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Abstract—Adaptive detection of fast moving targets by
means of high range resolution radar is considered. It
is assumed that a fast-moving target of interest has a
few range cells migration during the coherent processing
interval and the clutter power fluctuates rapidly along the
range. Therefore, the target competes with the clutter
responses in a few adjacent range cells, modeled by
Compound-Gaussian process. The adaptive CFAR de-
tector of range-migrating targets is designed and it is
complemented by the algorithm for covariance matrix
estimation from the reference data. The generalized ap-
proach for detection of range-extended migrating targets
is provided. The performance of the proposed detectors
is evaluated via numerical simulations, showing valuable
improvement over the conventional techniques.

I. INTRODUCTION

Modern wideband radars have enabled a sub-meter
range resolution, thus providing additional possibilities
for target detection and classification [1], [2]. However,
the target detection in the high range resolution (HRR)
mode has a few differences w.r.t. the detection in the
low range resolution mode. Namely, clutter becomes
non-Gaussian, targets become range extended and also,
target range-walk (range migration) withing the coher-
ent processing interval (CPI) becomes non-negligable.

The modern trend is to represent a non-Gaussian
radar clutter by the compound noise models
(compound-Gaussian (CG) process, Spherically
Invariant Random Vectors (SIRV)) which allow
separation of clutter spectrum characteristics from its
PDF. The compound models accurately describe the
scattering phenomena of clutter for short observation
times [2]. Radar detection of a point target in CG and
SIRV models has been extensively studied during the
last decades, resulting in a number of handful constant
false alarm rate (CFAR) detectors for point-like targets
[2], [3]. These detectors exploit clutter covariance
matrix (CM) estimated from the reference data, and
therefore, referred to as adaptive detectors [2], [4].

The targets of interest (planes, cars etc.), ob-
served by a high-resolution radar, are well modeled

This work was supported by STW (now TTW) under the grant
12219.

as a set of independent point scatterers separated
along the range [1]. The aforementioned detectors
have been generalized for the case of range-extended
(range-distributed) targets assuming either homoge-
neous, locally-homogeneous [5] or non-homogeneous
[6] CG clutter along the target range extent.

Fast-moving target, observed in the HRR mode
during relatively long CPI (say 50 - 100 ms) obey range
migration phenomenon. This effect is well-studied for
target feature extraction and it can be efficiently com-
pensated via Keystone [7] or Radon [8] transforms.
Ignoring of a range-walk results in a smeared target
response in range and Doppler frequency (or veloc-
ity) [7]. Consequently, signal to clutter ratio (SCR)
degrades, as well as the detection performance. Re-
cently, some detectors of range-migrating targets in
Gaussian [9] and locally Gaussian clutter [5] have
been proposed. These detectors require knowledge of
the clutter correlation properties (via CM) in two
dimensions: in range and slow-time. So, detection of
range-migrating targets requires clutter correlation in
range to be considered. Thus, Dai et al. [5] showed that
assumption of clutter independence between adjacent
range cells leads to the non-CFAR performance of the
adaptive detector for range-migrating targets.

The aim of this paper is to derive a CFAR detector
of range migrating targets in slow-time and range
correlated CG clutter and obtain an adaptive detector
for range migrating target in CG clutter. To do this
in Section II, the models of a target and clutter are
provided and problem formulation is given. Next, in
Section III the detector of a migrating point target
in CG clutter with known speckle CM is developed
and its generalization to the extended target case is
provided. Further, in Section IV the algorithm for CM
estimation and the adaptive detector are proposed. The
performance of the proposed techniques is evaluated
by numerical simulations in Section V. Conclusions
are drawn in Section VI.
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II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Target model

Assume a wideband radar coherently transmits M
wideband pulses. The signature of a point target,
observed by the radar in a block of K adjacent range
cells, can be expressed by K ×M matrix A [7]:

Ak,m = ej2πfDTrm · up
(
k − k0 +

v0Tr
δR

m

)
, (1)

where m = 0 . . .M −1 is the pulse (slow-time) index,
k = 0 . . .K − 1 is the range cell (fast-time) index, k0
stands for the initial range cell of the target, moving
with the constant radial velocity v0, fD = 2v0fc/c
is target Doppler frequency at fc. Transmitted signal
occupies frequencies from fc to fc + B, where B
is the bandwidth, Tr is the pulse repetition interval
(PRI), δR = c/(2B) is the radar range resolution, and
up(x) denotes the impulse response of the transmitted
waveform: up(x) = sinc (πx) is assumed hereinafter.

Because of the migration effect, the target amplitude
estimation and, therefore, its detection should be per-
formed over the block of K adjacent range cells, called
low range resolution segment (LRRS), which satisfies:

K ≥ |vmax|MTr/δR + Emax. (2)

Here vmax is the maximal target velocity and Emax
is the maximum expected target extend in range cells.
An extended target is modeled as a composition of
point scatterers in the adjacent range cells within target
physical dimensions. In the following we refer to the
vectorized form of the target model by a = vec(AT ).

B. Clutter model

Since target detection should be performed in the
LRRS, the generalization of CG clutter to multiple
range cells, possibly correlated, is developed here. In
order to consider possible clutter correlation in range
the Dependent Interference Model (DIM) [10] has to
be adapted, contrary to usually considered Independent
Interference Model (IIM).

The CG model, being a product of two random
variables, gives three ways to model spatial correlation:
considering either the speckle component or texture
to be correlated over the range, or both of them. To
select one of these models, recall the result of [5], [9],
where it was demonstrated that detection of a range-
migrating target in Gaussian clutter requires estimation
of clutter CM in two dimensions: range and slow-time.
The compound-Gaussian model can be considered as
the extension of the Gaussian model, which preserves
the correlation properties of the former, and allows the
power variation along the range. Therefore, for the CG
clutter, we consider the speckle to be correlated over
the range, while the texture to be independent from one
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Figure 1. Range migrating point target in spiky clutter

range cell to another. The independence of the texture
is imposed for model tractability.

The clutter response in the LRRS can be represented
by K × M matrix C, its vectorized counterpart is
KM×1 vector c = vec(CT ), which is given element-
wise by c = [c0, c1 . . . cKM−1]T . Hereinafter we also
refer to the clutter in the k-th range cell by the sub-
vector of length M : ck = [ckM , . . . , c(k+1)M−1]T ,
so c = [cT0 , c

T
1 , . . . , c

T
K−1]T . Similar definition of

subvectors holds for other KM × 1 vectors.
The clutter in each range cell is modeled as a CG

random vector, given as [2]: ck = σkgk. The texture
σ2
k is considered to be constant along slow-time and

independent from one range cell to another. In a LRRS,
the speckle component is a KM -dimensional zero
mean complex Gaussian vector with known CM: g ∼
CN (0KM ,Q). The covariance and cross-covariance
matrices of clutter in the range cells are:

E{cicHj } = E{σi}E{σj}Qi,j, (3)

where the expectation is taken over multiple realiza-
tions of the same process, but not over the range and
Qi,j = QiM...(i+1)M−1,jM...(j+1)M−1 defines M×M
block of the speckle CM. The PDF of CG clutter in
the LRRS, conditional on σK, K : k = 0 . . .K−1, is:

p(c|σK) =

exp

(
−
∑K−1
i=0

∑K−1
j=0

cH
i Q−1

i,j cj

σiσj

)
πKM |Q|

∏K−1
k=0 σ2M

k

.
(4)

The PDF clutter in the LRRS can be obtained as
p(c) = EσK{p(c|σK)}, which requires multidimen-
sional integration over PDFs of σK and has no explicit
solution. The way to overcome this limitation is to con-
sider each σk as an unknown deterministic parameter
to be estimated in the GLRT. The same strategy was
employed for non-migrating target detection to obtain
a distribution-free test [3] and approaches the optimal
test for moderate number of pulses in CPI (M > 16).
Since the target range-walk is observed only for large
M , hereafter σ2

k is tackled as unknown constant.

C. Problem formulation

The scenario under consideration is shown in Fig.
1. The detection problem of a point target (Fig. 1) can
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be formulated as:

yk =

{
H0 : ck,

H1 : αak + ck,
k = 0 . . .K − 1, (5)

where α is a constant amplitude of a target in the LRRS
under the hypothesis of its presence (H1), yk, ck and
ak are the sub-vectors, corresponding to the received
data, the clutter and the target responses accordingly in
the k-th range cell. The definition of the sub-vectors is
identical to that of ck given above. The generalization
to the case of an extended target is straightforward.

III. MIGRATING TARGET DETECTION IN RANGE
CORRELATED CG CLUTTER

A. Point target detector

As follows from the problem formulation and clut-
ter model, the detection problem involves unknown
parameters σ2

K and α and attacked here with the
generalized likelihood ratio test (GLRT): Λ(y) =
maxσK,α f

(1)(y;σK,α)

maxσK f
(0)(y;σK)

. Hereinafter, the superscript in
braces stands for the hypothesis index Hi, i ∈ {0, 1}.
The likelihood function of the LRRS under H1 is:

f (1)(y;σK, α) =

exp

(
−
∑K−1
i=0

∑K−1
j=0

q
(1)
i,j

σiσj

)
πKM |Q|

∏K−1
k=0 σ2M

k

.
(6)

and similarly f (0)(y;σK) = f (1)(y;σK, α)|α=0.
Herein q

(1)
i,j = (yi − αai)

H
Q−1i,j (yj − αaj) and

q
(0)
i,j = yH

i Q−1i,j yj, where i, j ∈ K.
We start with the estimation of σK under both hy-

potheses by maximizing the logarithm of (6) w.r.t. each
σk, k ∈ K. Then the estimation of σ(H)

k is obtained as
the positive solution of the quadratic equation:

(
σ
(H)
k

)2
− σ(H)

k

K−1∑
j=0,j 6=k

<
(
q
(H)
k,j

)
Mσ

(H)
j

−
q
(H)
k,k

M
= 0, (7)

for each σ(H)
k , k ∈ K. The equation for σ(H)

k depends
on σ(H)

j∈K,j 6=k and also on α under H1: q(1)k,j = q
(1)
k,j (α).

Let b(H)
k = −

(∑K−1
j=0,j 6=k

(
Mσ

(H)
j

)−1
<(q

(H)
k,j )

)
and c

(H)
k = −q(H)

k,k /M , then each of K equations
always (under any hypothesis Hi, i ∈ {0, 1}, for any
data set q(H)

k,j and any assumption on σ
(H)
j∈K,j 6=k > 0)

has two real roots, as
(
b
(H)
k

)2
− 4c

(H)
k > 0,∀k ∈ K.

Moreover, from Vieta’s formula, it follows that the
roots of (7) satisfy σ[1]

k σ
[2]
k = c < 0, so only one root

is positive, which is the one of interest. Therefore, the
solution of (7) is:

σ̂
(H)
k =

1

2

(
−b(H)

k +

√(
b
(H)
k

)2
− 4c

(H)
k

)
, (8)

written as σ̂
(H)
k = g

(H)
k

(
σ̂
(H)
j∈K,j 6=k, α

)
for notation

simplicity. Then, under H0 there exist the system of
K equations for σK in the form (8). Similarly, under
H1, we have K equations (8) for σk, which depend on
K + 1 unknowns: σK and α. The last equation is:

α̂ =

(
aH
(
M̂(1)

)−1
a

)−1
aH
(
M̂(1)

)−1
y, (9)

with M̂(H) = M|
σK=σ̂

(H)
K

and the latter has the form:

M =

 σ2
0Q0,0 · · · σ0σK−1Q0,K−1

...
. . .

...
σK−1σ0QK−1,0 · · · σ2

K−1QK−1,K−1

 .
(10)

Under both hypotheses, the systems are solved by the
fixed point iteration for systems of equations.

Substitution of the estimates into the GLRT gives
[11] the detector in the form:

Λ(y) =
K−1∏
k=0

(
σ̂
(0)
k

σ̂
(1)
k

)2M
H1

R
H0

T, (11)

where T is the threshold to satisfy the appropriate
probability of false alarm PFA.

The test (11) is the generalization of the detector
proposed for IIM clutter model in [12]. The latter can
be obtained assuming b(H)

K = 0K , which is the IIM of
CG clutter.

B. Clutter map detector

Assume that high resolution clutter map is available
to the radar processor. Within the framework described
above, the clutter map provides the values of σ̂K for
both hypothesizes. Substitution of σ̂K in (10) trans-
forms the problem into classical detection of a target
in Gaussian noise with known CM and treated with the
standard matched filter detector [2]:∣∣aHM−1y

∣∣2
aHM−1a

H1

R
H0

T ′. (12)

Hereinafter, the detector (12) is referred to as clairvoy-
ant detector.

C. Extended target detector

The targets of interest, observed in HRR radar mode
(with a meter or sub-meter range resolution), become
extended in range. Because of the target migration and
also the clutter correlation in range, the key assumption
of [6] on data independence in adjacent range cells
is obviously not valid. Therefore, for the detection of
range-extended targets with the range-walk, the theory
of subspace detectors [2] is adapted here. Assume the
target vectorized signal s lies in known subspace of
dimension R: Ψ = [a(0), . . . ,a(R− 1)], so s = Ψα,
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where α = [α0, . . . , αR−1]T . Since the target ex-
tension in range is considered, the subspace vectors
correspond to the target steering vectors at different
range cells k0, but with the same velocity v0 in (1).
The reflection from the moving parts of the target, such
as wheels, blades etc, is neglected.

Denote by s the signature of the extended target
in the LRRS (instead of αa for a point target).
The quadratic form under H1 then becomes q(1)i,j =

(yi − si)
H

Q−1i,j (yj − sj), where si is the sub-vector
of the target signal in the i-th range cell. Then, the
estimation of σ̂(H)

K has the form of (7).
The estimation of α̂ can be found by maximizing

the likelihood function w.r.t. each element of α:

α̂r =
aH (r)

(
M̂(1)

)−1 (
y −

∑R−1
j=0,j 6=r α̂ja(j )

)
aH (r)

(
M̂(1)

)−1
a(r)

.

(13)

Detection of a target spread over R range cells re-
quires solving numerically K equations for σ̂(1)

K and
R equations for α̂r together. The detection rule for the
range-extended target can be shown in the form (11)
with the appropriate definition of q(1)i,j .

Note, that in general, the signal subspace is not
known in advance. So, to make such a detector ap-
plicable, some assumption on the target extent should
be made based on the prior knowledge of the scene
or extracted from the data using some model order
selection techniques.

IV. COVARIANCE MATRIX ESTIMATION AND
ADAPTIVE DETECTOR

In the previous section, we assumed known speckle
CM Q in slow-time/range, which is generally not the
case in a real application. In this section the approach
to estimate clutter CM in a LRRS from the reference
data is proposed.

In Gaussian clutter, the sample covariance matrix
(SCM) is known to be the maximum likelihood esti-
mation [2]. In CG clutter, the ML estimation of CM is
defined as the solution of the transcendental equation
[10] depending on the PDF of texture. The practical
approach is the approximate ML (AML) estimator
[10], [4], which considers clutter texture in each range
cell as an unknown deterministic parameter.

Assume L > KM independent and target free
reference LRRSs with CG clutter having homo-
geneous speckle component are available. The re-
ceived data in the l-th reference cell z(l) =
[z0(l), z1(l), . . . , zKM−1(l)]T can be arranged by the
range cells as: z(l) = [zT0 (l), zT1 (l), . . . , zTK−1(l)]T .
The received data in the l-th reference LRRS is:
z(l) = W(l)g(l), where texture is accounted via

W(l) = diag (σ0(l), . . . , σK−1(l)) ⊗ IM and g(l) ∼
CN (0KM ,Q) is the speckle. The clutter in the ref-
erence LRRS l is conditionally Gaussian z(l)|W(l) ∼
CN (0KM ,M(l)), with:

M(l) = E{z(l)zH(l)}
= W(l)E{g(l)gH(l)}W(l) = W(l)QW(l)

(14)

Given the structure of clutter CM in the l-th LRRS,
we adopt the two-step maximization procedure of [10]
to derive the range slow-time speckle CM estimator.

At the first step of maximization, we assume the
texture estimates σ̂K(l) are available ∀l ∈ L, where
L : l = 0, . . . , L− 1. Then, from (14) the speckle CM
MLE from L reference LRRSs is given:

Q̂ =
1

L

L−1∑
l=0

Ŵ−1(l)z(l)zH(l)Ŵ−1(l), (15)

where Ŵ(l) = W(l)|σK(l)=σ̂K(l).
At the second step, we suppose speckle CM estima-

tion Q̂ is available and derive the MLE of σk(l), ∀k ∈
K,∀l ∈ L. The estimation of σk(l), ∀k ∈ K in each
LRRS l corresponds to (8) under H0 and obtained
iteratively via:

σ̂k(l) = g
(0)
k

(
σ̂j∈K,j 6=k(l), Q̂

)
. (16)

So the algorithm for the range slow-time speckle CM
estimation involves two nested loops. The inner loop
updates the texture estimation in all the reference
LRRSs by means of (16); and the outer loop updates
the speckle CM by means of (15).

A few comments are in order regarding the estimator
(15), (16). First, the algorithm should be initialized
with some estimation of CM Q. With no prior infor-
mation, the initialization is made with the SCM:

Q̂SCM =
1

L

L−1∑
l=0

z(l)zH(l). (17)

Second, the number of iterations in the outer loop
IQ can be limited to a few [10], since the further
improvement in CM estimation has a minor impact.
Third, the iterative procedure in the inner loop might
be initialized with σ̂K(L) obtained at the previous step
of the outer loop and then estimated in a few iterations
Iσ . The latter relies on the fact that Q̂ does not vary
significantly from one iteration to another. Note, that
each loop can be stopped when the corresponding

convergence criteria, e.g. C(i) =
||Ŵ(H)

i+1−Ŵ
(H)
i ||2

||Ŵ(h)
i ||2

≤ ε

for outer loop is satisfied. Forth, the iterative estimation
(15) is normalized by Tr(Q̂) at each iteration for the
identification reasons [10], [4].

The adaptive detector has the form of the detector
defined above, namely (11), where the known matrix
Q is substituted with its estimation from the reference
dataset Q̂.
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Figure 2. a - Detection probability of range migrating target in CG clutter with: v0 = 0 m/s and v0 = 15 m/s; b - ROC curves of migrating
target detector in CG clutter; c - Detection probability of the adaptive detector for the range migrating target in CG clutter with v0 = 15

V. SIMULATION RESULTS

In this section, the performance of the proposed
algorithms is assessed by numerical simulations. The
parameters of the radar are fixed to: fc = 10 GHz,
B = 1 GHz (δR = 0.15 m), Tr = 1 ms, M = 32.
We set the maximum expected velocity of a target to:
|v0| ≤ vmax = va = c/(2fcTr) = 15m/s; for a point
target detection we set K = 5 to satisfy (2).

The texture σ2
K follows Gamma distribution, so the

clutter follows the K-distribution, a special case of CG;
the shape and scale parameters are ν = 0.5 and µ = 1.
The known speckle CM has the structure Q = R⊗S,
so the speckle correlation in slow-time is defined by
M×M matrix S and in range by K×K matrix R. For
PFA and PD assessment, we run 106 and 103 Monte-
Carlo trials accordingly.

A. Known speckle covariance matrix

1) Detection performance: The analysis of the de-
tection performance as a function of target SCR =
|α|2
E{σ2}a

HQ−1a is shown in Fig. 2, a for target veloc-
ities v0 = 0 m/s and v0 = va = 15 m/s and different
clutter spatial correlation: Rk,j = e−γ|k−j| with γ = 1
and γ → +∞; S = IM , PFA = 10−5. Comparison
in Fig. 2, a includes the proposed detector (refereed
as DIM-LRT), and the clairvoyant detector (12). The
loss of the proposed detector in comparison to the
clairvoyant one is about 1 dB in each scenario. The
analysis shows that target detection performance does
not depend on clutter spatial correlation, but depends
on the target velocity. Thus, the detection gain for
the target with velocity v0 = 15 m/s, which has a
range-walk of about 3 range cells, with respect to the
stationary obeys about 7 dB gain for the given clutter
parameters. This phenomenon can be well explained by
the diversity of clutter, obtained by coherent integration
of the target response in a few range cells. The faster
the target, the more it migrates, the less probability to
miss the target due to clutter spike in one range cell, so
the higher the probability of detection. This behavior
is akin to detection of range-extended targets in CG
clutter, where the detection performance depends on

the target spread (see e.g. [6]). The observed diversity
gain is not linear and saturates as the number of the
range cells increases; we have observed that the major
improvement is obtained by the first 3 range cells
migration, and fully saturates for the range-walk over
5 range cells.

2) ROC curves analysis: For analisys here a point
target with SCR = 0 dB, v0 = 15m/s and in clutter
with known speckle CM are considered. Fig. 2, b
shows the ROC curves for four detectors, namely: LRR
NMF - Normalized matched filter applied to a LRRS,
which consider a locally Gaussian clutter model; NB
NMF - Normalized matched filter applied per range
cell, assuming no target migration occur by ignoring
the migration term in (1); the proposed detector (DIM-
LRT) and the clairvoyant detector (12). The results
demonstrate the advantages of applying CFAR detector
for range migrating targets. Note that NB NMF suffers
from incorrect target model, while for the LRR NMF
is degraded due to incorrect clutter model, leading to
non-CFAR behavior of the latter.

B. Adaptive detector of a point target

We analyze the detection performance of the adap-
tive detector in two scenarios: first, we assume that
the reference data contains only the speckle clutter
component, so the ML CM estimation is obtained with
the SCM from this reference data. Second, we assume
the reference data follows the CG model, and use the
proposed in Section IV estimator referred as FPCM.
We consider L = 2KM and L = 5KM and run
106 Monte-Carlo trials to set the threshold satisfying
PFA = 10−4 in each case. For the FPCM estimation
we used Iσ = 5 and IQ = 20. Simulations results
for the target moving with velocity v0 = 15 m/s in
range correlated clutter with γ = 1 are shown in Fig.
2, c. The detection loss for the case of L = 2KM is
about 3.5 dB and 4 dB for SCM of the speckle and
the proposed estimation of the CM accordingly, and
about 0.9 and 1.5 dB for the case of the L = 5KM .
Both cases agree well with the theoretical performance
degradation of the adaptive detectors [2].

2019 International Radar Conference (RADAR2019)

978-1-7281-2660-9/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on September 11,2020 at 08:12:54 UTC from IEEE Xplore.  Restrictions apply. 



Model Cell number
1 2 3 4

1 1/4 1/4 1/4 1/4
2 1/2 1/4 1/4 0
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Figure 3. a - Extended target model with Emax = 4; b, c - Detection performance for the extended target: a - Stationary target: v0 = 0
m/s; b - Migrating target: v0 = 15 m/s.

C. Extended target detector

Herein the performance of the proposed detector for
range-extended migrating targets is analyzed. A target
of interest with known extent Emax = 4 is modeled
with different spatial distribution [6], given in Figure
3, a. For this scenario we set K = 8 to satisfy (2)
for |v0| ≤ va. Since the analytical expression of the
PFA is not available, the threshold for PFA = 10−4

with Emax = 4 was estimated numerically. Range
correlated clutter with: γ = 1 and ρ → +∞ is
considered. Herein we define SCR = E

E{σ2}a
HQ−1a,

where E =
∑4
i=r wr |αr|

2 and wr are the coefficients
from Figure 3, a.

The detection performance is evaluated for the ve-
locities of the target v0 = 0 and v0 = va = 15 m/s. The
results in Fig. 3, b show that non-coherent averaging
along target extent improves detection performance,
similarly to the results in [6]. The detection perfor-
mance of a migrating extended target, on the other
hand, is almost independent of the target extent and
always better than that of a stationary one, as shown
in Fig. 3, c. That is due to the fact that averaging over
the target and over clutter provides the same gain -
due to diversity. Thus, the detection performance of a
migrating target depends only on its SCR, but not on
the shape of its response.

VI. CONCLUSION

The problem of range migrating target detection
in non-homogeneous clutter has been considered. In
order to solve this problem we have introduced the
model of range-correlated compound-Gaussian clutter
in a block of range cells, which provides a model of
spiky clutter with correlation in both range and slow-
time. We used this model to derive an adaptive detector
in two steps. First, we assumed that clutter speckle
CM in range and slow-time is known, and derived the
detector. Second, we substituted the known CM with its
estimation to obtain the adaptive detector. We provided
an algorithm for the range/slow-time CM estimation
from the reference CG clutter. It is demonstrated that

considering target range-walk and its range extent
along non-Gaussian clutter provides a novel way to
exploit clutter diversity. The achieved diversity gain
improves detection performance of the fast targets and
can be used together with the integration over target
extent against clutter fluctuation (akin burst-to-burst
integration in conventional radars).
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