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 

Abstract—In this paper, we present a neural recording 

interface circuit for biomedical implantable devices, which 

includes low-noise signal amplification, band-pass filtering, and 

current-mode successive approximation A/D signal conversion. 

The integrated interface circuit is realized in a 65 nm CMOS 

technology, and consumes less than 2.1 μW/channel of which 

A/D converter consumes 367 nW, corresponding to a figure of 

merit of 14 fJ/conv.-step, while operating from a 1 V supply. 

I. INTRODUCTION 

Bio-electronic neural interfaces enable the interaction 
with neural cells by recording, to facilitate early diagnosis 
and predict intended behavior before undertaking any 
preventive or corrective actions, or by stimulation, to prevent 
the onset of detrimental neural activity such as that resulting 
in tremor. Multi-channel neural interfaces allow for spatial 
neural recording and stimulation at multiple sites [1]-[4]. To 
evade the risk of infection, these systems are implanted under 
the skin, while the recorded neural signals and the power 
required for the implant operation is transmitted wirelessly. 
The maximum number of channels is constrained with noise, 
area, bandwidth, power, which has to be supplied to the 
implant externally, thermal dissipation i.e. to avoid necrosis 
of the tissues, and the scalability and expandability of the 
recording system. Very frequently an electrode records the 
action potentials from multiple surrounding neurons. 
Subsequently, the ability to differentiate spikes from noise is 
governed by, both, the discrepancies between the noise-free 
spikes from each neuron, and the signal-to-noise level (SNR) 
of the recording interface. After the waveform alignment, a 
feature extraction step characterizes detected spikes and 
represent each detected spike in a reduced dimensional space. 
The feature extraction and spike classification significantly 
reduce the data requirements prior to data transmission (in 
multi-channel systems, the raw data rate is substantially 
higher than the limited bandwidth of the wireless telemetry 
[5]). A 128-channel, 10-bit-precise digitization of neural 
waveforms sampled at 40 kHz generates ~ 51 Mbs

−1
 of data; 

the power costs in signal conditioning, quantization and 
wireless communication all scale with the data rate. 

In this paper, we introduce a novel, low-power neural 
recording interface system with capacitive-feedback low-
noise amplifier, capacitive-attenuation band-pass filter, and 
current-mode A/D converter (ADC). The capacitive-feedback 
amplifier offers low-offset and low-distortion solution with 
optimal power-noise trade-off. 
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Figure 1: Functional overview of the system level design of the proposed 

current-mode front-end neural recording interface (for simplicity, only one 

channel shown). 

Similarly, the capacitive-attenuation band-pass filter 
provides wide tuning range and low-power realization, while 
allowing simple extension of the transconductors linear 
range, and consequently, ensuring low harmonic distortion. 
The current-mode converters offer high resource efficiency in 
terms of power and area [6]-[9]. In contrast to voltage-mode, 
charge redistribution SAR A/D converters, corresponding 
current mode circuit have several intrinsic advantages, 
including tunable input impedances, wide bandwidth, and 
low supply voltage requirement. Additionally, only MOSFET 
devices are required for logical and numerical operation 
limiting the area requirements. The implementation results in 
a 65 nm CMOS technology show that a significant gain on 
throughput, resource usage and power reduction (less than 
2.1 μW per recording channel of which A/D converter 
consumes 367 nW, corresponding to a figure of merit of 14 
fJ/conv.-step) can be obtained for large-scale neural spike 
data, allowing for an efficient and easily-scalable system. 

II. CIRCUIT IMPLEMENTATION 

A. Architectural Overview 

With an increase in the range of applications and their 
functionalities, neuroprosthetic devices are progressing 
towards a closed-loop control system [10] with front-end 
neural recording interface, and a back-end neural-signal 
processing. The block diagram of a N-channel neural 
recording system is illustrated in Figure 1. The data attained 
by the recording electrodes is conditioned with analog 
circuits. The small amplitude of neural signals and the high 
impedance of the electrode-tissue interface necessitate a low-
noise amplification (LNA) and band-pass filtering before the 
voltage signals are transformed into current by the V/I 
converter, and digitized by a current mode SAR A/D 
converter. The output digital code is generated by comparing 
the input current offered through current sample-and-hold 
circuit (S/H), with a reference current provided by binary 
current D/A converter (DAC). The current comparison 
necessitates only injecting two currents into a single node and 
using the current, which flows out of the node, as the 
algebraic difference of the two input currents. 

A 2.1 μW/Channel Current-Mode Integrated                              

Neural Recording Interface 

Amir Zjajo, Rene van Leuken 

978-1-5090-2455-1/16/$31.00 ©2016 IEEE 505



  

 

Cin 

VSS 

Gm1 

Vin 

Cin 

Cf 

Cf 

T1 T2 

T3 

T4 

Rh 

Rh 

Vref Gm3 
Vout 

A×C 

C 

Gm2 C C/(A+1) 

A×C 

VSS 

VSS 

 

Figure 2: Schematic of the low noise neural amplifier, and the capacitive 

attenuation band-pass filter.  

The current comparison is performed sequentially for 
each bit in the selected range, adjusting the reference current 
generated by a current mode D/A converter closer to the 
input signal. The input dynamic range of the D/A converter is 
controlled by biasing current. As a consequence, the power 
consumed by the D/A converter is directly comparable to the 
signal level, which is highly beneficial for the neural 
interface circuits containing low energy neural signals. The 
SAR A/D converter output signal is further processed in a 
back-end signal processing unit, which provides additional 
filtering and executes a spike detection. The relevant 
information is then transmitted to a receiver, or used for 
stimulation in a closed-loop framework. 

B. Signal Conditioning Circuit 

The neural spikes, ranging from 10 μV to 500 μV (and 
containing data of up to ~20 kHz), are amplified with low 
noise amplifier (LNA) illustrated in Figure 2. The 
transconductance (Gm) (i.e. V/I converter) based amplifier 
has a capacitive feedback configuration, which is adapted 
from [11] with minor modifications. Two identical diode-
connected transistors T1-2 and T3-4 act as a high ohmic 
resistors Rh, and adjust the high-pass cut-off of the LNA at 
(2πRhCf)

-1
 blocking the dc offset generated by the electrode-

tissue interface and local field potentials. The mid-band gain 
Amb is set by Cin/Cf with the low-pass cut-off frequency at 
~gm,in/(2πCL), where CL is the effective load capacitance of 
the amplifier, and gm,in is the transconductance of the input 
transistors. Implemented Gm1 folded cascode circuit is 
illustrated in Figure 3a). 

The topology is based on [12], where current splitting 
technique to enhance the drain resistance of both input and 
bottom transistors without any additional cascading, is 
combined with the output-current scaling [13] to lower the 
OTA noise. The folded cascode Gm1 circuit realize a wide 
input common-mode range, and a relatively large open-loop 
gain within the single stage. An input-referred electronic 
noise of an integrated front-end negative-feedback amplifier 
needs to be smaller than the total input noise from the neural 
electrode (10~20 μVrms [14]). The input-referred noise of the 
Gm1 circuit is reduced by maximizing input pair gm, the use of 
cascaded resistive loading (rather than current-source loads), 
and minimizing gm of the current sources (and mirrors). The 
bias current of the Gm1 can be varied to adapt its noise per 
unit bandwidth. The transistors of the output stage have two 
constrains: to increase the output resistance of the cascade 
and allow sufficient dc gain, the gm of the cascading 
transistors T9,T12 must be high enough. Secondly, to reduce 
the extra noise contribution of the output stage, the saturation 
voltage of the active loads T5-8 and T13-16 must be maximized. 
By increasing the size of the cascading transistors above the 
active loads, the gm of the cascading transistors is maximized, 
and consequently, the dc gain increased. Simultaneously, 
their saturation voltage is reduced (i.e. allowing for a larger 
saturation voltage for the active loads), without exceeding the 
voltage headroom.  

To keep the overall bandwidth constant, when the bias 
current of the gain stage is varied, a band-pass filter [15] 
(Figure 2) is added to the output of the LNA. High gain of the 
LNA reduces noise requirements of this bandwidth-limiting 
circuit. The total integrated output voltage noise of the filter 
depends on the linear range of the transconductors Gm2 and 
Gm3 (Figure 3b), the ratio of the attenuator capacitances A and 
the unit capacitance C. The linear range is effectively 
improved by attenuating the input. In the high-pass stage, the 
signal is attenuated with A+1, and the full capacitance of 
(A+1)C is then utilized for filtering with Gm2. In the low-pass 
stage, signals in the pass-band are amplified with A+1. To 
increase the filtering capacitance, additional capacitance 
C/(A+1) is placed in parallel with the attenuating 
capacitances. Dynamically biased Gm3 cell illustrated in 
Figure 3c) offers highly linear voltage to current conversion. 
The cross-coupled transistors T3-4 and T13-14 ensure the rail-to-
rail differential-input swing and linear output current with a 
dynamic adjustment of the input window. 
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Figure 3: a) Folded cascode LNA Gm1 circuit, b) band-pass filter Gm2 cell, c) band-pass filter Gm3 cell 
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Figure 4: a) Schematic of current-mode S/H circuit, b) current-mode D/A converter, c) schematic of the inverter cascade current-mode comparator circuit. 

C. Current-Mode Signal Quantization Circuit 

A S/H circuit capture the input signal at the sampling 
instants and subsequently hold the signal value, which is then 
further processed in a current based binary search algorithm 
SAR loop. The schematic of the implemented circuit is 
illustrated in Figure 4a). The circuit is (pseudo) differential, 
and only a single-ended version is shown. A sample-and-hold 
operation is completed with analog switch formed by 
transmission gate T4-5 and hold capacitor CH. In sample 
mode, switch T4-5 is turned on, and the gates of the current-
mirror circuit transistors T1 and T2 become connected. 
Accurate current-mirroring operation is performed if the 
drain voltages of both transistors are equal. However, the 
accuracy of the current-mirror formed by transistors T1 and T2 
is limited, generating a signal-dependent current conversion 
error IΔ. Consequently, two operational amplifiers are added 
[16], one at the input terminal (formed by transistor T3 and 
current source Ib1) and one at the output terminal (formed by 
transistor T6 and current source Ib2) to keep the input and the 
output terminal voltages of a current mirror circuit constant. 

The current mode D/A converter circuit illustrated in 
Figure 4b) consists of a current switching circuit of 
differential pairs (T1-16) controlled by the binary bits, and a 
current replication circuit to generate weighted currents using 
cascoded current mirrors (T17-34). The cascoded current 
sources are sized up consistent with the bit weight, and 
biased with identical bias voltages. This compact 
implementation is limited only by the steepness of the data 
waveforms carrying the bits, and at nA bias levels, by 
transistor mismatch limiting the linearity and restricting the 
maximum resolution [17]. To achieve an 10-bit resolution, 
calibration as in [6] is employed. The converter utilizes a 
synchronous SAR logic consisting of a cascade multiple 
input, n bit shift register to generate digital output code, and 
the switch control signals for the D/A converter. During 
conversion process, the successive approximation algorithm 
evaluates each bit and the state of the others, and 
subsequently, decides either to hold its value or to take the 
value of the comparator [18]. The selection depends on the 
state of the register itself and the state of the following 
registers states. As a result, switching power consumed is 
low, and the leakage power dominates the total power. To 
reduce the leakage currents the gate transistors are replaced 
with stacked pairs [19].  

The current difference between the sample and hold 
output current IS/H and the D/A converter output current IDAC 
is integrated by the input gate capacitance of the inverter 
cascade current comparator T1-4 illustrated in Figure 4c). The 

first inverter operates as an integrating current-to-voltage 
converter, while the second inverter T5-6 changes the sign of 
the first inverter output voltage to the equivalent of the input 
current. The integrating nature of the comparator ensures that 
no inherent dc offset is present in the comparator, and 
provides a small and effective current-to-voltage conversion. 

III. EXPERIMENTAL RESULTS 

Design simulations on the transistor level were performed 
at body temperature (37 ºC) on Cadence Virtuoso using 
industrial hardware-calibrated TSMC 65nm CMOS 
technology. The analog circuits operate with a 1 V supply, 
while the digital blocks operate at near-threshold from a 400 
mV supply. The test dataset (Figure 5) is based on recordings 
from the human neocortex and basal ganglia. The fully 
differential low-noise amplifier achieves 55 dB closed loop 
gain, and occupies an area of 0.04 mm

2
. Input referred noise 

is 3.1 μVrms over 0.1-20 kHz. THD is below 1% for typical 
extracellular neural signals (smaller than 10 mV peak-to-
peak). The common-mode rejection ratio (CMRR), and the 
power-supply rejection ratio (PSRR) exceeds 75 dB. The 
capacitive-attenuation band-pass filter with first-order slopes 
achieves 65 dB dynamic range, 210 mVrms at 2% THD, and 
140 μVrms total integrated output noise. Spectral signature of 
the neural interface is illustrated in Figure 6a). As shown in 
Figure 6b) and Figure 6c), SNDR, SFDR and THD remain 
constant at different input and sampling frequencies, 
respectively. Variation across slow-slow and fast-fast corner 
is ± 0.2 ENOB. The DNL/INL is ±0.2/0.3 LSB, respectively. 
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Figure 5: Test data set, the y axis is arbitrary; a) top: raw signal after 
amplification, not corrected for gain, b) bandpass filtered signal, and c) 
detected spikes; a) and b) not on the same time-scale. 
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Figure 6: Spectral signature of the neural interface, b) SFDR, SNDR and THD vs. input frequency with fS=20 kHz, c) SFDR, SNDR and THD vs. sampling 
frequency with fin=1 kHz. 

Low noise amplifier consumes 1.15 μW, and band-pass 
filter 390 nW of power, while SAR A/D converter consumes 
367 nW (sample and hold 117 nW, comparator 37 nW, D/A 
converter 149 nW and logic 64 nW). The specifications of 
the current mode SAR A/D converter is compared with the 
previous art in Table I, where the figure of merit (FoM) is 
calculated according to FoM=P/(2fin×2

ENOB
) [J/conversion-

step] [20]. In Table II, we compare the state of the art neural 
recording systems to this work. 

ADC [6]*  [7]*  [8]*  [9]*  [this work]* 

Technology 0.18 0.18 0.18 0.13 0.065 

Resolution 8 6 8 8 10 

VDD [V] 1.2 0.65 0.55 1 1 

fS [kS/s] 16 120 250 1 40 

THD [dB] - - - 47.5 63.4 

FoM [J/con-s] 132f 8p 9f 657f 14f 

Power [W] 540n 6μ 1μ 255n 367n 

Area [mm2] 0.078 0.04 0.009 0.005 0.012 

TABLE I- ADC COMPARISON WITH PRIOR ART, *-SIMULATED DATA. 

Interface [1] [2]  [3]  [4] [this work]* 

Technology 0.18 0.13 0.18 0.065 0.065 

VDD [V] 0.45 1.2 1.8 1 1 

Gain [dB] 52 54-60 30-72 52.1 65 

INF [μVrms] 3.2 4.7 3.2 4.13 3.1 

Bandw. [Hz] 10k 10-5k 300-6k 1-8.2k 20k 

P/chann.[μW] 0.73 3.5 5.4 2.8 2.1 

A/chann.[mm2] 0.2 0.09 0.08 0.042 0.036 

TABLE II- NEURAL INTERFACE COMPARISON WITH PRIOR ART,                          

*-SIMULATED DATA. 

IV. CONCLUSION 

The increasing density and the miniaturization of the 

functional blocks in the multi-electrode arrays presents 

significant circuit design challenge in terms of area, 

bandwidth, power, and the programmability and 

expandability of the recording system. In this paper, a low-

power, neural recording interface with current-mode SAR 

ADC is presented. The power consumption is scaled with 

the input current level making the current mode A/D 

converter suitable for low energy signals. With the figure of 

merit of the 14 fJ/conversion-step, and THD of 63.4 dB at 40 

kS/s sampling frequency, implemented A/D converter is one 

of the best reported. The total system consumes only 2.1 

μW/channel, and occupy an area of 0.036 mm
2
/per channel 

in a 65 nm CMOS technology. 
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