Since S−+
0

= 0 , Lemma 2.5(2) 
implies S−

0
◦T− = prKerT0 and T+

◦ S+
0
= prCokerT0 . A straightforward calculation using 

these identities shows that we have

and

Since, for every p ∈ P , Γp is an operator between finite-dimensional spaces and Γ0 is 
invertible, we can shrink P in such a way that Γp is invertible for all p ∈ P and that the 
inverses form a continuous family. Thus, Theorem 2.4 implies that T is uniformly regular.  
 ◻

(2.19)indT = dimKer T − dimCoker T .

(2.20)
(
Tp T+

T− 0

)−1

=

(
Sp S−

p

S+
p
S−+
p

)

(2.21)Γp =

(
prKer T0◦ (Sp)↾Coker T0 prKerT0◦ S

−
p

(S+
p
)↾Coker T0 S−+

p

)
∶ Coker T0 ⊕ Z− → Ker T0 ⊕ Z+

(2.22)Γ0 =

(
0 prKerT0◦ S

−
0

(S+
0
)↾CokerT0 0

)
,

(2.23)Γ−1
0

=

(
0 prCokerT0◦T

+

(T−)↾Ker T0 0

)
.
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In the Banach setting, the set of Fredholm operators is open in the space of bounded 
linear operators and the index does not change under a continuous deformation [42, Corol-
lary 19.1.6]. This statement relies on the openness of the set of invertible operators and 
thus does not carry over to the locally convex setting. The following proposition shows that 
the notion of uniform regularity is an adequate substitute.

Proposition 2.11 Let T∶ P × X → Y  be a uniformly regular family of linear maps between 
locally convex spaces X and Y. If T0 is Fredholm, then Tp is Fredholm and indTp = ind T0 
for all p ∈ P.

Proof By Corollary 2.10, there exist finite-dimensional spaces Z± and continuous linear 
maps T+∶ Z+ → Y  and T−∶ X → Z− such that

is invertible for all p ∈ P . This is only possible if Ker Tp and CokerTp are finite-dimen-
sional so that Tp has to be Fredholm. Moreover, using the invariance of the index under 
finite-rank perturbations, we have

which establishes the formula for the index.   ◻

As we discuss now, families of elliptic operators constitute an important class of exam-
ples of uniformly regular Fredholm operators. Let E → M and F → M be finite-dimen-
sional vector bundles over a compact manifold M without boundary. Endow the spaces E 
and F  of smooth sections of E and F, respectively, with the compact-open C∞-topology. 
With respect to this topology, these section spaces are tame Fréchet spaces, see [35, Theo-
rem II.2.3.1]. A continuous linear map L∶ E → F  is a partial differential operator of degree 
r if and only if there exists a vertical vector bundle morphism f∶ JrE → F such that L fac-
tors through the jet bundle JrE as follows:

where jr denotes the r-th jet prolongation and f∗ is the push-forward by f. We refer to f as 
the coefficients of L and will sometimes write Lf  instead of L to emphasize this relation. 
Recall that the principal symbol �f  of Lf  is a homogeneous polynomial of degree r on T∗M 
with values in the bundle L(E,F) of fiberwise linear maps E → F . A differential operator 
Lf  with coefficients f is called elliptic if its symbol is invertible; that is, for each nonzero 
p ∈ T∗M , the bundle map �f (p,… , p) ∈ L(E,F) is invertible.

It is a standard result in elliptic theory that every elliptic differential operator over 
a compact manifold is a Fredholm operator between appropriate Sobolev spaces [42, 
Theorem  19.2.1]. The same holds true in the tame Fréchet category. In fact, more is 
true: elliptic operators are regularly parametrized by their coefficients.

Theorem 2.12 Let E → M and F → M be finite-dimensional vector bundles over a com-
pact manifold M without boundary, and denote the space of smooth sections of E and F by 

(2.24)
(
Tp T+

T− 0

)

(2.25)0 = ind

(
Tp T+

T− 0

)
= indTp + dim Z+ − dimZ− = indTp − ind T0,

L : E ∞( rE) F,
r f∗

(2.26)
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E and F  , respectively. The parametrization of a partial differential operator by their coef-
ficients yields a tame smooth family

of linear operators which is uniformly tame regular in a neighborhood of every 
f0 ∈ Γ∞

(
L(JrE,F)

)
 for which Lf0 is an elliptic differential operator.

Proof Let f0 ∈ Γ∞
(
L(JrE,F)

)
 be such that Lf0 is an elliptic differential operator. By [35, 

Theorem  II.3.3.3], there exist an open neighborhood U of f0 in Γ∞
(
L(JrE,F)

)
 , finite-

dimensional vector spaces Z± and continuous linear maps L+∶ Z+ → Y  and L−∶ X → Z− 
such that

is invertible for all f ∈ U . Moreover, the inverses form a tame smooth family 
U × F × Z− → E × Z+ of linear operators. Hence, by Corollary 2.10, L↾U×E is uniformly 
tame regular at f0 .   ◻

2.3  Elliptic complexes

In this section, the notion of uniform regularity is extended to linear chain complexes. 
The main application we have in mind is elliptic complexes.

Let P be a neighborhood of 0 in some locally convex space, let Xi be a sequence of 
locally convex spaces and let Ti∶ P × Xi → Xi+1 be a sequence of continuous families of 
linear maps such that (Xi, Ti,0) is a complex, i.e., Ti+1,0 ◦Ti,0 = 0 for all i ∈ ℤ . We say that 
(P,Xi, Ti) is a continuous family of chains. Simple examples (cf. Example 2.16 below) 
show that a deformation of a chain complex is in general not a complex; this is why we 
require Ti,p to form a complex only at p = 0 . The following notion is a natural generali-
zation of uniform regularity to chains.

Definition 2.13 A continuous family of chains (P,Xi, Ti) is called uniformly regular (at 0) 
if the following holds for every i ∈ ℤ : 

1. The image of Ti−1,0 is closed in Xi , and there exist closed subspaces Hi and CoimTi,0 of 
Xi such that 

is a topological decomposition and Hi ⊆ Ker Ti,0.
2. For every p ∈ P , the map 

is a topological isomorphism such that the inverses form a continuous family 
P × ImTi,0 → Coim Ti,0.

(2.27)L∶ Γ∞
(
L(JrE,F)

)
× E → F, ( f ,�) ↦ Lf (�)

(2.28)
(
Lf L+

L− 0

)
∶ E × Z+ → F × Z−

(2.29)Xi = ImTi−1,0 ⊕ Coim Ti,0 ⊕ Hi

(2.30)T̃i,p = prImTi,0
◦ (Ti,p)↾CoimTi,0

∶ Coim Ti,0 → ImTi,0
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If additionally, for every i ∈ ℤ , Xi is a tame Fréchet space, Ti is a tame smooth family, the 
decomposition (2.29) of Xi is tame and T̃i,p are a tame isomorphisms such that the inverses 
form a tame smooth family, then (P,Xi, Ti) is called uniformly tame regular.

By definition, for an uniformly regular family (P,Xi, Ti) of chains, we have

which justifies the notion CoimTi,0 for the subspace in the decomposition (2.29). The sub-
spaces Hi are identified with the homology groups for the complex at p = 0 , that is,

For the applications we have in mind, the following characterization of uniform regular-
ity of chains turns out to be more convenient. It entails that, roughly speaking, a family of 
chains (P,Xi, Ti) is uniformly regular if each family Ti of linear maps is uniformly regular 
after factoring-out the image of the direct predecessor Ti−1,0.

Proposition 2.14 A continuous family of chains (P,Xi, Ti) is uniformly regular if and only 
if, for every i ∈ ℤ , the subspace ImTi−1,0 of Xi is closed and topologically complemented, 
say Xi = ImTi−1,0 ⊕ CokerTi−1,0 , and the continuous family p ↦ (Ti,p)↾Coker Ti−1,0 of linear 
maps is uniformly regular.

Proof The claim is a simple consequence of the observation that the image of (Ti,0)↾CokerTi−1,0 
coincides with the image of Ti,0 and that

holds, because Ti,0 is a complex.   ◻

Let us now turn to deformations of elliptic complexes. Let E0,E1,… ,EN be a sequence 
of finite-dimensional vector bundles over a compact manifold M, and let Ei be the tame 
Fréchet space of smooth sections of Ei . Moreover, let P be an open neighborhood of 0 in 
some tame Fréchet space and let Li∶ P × Ei → Ei+1 be a sequence of differential operators 
parametrized by points of P. We assume that, for every i ∈ ℤ , the parametrization factors 
through the space of coefficients as follows:

where L̂i∶ P → Γ∞
(
L(JriEi,Ei+1)

)
 is a tame smooth map and the second map is the para-

metrization of differential operators by their coefficients as defined in (2.27). For simplic-
ity, let us assume that the degree ri of the differential operator Li,p∶ Ei → Ei+1 is the same 
for all p ∈ P and i ∈ ℤ . We will refer to this setting by saying that (P, Ei, Li) is a tame fam-
ily of chains of differential operators. A chain complex Li∶ Ei → Ei+1 of differential opera-
tors is called elliptic if the sequence of principal symbols

is exact outside of the zero section of the cotangent bundle 
⋆
𝜏∶ T∗M → M.

(2.31)Ker Ti,0 = ImTi−1,0 ⊕ Hi ,

(2.32)Hi ≃ Ker Ti,0∕Im Ti−1,0.

(2.33)Hi ≃ Ker (Ti,0)↾Coker Ti−1,0

P Ei riE Ei i i,
× Ei

i , (2.34)

· · · τ ∗Ei τ ∗Ei+1 · · ·σ(Li)

(2.35)
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As a generalization of Theorem 2.12, we have the following result concerning deforma-
tions of elliptic complexes.

Theorem  2.15 Let E0,… ,EN be a sequence of finite-dimensional vector bundles over a 
compact manifold M, and denote the space of smooth sections of Ei by Ei . Let (P, Ei, Li) 
be a tame family of chains of differential operators. If (Ei, Li,0) is an elliptic complex, then 
(P, Ei, Li) is uniformly tame regular (after possibly shrinking P).

Proof The proof is inspired by the proof of [3, Proposition 6.1], where a parametrix of an 
elliptic complex is constructed by using the parametrix of an elliptic operator. Similarly, 
we will reduce the question of the uniform tame regularity of the chain to the uniform reg-
ularity of a deformation of differential operators, for which we can employ Theorem 2.12.

For this purpose, fix a Riemannian metric on M and a fiber Riemannian metric on every 
vector bundle Ei . These data define a natural L2-inner product on Ei . By partial integration, 
we see that the adjoints L∗

i,p
∶ Ei+1 → Ei of Li,p with respect to these inner products yield 

a tame family of chains of differential operators. For every i ∈ ℤ , define the tame family 
Δi∶ P × Ei → Ei by

Clearly, Δi is a family of differential operators of order 2r. Moreover, Δi,0 is an elliptic oper-
ator, because (Ei, Li,0) is an elliptic complex by assumption. Thus, Theorem 2.12 implies 
that the family Δi is uniformly tame regular. In particular, Δi,0 is regular and self-adjoint so 
that we get the following topological decomposition

Moreover, Δ̃i,p = prImΔi,0
◦ (Δi,p)↾ImΔi,0

 is a tame automorphism of ImΔi,0 for every p ∈ P 
(after possibly shrinking P) in such a way that the inverses form a tame smooth family. The 
decomposition (2.37) implies that the images of Li−1,0 and L∗

i,0
 are closed and that they fit 

into the topological decomposition

where Hi ≡ KerΔi,0 = Ker Li,0 ∩ Ker L∗
i−1,0

 . Finally, a direct calculation shows that, for 
every i ∈ ℤ , the tame smooth family Gi defined by

is an inverse of the family

This shows that (P, Ei, Li) is uniformly tame regular.   ◻

Example 2.16 Let P → M be a finite-dimensional principal G-bundle over a compact mani-
fold M, and let E be an associated vector bundle. The space C(P) of connections on P is an 
affine tame Fréchet space. Every connection A ∈ C(P) yields via the covariant exterior dif-
ferential on E-valued forms a chain

(2.36)Δi,p = L∗
i,0
◦ Li,p + Li−1,p ◦L

∗
i−1,0

.

(2.37)Ei = KerΔi,0 ⊕ ImΔi,0 .

(2.38)Ei = ImLi−1,0 ⊕ Im L∗
i,0
⊕ Hi ,

(2.39)Gi,p = L∗
i,0
◦ (Δ̃−1

i+1,p
)↾ImLi,0

∶ ImLi,0 → ImL∗
i,0

(2.40)L̃i,p = prImLi,0
◦ (Li,p)↾Im L∗

i,0
∶ Im L∗

i,0
→ ImLi,0.
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As this chain is an elliptic complex if the connection is flat, Theorem 2.15 entails that the 
family of chains 

(
C(P),Ωk(M,E), dA

)
 is uniformly tame regular in a neighborhood of every 

flat connection A0 ∈ C(P) . Moreover, by Proposition 2.14, the family

is uniformly regular at every A0 ∈ C(P) (we do not need flatness of A0 for this in 0-degree). 
The operator defined in (2.36) takes here the following form

and is a natural extension of the Faddeev–Popov operator to forms of higher degree, cf. 
[70, eq. (8.4.8)]. A similar operator played a central role in [15, p. 405] for the study of the 
curvature map F∶ C(P) → Ω2(M, AdP) near a flat connection.

3  Normal form of a nonlinear map

In this section, we study the local behavior of a smooth map f∶ M → N between (infinite-
dimensional) manifolds. We introduce the concept of a normal form and find suitable con-
ditions that ensure that f can be brought into such a normal form.

In the linear setting, we have seen that every regular operator factorizes through a linear 
isomorphism. Similarly, every nonlinear map can be represented locally by a linear iso-
morphism up to some higher-order error term. In fact, for a given smooth map f∶ M → N 
and m ∈ M , consider its local representative f̃ ∶= 𝜌 ◦ f ◦ 𝜅−1∶ X ⊇ U → Y  with respect 
to charts3 𝜅∶ M ⊇ U� → U ⊆ X at m and 𝜌∶ N ⊇ V � → V ⊆ Y  at f(m) modeling M on 
X ≃ TmM and N on Y ≃ Tf (m)N , respectively. Suppose T0 f̃∶ X → Y  is a regular opera-
tor with decompositions X = Ker T0 f̃ ⊕ CoimT0 f̃  , Y = Coker T0 f̃ ⊕ ImT0 f̃  and core 
f̂∶ CoimT0 f̃ → ImT0 f̃  . Then defining fsing ∶= f̃ − f̂∶ X ⊇ U → Y  we get the following 
local representation of f:

Thus, the singular part fsing obstructs f from being locally represented by the isomorphism 
f̂  . The concrete form of fsing depends, of course, on the chosen charts. The aim is to con-
struct charts such that the singular part satisfies additional properties, which are formalized 
in the following definition.

· · · i i+1(M,E) · · · .A

(2.41)

(2.42)C(P) × Ω0(M,E) → Ω1(M,E), (A, �) ↦ dA�

(2.43)ΔA0A
= d∗

A0
dA + d∗

A
dA0

∶ Ωk(M,E) → Ωk(M,E)

(3.1)𝜌 ◦ f ◦ 𝜅−1 = f̂ + fsing.

3 Throughout this work, we follow the convention that a chart 𝜅∶ M ⊇ U� → U ⊆ X at a point m ∈ M sat-
isfies �(m) = 0 . Moreover, U′ and U are understood to be open neighborhoods of m in M and of 0 in X, 
respectively.
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Definition 3.1 An abstract normal form consists of a tuple (X, Y , f̂ , fsing) , where 

1. X and Y are locally convex spaces with topological decompositions4 X = Ker⊕ Coim 
and Y = Coker⊕ Im,

2. f̂∶ Coim → Im is a linear topological isomorphism,
3. fsing∶ X ⊇ U → Coker is a smooth map defined on an open neighborhood U of 0 in 

X such that fsing(0, x2) = 0 holds for all x2 ∈ U ∩ Coim and such that the derivative 
T(0,0) fsing∶ X → Coker of fsing at (0, 0) vanishes.

Given an abstract normal form (X, Y , f̂ , fsing) , set fNF = f̂ + fsing∶ X ⊇ U → Y .
A normal form (X, Y , f̂ , fsing) is called tame if X, Y are tame Fréchet spaces with tame 

decompositions X = Ker ⊕ Coim , Y = Coker ⊕ Im , f̂  is a tame isomorphism and fsing is 
a tame smooth map.

The 0-level set of fNF is given by

Since T(0,0) fsing = 0 , the level set f −1
NF

(0) is in general not a smooth manifold. Its singular 
structure is completely determined by fsing . For this reason, we refer to fsing as the singular 
part of fNF.

Definition 3.2 We say that a smooth map f∶ M → N between manifolds can be 
brought into the normal form (X, Y , f̂ , fsing) at the point m ∈ M if there exist charts 
𝜅∶ M ⊇ U� → U ⊆ X at m and 𝜌∶ N ⊇ V � → V ⊆ Y  at f(m) such that f (U�) ⊆ V � , fsing is 
defined on U and

holds. For short, we say that f is locally equivalent to fNF.

Assume that the smooth map f∶ M → N can be brought into the normal form 
(X, Y , f̂ , fsing) at the point m ∈ M using diffeomorphisms �∶ U� → U and �∶ V � → V . The 
isomorphisms Tm�∶ TmM → X and Tf (m)�∶ Tf (m)N → Y identify the abstract spaces X and Y 
with the tangent spaces of M and N, respectively. Under these identifications, the spaces Ker 
and Im in the decomposition of X and Y coincide with the kernel and the image of Tm f .

In certain cases, a normal form amounts to a linearization of the map under considera-
tion. We say that a smooth map f∶ M → N is a submersion at m ∈ M if it is equivalent to 
a linear projection in a neighborhood of m. Similarly, f is called an immersion at m if it is 
equivalent to a linear injection in a neighborhood of m. More generally, f is a subimmer-
sion at m if it is equivalent to a linear map in a neighborhood of m. The following proposi-
tion connects these definitions to the perhaps more classical characterizations known from 
finite-dimensional geometry.

(3.2)f −1
NF

(0) = {(x1, 0) ∈ U∶ fsing(x1, 0) = 0}.

(3.3)� ◦ f↾U� ◦ �−1 = fNF

4 In these decompositions Ker , Coim , etc., denote abstract spaces. Below, we will identify them with the 
kernel, coimage, etc., of the tangent map Tm f  , respectively.



174 Annals of Global Analysis and Geometry (2022) 61:159–213

1 3

Proposition 3.3 Let f∶ M → N be a smooth map. Assume that f can be brought into a nor-
mal form in a neighborhood U′ of m ∈ M . Then, the following holds:

1. (Submersion) f is a submersion at m if and only if Tm f  is surjective.
2. (Immersion) f is an immersion at m if and only if Tm f  is injective.
3. (Constant rank) f is a subimmersion at m if Tp f  is a finite-rank operator5 satisfying 

rkTp f = rkTm f  for all p ∈ U� .   ◻

Proposition 3.3(3) generalizes to maps whose derivatives have a constant but not neces-
sarily finite-dimensional image, cf. [51, Theorem 2.5.15] for a Banach version.

Proof As the claim is of local nature, it suffices to consider the case where f = fNF = f̂ + fsing 
for an abstract normal form (X, Y , f̂ , fsing) , and m = 0 . If T0 fNF = f̂ ◦ prCoim is surjective, 
then Coker is trivial and hence fsing = 0 . Similarly, if T0 fNF is injective, then Coim = X and 
thus fsing = 0 , because fsing(0, x2) = 0 for all x2 ∈ U ∩ Coim by assumption. Moreover, we 
have

for all x ∈ U , v1 ∈ Ker and v2 ∈ Coim . The constant rank condition translates 
to rkTx fNF = rkT0 fNF = dim Im , and thus implies that T(x1,x2)

fsing(v1, 0) = 0 for 
all (x1, x2) ∈ U and v1 ∈ Ker . Hence, fsing(x1, x2) does not depend on x1 and so 
fsing(x1, x2) = fsing(0, x2) = 0.

The converse directions are clear.   ◻

Using the local structure of submersions and immersions, it is straightforward to verify 
that the usual statements about the submanifold structure of the naturally induced subsets 
translate to the locally convex setting. Indeed, according to [31, Theorem C], the level set 
f −1(�) is a submanifold of M if f is a submersion at every m ∈ f −1(�) . If instead f∶ M → N 
is an immersion and a topological embedding, then f(M) is a submanifold of N, see [31, 
Lemma I.13].

The upshot of Proposition 3.3 is that one obtains the submersion, regular value, immer-
sion and constant rank theorem practically for free as soon as one knows that the map 
under study can be brought into a normal form. A normal form theorem thus unifies these 
fundamental theorems under one umbrella. In other words, we avoid the renewed construc-
tion of special normal forms for each of these results separately, which would be the stand-
ard approach in textbooks about (finite-dimensional) differential geometry [47, 51]. The 
aim of the remainder of the section is to find suitable conditions on the derivative of a map 
f which ensure that f can be brought into a normal form.

Remark 3.4 (Finite-dimensional reduction and Sard–Smale theorem) As we have seen 
in (3.2), the singularities of a level set f −1(�) are, in terms of a local normal form, com-
pletely encoded in the map

(3.4)Tx fNF (v1, v2) =
(
Tx fsing(v1, v2), f̂ (v2)

)
∈ Coker⊕ Im = Y

(3.5)fsing(⋅, 0)∶ Ker → Coker.

5 An operator T∶ X → Y  between locally convex spaces X and Y is said to be of finite-rank if its image is 
finite-dimensional. In this case, the dimension of ImT  is called the rank of T and it is denoted by rkT .
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If Tm f  is a Fredholm operator, then Ker and Coker are finite-dimensional spaces. Thus, 
in this case, the study of the singular structure of f −1(�) is reduced to a question in finite 
dimensions. Exploiting this reduction to finite dimensions, we may mimic the usual proof 
of the Sard–Smale theorem [76] to obtain a generalization of this theorem to Fredholm 
maps between locally convex manifolds. We leave the details to the reader.

3.1  Banach version

The main idea of the proof of our general normal form theorem is to deform some ini-
tially chosen charts in such a way that the singular part of the local representative satisfies 
the conditions of Definition 3.1. This deformation will be accomplished using the inverse 
function theorem. To somewhat reduce the functional analytic complexity, we first restrict 
attention to the Banach setting.

Theorem  3.5 (Normal form—Banach) A smooth map f∶ M → N between Banach 
manifolds can be brought into a normal form at a point m ∈ M if and only if 
Tm f∶ TmM → Tf (m)N is a regular operator. In particular, every smooth map between 
finite-dimensional manifolds can be brought into a normal form around every point.

Proof If f can be brought into the normal form (X, Y , f̂ , fsing) , then Tm f  coin-
cides up to conjugation by topological isomorphisms with the differential at 0 of 
fNF = f̂ + fsing∶ X ⊇ U → Y  . Now T0 fNF = f̂ ◦ prCoim shows that Tm f  is regular.

In the other direction, since the claim is of local nature, we can use charts 
�̃�∶ M ⊇ U� → U ⊆ X at m and �̃�∶ N ⊇ V � → V ⊆ Y  at f(m) to replace f by its local rep-
resentative f̃ ∶= �̃�◦ f◦ �̃�−1∶ X ⊇ U → Y  , and Tm f  by T ∶=T0 f̃∶ X → Y  . Since T is 
regular by assumption, there exist topological decompositions X = Ker T ⊕ CoimT  
and Y = CokerT ⊕ Im T  . Moreover, the core T̂∶ Coim T → ImT  of T is a topological 
isomorphism.

Define the smooth map 𝜓∶ X ⊇ U → X by

with x1 ∈ Ker T  and x2 ∈ CoimT  . Note that �(0) = 0 . Since T0� = idX , it follows from 
the Inverse Function Theorem  A.1 that we can shrink U in such a way that �(U) is an 
open neighborhood of 0 in X and �∶ U → �(U) is a diffeomorphism. By possibly shrink-
ing V, we may assume that V ∩ Im T ⊆ T̂ ◦𝜓(U ∩ CoimT) . Define the smooth map 
𝜙∶ Y ⊇ V → Y  by

with y1 ∈ CokerT  and y2 ∈ ImT  . A direct calculation shows �(0) = 0 and T0� = idY . 
Thus, the Inverse Function Theorem A.1 implies that we can shrink V so that �(V) is an 
open neighborhood of 0 in Y and �∶ V → �(V) is a diffeomorphism. By possibly shrinking 
U, we may assume f̃ (U) ⊆ V  and f̃ (U) ⊆ 𝜙(V).

Set f̂ ∶= T̂∶ CoimT → Im T  and define the smooth map fsing∶ X ⊇ 𝜓(U) → Coker T  by

A straightforward computation shows that the following diagram commutes:

(3.6)𝜓(x1, x2) =
(
x1, T̂

−1
◦ prIm T ◦ f̃ (x1, x2)

)
,

(3.7)𝜙(y1, y2) =
(
y1 + prCokerT ◦ f̃ ◦𝜓

−1(0, T̂−1y2), y2
)

(3.8)fsing ◦𝜓(x1, x2) = prCokerT
(
f̃ (x1, x2) − f̃ ◦𝜓−1

(
0, T̂−1

◦ prImT ◦ f̃ (x1, x2)
))
.
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Thus, in the charts 𝜅 = 𝜓◦ �̃� and 𝜌 = 𝜙−1
◦ �̃� , the map f coincides with fNF = f̂ + fsing . 

This proofs (3.3). Finally, let us verify the asserted properties of the singular part fsing . We 
clearly have T0 fsing = 0 . Moreover, for all x2 ∈ U ∩ Coim T  , we get

From �(0, x2) ∈ Coim T it follows that f̃ (0, x�
2
) = 0 holds for all x�

2
∈ �(U) ∩ CoimT .   ◻

The first part of the proof of Theorem  3.5 is inspired by the Lyapunov–Schmidt 
reduction procedure. To establish the link, let us give a brief outline of this procedure, 
mostly ignoring the peculiarities of the infinite-dimensional setting, see, e.g., [8, Sec-
tion 1.3]. Given Banach spaces X and Y, and a smooth map f∶ X ⊇ U → Y  defined on 
an open neighborhood U of 0 in X with f (0) = 0 , we are interested in solutions of the 
nonlinear equation

near the solution x = 0 . The Lyapunov–Schmidt scheme consists of the following steps: 

1. Split X and Y into direct sums X = Ker T ⊕ CoimT  and Y = CokerT ⊕ Im T  , where 
T = T0 f∶ X → Y  as above. The equation (3.11) is then equivalent to the system 

 with x1 ∈ Ker T  and x2 ∈ CoimT .
2. The Implicit Function Theorem shows that, after possibly shrinking U, the second 

equation in (3.12) has a unique solution x2 = x2(x1) ∈ U ∩ CoimT  as a function of 
x1 ∈ U ∩ Ker T .

3. Substituting this solution of the second equation into the first equation of (3.12) yields 
the reduced equation 

 for the unknown x1 ∈ U ∩ Ker T .
In this way, the nonlinear equation (3.11) is reduced to the nonlinear equation (3.13), which 
often happens to be a set of finitely many equations for a finite number of unknowns. When 
comparing this reduction scheme with our construction of the chart deformation � in the proof 
of Theorem 3.5, the only conceptual difference is our usage of the inverse function theorem in 
place of the Implicit Function Theorem employed in the Lyapunov–Schmidt procedure. Both 
methods rely fundamentally on the fact that the map prIm T ◦ f∶ X ⊇ U → Im T has a surjec-
tive derivative at 0. In our language, the reduced Eq. (3.13) takes the form

X ⊇ U φ(V ) ⊆ Y

X ⊇ ψ(U) V ⊆ Y.

ψ

f̃

f̂+fsing

φ (3.9)

(3.10)
fsing◦𝜓(0, x2) = prCokerT

(
f̃ (0, x2) − f̃ ◦𝜓−1(0, T̂−1

◦ prImT ◦ f̃ (0, x2))
)

= prCokerT
(
f̃ (0, x2) − f̃ ◦𝜓−1

◦𝜓(0, x2)
)

= 0.

(3.11)f (x) = 0

(3.12)
prCokerT ◦ f (x1, x2) = 0,

prImT ◦ f (x1, x2) = 0,

(3.13)prCokerT ◦ f (x1, x2(x1)) = 0.
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for x1 ∈ U ∩ Ker T .
Similar ideas are also used in the study of deformations of geometric objects, see, e.g., 

[46] concerning deformations of complex structures and [18], Section II.2; [79], Section 6] 
in the gauge theoretic setting; see also [19, Section 4.2.5]. In this context, the counterpart 
of the local diffeomorphism � is usually referred to as the Kuranishi map.

Remarks 3.6 

1. A weaker version of Theorem 3.5 can be found in ([49], Theorem 5.1.8; [51], Theo-
rem 2.5.14). There, the chart on N is not modified and hence the additional property 
fsing(0, ⋅) = 0 of the singular part is not deduced. Note that this property was crucial in 
the proof of Proposition 3.3(2) to show that a smooth map with injective differential is 
an immersion.

2. By Proposition 3.3(2), we get a corresponding normal form theorem for immersions. 
Note that in our construction of the normal form the chart on the domain is always 
deformed, which is in contrast to the classical immersion theorem (e.g., [51, Theo-
rem 2.5.12]). Hence, the constructed submanifold charts differ from the usual ones.

3.2  Banach target or domain

In the following, we give generalizations of the Banach normal form theorem to different 
analytic settings. Let us start with the following extension of Theorem 3.5 to more general 
domains.

Theorem 3.7 (Normal form—Banach target) Let f∶ M → N be a smooth map, where M is 
a locally convex manifold and N is a Banach manifold. Then, f can be brought into a nor-
mal form at the point m ∈ M if and only if the differential Tm f∶ TmM → Tf (m)N is a regu-
lar operator. In particular, every smooth map f∶ M → N with finite-dimensional target N 
can be brought into a normal form at every point.

Proof The proof of Theorem 3.5 carries over word by word except for the part where the 
inverse function theorem has been used to show that the map � defined in (3.6) is a local 
diffeomorphism. The idea here is to use the Inverse Function Theorem A.2 due to Glöckner 
[30] instead. For this purpose, define the smooth map �̄�∶ X ⊇ U → CoimT  by

The partial derivative of �̄� at 0 with respect to the second component is given by 
T2
0
�̄� = idCoimT . Considering x1 ∈ Ker as a parameter, the Inverse Function Theorem A.2 

shows that the map

is a local diffeomorphism. Note that � coincides with the map defined in (3.6), so that the 
rest of the proof of Theorem 3.5 goes through without modification. The second part of the 

(3.14)fsing(x1, 0) = 0

(3.15)�̄�(x1, x2) = T̂−1
◦ prImT ◦ f (x1, x2).

(3.16)𝜓
(
x1, x2

)
=
(
x1, �̄�(x1, x2)

)
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claim follows from Lemma 2.2, which shows that every linear continuous map with finite-
dimensional target is a regular operator.   ◻

In combination with Proposition 3.3, we recover the submersion theorem and the con-
stant rank theorem [31, Theorem A and F] for maps with values in a finite-dimensional 
manifold as a special case of Theorem 3.7.

We also have the following version of the normal form theorem where the domain is a 
Banach manifold.

Theorem 3.8 (Normal form—Banach domain) Let f∶ M → N be a smooth map between 
manifolds, where M is a Banach manifold and N is a locally convex manifold. Then 
f can be brought into a normal form at the point m ∈ M if and only if the differential 
Tm f∶ TmM → Tf (m)N is a regular operator. In particular, every smooth map f∶ M → N 
with M being finite-dimensional can be brought into a normal form around every point.

Proof The proof proceeds similarly to Theorem 3.5 with the modification that Glöckner’s 
Inverse Function Theorem  A.2 is used to show that � defined in  (3.7) is a local diffeo-
morphism (using a similar strategy as in the proof of Theorem 3.7). Details are left to the 
reader.   ◻

In conjunction with Proposition 3.3(2), we recover the immersion theorem [31, Theo-
rem H] for maps from a Banach manifold into a locally convex manifold.

3.3  Nash–Moser version

We now establish a normal form theorem in the tame Fréchet category using the 
Nash–Moser inverse function theorem. For the convenience of the reader, the basic con-
cepts are briefly summarized in Appendix A.

In contrast to the Banach inverse function theorem, the Nash–Moser theorem requires 
the derivative to be invertible in a whole neighborhood of a given point. This additional 
condition is due to the fact that the subset of invertible operators is no longer open in the 
space of all operators. In Sect. 2.1, we have introduced the notion of uniform regularity to 
address similar problems. Uniform regularity plays a major role in the context of normal 
forms, too. In fact, the following result has been the main inspiration for this concept.

Proposition 3.9 For every normal form (X, Y , f̂ , fsing) , the family Tx fNF∶ X → Y  of linear 
maps parametrized by x ∈ U ⊆ X is uniformly regular at 0.

Proof With respect to the decompositions X = Ker⊕ Coim and Y = Coker⊕ Im , the 
derivative of fNF at x ∈ U is given in block form as

(3.17)Tx fNF =

(
(Tx fsing)↾Ker (Tx fsing)↾Coim

0 f̂

)
.



179Annals of Global Analysis and Geometry (2022) 61:159–213 

1 3

In particular, T0 fNF = f̂ ◦ prCoim , because T0 fsing = 0 . This shows that the abstract spaces 
Coim ⊆ X and Coker ⊆ Y  are topological complements of the kernel and image of T0 fNF , 
respectively. Moreover, the map

coincides with the isomorphism f̂  , which confirms that Tx fNF is uniformly regular at 0.  ◻

In order to extend the notion of uniform regularity to the setting of manifolds, con-
sider a morphism T∶ E → F of vector bundles over a manifold M. Suppose that E and F 
are trivialized over an open subset U ⊆ M , that is, we are given vector bundle isomor-
phism E↾U → U × E and F↾U → U × F , where E and F are locally convex spaces. With 
respect to these trivializations, we identify T with a family T↾U∶ U × E → F of linear 
maps.

Definition 3.10 A morphism T∶ E → F of vector bundles over M is called uniformly regu-
lar at m ∈ M if there exist local trivializations of E and F on an open neighborhood U of m 
such that the induced family T↾U∶ U × E → F of linear maps is uniformly regular at m in 
the sense of Definition 2.1. Similarly, a tame morphism T∶ E → F between tame Fréchet 
vector bundles is called uniformly tame regular at m, if there exist tame local trivializations 
such that the induced family T↾U∶ U × E → F is uniformly tame regular at m.

Phrased in this language, Proposition 3.9 entails that the derivative of f∶ M → N , 
viewed as a vector bundle map Tf∶ TM → f ∗TN over M, is uniformly regular at m ∈ M 
if f can be brought into a normal form at m. The following theorem shows that, in the 
tame category, uniform regularity of the derivative is also a sufficient condition for the 
existence of a normal form.

Theorem  3.11 (Normal form—Tame Fréchet) A tame smooth map f∶ M → N between 
tame Fréchet manifolds can be brought into a tame normal form at the point m ∈ M if and 
only if Tf∶ TM → f ∗TN is uniformly tame regular at m.

Proof If f can be brought into a tame normal form, then Proposition 3.9 (phrased in the 
tame category) shows that Tf∶ TM → f ∗TN is uniformly tame regular at m.

The proof of the converse direction follows the same line of arguments as the proof of 
Theorem 3.5 except that we will use the Nash–Moser theorem A.3 to show that the chart 
deformations (3.6) and (3.7) are local diffeomorphisms. Continuing in the notation of the 
proof of Theorem 3.5, abbreviate Tx ≡ Tx f∶ X → Y  for every x ∈ U ⊆ X . The assumption 
of uniform tame regularity of Tf  implies that the family T∶ U × X → Y is uniformly tame 
regular at 0.

The derivative at x ∈ U of the map � defined in (3.6) evaluates to

where T̃x = prIm T0
◦ (Tx)↾CoimT0

∶ Coim T0 → ImT0 . Since T is uniformly tame regular, T̃x is 
invertible for all x ∈ U and the inverses form a tame smooth family. Hence, Tx� has a tame 
smooth family of inverses given by

(3.18)prIm ◦ (Tx fNF)↾Coim∶ Coim → Im

(3.19)Tx𝜓 =

(
idKerT0 0

T̂−1
0

◦ prImT0
◦ (Tx)↾Ker T0 T̂−1

0
◦ T̃x

)
,
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Thus, we can apply the Nash–Moser Theorem A.3 to conclude that � is a local diffeomor-
phism at 0.

Using (3.20), the derivative of the map � defined in (3.7) can be written in block form 
as

where y ∈ V ⊆ Y  and x = 𝜓−1
(
0, T̂−1

◦ prIm T0
(y)

)
 . A direct calculation verifies that Ty� is 

invertible with inverse given by

Since the inverses 
(
Ty�

)−1 parametrized by y ∈ V  form a tame smooth family, the Nash–
Moser Theorem A.3 implies that � is a local diffeomorphism. The remainder of the proof 
of Theorem 3.5 goes through without modification.   ◻

3.4  Elliptic version

In applications to geometry and physics, one is usually interested in differential operators 
between spaces of geometric objects. Let E → M and F → M be finite-dimensional fiber 
bundles over the compact manifold M. Denote the space of smooth sections of E and F 
by E and F  , respectively. By [35, Theorem II.2.3.1], the spaces E and F  are tame Fréchet 
manifolds. Following [63, Definition 15.3], a nonlinear differential operator of degree r 
is a map E → F  factorizing through the r-jet bundle JrE . That is, for every vertical mor-
phism f∶ JrE → F of fiber bundles the associated nonlinear differential operator is the 
composition

where jr denotes the r-th jet prolongation. This is similar to the factorization (2.26) in the 
linear case, with the important difference that f is now a nonlinear fiber bundle morphism. 
Every nonlinear differential operator Lf ∶ E → F  is a tame smooth map according to [35, 
Corollary II.2.2.7].

As one would expect, the linearization of a nonlinear differential operator is a linear dif-
ferential operator. In fact, the differential T�Lf  is given by

where VE denotes the vertical subbundle of TE and Vf∶ V(JrE) → f ∗VF is the vertical 
derivative of f. The isomorphism at the center is induced by the natural isomorphism of 

(3.20)
(
Tx𝜓

)−1
=

(
idKerT0 0

−T̃−1
x

◦ prImT0
◦ (Tx)↾Ker T0 T̃−1

x
◦ T̂0

)
.

(3.21)Ty𝜙 =

(
idCokerT0 prCoker T0 ◦ Tx ◦ T̃

−1
x

0 idImT0

)
,

(3.22)
(
Ty𝜙

)−1
=

(
idCoker T0 − prCokerT0 ◦Tx ◦ T̃

−1
x

0 idImT0

)
.

L : E ∞( rE) F,
r f∗ (3.23)

φLf : ∞(φ∗ ∞( r(φ∗ E))

∞(( rφ)∗ ( r ∞((Lf (φ))
∗ F),

r

( f )∗

(3.24)
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(jr�)∗V(JrE) and Jr(�∗VE) , see [63, Theorem  17.1]. Hence, T�Lf  is a linear differential 
operator with coefficients Vf .

We say that Lf  is elliptic if the linear differential operator T�Lf  is elliptic for all � ∈ E.

Theorem  3.12 (Normal form—Elliptic) Let E → M and F → M be finite-dimensional 
fiber bundles over the compact manifold M. Every nonlinear elliptic differential operator 
Lf ∶ E → F  can be brought into a tame normal form at every � ∈ E.

Proof According to Theorem 3.11, we have to show that the bundle map

is uniformly tame regular at � ∈ E . After having chosen tubular neighborhoods of Im𝜙 ⊆ E 
and ImLf (𝜙) ⊆ F , it suffices to consider the case where E and F are vector bundles. In this 
linear setting, the vertical tangent bundle of JrE is identified with V(JrE) ≃ JrE ×M JrE . 
Accordingly, the vertical derivative of f is a map Vf∶ JrE ×M JrE → F . Define the tame 
smooth family T∶ E × E → F  of linear maps by

We have to show that the family � ↦ T� is uniformly tame regular at � = � . For this pur-
pose, note that T factorizes as the composition of the tame smooth map

and the family of differential operators

By assumption, the differential operator with coefficients Λ� = (Vf )∗(j
r�, ⋅) is elliptic. 

Thus, Theorem 2.12 implies that D is uniformly tame regular at Λ� , and hence that the 
family T is uniformly tame regular at � = � .   ◻

In applications, one often encounters infinite-dimensional manifolds which are not 
quite spaces of sections of a fiber bundle. A prime example is the Fréchet Lie group of 
diffeomorphisms of a compact manifold. Note that the diffeomorphism group is locally 
modeled on the space of vector fields. Thus, from the perspective of local normal forms, 
it has a very similar structure to the space of sections. In order to extend the normal 
form theorem to such situations, we follow [77, p. 57] and introduce the following sub-
class of Fréchet manifolds.

Definition 3.13 A tame Fréchet manifold M is said to be geometric if it is locally modeled 
on the space of smooth sections of some vector bundle over a compact manifold.

A tame smooth map f∶ M → N is called geometric if for every point m ∈ M there exist 
vector bundles E and F over the same compact manifold, and tame local trivializations 
(TM)↾U ≃ U × Γ∞(E) and ( f ∗TN)↾U ≃ U × Γ∞(F) in a neighborhood U ⊆ M of m such 
that in this trivialization the derivative Tf∶ TM → f ∗TN factorizes as the composition of a 
tame smooth map U → Γ∞(L(JrE,F)) and the family of differential operators

(3.25)TLf ∶ TE → (Lf )
∗TF

(3.26)T(�, �) ≡ T�(�) = Vf (jr�, jr�).

(3.27)E × E ∋ (�, �) ↦
(
(Vf )∗(j

r�, ⋅), �) ∈ Γ∞(L(JrE,F)) × E

(3.28)D∶ Γ∞
(
L(JrE,F)

)
× E → F, (Λ, �) ↦ Λ(jr�).
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The notions of a geometric vector bundle and a geometric vector bundle morphism are 
defined in a similar way.

Roughly speaking, a map f∶ M → N is geometric if its linearization Tm f  is a family of 
linear differential operators whose coefficients depend tamely on m ∈ M . As we have seen 
in the proof of Theorem  3.12, every nonlinear differential operator is a geometric map. 
Moreover, a slight reformulation of the proof of Theorem 3.12 gives the following more 
general normal form result.

Theorem 3.14 (Normal form—Elliptic) Let f∶ M → N be a geometric map between geo-
metric Fréchet manifolds. If Tm f∶ TmM → Tf (m)N is an elliptic differential operator for 
some m ∈ M , then f can be brought into a tame normal form at m.

Proof By Theorem 3.11, we have to show that the bundle map Tf∶ TM → f ∗TN is uni-
formly tame regular at m. Since f is geometric, there exist tame local trivializations 
(TM)↾U ≃ U × Γ∞(E) and ( f ∗TN)↾U ≃ U × Γ∞(F) in a neighborhood U ⊆ M of m such 
that Tf  factorizes as the composition of a tame smooth map S∶ U → Γ∞(L(JrE,F)) and 
the family of differential operators D∶ Γ∞(L(JrE,F)) × Γ∞(E) → Γ∞(F) defined in (3.29). 
By assumption, the differential operator DS(m) with symbol S(m) is elliptic. Hence, Theo-
rem 2.12 implies that the family Tf  is uniformly tame regular at m.   ◻

3.5  Relative normal form

We now briefly discuss how to bring a smooth map f∶ M → N into a normal form relative 
to a given submanifold P of N. This is a direct generalization of the standard transversal-
ity theory. Recall that a submanifold P ⊆ N is called split if TpP is topologically comple-
mented in TpN for every point p ∈ P . Let prp∶ TpN → TpN∕TpP denote the canonical pro-
jection. For the special case where P is a single point, the following relative normal form 
result recovers Theorem 3.5.

Theorem  3.15 (Relative normal form — Banach) Let f∶ M → N be a smooth map 
between Banach manifolds, and let P be a split submanifold of N. If the operator 
prf (m) ◦Tm f∶ TmM → Tf (m)N∕Tf (m)P is regular at the point m ∈ M , then there exist 
charts 𝜅∶ M ⊇ U� → U ⊆ X at m and 𝜌∶ N ⊇ V � → V ⊆ Y  at f(m), and decompositions 
X = Ker⊕ Coim , Y = Coker⊕ Im⊕ Z such that

where f̂∶ Coim → Im is a linear topological isomorphism, fsing∶ X ⊇ U → Coker is 
a smooth map satisfying fsing(0, x2) = 0 for all x2 ∈ U ∩ Coim and T0 fsing = 0 , and 
fP∶ X ⊇ U → Z is a smooth map. The chart � can be chosen to be a submanifold chart for 
P, i.e., �(P ∩ V �) = Z ∩ V .

(3.29)D∶ Γ∞(L(JrE,F)) × Γ∞(E) → Γ∞(F), (Λ, �) ↦ Λ(jr�).

(3.30)𝜌 ◦ f ◦ 𝜅−1 = f̂ + fsing + fP,
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Proof Since P is a split submanifold of N, there exist a chart �̃�∶ N ⊇ V � → V ⊆ Y  at 
f(m), and a topological decomposition Y = Ȳ ⊕ Z such that �̃�(P ∩ V �) = Z ∩ V  . Define 
f̄ ∶= prȲ ◦ �̃� ◦ f↾U� ∶ M ⊇ U� → Ȳ  and fP ∶= prZ ◦ �̃� ◦ f↾U� ∶ M ⊇ U� → Z where U′ is a suffi-
ciently small neighborhood of m so that f (U�) ⊆ V � . Since prf (m) ◦Tm f  coincides with Tm f̄  
under the isomorphism Tf (m)N∕Tf (m)P ≃ Ȳ  , the operator Tm f̄  is regular. The claim now fol-
lows from Theorem 3.5 applied to f̄  .   ◻

Since � is a submanifold chart for P and fP takes values in Z, the identity (3.30) implies

Note that Ker ≃ (Tm f )−1
(
Tf (m)P

)
 . Moreover, Coker is isomorphic to the quotient of Tf (m)N 

by ImTm f + Tf (m)P . We hence recover the classical result that f −1(P) is a submanifold of 
M if f is transversal to P.

The strategy in the proof of Theorem 3.15 generalizes to the other analytic settings con-
sidered above, leading to relative versions of Theorems 3.7, 3.8, 3.11, 3.12 and 3.14. We 
leave the details to the reader.

4  Normal form of an equivariant map

In this section, we study the local properties of a smooth equivariant map. We refer the 
reader to Appendix B for relevant background material on Lie group actions in infinite 
dimensions. Consider the following setup. Let G be a Lie group, and let M and N be 
G-manifolds. Assume that the G-action on M is proper. Let f∶ M → N be a smooth equiv-
ariant map. Choose a point m ∈ M and denote its image under f by � = f (m) ∈ N.

Let us start by describing the general idea of how to construct an equivariant normal 
form of f. Since a slice provides a normal form for the G-action in a neighborhood of a 
given orbit, it naturally comes to mind as a tool for studying equivariant maps. An initial 
idea would be to split-off the G-action with the help of slices S and R for the G-action at 
the points m ∈ M and � ∈ N , respectively. If the slices satisfy f (S) ⊆ R , then the part of f 
that does not come from the group action is captured in the map f R

S
= f↾S∶ S → R between 

the slices (see Fig.  1). For the reduced map f R
S

 , we can use the normal form results in 
Sect.  3 to arrive at an equivariant normal form for f. In the finite-dimensional setting, a 
similar strategy has been used in [65, Proposition 2.6] to establish an equivariant submer-
sion theorem under the assumption that G is compact.

(3.31)�( f −1(P)) = {(x1, 0) ∈ U∶ fsing(x1, 0) = 0}.

Fig. 1  Illustration of the idea to capture the part of f that does not come from the group action in a map 
f R
S
∶ S → R between the slices S and R 
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However, for the applications we are interested in, it is often too restrictive to assume 
that the G-action on the target has a slice R. For example, momentum maps in symplectic 
geometry take values in the dual of the Lie algebra; but the coadjoint action of a non-
compact group usually does not possess slices, see, e.g., [33, Point 5 in Section 2.3.1]. As 
a solution, one may try to use only a slice S for the G-action on M while leaving the action 
on N untouched. In the context of symplectic reduction, this idea is at the heart of the 
proof of the Marle–Guillemin–Sternberg normal form of the momentum map. In this case, 
the slice S is constructed using an equivariant version of Darboux’s theorem. However, 
a close inspection of the proof of the singular symplectic reduction theorem reveals that 
the Marle–Guillemin–Sternberg Theorem gives actually not the most convenient normal 
form for the study of the geometry of the symplectic quotient. In fact, several issues arise 
from using a slice for the G-action but taking the quotient with respect to the subgroup G� . 
This asymmetry was counterbalanced in the proof of the reduction theorem [61, Proposi-
tion 8.1.2] by deforming the momentum map J∶ M → �∗ using a local diffeomorphism of 
�∗ . Instead of changing coordinates on the target, we will take a different approach and use 
a slice on M for the action of G� instead of G. This has also the advantage that G� is often 
considerably smaller than G and, thus, a slice for the subgroup action is easier to construct.

Finally, the symplectic setting is special in that the action of G on �∗ is linear. When 
moving beyond the momentum map example, the G-action on the target N is usually non-
linear. As we have explained above, we cannot use a slice to control the entire G-action 
on N. But the stabilizer Gm of m is compact and its action on N leaves � invariant due to 
G-equivariance of f. Hence, we can at least hope to linearize the induced action of Gm 
around the fixed point �.

In summary, we will work with a G�-slice S at m ∈ M and with a Gm-slice at � ∈ N and 
then bring the restriction of f to the slice S in a normal form using the results in Sect. 3.

4.1  General normal form theorem

Using this strategy, we will show that a wide class of equivariant maps can be brought into 
the following equivariant normal form.

Definition 4.1 An abstract equivariant normal form is a tuple (H,X, Y , f̂ , fsing) con-
sisting of a compact Lie group H and a normal form (X, Y , f̂ , fsing) which is H-equivar-
iant in the sense that X,  Y are endowed with smooth linear H-actions, the decomposi-
tions X = Ker ⊕ Coim , Y = Coker ⊕ Im are H-invariant, and the maps f̂∶ Coim → Im , 
fsing∶ X ⊇ U → Coker are H-equivariant, where U ⊆ X is an H-invariant open neighbor-
hood of 0.

For an equivariant normal form (H,X, Y , f̂ , fsing) and a Lie group G with H ⊆ G , define 
the smooth map fG-NF∶ G ×H U → G ×H Y  by

for g ∈ G , x1 ∈ U ∩ Ker and x2 ∈ U ∩ Coim.

A slice for the G�-action on M plays a fundamental role in connecting an equivari-
ant map with its equivariant normal form. Recall from Appendix B, that a G�-slice at 
m ∈ M is a Gm-invariant submanifold S of M which is transverse to the orbit G� ⋅ m and 
which possesses some additional properties, see Definition  B.1. A proper action of a 

(4.1)fG-NF
(
[g, x1, x2]

)
∶=

[
g, fNF(x1, x2)

]
=
[
g, f̂ (x2) + fsing(x1, x2)

]
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finite-dimensional Lie group on a finite-dimensional manifold always admit slices [62], 
but this may no longer be true in infinite dimensions and additional assumptions have to 
be made, see [16]. In the following, we assume the existence of a slice for the G�-action 
at every point m ∈ M . In particular, the natural fibration G� → G�∕Gm is a locally trivial 
principal bundle and it admits a local section 𝜒∶ G𝜇∕Gm ⊇ W → G𝜇 defined on an open 
neighborhood W of the identity coset [e] in such a way that the map

is a diffeomorphism onto an open neighborhood of m, i.e., the slice yields convenient prod-
uct coordinates in a neighborhood of m. This product structure extends to a semi-local nor-
mal form of the orbit using the tube map

which is a G�-equivariant diffeomorphism onto an open, G�-invariant neighborhood of 
G� ⋅ m in M, see Proposition B.2.

Definition 4.2 Let f∶ M → N be a smooth G-equivariant map. For m ∈ M write 
� = f (m) ∈ N , and assume that the stabilizer G� is a Lie subgroup of G. We say that f can 
be brought into the equivariant normal form (H,X, Y , f̂ , fsing) at m if H = Gm and there exist 

1. a slice S at m for the G�-action,
2. a Gm-equivariant diffeomorphism 𝜄S∶ X ⊇ U → S ⊆ M,
3. a Gm-equivariant chart 𝜌∶ N ⊇ V � → V ⊆ Y  at � with f (S) ⊆ V �

such that the following diagram commutes:

where �T∶ G� ×Gm
S → M is the tube diffeomorphism associated with S and 

�T∶ G� ×Gm
V → N is defined by �T([g, y]) = g ⋅ �−1(y) . For short, we say that f is locally 

G-equivalent to fG�-NF
.

Assume that the G-equivariant map f∶ M → N can be brought into the equivari-
ant normal form (Gm,X, Y , f̂ , fsing) by using diffeomorphisms �S and � as above. Then 
Tm�S∶ X → TmS identifies X with TmS ≃ TmM∕��.m , as Gm-representations. Similarly, 
T��∶ T�N → Y  is an isomorphism of Gm-representations. Under these identifications, 
the abstract spaces Ker and Coker occurring in the decomposition of X and Y are identi-
fied with

These are the first and second homology groups of the chain complex

(4.2)�S∶ W × S → M, ([g], s) ↦ �([g]) ⋅ s

(4.3)�T∶ G� ×Gm
S → M, [g, s] ↦ g ⋅ s,

M N

Gµ ×Gm
X ⊇ Gµ ×Gm

U Gµ ×Gm
V ⊆ Gµ ×Gm

Y,

f

fGµ-NF

χT ◦ ( Gµ×ιS) ρT (4.4)

(4.5)Ker ≃ Ker Tm f∕��.m, Coker ≃ T�N∕ImTm f .

0 µ mM µN 0 ,eϒm mf (4.6)
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where Υm∶ G� → M is the orbit map of the G�-action at m ∈ M.
At a fixed point for the action, an equivariant normal form signifies that there exist 

charts which linearize the actions and at the same time bring f into a normal form (in the 
sense of Definition 3.2). In fact, the general case can always be reduced to constructing 
an equivariant normal form at a fixed point of the action.

Proposition 4.3 Let f∶ M → N be an equivariant map between G-manifolds. Choose 
m ∈ M and set � = f (m) . Assume that the following conditions hold:

1. The stabilizer subgroup G� of � is a Lie subgroup of G.
2. The induced G�-action on M admits a slice S at m.
3. The Gm-equivariant map f S ≡ f↾S∶ S → N can be brought into an equivariant normal 

form at m relative to the induced Gm-action, i.e., it is locally Gm-equivalent to a map 
f SGm-NF

∶ X ⊇ U → Y .

Then, f can be brought into an equivariant normal form at m relative to the G-action. In 
fact, f is locally G-equivalent to

  ◻

Proof Let S be a slice at m for the induced G�-action on M, with associated tube map 
�T∶ G� ×Gm

S → M defined by �T([g, s]) = g ⋅ s . By G-equivariance of f, the following 
diagram commutes:

where the smooth map f� is defined by f� ([g, s]) = g ⋅ f (s) for g ∈ G� and s ∈ S . Thus, 
the map f decomposes into the G�-action and the restriction f S∶ S → N of f to the slice. 
Note that f S is Gm-equivariant. By assumption, f S can be brought into a Gm-equivariant 
normal form. Since m is a fixed point for the Gm-action, this means that there exists charts 
𝜅∶ S ⊇ U� → U ⊆ X at m and 𝜌∶ N ⊇ V � → V ⊆ Y  at � intertwining the Gm-actions on S 
and N with a linear Gm-actions on X and Y, respectively. Moreover, f (U�) ⊆ V � and the fol-
lowing diagram commutes

where f SGm-NF
= f̂S + f Ssing with maps f̂ S and f Ssing as in Definition  4.1. By possibly 

shrinking S, we may assume that � is defined on the whole of S. Define �T∶ G� ×Gm
V → N 

by �T([g, y]) = g ⋅ �−1(y) . Due to Gm-equivariance of f S, � and � , the prescription

(4.7)fG�-NF
∶ G� ×Gm

U → G� ×Gm
Y , [g, x] ↦ [g, f SGm-NF

(x)].

M N

Gµ ×Gm
S N,

f

fχ

χT (4.8)

S ⊇ U V ⊆ N

X ⊇ U V ⊆ Y,

f S

κ ρ

f S
Gm-NF

(4.9)
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defines a smooth map fG�-NF
∶ G� ×Gm

U → G� ×Gm
V  fitting into the following commuta-

tive diagram:

Hence f is brought into the equivariant normal form (Gm,X, Y , f̂
S, f Ssing) .   ◻

At this point, we have completely split off the G�-action and reduced the problem to 
constructing an equivariant normal form of the map f S∶ S → N at a fixed point of the Lie 
group Gm . This is a considerable simplification of the general situation we started with. In 
the proposition below, we show that equivariant normal forms at fixed points can be con-
structed using the methods developed in Sect. 3. For this we will need the following notion.

Definition 4.4 We say that a G-action can be linearized at a fixed point m ∈ M if there 
exist a G-invariant open neighborhood U′ of m in M, a chart 𝜌∶ M ⊇ U� → U ⊆ X and a 
smooth linear G-action on X such that � is G-equivariant.

Proposition 4.5 Let G be compact Lie group, and let f∶ M → N be an equivariant map 
between Fréchet G-manifolds. Choose m ∈ M and set � = f (m) ∈ N . Assume that m is a 
fixed point of the G-action, i.e., Gm = G , and that the following conditions hold:

1. The G-actions on M and N can be linearized at the fixed points m and � , respectively.
2. The hypotheses of either Theorems 3.5, 3.7, 3.8, 3.11, 3.12 and 3.14 are satisfied so that 

f can be brought into a normal form (not necessarily equivariant).

Then f can be brought into an equivariant normal form at m.

Proof By assumption, there exist charts �̃�∶ M ⊇ U� → U ⊆ X at m and �̃�∶ N ⊇ V � → V ⊆ Y  
at � which are G-equivariant with respect to linear actions of G on X and Y, respectively. 
All the mentioned normal forms established in Sect. 3 use the chart deformations � and � 
introduced in the proof of Theorem 3.5 to bring f into an normal form. We claim that in the 
present setting these local diffeomorphisms can be chosen to be G-equivariant. To see this, 
consider the topological decompositions X = Ker T ⊕ CoimT  and Y = CokerT ⊕ Im T  , 
where T corresponds to Tm f  under the chart identifications. Since G is compact and T 
is G-equivariant, the complements CoimT  and CokerT  can be chosen to be G-invari-
ant according to [16, Lemma 3.13]. By direct inspection, we see that the map � defined 
in  (3.6) is a composition of G-equivariant maps and hence is G-equivariant. The map � 
defined in (3.7) and the singular part fsing are G-equivariant, too, for similar reasons.   ◻

Thus, in summary, we arrive at the following equivariant normal form theorem.

(4.10)fG�-NF
([g, x]) = [g, � ◦ f S◦ �−1(x)], g ∈ G�, x ∈ U

M N

Gµ ×Gm
S N

Gµ ×Gm
U Gµ ×Gm

V.

f

fχ

Gµ×κ

χT

fGµ-NF

ρT

(4.11)
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Theorem 4.6 (Equivariant normal form — General) Let f∶ M → N be an equivariant map 
between Fréchet G-manifolds. Choose m ∈ M and set � = f (m) . Assume that the following 
conditions hold:

1. The stabilizer subgroup G� of � is a Lie subgroup of G.
2. The induced G�-action on M is proper and admits a slice S at m.
3. The induced Gm-action on N can be linearized at �.
4. The restriction f S ≡ f↾S∶ S → N of f to S can be brought into a normal form at m using 

either Theorems 3.5, 3.7, 3.8, 3.11, 3.12 and 3.14.

Then, f can be brought into an equivariant normal form at m relative to the G-action.

Proof Since the G-action on M is proper, the stabilizer Gm is compact. By the slice prop-
erty SL5 , the Gm-action on the slice S can be linearized at m. Hence, Proposition 4.5 implies 
that f S can be brought into an equivariant normal form relative to the Gm-action. The claim 
now follows from Proposition 4.3.   ◻

We now comment on the assumptions of Theorem 4.6. 

1. In finite dimensions, every closed subgroup of a Lie group is a Lie subgroup. This 
shows, in particular, that stabilizer subgroups are Lie subgroups. However, it is not 
known, even for Banach Lie group actions, whether the stabilizer is always a Lie sub-
group, see [57, Problem IX.3.b].

2. According to Palais [62], proper actions of finite-dimensional Lie groups on finite-dimen-
sional manifolds always admit slices. In infinite dimensions, this may no longer be true and 
additional assumptions have to be made. We refer to [16, 78] for general slice theorems 
in infinite dimensions and [2, 7, 21] for constructions of slices in concrete examples.

3. By Bochner’s linearization theorem [6, Theorem 1], every action of a compact Lie group 
on a finite-dimensional manifold can be linearized near a fixed point of the action. This 
result generalizes to actions on Banach manifolds, see [13, Proposition 3.1.4]. However, 
the proof of Bochner’s linearization theorem relies on the inverse function theorem and 
so does not generalize to actions on Fréchet or more general locally convex manifolds.

4. The proof of Proposition 4.5 shows that one can use every normal form theorem pro-
vided it is equivariant with respect to linear actions of a compact group.

Remark 4.7 (Slice mapping) Recall from the proof of Proposition 4.3 the diffeomorphism 
𝜅∶ S → U ⊆ X which brings f S into a normal form. When S is viewed as a submanifold of 
M, then the map Ψ = �−1 satisfies Ψ(0) = m,

for all x ∈ U , and

In the context when f is the momentum map for a symplectic G-action, a map with these 
properties is called a slice map in [9, Definition  2.1]. The construction in [9, Proposi-
tion 2.2] of such a slice map makes no use of slices. Thus, our approach has the advantage 
of bringing the G-action into a normal form simultaneously.

(4.12)TΨ(x)M = �.Ψ(x) + ImTxΨ

(4.13)Tm f ◦T0Ψ = f̂ ◦ prCoimTm f S .
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4.2  Normal form theorem with finite‑dimensional target or domain

In the remainder of this section, we present variations of the equivariant normal form 
theorem 4.6 using assumptions that are often easier to verify in applications. Similar to 
the discussion in Sect. 3, we start with the simplest case and then work through various 
levels of functional-analytic settings, finishing with the tame Nash–Moser category. All 
assumptions of Theorem 4.6 are automatically verified in finite dimensions.

Theorem 4.8 (Equivariant normal form—finite dimensions) Let G be a finite-dimensional 
Lie group and let f∶ M → N be a smooth G-equivariant map between finite-dimensional 
G-manifolds. If the G-action on M is proper, then f can be brought into an equivariant nor-
mal form at every point.

Proof Let m ∈ M and � = f (m) . Since the stabilizer G� of � is a closed subgroup of a 
finite-dimensional Lie group, it is a Lie subgroup. The induced G�-action on M is proper 
and thus the slice theorem of Palais [62] implies that there exists a slice S for the G�-action 
at m. Properness of the action also implies that Gm is compact and thus Bochner’s lineariza-
tion theorem [6], Theorem 1; [20], Theorem 2.2.1] shows that the Gm-action on N can be 
linearized around the fixed point � . By Theorem 3.5, f S = f↾S∶ S → N can be brought into 
a normal form at m. Hence, all assumptions of Theorem 4.6 are verified and so f can be 
brought into an equivariant normal form.   ◻

This result for the finite-dimensional case can be directly generalized to the case 
where only one of the manifolds involved is finite-dimensional.

Theorem  4.9 (Equivariant normal form—finite-dimensional target) Let G be a Lie group 
and let f∶ M → N be a smooth G-equivariant map between G-manifolds, where M is a Fré-
chet manifold and N is a finite-dimensional manifold. Let m ∈ M and � = f (m) . If the stabi-
lizer subgroup G� of � is a Lie subgroup of G and the induced G�-action on M is proper and 
admits a slice at m, then f can be brought into an equivariant normal form at m.

Proof The proof is similar to the one of Theorem 4.8 using Theorem 3.7 to bring f S into a 
normal form. We leave the details to the reader.   ◻

Theorem  4.10 (Equivariant normal form—finite-dimensional domain) Let G be a finite-
dimensional Lie group and let f∶ M → N be a smooth G-equivariant map between G-man-
ifolds, where M is finite-dimensional. Let m ∈ M and � = f (m) . If the G-action on M is 
proper and the induced Gm-action on N can be linearized at � , then f can be brought into 
an equivariant normal form at m.

Proof The proof is similar to the one of Theorem 4.8 using Theorem 3.8 to bring f S into a 
normal form. We leave the details to the reader.   ◻

4.3  Tame Fréchet and elliptic normal form theorem

Let us now come to a version of Theorem 4.6 which lives in the tame Fréchet category.
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Theorem  4.11 (Equivariant normal form—Tame Fréchet) Let G be a tame Fréchet Lie 
group and let f∶ M → N be an equivariant map between tame Fréchet G-manifolds. 
Choose m ∈ M and set � = f (m) . Assume that the following conditions hold:

1. The stabilizer subgroup G� of � is a tame Fréchet Lie subgroup of G.
2. The induced G�-action on M is proper and admits a tame slice S at m.
3. The induced Gm-action on N can be linearized at �.
4. The chain

of linear maps parametrized by s ∈ S is uniformly6 tame regular at m. Here, the first 
map is the Lie algebra action given by � ↦ �.s for � ∈ ��.

Then, f can be brought into an equivariant normal form at m.

Proof Let S be a tame G�-slice at m modeled on the tame Fréchet space X. Accord-
ing to Theorem  4.6, we have to show that the map f S∶ S → N satisfies the hypoth-
eses of Theorem  3.11. For this purpose, consider slice coordinates as in SL3 of Defini-
tion B.1. That is, let �∶ W → G� be a local section of G� → G�∕Gm defined on an open 
neighborhood W of the identity coset [e] such that the map �S∶ W × S → M defined by 
�S([g], s) = �([g]) ⋅ s is a diffeomorphism onto its image. Clearly, T[e]�∶ ��∕�m → �� is 
a continuous right inverse of the projection �� → ��∕�m and thus induces a topological 
isomorphism �� ≃ (��∕�m) × �m . With respect to this decomposition, we write elements 
� ∈ �� as pairs ([�], ��m ) with [�] ∈ ��∕�m and ��m ∈ �m . Let 𝜄S∶ X ⊇ U → S be a chart of 
S which linearizes the Gm-action as in SL5 , and let 𝜌∶ N ⊇ V � → V ⊆ Y  be a chart at � 
which linearizes the Gm-action on N. We denote the chart representation of f S∶ S → N by 
f S
𝜌
∶ X ⊇ U → V ⊆ Y  . With respect to the local trivialization induced by �S

◦ (idW × �S) and 
� , the chain (4.14) yields a family of chains

parametrized by x ∈ U , where the tame smooth families of linear maps 
Γ∶ U × �� → ��∕�m × X and Ξ∶ U × ��∕�m × X → Y  are defined by

for � ∈ �� , and

for [�] ∈ ��∕�m and v ∈ X . Since the chain  (4.14) is uniformly tame regular at m, 
we can assume that the chain  (4.15) is uniformly tame regular at x = 0 . Note that 
ImΓ0 = ��∕�m × {0} . Thus, Proposition 2.14 implies that the family

0 µ sM f (s)N 0sf (4.14)

0 µ µ m× X Y 0x x

(4.15)

(4.16)Γx(�) = ([�], ��m .x),

(4.17)Ξx([�], v) = Tf (�S(x))
�
(
(T[e]�([�])). f (�S(x))

)
+ Tx f

S
�
(v)

6 To be precise, the chain should be viewed as a chain of vector bundle morphisms over S. Similarly to 
Definition 3.10, uniform regularity is then defined relative to vector bundle trivializations by requiring that 
the associated family of linear chains is uniformly regular in the sense of Definition 2.13.



191Annals of Global Analysis and Geometry (2022) 61:159–213 

1 3

of linear maps parametrized by x ∈ U is uniformly tame regular at 0. Thus, by Theo-
rem 3.11, f S can be brought into a normal form, which completes the proof.   ◻

Remark 4.12 In Sect.  3, we have seen that a smooth map can be brought into a (tame) 
normal form if and only if its differential is uniformly (tame) regular. It is perceivable that 
a similar equivalence holds in the equivariant setting as well. Indeed, uniform regularity 
of the left arm of  (4.14) should imply that the action admits a near slice in the sense of 
[62, Definition 2.1.6], which is a weaker notion of a slice only requiring the slice coor-
dinates SL3 . The above arguments then should show that the restriction of the map to the 
near slice can be brought into a normal form. Working out the details of this idea is left for 
future work.

We emphasize that the additional topological properties distinguishing a slice from a 
near slice will become important in the study of moduli spaces in Sect. 5, see Remark 5.5. 
If one is not interested in these topological features (for example, because the focus lies 
on rigidity/stability phenomena), then only requiring the tame uniform regularity of the 
deformation complex is a promising approach. We refer the reader to [35, Section III.3.1] 
for work in this direction which is concerned with the case where the deformation complex 
has trivial homology.

For the following elliptic version of the equivariant normal form theorem, the reader 
might want to recall the notion of a geometric Fréchet manifold from Definition 3.13. In 
particular, this theorem applies to nonlinear differential operators that are equivariant 
under groups of diffeomorphisms or gauge transformations.

Theorem 4.13 (Equivariant normal form — elliptic) Let G be a tame Fréchet Lie group 
and let f∶ M → N be an equivariant map between tame Fréchet G-manifolds. Let m ∈ M 
and � = f (m) . Assume that the following conditions hold:

1. The stabilizer subgroup G� of � is a geometric tame Fréchet Lie subgroup of G.
2. The induced G�-action on M is proper and admits a geometric slice S at m.
3. The induced Gm-action on N can be linearized at �.
4. The chain

is a chain of geometric linear maps parametrized by s ∈ S , which is an elliptic com-
plex at m.

Then, f can be brought into an equivariant normal form at m.

Proof The claim follows directly as a special case of Theorem 4.11, because, according to 
Theorem 2.15, a tame family of chains of differential operators is uniformly tame regular in 
a neighborhood of a point at which the chain is an elliptic complex.   ◻

(4.18)(Ξx)↾{[0]}×X = Tx f
S
�
∶ X ↦ Y

0 µ sM f (s)N 0sf (4.19)
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5  Moduli spaces

In abstract terms, a moduli space is a space whose points parametrize isomorphism classes of 
geometric objects. Usually, one is mainly interested in a subclass of geometric objects satis-
fying an additional condition, which is often phrased in the form of a partial differential equa-
tion. In the following, we will consider moduli spaces fitting into the following general setup. 
Let f∶ M → N be an equivariant map between G-manifolds. For every � ∈ N , set

where G� is the stabilizer subgroup of � under the G-action on N. Here, M is the space 
of geometric objects, the equation f (m) = � describes the additional properties of these 
objects one is interested in, and the G-action implements the notion of equivalence. 
Because of the flexible nature of this general setting, many well-known moduli spaces fit 
into this framework, see Sects. 5.3–5.5 for applications. Moreover, symplectic quotients are 
examples of these abstract moduli spaces, and the general theory developed in the next sec-
tions lays the foundation to generalize singular symplectic reduction to infinite dimensions, 
which will be presented elsewhere [13, 14].

In the simplest case, when � is a regular value of f and G� acts freely, the space M̌𝜇 is 
a smooth manifold. However, in general, the moduli space has a complicated geometry 
with singularities. In this section, we investigate the local structure of the moduli space 
M̌𝜇 = f −1(𝜇)∕G𝜇 under the assumption that f can be brought into a normal form. In this 
case, M̌𝜇 can be locally identified with the quotient of the zero set of a smooth map by the 
linear action of a compact group, i.e., it has the structure of a Kuranishi space. In Sect. 5.2, 
we find additional conditions on the normal form which ensure that M̌𝜇 is stratified by orbit 
types.

5.1  Kuranishi structures

Kuranishi spaces were introduced by Fukaya and Ono [27, Section 1.5] in their study of 
the geometry of moduli spaces of pseudoholomorphic curves. The notion of a Kuranishi 
structure builds on ideas of Kuranishi [46] for the moduli space of complex structures and 
of Donaldson [18, Section II.2] and Taubes [79, Section 6] for moduli problems in gauge 
theory, see also [19, Section 4.2.5].

Definition 5.1 Let X  be a topological space. A Kuranishi chart at a point x ∈ X  is a 
tuple (V ,E,F,H, s, �) consisting of the following data: 

1. an open neighborhood V of 0 in a locally convex space E,
2. a locally convex space F,
3. a compact Lie group H acting linearly and continuously on V and F,
4. a smooth H-equivariant map s∶ V → F,
5. a homeomorphism � from s−1(0)∕H to a neighborhood of x in X .

The bundle F × V → V  is called the obstruction bundle and s is referred to as the obstruc-
tion map. If E and F are finite-dimensional vector spaces, then the Kuranishi chart is said 
to be finite-dimensional.

(5.1)M̌𝜇 ≡ f −1(𝜇)∕G𝜇,
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Informally speaking, a space admitting Kuranishi charts is locally modeled on the quo-
tient of the zero set of a smooth map by a compact group. For a finite-dimensional Kurani-
shi chart (V ,E,F,H, s, �) at x ∈ X  , the number

is called the virtual dimension of X  (at x). This is motivated by the fact that s−1(0)∕H 
forms a manifold of this dimension at regular points of s for which the H-action is free.

Remarks 5.2 

1. If the map s vanishes and H is a finite group acting faithfully on E, then the Kuranishi 
chart (V ,E,F,H, s, �) reduces to an infinite-dimensional orbifold chart, i.e., X  is locally 
modeled on the quotient of E by a finite group action. If, in addition, the H-action on E 
is trivial, then we obtain an ordinary manifold chart on X .

2. Our notion of a finite-dimensional Kuranishi chart is a generalization of the one pro-
posed by Oh et al. [60, Definition A.1.1]. There, H is assumed to be a finite group (act-
ing effectively on V). Finiteness of H is a natural assumption in the context of moduli 
spaces of pseudoholomorphic curves, but it is too restrictive in our more general setting. 
Moreover, we do not require X  to be compact nor to be endowed with a metric as it is 
done in [60].

  Usually, only finite-dimensional Kuranishi charts are discussed in the literature. 
However, for general moduli spaces, one cannot expect the Kuranishi chart to be finite-
dimensional. As we will see below in Remark 5.4, this amounts to requiring that a 
certain complex is Fredholm.

3. In order to define a Kuranishi structure on X  , in a similar spirit to the smooth struc-
ture of a manifold, one needs to introduce coordinate transition maps in order to glue 
together different Kuranishi charts. A variety of definitions of suitable chart transitions 
are proposed in the literature, each with their own advantages and functorial properties. 
We refer the reader to [43, Appendix A] for a review on this matter.

4. Recently, Hofer, Wysocki and Zehnder have introduced the polyfold framework as a 
different approach to deal with the analytic and geometric issues occurring in the study 
of moduli spaces in symplectic field theory, see [40, 41] and references therein. We refer 
to [81] for an extensive discussion of the relation of Kuranishi structures and polyfold 
theory. A detailed comparison of the tame Fréchet category with the so-called scale 
calculus that underlies the polyfold framework can be found in [28].

The equivariant normal form studied in the previous section is a suitable tool to 
obtain information about the local structure of the moduli space.

Theorem 5.3 Let f∶ M → N be an equivariant map between G-manifolds. Choose � ∈ N 
such that f −1(�) is not empty. Assume that the stabilizer subgroup G� of � is a Lie sub-
group of G. If f can be brought into an equivariant normal form at every point of f −1(�) , 
then there exists a Kuranishi chart on M̌𝜇 ≡ f −1(𝜇)∕G𝜇 at every point.

Proof Let m ∈ f −1(�) , and let (Gm,X, Y , f̂ , fsing) be an abstract equivariant normal form of 
f at m in the sense of Definition 4.1, with associated decompositions X = Ker⊕ Coim and 
Y = Coker⊕ Im . Consider a slice S at m for the G�-action, diffeomorphic to the domain 
U ⊆ X of fsing via a Gm-equivariant diffeomorphism 𝜄S∶ X ⊇ U → S . In the following, we 

(5.2)dimE − dimF − dimH
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suppress the slice diffeomorphism �S . Denote the tube diffeomorphism associated with 
S by �T∶ G� ×Gm

U → M . For a Gm-equivariant chart 𝜌∶ N ⊇ V � → V ⊆ Y  at � define 
�T∶ G� ×Gm

V → N by �T([g, y]) = g ⋅ �−1(y) . According to Definition 4.2, we can choose 
S and � so that the following diagram commutes:

where fG�-NF
 is defined by fG𝜇-NF

([g, x1, x2]) = [g, f̂ (x2) + fsing(x1, x2)] for g ∈ G� , 
x1 ∈ U ∩ Ker and x2 ∈ U ∩ Coim . Note that (�T)−1(�) = G� ×Gm

{0} , by the definition of 
�T . Using the commutative diagram (5.3), we hence obtain

By G�-equivariance, the tube diffeomorphism �T thus induces a local homeomorphism of 
M̌𝜇 = f −1(𝜇)∕G𝜇 with

This local homeomorphism provides a Kuranishi chart on M̌𝜇 with E = Ker , V = U ∩ Ker , 
F = Coker , H = Gm and s = fsing(⋅, 0)∶ V → F in the notation of Definition 5.1.   ◻

Remark 5.4 In the setting of Theorem 5.3, consider the chain complex

where Υm∶ G� → M is the orbit map of the G�-action at m ∈ M . Recall from (4.6) that the 
homology groups of this complex are identified with the abstract spaces

occurring in the equivariant normal form. For the Kuranishi charts on M̌𝜇 constructed in 
the proof of Theorem 5.3, we have H = Gm , E = Ker and F = Coker . Thus, these Kurani-
shi charts are finite-dimensional if and only if the complex (5.6) is Fredholm.

In this case, the Euler characteristic of the complex (5.6),

is (minus) the virtual dimension of M̌𝜇.

Remark 5.5 The proof of Theorem 5.3 relies in an essential way on the fact that the tube 
map �T∶ G� ×Gm

S → M associated with the slice S is a diffeomorphism onto an open G�

-invariant neighborhood of the orbit G ⋅ m . This is also the first instance where we use 
injectivity of �T , i.e., slice property SL2 . A close inspection of the proof of Theorem 5.3 
shows that for the Kuranishi structure on M̌𝜇 one actually needs only the restriction of �T 

M N

Gµ ×Gm
X ⊇ Gµ ×Gm

U Gµ ×Gm
V ⊆ Gµ ×Gm

Y,

f

fGµ-NF
χT ρT (5.3)

(5.4)

(�T)−1
(
f −1(�)

)
= f −1

G�-NF

(
(�T)−1(�)

)

= f −1
G�-NF

(
G� ×Gm

{0}
)

= G� ×Gm
{(x1, 0) ∈ U∶ fsing(x1, 0) = 0}.

(5.5){(x1, 0) ∈ U∶ fsing(x1, 0) = 0}∕Gm.

0 mM N 0 ,eϒm mf (5.6)

(5.7)�m ≃ �, Ker Tm f∕��.m ≃ Ker, T�N∕ImTm f ≃ Coker,

(5.8)dim �m − dimKer + dimCoker,
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to G� ×Gm

(
S ∩ f −1(�)

)
 to be injective. This is equivalent to the following weaker version 

of SL2 : 

(SL2�)  Any g ∈ G for which g ⋅
(
S ∩ f −1(�)

)
 intersects non-trivially with S ∩ f −1(�) is 

necessarily an element of the stabilizer Gm.

 Recall that the slice property SL2 is usually established using some form of compact-
ness of the group action, e.g., properness. Thus, for (SL2� ), one needs such a com-
pactness property only on the solution set f −1(�) . This observation enables one to use 
compactness arguments specific to the partial differential equation under study. We 
will encounter such a case for pseudoholomorphic curves where Gromov’s compact-
ness theorem ensures that (SL2� ) holds although SL2 is not satisfied in general, see 
Sect. 5.5.

Moreover, we so far did not make any use of property SL4 which will only play a fun-
damental role for the orbit-type stratification discussed in Sect. 5.2 below. Thus, we expect 
that a version of Theorem  5.3 also holds in the more general setting, where one only 
requires the weak equivariant normal form that uses a near slice instead of a slice, as dis-
cussed in Remark 4.12, and the weak slice property (SL2�).

Since every equivariant map between finite-dimensional G-manifolds can be 
brought into an equivariant normal form according to Theorem 4.8, we obtain the fol-
lowing corollary of Theorem 5.3.

Corollary 5.6 Let f∶ M → N be an equivariant map between finite-dimensional G-man-
ifolds and let � ∈ N . If the G�-action on M is proper, then M̌𝜇 ≡ f −1(𝜇)∕G𝜇 admits a 
Kuranishi chart at every point.

Of course, the equivariant normal form theorems 4.9, 4.10, 4.11 and 4.13 give simi-
lar corollaries in infinite dimensions.

5.2  Orbit‑type stratification

As we have seen, the abstract moduli space M̌𝜇 = f −1(𝜇)∕G𝜇 admits Kuranishi charts if f 
can be brought into an equivariant normal form. Under additional conditions on the equiv-
ariant normal form, M̌𝜇 has an even more pleasant structure. For the following result, the 
reader might want to recall the notions of orbit type and stratification from Appendix B. 
Roughly speaking, a stratification is a decomposition of a space such that the pieces are 
manifolds and a certain approximation condition holds when one approaches the boundary 
of a piece. These properties have a local nature and, in fact, can be ensured by requiring the 
equivariant normal form to satisfy additional conditions.

Proposition 5.7 Let f∶ M → N be a smooth equivariant map between G-manifolds, and let 
� ∈ N . Assume that the stabilizer subgroup G� is a Lie subgroup of G and that the induced 
action of G� on M is proper. Moreover, assume that f can be brought into an equivariant 
normal form (Gm,X, Y , f̂ , fsing) at every m ∈ f −1(�) such that the following holds:
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1. (Submanifold property) The set

is a submanifold of X(Gm)
.

2. (Approximation property) For every orbit type (K) ≤ (Gm) of the G�-action on M, the 
point 0 lies in the closure of f −1

sing
(0) ∩ Ker ∩ X(K) in X.

Then, the partition of f −1(�) into the orbit-type subsets f −1(�) ∩M(H) is a stratification. 
Moreover, the decomposition of M̌𝜇 = f −1(𝜇)∕G𝜇 into the sets 

(
f −1(�) ∩M(H)

)
∕G� is a strat-

ification, too.

Proof Let m ∈ f −1(�) and let (Gm,X, Y , f̂ , fsing) be an equivariant normal form of f at m 
satisfying the submanifold and approximation properties. In the proof of Theorem 5.3, we 
have seen that the G�-equivariant tube diffeomorphism �T identifies the level set f −1(�) 
locally with

Accordingly, f −1(�) ∩ S(Gm)
 is identified with the set

Since the latter is a submanifold of X(Gm)
 by the submanifold property, we conclude 

that f −1(�) ∩ S(Gm)
 is a closed submanifold of S(Gm)

 . Moreover, the approximation prop-
erty entails that, for every G�-orbit type (K) ≤ (Gm) , the point m lies in the closure of 
f −1(�) ∩ S(K) . Thus, the claims follow from Proposition B.4.   ◻

5.3  Application: moduli space of anti‑self‑dual connections

The local structure of the moduli space of anti-self-dual Yang–Mills connections is well 
understood, see, e.g., [19]. We will show how these results can be rederived with relatively 
small effort using the general framework developed in the previous sections.

Consider a principal G-bundle �∶ P → M over a compact n-dimensional Riemannian 
manifold M with G being a compact Lie group. A connection in P is a G-equivariant split-
ting of the tangent bundle TP = VP⊕ HP into the canonical vertical distribution VP and 
a horizontal distribution HP . Equivalently, a connection A in P yields a splitting of the 
Atiyah sequence

Accordingly, the space C(P) of connections on P is identified with the space of sections 
of an affine bundle over M, and in this way C(P) carries a natural tame Fréchet manifold 
structure modeled on the vector space Ω1(M, AdP) , cf. [1]. The covariant derivative and 
the curvature of a connection A are denoted by dA and FA , respectively.

The group G(P) of local gauge transformations on P is a tame Fréchet Lie group, 
because it is realized as the space of smooth sections of the group bundle P ×G G , see [10] 
for details. The natural left action of G(P) on C(P) is given by

(5.9)
{
(x1, 0) ∈ U(Gm)

∶ fsing(x1, 0) = 0
}
= f −1

sing
(0) ∩ Ker ∩ X(Gm)

(5.10)G� ×Gm
{(x1, 0) ∈ U∶ fsing(x1, 0) = 0}.

(5.11){(x1, 0) ∈ U(Gm)
∶ fsing(x1, 0) = 0}.

0 P M 0.πTP G (5.12)
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for � ∈ G(P) . This action is proper, see [12, 68]. Moreover, it admits a slice SA0
 at every 

A0 ∈ C given by the Coulomb gauge condition. That is,7 

where U is a suitable open neighborhood of A0 in C(P) . One uses the Nash–Moser inverse 
function theorem to show that SA0

 is a slice. The details can be found in [2, 12]. In the 
Banach context, the orbit-type decomposition of C(P) has been extensively studied in [44], 
see also [68]. The proof that the decomposition satisfies the frontier condition [44, Theo-
rem 4.3.5] carries over to our Fréchet setting without major changes. As a consequence of 
Proposition B.4, the decomposition of C(P) into gauge orbit types is a stratification. Finally, 
the gauge orbit types are in bijection with the set of isomorphism classes of holonomy-
induced Howe subbundles of P, cf. [68, Theorem 3.3]. Using this observation, the clas-
sification of orbit types for all classical groups has been accomplished in [37, 38, 67–69].

Coming to the anti-self-dual equation, we specialize to the case where M is an oriented 
compact Riemannian manifold of dimension 4 and G is a compact, semisimple Lie group. 
On a four-dimensional manifold, the Hodge star operator ∗ associated with the Riemannian 
metric satisfies ∗∗= id on 2-forms and thus determines a decomposition

of the space of 2-forms into the ±1-eigenspaces. A similar decomposition holds for vector-
valued 2-forms and, in particular, the curvature FA of a connection A ∈ C(P) can be written 
as

with F±
A
∈ Ω2

±
(M, AdP) . A connection A with F+

A
= 0 is called anti-self-dual (ASD). The 

Bianchi identity implies that an ASD connection satisfies the Yang–Mills equation. The 
self-dual part of the curvature gives a smooth map

which is equivariant with respect to the natural actions of G(P) . The moduli space of anti-
self-dual connections is, by definition, the space

of anti-self-dual connections on P modulo gauge equivalence. This clearly fits into the 
general framework considered in the previous sections. Let us verify the conditions of 
Theorem 4.13: 

1. The stabilizer of � = 0 ∈ Ω2
+
(M, AdP) is the whole group G(P) , which is a geometric 

tame Fréchet Lie group with Lie algebra LG(P) = Γ∞(AdP).
2. The natural action of G(P) on C(P) is proper and admits slices as discussed above.
3. The action of G(P) on Ω2

+
(M, AdP) is clearly linear.

(5.13)A ↦ Ad�A + �d�−1,

(5.14)SA0
∶= {A ∈ U∶ d∗

A0
(A − A0) = 0},

(5.15)Ω2(M) = Ω2
+
(M)⊕Ω2

−
(M)

(5.16)FA = F+
A
+ F−

A

(5.17)F+∶ C(P) → Ω2
+
(M, AdP),

(5.18)A = (F+)−1(0)∕G(P)

7 Here, as usual, d∗
A
� ∶= (−1)k ∗ dA ∗ � for a k-form �.
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4. Let A be an ASD connection and let S be a slice at A. The chain (4.14) here takes the 
form 

where B ∈ S and d+
B
 denotes the self-dual part of the covariant derivative dB . This chain 

is clearly a chain of linear differential operators tamely parametrized by the connection 
B. The ASD condition for A asserts that d+

A
◦ dA = 0 and so, at B = A , the chain (5.19) 

is a complex, called the Yang–Mills complex. This complex has been studied first by 
Atiyah et al. [5]. Ellipticity of the Yang–Mills complex is well known and follows from 
a straightforward computation in linear algebra, see, e.g., [70, Lemma 6.5.2]. Moreo-
ver, applying the Atiyah–Singer index theorem one finds the following for its Euler 
characteristic: 

where p1(AdP) is the Pontryagin index of the adjoint bundle, �M is the Euler number 
of M and �M is the signature of M, see [5, p. 446] and [70, Lemma 6.5.5] for a detailed 
proof.

Hence, by Theorem 4.13, the map F+ can be brought into an equivariant normal form 
at every ASD connection A ∈ C(P) . Moreover, as a consequence of Theorem  5.3 and 
Remark 5.4, we obtain the following description of the local geometry of the moduli 
space of anti-self-dual connections.

Theorem 5.8 Let P be a principal G-bundle with a compact, semisimple structure group 
G over a four-dimensional compact Riemannian manifold M. Then, the moduli space A of 
anti-self-dual connections on P admits a finite-dimensional Kuranishi chart at every point. 
Moreover, the virtual dimension of A is given by

  ◻

Let us describe the constructed Kuranishi charts on A in more detail. For this pur-
pose, let A ∈ C(P) be an ASD connection. According to Remark 5.4, the linear spaces 
occurring in definition of a Kuranishi chart at [A] ∈ A are given by the cohomology 
groups

These spaces are finite-dimensional, because the Yang–Mills complex is elliptic. Moreo-
ver, they are endowed with a natural linear action of the compact stabilizer subgroup GA(P) 
of A. Thus, the obstruction map is a GA(P)-equivariant map

0 0(M, 1(M, 2
+(M, P ) 0,B

+
B (5.19)

(5.20)−2p1(AdP) +
1

2
(�M − �M) ⋅ dimG,

(5.21)2p1(AdP) −
1

2
(�M − �M) ⋅ dimG.

(5.22)
E = H

1,+

A
(M, AdP) ≡ Kerd+

A
∕ImdA,

F = H
2,+

A
(M, AdP) ≡ Ω2

+
(M, AdP)∕Imd+

A
.

(5.23)�∶ H
1,+

A
(M, AdP) ⊇ V → H

2,+

A
(M, AdP),
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where V is a GA(P)-invariant, open neighborhood of 0 in H1,+

A
(M, AdP) . Finally, the moduli 

space A in a neighborhood of [A] is modeled on the quotient �−1(0)∕GA(P) . In this way, we 
recover in our framework the well-known result [19, Proposition 4.2.23] concerning the 
local structure of A.

For completeness, we include some remarks on how to get further insights into the 
geometry of A . This requires a more precise control of the obstruction map � , which 
is rather difficult to obtain in full generality. However, in concrete examples, one can 
often find conditions which ensure that � vanishes. For example, if M is a compact self-
dual Riemannian manifold with positive scalar curvature, then it can be shown using the 
Weitzenböck formula that H2,+

A
(M, AdP) is trivial for every irreducible ASD connection 

A. Thus, in this case, the moduli space of irreducible anti-self-dual connections is either 
empty or a smooth manifold. This important result was originally obtained by Atiyah, 
Hitchin and Singer [5, Theorem 6.1].

For the remainder, we specialize to G = SU(2) . This setting was used by Donald-
son [18] to gain astounding insights into the topology and geometry of 4-manifolds. 
For G = SU(2) , we have p1(AdP) = 4k , where k is the so-called instanton number. Let 
us restrict our attention to the case k = 1 . Moreover, let us assume that M is simply 
connected and that its intersection form is positive definite. These assumptions imply 
�M − �M = 1 so that the virtual dimension of A is 8 − 3 = 5 . For G = SU(2) , a reduc-
ible connection A has a stabilizer group conjugate to U(1) or to ℤ2 . Connections with a 
discrete stabilizer subgroup are flat as a consequence of the Ambrose–Singer theorem 
and thus only connections with a stabilizer subgroup conjugate to U(1) are of interest for 
the geometry of A . One can show that there are only finitely many gauge-equivalence 
classes of ASD connections which are reducible to U(1) . The Kuranishi charts con-
structed above determine the structure of A in a neighborhood of a singular point. Let A 
be an ASD connection that is reducible to U(1) . In the present setting, a straightforward 
application of the representation theory of U(1) yields the following isomorphisms of 
GA(P)-representation spaces

for some p and q satisfying p + q = 3 , where U(1) acts in the usual way on ℂp and ℂq , 
see [24, Proposition 4.9]. Thus, if H2,+

A
(M, AdP) is trivial, then, in a neighborhood of the 

singular point [A] , the moduli space A is identified with the cone ℂ3∕U(1) over ℂℙ2 . Thus, 
combining Theorem 5.8 with these additional insights, one recovers the important result of 
Donaldson [18]. The case of a non-trivial cohomology group H2,+

A
(M, AdP) is more com-

plicated and a perturbation of the metric on M is required, see [24, Theorem 4.19].
The concrete description of the singularities shows that every singular connection in A 

can be approximated by a sequence of irreducible ASD connections. This implies that A 
is stratified by orbit types. In fact, for all examples known to us, the moduli space of anti-
self-dual connections turns out to be stratified by orbit types. We do not know whether this 
holds true in general.

5.4  Application: Seiberg–Witten moduli space

This section is concerned with the Seiberg–Witten moduli space first studied in [73, 74]. 
We show how our general framework recovers the known local structure of this moduli 
space. Our presentation follows the textbook [58] in conventions and notation.

(5.24)H
1,+

A
(M, AdP) ≃ ℂ

p, H
2,+

A
(M, AdP) ≃ ℂ

q
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For the convenience of the reader, let us start by recalling basic notions from spin geom-
etry. For n ≥ 3 even, denote the connected double cover of SO(n) by Spin(n) , which is a 
principal bundle pr∶ Spin(n) → SO(n) with structure group π1SO(n) ≃ ℤ2 . We can thus 
form Spinℂ(n) = Spin(n) ×

ℤ2
U(1) , where ℤ2 acts by multiplication with −1 on U(1) . The 

irreducible half-spin representations8 �±∶ Spin(n) → U(Δ±
n
) extend to representations 

�±∶ Spinℂ(n) → U(Δ±
n
) of Spinℂ(n) defined by �±([g, z])(�) = z ⋅ �(g)(�) . Moreover, the 

group homomorphism �∶ Spinℂ(n) → U(1) given by �([g, z]) = z2 fits into the following 
commutative diagram

A Spinℂ-structure on an oriented Riemannian manifold (M, g) is a principal Spinℂ(n)-bun-
dle SpinℂM → M together with a vertical principal bundle morphism to the SO(n)-frame 
bundle LM → M:

The unitary spin representations �± give rise to Hermitian vector bundles

whose sections are called spinors. The Clifford multiplication ℝn × Δ±
n
→ Δ∓

n
 is equivari-

ant and thus yields a bundle map cl∶ TM ×M Δ±M → Δ∓M . With a slight abuse of nota-
tion, we consider cl to be defined on the cotangent bundle as well under the isomorphism 
g♯∶ T∗M → TM . Moreover, let

be the principal U(1)-bundle associated with the group homomorphism � . As the maps 
(pr, �)∶ Spinℂ(n) → SO(n) × U(1) induce an isomorphism on the level of Lie algebras, 
every connection A on P lifts together with the Levi–Civita connection (seen as connection 
on LM ) to a connection on SpinℂM . The induced covariant derivative on Δ±M is denoted 
by ∇A . Given a connection A ∈ C(P) , the Dirac operator DA is the composition

U(1)

Spin(n) Spin (n) U(1).

SO(n)

ι2
z z2

ι1 λ (5.26)

M M

M M.

Spin (n) SO(n)

M

(5.27)

(5.28)Δ±M = SpinℂM ×�±
Δ±

n
,

(5.29)P = SpinℂM ×� U(1)

8 For n = 4 , we have Δ±
4
≃ ℂ2 and the spin representation �± is given by

under the isomorphism Spin(4) ≃ SU(2) × SU(2).
(5.25)�±∶ Spin(4) → U(2), (h+, h−) ↦ h±
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In the following, M is a closed oriented Riemannian manifold of dimension 4 endowed 
with a Spinℂ-structure. The Seiberg–Witten equations for a connection A ∈ C(P) and a 
spinor � ∈ Γ∞(Δ+M) are 

where F+
A
 denotes the self-dual component of the curvature FA ∈ Ω2(M, iℝ) of A and 

� ∈ Ω2
+
(M, iℝ) is a given self-dual 2-form. Moreover, the bundle map q∶ Δ+M → iΛ2

+
T∗M 

is induced by the quadratic form q∶ Δ+
4
→ iΛ2

+
ℝ4 dual9 to the extended Clifford multi-

plication cl+∶ Λ2
+
ℝ4 ⊗ ℂ → EndΔ+

4
 , i.e., q(𝜓) = cl�

+
(𝜓 ⊗ 𝜓†) . The commutative dia-

gram (5.26) gives rise to the following group homomorphisms of infinite-dimensional Lie 
groups:

where G(P) is the group of gauge transformations on P, cf. Sect.  5.3 for its Fréchet Lie 
group structure. In particular, the current group G ∶=C∞(M, U(1)) acts via gauge transfor-
mations on C(P) × Γ∞(Δ+M):

To formulate the Seiberg–Witten equations in the general setting discussed in the previous 
sections, define the map

A straightforward calculation (see, e.g., [58, Proposition 2.1.9]) shows that SW is equivari-
ant with respect to the following G-action on Ω2

+
(M, iℝ) × Γ∞(Δ−M):

For � ∈ Ω2
+
(M, iℝ) , the Seiberg–Witten moduli space M� is defined as the space of solu-

tions (A,�) of the Seiberg–Witten equations (5.31) modulo G , i.e.,

∞ + ∞( ∗M ⊗ + ∞ −M).
∇A cl

(5.30)

(5.31a)DA� = 0,

(5.31b)F+
A
= q(�) + �

C (M,U(1))

G( M) G(P ),

G( M)

ι2
χ χ2

λ

∞

(5.32)

(5.33)� ⋅ (A,�) = (A − 2�−1d� ,� �).

(5.34)
SW∶ C(P) × Γ∞(Δ+M) → Ω2

+
(M, iℝ) × Γ∞(Δ−M),

(A,�) ↦
(
F+
A
− q(�), DA�

)
.

(5.35)� ⋅ (�,�) ↦ (�,� �).

9 Alternatively, q is the momentum map for the natural SU(2)-action on Δ+
4
≃ ℂ2 under the identification 

Λ2
+
ℝ4 ≃ ℝ3.
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Let us verify that the assumptions of Theorem  4.13 are met for the model under 
consideration: 

1. The stabilizer of (�, 0) ∈ Ω2
+
(M, iℝ) × Γ∞(Δ−M) under the action (5.35) is the whole 

group G , which is a geometric tame Fréchet Lie group with Lie algebra C∞(M, iℝ).
2. The natural action of G(P) on C(P) is proper and admits a slice at every point as discussed 

in Sect. 5.3. Thus, also the action of G on C(P) admits a slice SA at every A ∈ C(P) . The 
stabilizer GA of A is U(1) , viewed as constant maps. Moreover, the linear continuous 
action (z,�) ↦ z� of the compact group GA ≃ U(1) on the Fréchet space Γ∞(Δ+M) 
admits a slice S� at every � ∈ Γ∞(Δ+M) according to [16, Theorem 3.15]. By [16, 
Proposition 3.29], the G-action (5.33) on C(P) × Γ∞(Δ+M) has a slice SA,� = SA × S� 
at (A,�) . The existence of slices in the Banach setting is well known, see, e.g., [58, 
Proposition 2.2.7].

3. The action (5.35) of G on Γ∞(Δ−M) × Ω2
+
(M, iℝ) is clearly linear.

4. The linearization of SW at a point (A,�) is given by 

where q̇(𝜓 ,𝜑) = cl�
+
(𝜓 ⊗ 𝜑† + 𝜑⊗ 𝜓†) and d+ denotes the self-dual part of the exte-

rior derivative, see [58, p.  125]. Moreover, the action of the Lie algebra C∞(M,ℝ) 
induced by the action (5.33) is given by 

for � ∈ C∞(M, iℝ).
 For a solution (A0,�0) ∈ SW

−1(�, 0) of the Seiberg–Witten equations, the chain (4.14) 
here takes the form 

where A ∈ SA0
 and � ∈ S�0

 . This chain is clearly a chain of linear differential opera-
tors tamely parametrized by (A,�) . At A = A0 , the chain (5.39) is a complex that, after 
ignoring the zeroth order contributions (which are compact operators and thus do not 
change ellipticity or the index), is given by 

It is known (e.g., [58, Lemma 2.2.10]) that this complex is elliptic and that its Euler 
characteristic is given by 

(5.36)M� = SW
−1(�, 0)∕G.

(5.37)
T(A,𝜓)SW∶ Ω1(M, iℝ) × Γ∞(Δ+M) → Ω2

+
(M, iℝ) × Γ∞(Δ−M),

(𝛼,𝜑) ↦
(
d+𝛼 − q̇(𝜓 ,𝜑), DA𝜑 +

1

2
cl(𝛼,𝜓)

)
,

(5.38)�.(A,�) = (−2d�, � �) ≡ �(A,�)(�),

0(M, 1(M, )× + 2
+(M, )× −M),

τ(A,ψ) (A,ψ)SW
RR R∞ ∞ (5.39)

0(M, 1(M, )× + 2
+(M, )× −M).

( ,0) ( +, A0 )
R R R∞ ∞

(5.40)

(5.41)
1

4

(
2�M + 3 �M − c1(P)

2
)
,



203Annals of Global Analysis and Geometry (2022) 61:159–213 

1 3

where �M is the Euler number and �M is the signature of M.
Hence, by Theorem 4.13, the map SW can be brought into an equivariant normal form 
at every solution (A,�) of the Seiberg–Witten equations. Moreover, as a consequence of 
Theorem 5.3 and Remark 5.4, we obtain the following description of the local geometry 
of the moduli space M�.

Theorem 5.9 Let M be a closed oriented Riemannian manifold of dimension 4 endowed 
with a Spinℂ-structure. For every � ∈ Ω2

+
(M, iℝ) , the Seiberg–Witten moduli space M� 

admits a finite-dimensional Kuranishi chart at every point. Moreover, the virtual dimension 
of M� is given by

  ◻

Let us describe the constructed Kuranishi charts on M� in more detail. For this pur-
pose, let (A,�) be a solution of the Seiberg–Witten equations. According to Remark 
5.4, the linear spaces occurring in the definition of a Kuranishi chart at [A,�] ∈ M� are 
given by the finite-dimensional cohomology groups

The obstruction map is a GA,�-equivariant map

where V is a GA,�-invariant, open neighborhood of 0 in H1
A,�

(M) . Finally, the moduli space 
M� in a neighborhood of [A,�] is modeled on the quotient �−1(0)∕GA,� . In this way, 
we recover the well-known result concerning the local structure of M� , see, e.g., [58, 
Proposition 2.2.16].

5.5  Application: pseudoholomorphic immersions

In this section, we discuss the moduli space of pseudoholomorphic curves. For the sake 
of simplicity, we consider only the simplest case of the universal Gromov–Witten moduli 
space without marked points.

Let (M,�) be a finite-dimensional symplectic manifold endowed with a compatible 
almost complex structure J. For every compact Riemann surface (Σ, j) with complex struc-
ture j, consider the Cauchy–Riemann operator

where u∶ Σ → M is a smooth map. In the following, we restrict attention to the case when 
u is an immersion. This is to ensure the existence of slices. Denote the space of immersions 
of Σ into M by I(Σ,M) . It is an open and dense subset of the Fréchet manifold C∞(Σ,M) , 
see [55, Corollary 6.13]. Let � ∈ H2(M,ℤ) be a homology class, and consider the open 
subset I�(Σ,M) of I(Σ,M) consisting of immersions u∶ Σ → M with u∗[Σ] = � . Denote 

(5.42)
1

4

(
c1(P)

2 − 2�M − 3 �M
)
.

(5.43)
E = H1

A,�
(M) ≡ Ker T(A,�)SW∕Im �(A,�),

F = H2
A,�

(M) ≡ Ω2
+
(M, iℝ) × Γ∞(Δ−M)∕ImT(A,�)SW.

(5.44)�∶ H1
A,𝜓

(M) ⊇ V → H2
A,𝜓

(M),

(5.45)�̄�j,J u =
1

2
(Tu + J ◦Tu ◦ j),
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the space of complex structures on Σ by J(Σ) . As every almost complex structure on a sur-
face is integrable, J(Σ) can be identified with the space of reductions of the frame bundle 
LΣ to U(1) , i.e., J(Σ) = Γ∞(LΣ ×GL(2,ℝ) GL(2,ℝ)∕GL(1,ℂ)) , and thus, it carries a natural 
Fréchet manifold structure. In order to realize �̄�j,J as a map between infinite-dimensional 
manifolds, let us introduce the Fréchet vector bundle E → J(Σ) × I(Σ,M) whose fiber over 
(j, u) ∈ J(Σ) × I(Σ,M) is the space Ω0,1(Σ, u∗TM) of smooth (j, J) -antilinear 1-forms on Σ 
with values in u∗TM . The Cauchy–Riemann operator yields a smooth section

Note that CR is equivariant with respect to the natural reparametrization actions of the Fré-
chet Lie group D(Σ) of diffeomorphisms of Σ . The associated moduli space

is the universal moduli space of unparametrized pseudoholomorphic immersions repre-
senting � ∈ H2(M,ℤ) . Here, 0 denotes the zero section in E.

Let us verify that the assumptions of Theorem 4.13 are met for the model under con-
sideration. To be precise, a slight variation of Theorem  4.13 is necessary as M�,J is 
defined via the preimage of a submanifold instead of a single point. We thus have to 
establish the existence of a normal form relative to the submanifold as in Theorem 3.15. 
Since we are interested in the preimage of the zero section in E , this simply amounts to 
replacing the derivative of the section in (4.19) by its vertical derivative. 

1. The zero section of E is invariant under the action of D(Σ) , which is a geometric tame 
Fréchet Lie group with Lie algebra �(Σ).

2. The reparametrization action of D(Σ) on I(Σ,M) admits a slice Su at every immersion 
u ∈ I(Σ,M) , see [7]. According to [7, Lemma 3.1], the stabilizer Du(Σ) of u is a finite 
subgroup of D(Σ) . Since every invariant open set is a slice for the action of a finite group, 
the induced action of Du(Σ) on J(Σ) admits a slice Sj at every j ∈ J(Σ) . By [16, Proposi-
tion 3.29], the D(Σ)-action on J(Σ) × I(Σ,M) has a slice Sj,u = Sj × Su at (j, u).

3. The action of D(Σ) on E is fiberwise linear.
4. The tangent space of J(Σ) at j is the space of sections of the bundle Endj(TΣ) whose 

fiber at x ∈ Σ is the space of linear maps �∶ TxΣ → TxΣ satisfying j◦ � + �◦ j = 0 . The 
vertical tangent map of CR at a point (j, u) ∈ CR

−1(0) is given by 

where Du∶ Γ∞(u∗TM) → Ω0,1(Σ, u∗TM) is the usual linearized Cauchy–Riemann 
operator, cf. [52, Proposition 3.1.1]. As discussed above, we have to use the vertical 
derivative in place of the normal derivative in the chain (4.14). It here takes the form 

where l ∈ Sj and v ∈ Su . This chain is a chain of linear differential operators tamely 
parametrized by (l,  v). At (l, v) = (j, u) , the chain  (5.49) is a complex that, after 

(5.46)CR∶ J(Σ) × I𝛽(Σ,M) → E, (j, u) ↦ �̄�j,Ju.

(5.47)M�,J = CR
−1(0)∕D(Σ)

(5.48)
V(j,u)CR∶ Endj(TΣ) × Γ∞(u∗TM) → Ω0,1(Σ, u∗TM),

(�,X) ↦
(
Du� +

1

2
J ◦Tu ◦ �

)
,

X j ( × ∞(u∗ 0,1 ∗ M),
(Ll,− v) (l,v)CR

(5.49)
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ignoring the zeroth-order contributions (which are compact operators and thus do not 
change ellipticity or the index), is given by 

 This complex is elliptic because �j∶ �(Σ) → Endj(TΣ) is elliptic with index (cf. 
[59], Proposition 9.4.4; [52], Theorem C.1.10]) 

 and Du∶ Γ∞(u∗TM) → Ω0,1(Σ, u∗TM) is elliptic with index (cf. [52, Theorem C.1.10]) 

 where 2n = dim
ℝ
M . Thus, the Euler characteristic of (5.50) is given by 

Hence, by Theorem 4.13 and the tame Fréchet version of Theorem 3.15, the map CR can 
be brought into an equivariant normal form relative to the zero section at every pseudo-
holomorphic curve (j, u) . Moreover, as a consequence of Theorem 5.3 and Remark 5.4, 
we obtain the following description of the local geometry of the moduli space M�,J.

Theorem 5.10 Let Σ be a closed, oriented surface and let (M,�, J) be a symplectic mani-
fold of dimension 2n endowed with a compatible almost complex structure J. For every 
� ∈ H2(M,ℤ) , the moduli space M�,J of unparametrized pseudoholomorphic immersions 
admits a finite-dimensional Kuranishi chart at every point [j, u] ∈ M�,J . Moreover, the vir-
tual dimension of M�,J is given by

  ◻

In the study of pseudoholomorphic curves, one is usually not only interested in immer-
sions but also in more general smooth or nodal curves. We have restricted attention to the 
open subset I(Σ,M) ⊆ C∞(Σ,M) of immersions to ensure that the reparametrization action 
of D(Σ) admits slices. The discussion in [7] shows that, in general, one cannot expect the 
existence of slices for the reparametrization action on the space C∞(Σ,M) of all smooth 
maps. In particular, the slice property SL2 is problematic and it is not even clear whether 
the quotient C∞(Σ,M)∕D(Σ) be Hausdorff. However, as we have discussed in Remark 5.5, 
for the Kuranishi structure of the moduli space one only needs SL2 to hold for solutions 
(j, u) of the Cauchy–Riemann equation CR(j, u) = 0 . Such a weaker version of SL2 can be 
established using Gromov’s compactness theorem as in [27], p. 999; [26], Lemma 20.15]. 
Using this observation, one can then also construct Kuranishi charts on the moduli space of 
unparametrized pseudoholomorphic (stable) curves.

The existence of Kuranishi charts on M�,J is well known, see, e.g., [27, Theorem 12.9] 
and references therein. However, the traditional approach using Banach spaces faces seri-
ous technical problems due to the fact that the reparametrization action is not smooth with 
respect to maps of a given Sobolev class, see, for example, [54, Section 3] for a detailed 
discussion. These difficult issues have led to considerable discussion about the correctness 
of the foundations of the theory of pseudoholomorphic curves, see [25, 26, 53, 54] and 

X j ( × ∞(u∗ 0,1 ∗ M).
(Lj,0) u

(5.50)

(5.51)ind�j = (2 − 2g) + 2 ⟨c1(T1,0Σ), [Σ]⟩ = 3 (2 − 2g)

(5.52)indDu = n (2 − 2g) + 2 ⟨c1(u∗TM), [Σ]⟩,

(5.53)ind�j − indDu = (3 − n) (2 − 2g) − 2 ⟨c1(u∗TM), [Σ]⟩.

(5.54)(n − 3) (2 − 2g) + 2 ⟨c1(M), �⟩.
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references therein. Moreover, these issues inspired the development of the so-called scale 
calculus that provides the analytic backbone of the polyfold framework [40]. Our construc-
tion using the Nash–Moser theorem has the important advantage that we circumvent such 
technical problems completely, since the reparametrization action of the diffeomorphism 
group on the space of smooth maps is a tame smooth action. Thus, phrasing the problem in 
the well-established framework of tame Fréchet manifolds allows us to concentrate on the 
geometric constructions rather than the analytic details.

6  Outlook

In this paper, local normal form theorems for smooth equivariant maps between infinite-
dimensional manifolds are established in various analytic settings. As we have seen, these 
equivariant normal form theorems are a powerful tool to study the local structure of moduli 
spaces and to show that these moduli spaces carry the structure of a Kuranishi space, i.e., 
they are locally modeled on the quotient by a compact group of the zero set of a smooth 
map. Using this general framework, we were able to give short and unified proofs that the 
moduli space of anti-self-dual instantons, the Seiberg–Witten moduli space and the moduli 
space of pseudoholomorphic curves admit Kuranishi charts.

The normal forms developed in this paper are flexible enough to respect further geomet-
ric data. In forthcoming work [14] (see also [13]), we refine and adapt the techniques devel-
oped in this paper to Hamiltonian actions on infinite-dimensional symplectic manifolds. 
We construct a normal form for equivariant momentum maps in the spirit of the classical 
Marle—Guillemin—Sternberg normal form. The fundamental idea is to use Theorem 4.6 
to bring the momentum map into a normal form and then gain control over the behavior of 
the singular part of the momentum map using the symplectic form. With the help of this 
normal form, we then prove a singular symplectic reduction theorem including the analysis 
of the stratification into symplectic manifolds. This strategy is completely different to the 
traditional proof of the finite-dimensional Marle–Guillemin–Sternberg theorem which uses 
an equivariant version of Darboux’s theorem. A simple counterexample by Marsden [50] 
shows that the Darboux theorem fails spectacularly already for weakly symplectic Banach 
manifolds, so this approach is not possible in infinite dimensions. In physics, one is mainly 
interested in the case where the symplectic manifold is a cotangent bundle. A normal form 
of the momentum map for a lifted action on an infinite-dimensional cotangent bundle is 
established in [17].

Our results concerning equivariant normal forms in infinite dimensions and the tech-
niques developed in the previous chapters open many exciting avenues for further research. 
We list some relevant open problems and fundamental issues: 

1. It would be very interesting to extend the discussion of the normal form of a smooth 
map to higher orders. One would expect that the knowledge of higher-order terms of 
the Taylor expansion of a smooth map f yields further control over the behavior of its 
singular part fsing . In this way, one would gain deeper insight into the singular structure 
of the level sets of f. This also opens the path toward an infinite-dimensional Morse 
theory.

2. Studying the local structure of moduli spaces is the first step in an elaborated program 
to define powerful geometric invariants. Usually, one then passes to a compactification 
and constructs a virtual fundamental cycle for the compactified moduli space. Thus, it is 
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desirable to have a general scheme in the Fréchet framework for the issues of compacti-
fication and perturbation, similarly to the aim of the polyfold theory of Hofer, Wysocki, 
and Zehnder [40].

3. In Sect. 5, we studied moduli spaces for which the deformation complex is elliptic. The 
Nash–Moser techniques also allow to study problems that are not accessible to elliptic 
methods. Thus, it would be interesting to apply our general framework to, say, KAM 
theory, to deformations of fibrations or to normal forms in Poisson geometry.

Appendix A: Inverse function theorems

In this section, we give a brief overview of different generalizations of the classical inverse 
function theorem to the infinite-dimensional setting. The primary focus is on Glöckner’s 
inverse function theorem for maps between Banach spaces with parameters in a locally 
convex space and on the Nash–Moser theorem in the tame Fréchet category.

As a reference point, let us recall the classical version of the inverse function theorem in 
the Banach setting.

Theorem A.1 Banach version, [47, Theorem  I.5.2] Let X,  Y be Banach spaces and 
let f∶ X ⊇ U → Y  be a smooth map defined on an open neighborhood U of 0 in X. If 
T0 f∶ X → Y  is an isomorphism of Banach spaces, then f is a local diffeomorphism at 0.

[29, 30] has established the following generalization of the Banach inverse function the-
orem to smooth maps depending on parameters in a locally convex space. Similar results 
have been obtained in [39] (using a slightly stronger notion of differentiability) and in [80] 
(using the so-called convenient calculus).

Theorem A.2 (Banach version with parameters, [30, Theorem 2.3]) Let P ⊆ E be an open 
neighborhood of 0 in the locally convex space E. Let X, Y be Banach spaces, let U be an 
open neighborhood of 0 in X and let f∶ E × X ⊇ P × U → Y  be a smooth map. If the par-
tial derivative T2

(0,0)
f∶ X → Y  of f at (0, 0) with respect to the second variable is an iso-

morphism of Banach spaces, then the map

is a local diffeomorphism at (0, 0) .

We now recall the main notions of the tame Fréchet category and the Nash–Moser 
inverse function theorem, cf. [35]. A Fréchet space X is called graded if it carries a dis-
tinguished increasing fundamental system of seminorms ‖ ⋅ ‖k . A graded Fréchet space 
is called tame if the seminorms satisfy an additional interpolation property, which formal-
izes the idea that X admits smoothing operators, see [35, Definition II.1.3.2] for the exact 
statement. Let X and Y be tame Fréchet spaces. A continuous (possibly nonlinear) map 
f∶ X ⊇ U → Y  defined on an open subset U ⊆ X is r-tame if it satisfies a local estimate of 
the form

(A.1)E × X ⊇ P × U → E × Y , (p, x) ↦
(
p, f (p, x)

)

(A.2)‖ f (x)‖k ≤ C(1 + ‖x‖k+r).
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Roughly speaking, this means that f has a maximal loss of r derivatives. Moreover, a 
smooth map f is called r-tame smooth if f and all its derivatives d(j)f∶ U × Xj → Y  are 
r-tame. Let Z be a tame Fréchet space and assume that Z is the topological direct sum of 
closed subspaces X and Y. We say that the sum Z = X ⊕ Y  is tame if the map X × Y → Z 
given by (x, y) ↦ x + y is a tame isomorphism.

Theorem A.3 (Nash–Moser inverse function theorem, [35, Section III.1]) Let X and Y be 
tame Fréchet spaces, let U be an open neighborhood of 0 in X and let f∶ X ⊇ U → Y  be a 
tame smooth map. Assume that the derivative Tf  has a tame smooth family � of inverses, 
that is, �∶ U × Y → X is a tame smooth map and �(x, ⋅)∶ Y → X is inverse to Tx f  for 
every x ∈ U . Then the map f is a tame local diffeomorphism at 0.

The important point is that the derivative of f has to be invertible in a neighborhood of 0 
and that one requires tame estimates for the inverses.

B Slices and orbit‑type stratification

In this section, we give a brief account of the theory of Lie group actions in the category of 
locally convex manifolds. The focus lies on slices for the action and the stratification of the 
manifold into orbit types. We refer the reader to [16] for more details.

Let M be a (locally convex) manifold. Assume a (locally convex) Lie group G acts 
smoothly on M, that is, assume that the action map G ×M → M is smooth. We refer to this 
setting by saying that M is a G-manifold. The action is often written, using the dot nota-
tion, as (g,m) ↦ g ⋅ m . Similarly, the induced action of the Lie algebra � of G is denoted by 
�.m ∈ TmM for � ∈ � and m ∈ M . Clearly, m ↦ �.m is the Killing vector field generated by 
� . Furthermore, G ⋅ m = {g ⋅ m∶ g ∈ G} ⊆ M is the orbit through m ∈ M . The G-action is 
called proper if inverse images of compact subsets under the map

are compact.
The subgroup Gm ∶= {g ∈ G∶ g ⋅ m = m} is called the stabilizer subgroup of m ∈ M . It 

is not known, even for Banach Lie group actions, whether Gm is always a Lie subgroup, see 
[57, Problem IX.3.b]. However, for proper actions this is the case, see [16, Lemma 2.11]. 
In fact, then Gm is even a principal Lie subgroup of G, which means that the natural fibra-
tion G → G∕Gm is a principal bundle. The G-action is called free if all stabilizer subgroups 
are trivial. Two subgroups H and K of G are said to be conjugate if there exists a ∈ G 
such that aHa−1 = K ; we write H ∼ K is this case. In view of the equivariance relation 
Gg⋅m = gGmg

−1 , for every m ∈ M and g ∈ G , we can assign to every orbit G ⋅ m the conju-
gacy class (Gm) , which is called the orbit type of m. We put a preorder on the set of orbit 
types by declaring (H) ≤ (K) for two orbit types, represented by the stabilizer subgroups H 
and K, if there exists a ∈ G such that aHa−1 ⊆ K . If the action is proper, this preorder is 
actually a partial order. For every closed subgroup H ⊆ G , define the following subsets of 
M:

(B.1)G ×M → M ×M, (g,m) ↦ (g ⋅ m,m)

MH = {m ∈ M∶ Gm = H},

M(H) = {m ∈ M∶ (Gm) = (H)}.
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The subset MH is called the isotropy type subset and M(H) is the subset of orbit type (H) . 
Analogous definitions hold for every subset N ⊆ M , so, for example, NH = N ∩MH.

As in finite dimensions, the local structure of the orbit-type subsets is studied with the 
help of slices, cf. Proposition B.3. Slices also play a fundamental role in the construction of 
the normal form of an equivariant map in Sect. 4.

Definition B.1 Let M be a G-manifold. A slice at m ∈ M is a submanifold S ⊆ M contain-
ing m with the following properties: 

SL1  The submanifold S is invariant under the induced action of the stabilizer subgroup 
Gm , that is Gm ⋅ S ⊆ S.

SL2  Any g ∈ G with (g ⋅ S) ∩ S ≠ � is necessarily an element of Gm.
SL3  The stabilizer Gm is a principal Lie subgroup of G and the principal bundle 

G → G∕Gm admits a local section 𝜒∶ G∕Gm ⊇ W → G defined on an open neigh-
borhood W of the identity coset [e] in such a way that the map 

is a diffeomorphism onto an open neighborhood of m, which is called a slice neighborhood 
of m.

SL4  The partial slice S(Gm)
= {s ∈ S∶ Gs is conjugate to Gm} is a closed submanifold of 

S.
SL5  There exist a smooth representation of Gm on a locally convex space X and a Gm

-equivariant diffeomorphism �S from a Gm-invariant open neighborhood of 0 in X 
onto S such that �S(0) = m .   ◻

The notion of a slice is closely related to the concept of a tubular neighborhood.

Proposition B.2 ([16, Proposition  2.6.2]) Let M be a G-manifold. For every slice S at 
m ∈ M , the tube map

is a G-equivariant diffeomorphism onto an open, G-invariant neighborhood of G ⋅ m in M.

In the finite-dimensional context, the existence of slices for proper actions is ensured 
by Palais’ slice theorem [62]. Passing to the infinite-dimensional case, this may no 
longer be true and additional hypotheses have to be made. We refer the reader to [16, 
78] for general slice theorems in infinite dimensions and to [2, 7, 21] for constructions 
of slices for concrete examples.

As in the finite-dimensional case, the existence of slices implies many nice properties 
of the orbit space. For example, we have the following.

Proposition B.3 ([16, Propositions  4.1 and  4.5]) Let M be a G-manifold with proper G-
action. If the G-action admits a slice at every point of M, then M(H) is a submanifold of M. 
Moreover, M̌(H) = M(H)∕G carries a smooth manifold structure such that the natural pro-
jection 𝜋(H)∶ M(H) → M̌(H) is a smooth submersion.

(B.2)�S∶ W × S → M, ([g], s) ↦ �([g]) ⋅ s

(B.3)�T∶ G ×Gm
S → M, [g, s] ↦ g ⋅ s
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If, in addition, a certain approximation property is satisfied, then the orbit-type mani-
folds fit together nicely and the orbit space is a stratified space, see [16, Theorem 4.2]. 
More generally, we have the following stratification result for subsets of M.

Proposition B.4 ([16, Proposition 4.7]) Let M be a G-manifold with proper G-action and 
let P be a closed G-invariant subset of M. Assume that the G-action on M admits a slice S 
at every point m ∈ P such that the following holds:

1. P ∩ S(Gm)
 is a closed submanifold of S(Gm)

.
2. For every orbit type (K) ≤ (Gm) , the point m lies in the closure of P ∩ S(K) in S.

Then, the induced partition of P into the orbit-type subsets P(H) = P ∩M(H) is a strat-
ification. Moreover, under these assumptions, the decomposition of P̌ = P∕G into 
P̌(H) = P(H)∕G is a stratification, too.

For completeness, we include our definition of a stratification here and refer the 
reader to [16] for further details and comparison with other notions of stratified spaces 
in the literature.

Definition B.5 Let X be Hausdorff topological space. A partition Z of X into subsets X� 
indexed by � ∈ Σ is called a stratification of X if the following conditions are satisfied:

(DS1)  Every piece X� is a locally closed, smooth manifold (whose manifold topology 
coincides with the relative topology). We will call X� a stratum of X.

(DS2)  (frontier condition) Every pair of disjoint strata X� and X� with X� ∩ X� ≠ � 
satisfies:

(a) X� is contained in the frontier X� ⧵ X� of X�,
(b) X� does not intersect X�  .   ◻
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