
Preventing overfitting in Mixed
Integer Optimization based

classification tree construction

Maaike Elgersma
(4585011)

A thesis presented for obtaining the degree of
Bachelor of Science in Applied Mathematics

Optimization
Delft Institute of Applied Mathematics

Delft University of Technology
The Netherlands

3 July 2019

Supervisor:
Dr. ir. L.J.J. van Iersel

Assessment Committee:
Dr. ir. L.J.J. van Iersel
Dr. B. van den Dries

Dr.ir. W.T. van Horssen

Abstract

The global use of azole antifungals as treatment against infections caused
by Candida has led to an increase in azole resistance. The primal goal of
this BSc thesis is to improve existing Mixed Integer Optimization models
to classify azole resistance of C. glabrata more accurately by preventing
overfitting. Moreover, these classification methods can generally also be
used for the classification of any kind of numerical of categorical data. The
classification method that we used is based on an MIO formulation that was
first introduced by Bertsimas and Dunn, and later adapted by Van Dijk. We
first made the output of the model much easier to interpret, both from a
mathematical and biological point of view. We also applied feature sampling
to reduce the run time of the program, making it possible to create deeper
trees, and to prevent overfitting. To further prevent overfitting in these
deeper trees, we added the option of forcing at least a certain number of
training data points in the leaves to the MIO formulation. We verified our
MIO model on a data set constructed by combining two data sets from the
Westerdijk Fungal Biodiversity institute and a data set from the Center for
Disease Control and Prevention Atlanta, all containing the FKS1 and FKS2
gene sequences from C. glabrata. We automated the preprocessing steps and
merging process of these data sets with a Python program, and wrote a user
manual on how to use this program. By processing a bigger data set we were
able to classify more data correctly than Van Dijk, and we outperformed
the CART algorithm. Similar accuracy results were obtained when applying
feature sampling as when not, and the run time was drastically reduced.
Deeper trees did not change out-of-sample accuracy much, though this may
be because our data sets did not require deeper trees. When also forcing at
least a certain number of training data points in each leaf of these deeper
trees, we were able to slightly increase the out-of-sample accuracy, which
means overfitting was indeed prevented slightly. Lastly we interpreted the
results in biological context, and found some resistance-related mutations
that were already identified previously in other research, as well as some
additional ones for which the biological relevance is yet unknown.

1

Acknowledgements

I would like to thank the following people:

• Leo van Iersel, my supervisor at TU Delft,

• Mick van Dijk, from TU Delft,

• Mark Jones, from TU Delft,

• Teun Boekhout, from Westerdijk Fungal Biodiversity Institute and
UvA,

• Leen Stougie, from CWI and VU

• Amir Arastehfar, from Westerdijk Fungal Biodiversity Institute,

• Jorge Navarro, from Westerdijk Fungal Biodiversity Institute,

• Aimi Stavrou, from Westerdijk Fungal Biodiversity Institute,

• Shawn Lockhart, from Center for Disease Control and Prevention Atlanta.

2

Contents

Abstract 1

Acknowledgements 2

1 Introduction 5
1.1 Related work and our contribution 5

2 Candida glabrata 7
2.1 Drug resistance of Candida glabrata 7
2.2 Our Candida glabrata data set 7

3 In depth explanation of our data and the preprocessing steps 9
3.1 A general explanation of the data sets and the preprocessing

steps . 9
3.1.1 Our fasta data sets and the preprocessing steps 9
3.1.2 Exporting fasta files as protein sequences 11
3.1.3 Our Excel data sets and the preprocessing steps 12
3.1.4 Combining the large fasta and Excel data sets 12

3.2 Explanation of the preprocessing steps in the Python program 13
3.2.1 DNA data in fasta files 13
3.2.2 MIC values in an excel document 15
3.2.3 DNA data in Excel files 16
3.2.4 Merging fasta and Excel data sets 17

4 Classification trees 18
4.1 The general concept . 18
4.2 Constructing Classification trees 20
4.3 CART algorithm . 21

5 Univariate optimal classification trees 23
5.1 Basis mixed integer optimization formulation 23

5.1.1 The data and tree structure 23
5.1.2 The variables and parameters 24

5.2 Forcing at least a certain number of training data points in
each leaf . 27

5.3 Avoiding ‘meaningless’ splits 28

3

6 Feature sampling 31
6.1 Feature sampling procedure 31
6.2 Feature sampling in MIO formulation 34

7 Results 35
7.1 Information on the Python program 35
7.2 The hotspot data set . 36
7.3 Comparing different portions of test data 36
7.4 Comparing basis MIO model with and without feature sampling 38
7.5 Comparing different depths 39
7.6 Comparing different depths in combination with different Nmin 40
7.7 An example of a classification tree created by the MIO model 41
7.8 Using protein sequences instead of DNA sequences 42
7.9 Interpreting the results in biological context 43

8 Conclusion 45

9 Discussion 49
9.1 Interpreting the validations of our model 49
9.2 Using protein sequences instead of DNA sequences 49
9.3 Further research . 51

A Appendix 52
A.1 OptimalClassifiationTree.py 52
A.2 EditData.py . 71

Bibliography 77

4

1 Introduction

Since 1940 there has been an enormous increase in the occurrence of fungal
infections by different Candida species. Today, invasive candidiasis is the
third-to-fourth most frequent infection received in hospitals worldwide. One
of the reasons for this increase is the inclination of Candida species to infect
medical devices [4]. An increased use of immunosuppressive therapy as well as
broadspectrum antibiotic and antifungal therapies have therefore resulted in
an increasing number of cases of C. glabrata infections [8]. Another reason is
the increase in the number of individuals sensitive to invasive fungal infections
in recent years [9]. Compared with all other Candida species, C. glabrata
infections are the most threatening since the mortality rate associated with
this species is the highest [8].

Global use of azole antifungals such as fluconazole as treatment against
infections caused by Candida has lead to an increase in azole resistance.
Several mechanisms have been reported as potential reasons for azole resistance
in Candida species [4]. We elaborate more on this topic in Section 2.1.

Currently, when a patient is diagnosed with a Candida infection, a sample
of that fungus is taken. The fungus is grown in a lab, and then it is
determined whether the isolate is resistant to certain antifungals or not.
However, this takes about a week due to the incubation period. The goal
of our research is therefore to determine whether a C. glabrata isolate is
resistant or not based on a section of its DNA by using classification trees.
It is much quicker to sequence part of the DNA and put it into an algorithm,
than to determine whether it is resistant or not via the conventional way.
In this research we focused on C. glabrata, a fungus which is commonly
associated with infections. However, the classification methods applied on
this Candida species can generally also be used for the classification of any
kind of numerical or categorical data.

1.1 Related work and our contribution

Bertsimas and Dunn have already introduced a basis Mixed Integer
Optimization formulation for constructing optimal classification trees [3].
Van Dijk used and adapted this formulation in his MSc thesis [2].

The goal of our research was to tackle certain problems that they ran
into. One of those problems was overfitting of the trees on the training
data. To tackle this problem we extended the MIO formulation introduced by

5

Bertsimas, Dunn and Van Dijk, which we did in Sections 5.2 and 5.3. These
authors had issues regarding the run time of the program, which made it
difficult to produce trees of a depth higher than two in a reasonable time. We
tackled this problem with a method called ‘feature sampling’, which is also
used in [5] (called “threshold sampling” there) for a different MIO formulation
with column generation. To prevent overfitting we added a constraint to the
MIO formulation that forces at least a certain number of training data points
in each leaf.

Furthermore, the Westerdijk Fungal Biodiversity Institute had two data
sets on C. glabrata that they wanted to be analyzed. We used their data sets
to validate our model, along with a data set from the CDC in Atlanta, and
put our results in a biological context that would be useful to them. Van Dijk
already processed one of these data sets, but not the other two. Therefore
we improved his results by processing a larger data set. To perform this
efficiently we wrote a Python program to preprocess the data automatically,
which is a further improvement to the work described by Van Dijk.

We then verified our model on these data sets in Python, using Gurobi
as a solver. In most cases we outperformed the CART algorithm. Features
sampling allowed to creater deeper trees, which, in combination with forcing
at least a certain number of training data points in each leaf, indeed resulted
a slight reduction of overfitting. Using protein sequences instead of DNA
sequences gave even higher accuracies, especially when merging the data sets
of both genes into one data set. We were also able to find some results that
could be interesting for further biological research.

6

2 Candida glabrata

In this chapter we will first explain something about the drug resistance of
Candida glabrata. Furthermore, we will describe and explain the C. glabrata
data sets that we received from the Westerdijk Fungal Biodiversity Institute
and the Center for Disease Control and Prevention Atlanta.

2.1 Drug resistance of Candida glabrata

We will start by explaining the basis of drug resistance in Candida glabrata.
In our research we focused on genetic alteration related resistance, rather
than physiological (see [2] for more biological details).

The use of fluconazole as primary antifungal therapy against Candida
infections worldwide, has led to an increase in azole resistance. Therefore,
Echinocandins, a class of antifungal drugs such as caspofungin, micafungin
and anidulafungin, are now used as a primary therapy for the treatment of
invasive candidiasis. Recent studies, however, show that the wide use of
Echinocandins affects the susceptibility of Candida species, especially C.
glabrata. Between 2001 and 2010, resistance to Echinocandins increased
from 4.9% to 12.3% according to a study on data from patients with C.
glabrata bloodstream infections [8]. Recent studies show that mutations in
two hot-spot regions of the FKS1 and FKS2 genes might be responsible for
reduced susceptibility of C. glabrata to Echinocandins [7].

2.2 Our Candida glabrata data set

The Westerdijk Fungal Biodiversity Institute has provided us with several
data sets with the DNA sequences of the FKS1 and FKS2 genes of C.
glabrata isolates. We received several ‘.fasta’ files containing either the
DNA sequence of the entire FKS1 and FKS2 genes or merely the hotspots,
of both susceptible and resistant isolates. Along with this fasta files we also
received Excel files containing certain Minimium Inhibitory Concentration
values. Such MIC value is the lowest concentration of an antifungal drug
which prevents visible growth of the fungus. We received the MIC values of
three Echinocandins antifungal drugs, being caspofungin, micafungin and
anidulafungin. We also received excel files from Shawn Lockhart at the
Center for Disease Control and Prevention Atlanta, containing the DNA

7

sequences of the FKS1 and FKS2 genes of C. glabrata. In Section 3.1 we will
go into more detail of what the data set looks like.

8

3 In depth explanation of our data and the

preprocessing steps

There are several preprocessing steps that we applied on the three different
data sets that we worked with. In this chapter we will explain in more detail
what the data sets that we worked with looked like, and we will describe
the preprocessing steps we took before being able to input the data into our
model. In Subsection 3.2 a an explanation on how to automatically process
data sets using our Python files is given, as well as some details on the way
it works.

3.1 A general explanation of the data sets and the
preprocessing steps

All data sets contained numerical data. Meaning they consisted of nucleotides
with the letters A, T, C and G. However, when analyzing such data, binary
data is required, so we converted all data sets to binary arrays. We wanted to
do this in such a way that a zero indicates that a nucleotide is not mutated,
and a one indicates that it is mutated. Each row of the array then represents
the DNA sequence of an isolate, and each column of the array then represents
a nucleotide position in the DNA sequence.

3.1.1 Our fasta data sets and the preprocessing steps

The first data set that we processed were ‘.fasta’ files containing around
twenty DNA sequences of the hotspots in FKS1 and FKS2. However, the
sequences did not all have the same length. Therefore, we first aligned
these sequences in MEGA, Molecular Evolutionary Genetics Analysis, a
“sophisticated and user-friendly software suite for analyzing DNA and protein
sequence data from species and populations” [1]. Then we isolated the
hotspots, which consist of around 30 nucleotides. We subsequently changed
this numerical data to binary data. Therefore we first wrote a program in
Python to find the most common nucleotide at each position. This could be
considered as the reference sequence, meaning a sequence of DNA with every
nucleotide being the most common nucleotide of all isolates on that position.
After taking these steps we were able to convert our numerical data to binary
data, as described before. Lastly we wanted to remove redundant columns

9

where none of the isolates showed a mutation, because positions where each
isolate contains the same nucleotide are irrelevant for the model, and they
increase the running time of the program considerably. The data set of the
first hotspot of the FKS1 gene only consisted of 2 columns after processing
it. The data set of the first hotspot of the FKS2 gene contained no mutations
and was therefore empty and not useful for further research.

We also had another much larger data set of two fasta files, both containing
the full-length DNA sequences of the FKS1 gene and the FKS2 gene, of length
5592 and 5694 respectively. These data sets came from 240 isolates, so there
were 240 rows, of which 220 were drug susceptible and 20 were drug resistant.
In figure 1 a snapshot of this data set is shown. The first nucleotide position
in the data set is also the first nucleotide position in the FKS1 or FKS2 gene.
Hence these sequences were already aligned. However, in one sequence of the
FKS2 gene a deletion of three nucleotides had taken place, meaning three
nucleotides were ‘cut out’ of the DNA sequence. Therefore, the part of the
sequence after the deletion was shifted, so we first had to enter three empty
nucleotides in the sequence. Then the only thing left to do was to convert
it to binary data, and remove the redundant columns where no isolate had
a mutation. This resulted in only 138 and 187 columns for the FKS1 and
FKS2 gene respectively, a significant downsizing of the data set.

Figure 1: A snapshot of a small part of the fasta data with the DNA
sequences.

For all fasta files we also had Excel documents containing several MIC
values. Therefore we also wrote a program to determine from these MIC
values of each organism whether it was resistant or not.

10

3.1.2 Exporting fasta files as protein sequences

Rather than saving the data as DNA sequences in a ‘.fasta’ file, one could
also decide to save them as protein sequences. The further processing of the
data with the Python program remains exactly the same. Saving them as
protein sequences means that every triplet of DNA nucleotides is translated
to an amino acid, indicated in MEGA by 20 different letters. There are
several advantages to this. First of all, the data set is hugely reduced in size,
for there are now three times fewer columns, since every three nucleotides are
translated to a single amino acid. Also, the number of columns is reduced
even further, since silent mutations are filtered out when removing redundant
columns. Silent mutations are mutations of a nucleotide that do not result
into a different amino acid. Normally these mutations would lead to the
columns being present in the remaining data set after removing redundant
columns. However, if the mutation is silent, this does not lead to a different
amino acid, and hence this change is irrelevant. Therefore, the column of
that amino acid is removed when removing redundant columns (provided
there are no mutations in the other two nucleotides of that same triplet).

Since our data sets that we mentioned before consisted of fasta files, we
were also able to translate the DNA sequences into amino acids. By doing so
we threrefore reduced the amount of columns even further, to only one third
of the original data set. In figure 2 a snapshot of this data set of amino acids
is shown.

Figure 2: A snapshot of a small part of the fasta data with translated protein
sequences.

11

3.1.3 Our Excel data sets and the preprocessing steps

Lastly we had a data set in Excel, containing the DNA sequences of the FKS1
and FKS2 gene of 55 drug susceptible organisms, and 28 resistant organisms.
The FKS1 gene and FKS2 gene data sets consisted of 76 and 121 columns
respectively. In figure 3 a snapshot of this data set is shown. These data sets
only contained the nucleotide positions where at least one of the sequences
was mutated. Therefore there was no need to remove redundant columns. If
there was no mutation, the cell was empty, and if there was a mutation it
was indicated which mutation had taken place. For example: ‘A to C’ meant
that the reference sequences had an ‘A’ at that nucleotide position, but for
this sequence the nucleotide was mutated to a ‘C’. This made it rather easy
to convert this data to binary data. If a cell was empty, it became a 0, and
if it was not empty it contained a mutation, and therefore it became a 1.

Figure 3: A snapshot of a small part of the fasta data with DNA sequences.

3.1.4 Combining the large fasta and Excel data sets

It was mentioned before in this section that the positions of the nucleotides in
both the large fasta data sets and the Excel data sets in the DNA of the FKS1
and FKS2 gene were indicated. Therefore, after importing the sequences in
Python, we were able to align both data sets and create two large data sets,
one for each gene. We decided to use this data set to validate our model in
Section 7. The total data set then consisted of the DNA sequences of 323
isolates, with 160 and 230 columns for the FKS1 and FKS2 gene respectively.
We mainly used these combined data sets for validating our model in Chapter
7.

12

We were also able to combine the data sets of both genes into one large
data set. Each row then consisted of the FKS1 gene first, and the FKS2 gene
after it, so the number of rows remained the same as those of the separate
data sets. We mainly used this data set for assessing the results in a biological
context.

3.2 Explanation of the preprocessing steps in the Python
program

In this section we have provided a user manual to show how the preprocessing
steps explained in Section 3.1 can be done automatically with the help of the
Python files final OptimalClassificationTrees.py and EditData.py, from
which the code can be found in the Appendices A.1 and A.2 respectively.
Occasionally a small explanation on the way certain functions work is also
given.

3.2.1 DNA data in fasta files

Before using the python programs to process the data, make sure that the
sequences are aligned in MEGA. We have done this with the alignment tool
‘ClustalW’. Then export the alignment as a fasta file and save it in the same
folder as where your two python files are located. The files can be exported as
either ‘DNA sequences’, consisting of nucleotides, or as ‘translated protein
sequences’, as explained before in 3.1.2. This makes no difference for the
further use of the Python program to process the data. At the top of the
final OptimalClassificationTrees.py program, in between the import
statements and the first function Create train and test enter the file name:

filename = filename without ‘.fasta’.
Then add the amount of sequences in the data:

total data = number of sequences.
Then add the statement:

X unordered, columns withmutations =

EditData.createbinarydata(filename data).
This refers to the python file EditData.py. This is the file where all data
processing functions are stored. The function createbinarydata creates a
binary array of the data in filename.fasta file. The function first refers to
the function readdata fasta. This function imports the data from the fasta

13

file and makes a list (called ‘X’) of the data from that file.

We will now explain what the data structure of the output of the function
readdata fasta is. As mentioned before, we wanted the data set to be
converted to a binary array of the data, where the rows are the DNA sequences
of the isolates, and the columns are the nucleotide positions of the sequences.
However, we decided to work with nested lists rather than arrays. So the list
X is a list consisting of nested list. Every sequence in the fasta file is stored
as a nested list in X. Therefore the number of nested lists of X is equal to
the number of sequences, and each nested list has the same length as the
sequences. So for example X[0][3] is the fourth nucleotide letter in the first
sequence of the data.

Then, to convert this numerical data to binary data, we need a ‘reference
sequence’ that we can compare all our sequences to. This is done with
the function createwildtype, where with ‘wild type’ we actually mean the
reference sequence. The function works in the following way. It creates a
single sequence, being the reference sequence, by referring to the function
findwildtype for each nucleotide position. This function finds the most
common nucleotide (the letter A, C, T or G) in all sequences at that nucleotide
position. Once this reference sequence is determined, all sequences from
filename.fasta can be converted to binary sequences.

This is done as explained before, namely if a letter at a certain position is
equal to the nucleotide at that position in the reference sequence, it becomes
a 0. However, if it is a different nucleotide, meaning it has a mutation at that
position, it becomes a 1. We have then obtained a very large binary data
set. Lastly we want to reduce the number of columns by removing redundant
columns. These are the positions where there is no mutation at that position
in any of the isolates. This is also done in the function createbinarydata

by referring to the function removeredundantcolumns. This function also
returns the position numbers of the columns that were not removed from the
data, so these are the DNA positions where a mutation identified.

We have now created a binary data set, with only the relevant columns
left. We then still need the data to be ordered in the following way: all
susceptible isolates first, then all resistant isolates. This is necessary for the
function that creates the Optimal Classification Tree. This is done by the
createordereddata function, which can be called adding the statement:

14

X, Y, data S, data R =

EditData.createordereddata(X unordered,resistant sequences,

total data)

Here resistant sequences is a list containing the numbers of the isolates in
X unordered that are resistant. For the ‘.fasta’ files that we worked with,
the MIC values that indicated whether the isolates were resistant or not were
in an excel file. How to process these files is explained in the next section.

3.2.2 MIC values in an excel document

We received excel files containing the MIC values of all isolates to three
antifungal drugs, caspofungin, micafungin and anidulafungin. For anidulafungin
for example a value lower or equal to 0.12 mg/L meant that the isolate was
susceptible, and a value higher or equal to 0.5 mg/L indicated that the isolate
was resistant. We therefore first converted all these values to a binary value:
0 if the value was smaller or equal to 0.12, 1 if the value was larger or equal
to 0.5, and 0.5 if it was between 0.12 and 0.5. We did this for all values of
all sequences and all three medicines in excel. For anidulafungin the formula
would look like this:

=IF(value cellposition <= 0,12; "0";

IF(value cellposition >= 0,5;"1";"0.5")),
where ‘value cellposition’ was ‘C10’ for example.

After these calculations in excel, the data can be read and processed
automatically in Python again. Add the statements:

filename MICvalues = file name of the MIC values without ‘.excel’
sheetname = sheet name of the MIC values
filedirectory = directory of your file with the MIC values

Then we can use the function determineclass to find the resistant isolates
in the data. To call the function add:

Y unordered, resistant sequences =

EditData.determineclass(filename MICvalues, filedirectory,

sheetname, total data)

This function reads in the file. It then calculates the sum of the binary MIC
values of each sequence. We decided that an isolate was susceptible if the
sum of the three binary MIC values was 1 or lower, and it was resistant if
the sum of the three binary MIC values was 1.5 or higher.

15

3.2.3 DNA data in Excel files

We received two Excel files containing DNA data. One with the information
of susceptible sequences of the FKS1 gene and the FKS2 gene, and one with
the information of resistant sequences of both genes. The information of the
different genes were on different sheets. These files where both in the format
as explained before in Section 3.2.3: they only contained the nucleotide
positions where at least one of the sequences was mutated. Therefore there
was no need to remove redundant columns. The only thing we had to do is
convert them to binary data, which we did in a seperate sheet, for example
‘FKS1’, with the following formula:

=IF(‘FKS1 mutations per strain’! nucleotide cellposition ="";0;1),
where ‘FKS1 mutations per strain’ is the sheet containing the DNA data,
and ‘nucleotide cellposition’ is ‘C10’ for example. The rest of the processing
can be done using the Python files again. We eventually wanted to merge
the data of the susceptible and resistant sequences of the FKS1 gene, and do
the same for the FKS2 gene. We first need to import the data, which can be
executed by the following lines:

filename = file name without ‘.xlsx’
filedirectory = the directory of the file
total data = number of sequences of the data
gene = either ‘FKS1’ or ‘FKS2’
X unordered = EditData.readdata excel(filename,filedirectory,

total data,gene)

Now we want to merge both files. This can be done with the function
mergefiles. To execute this, you first have to mention what the resistant
sequences are:

resistant sequences = list of the numbers of the sequences that are
resistant
Everything that is mentioned above should be done for both documents.
Then the files can be merged by the following statement:

X unordered, columns withmutations, resistant sequences, total data

= EditData.mergefiles(X 1[1:],X 1[0],resistant sequences1,total data1,

X 2[1:],X 2[0],resistant sequences2,total data2)

Here 1 and 2 indicate the properties of both data sets that you want to
merge. The function mergefiles merges both of them, taking the positions
of the nucleotides in the DNA into consideration. Therefore this function
not only returns the X unordered but also a list of the DNA locations of the

16

columns of the data.
The data is actually already sorted now, since the function mergefiles excel

adds the sequences from the first data set, being the susceptible data set, first,
and then sequences from the second data set, being the resistant data set.
For unicity and convenience however we keep the statement that we also used
for ‘.fasta’ files:

X, Y, data S, data R =

EditData.createordereddata(X unordered,resistant sequences,

total data)

3.2.4 Merging fasta and Excel data sets

The function mergefiles that we mentioned in Section 3.2.3 can actually
also be used to combine fasta data sets with data sets in Excel, which is what
we also decided to do, to have one large data set for both the FKS1 and the
FKS2 gene. This can be done in a very similar way as previously described
for combining data sets in Excel, after having defined the X unordered,
columns withmutations, resistant sequences and total data for both
data sets, with the following statement:

X unordered combined, columns withmutations,

resistant sequences,total data = EditData.mergefiles(

X unordered1,columns withmutations1[:-1],resistant sequences1,

total data1,X unordered2,columns withmutations2[:-1],

resistant sequences2,total data2)

17

4 Classification trees

In this chapter we will explain the method that is used to classify data,
being classification trees. We will start by introducing the general concept
of classification trees, and then how to construct them using the CART
algorithm, which is a popular heuristic for constructing such trees.

Classification trees are a form of decision trees, which are supervised
machine learning methods, meaning they work with labeled data rather than
unlabeled data. They are widely used in statistics and data mining as a
method to classify numerical and categorical data, or they are used as a
tool to extract information from data. The main reason for their popularity
for such purposes is their capability to handle high dimensional data where,
but with only a limited number of samples. This situation is very common
in both bio-informatics and statistical genetics, and it is also the case for
our data. Another reason for their popularity is that classification trees are,
in contrast to other classification methods such as neural networks, easy to
interpret as they closely resemble human reasoning [2]. It was for these two
advantages of classification that we decided to use this classification method
in our research.

We used classification trees for both purposes mentioned before: we
wanted to use the labeled data that we had to construct classification trees
and extract information from those trees, and we wanted to be able to classify
new unlabeled data in the future. The data that we received was categorical
data, which is different from numerical data. In numerical data each data
point has a numerical value that can be binary, integer or real. In categorical
data however, the data does not have such a numerical value. In our case for
example, the data is DNA sequences of organisms that are either susceptible
or resistant, which is a class rather than a numerical value. These classes
can of course be converted to numerical data, which is usually done in such
cases, without loss of generality.

4.1 The general concept

The objective when creating a classification tree is to construct a tree model
based on numerical or categorical training data that can then be used to
classify new data [2].

An example of such a tree is shown in figure 4. This classification tree
classifies humans as male or female, based on their height and body weight.

18

By assessing two characteristics of a human being, whether he/she is taller
than 180cm or not and whether he/she is heavier than 80kg or not, a persons
sex is predicted.

Figure 4: Simple classification tree of depth two. Adapted from Classification
And Regression Trees for Machine Learning by Browniee, J. (2016).

Algorithms to create such trees partition the training data recursively at
each step, by choosing a feature, or a combination of multiple features, to split
on. This process is repeated until it has constructed a model that classifies
the data perfectly, or when a specific maximum tree depth is reached. The
final tree will consist of a root node and a number of branches that represent
the order of splits applied for the classification. When there is new data
available, the algorithm can classify this by following the correct path through
the obtained classification tree [2].

The first step in the construction of a classification tree is to split the data
set into training data and test data. It is imported to realize that all this
data has to be labeled. Training data is used by the algorithm to construct
the tree. The in-sample misclassification of a tree is determined by assessing
the labels of the training data. For the evaluation of the performance, labeled
test data is used with which the out-of-sample misclassification is calculated.
The quality of a model is determined by its ability to fit the training data
and the test data, and the complexity of the trees that it constructs, of which
the out-of-sample misclassification is most important [2].

The misclassification of a tree is calculated by comparing the label of
each data point predicted by the tree, compared to the actual label of the
data point. These predicted labels are determined in the following way. The

19

predicted label of a leaf of a tree is the most common label of training data
points in that leaf. Every training data point and each test data point is
classified into a leaf by the tree. Therefore the predicted label of a data
point, being the label of the leaf that it is classified into, can be compared
to the actual label of the data point. The total misclassification is therefore
defined as the ratio between the number of wrongly labelled data points and
the total number of data points[2].

4.2 Constructing Classification trees

The goal when constructing classification trees, is finding the tree with the
lowest in-sample misclassification error, i.e. the tree that fits the training
data the best. There are several methods to construct such classification
trees. A common method is tree constructing algorithms, for example the
CART algorithm. The method we used was Mixed Integer Optimization,
which we compared to the CART algorithm. The way the CART algorithm
works is explained is Section 4.3. We will now discuss several advantages and
disadvantages of both methods.

To minimize the total misclassification error, most tree constructing
algorithms recursively solve local optimization problems, to determine the
best feature to select on at each split. This top down approach is greedy in
nature, which can affect the global optimality of the solution [2]. However,
their time complexity is very low, so a massive advantage is that they can
easily process large data sets.

To tackle the goal of achieving global optimality of a tree, Mixed Integer
Optimization can be used, for integer programming problems find optimal
solutions. Therefore classification trees were formulated as an MIO problem
by D. Bertsimas and J. Dunn in [3]. A problem that they and M. van Dijk in
[2] ran into however, was overfitting. For classification trees overfitting means
that a tree is too fitted on the training data that was used to construct it.
Consequently, mutations found in the training data may be split on in the
tree, when in reality these mutations do not affect susceptibility or resistance.
Therefore the training data may be classified extremely well, whereas the test
data will be classified incorrectly, and the tree may still not perform as well
as desired. Part of the cause of overfitting is a data set that is too small, i.e.
when the number of samples is small.

We will explain this concept of overfitting some more using the example
tree shown in figure 4. For example, in the Netherlands the general population

20

is relatively tall, so if you used a data set of many people from the Netherlands
to create such a classification tree for the world population, based on the
characteristics height and weight, it might look different. The first split
on the tree will probably be based on a higher limit, for example ‘Height
> 185cm’. For people from the Netherlands, this first question is then
appropriate, but this is probably not the case for rest of the world population.
Therefore, more males would be classified wrong than when using a data set
of people from many different countries to create the tree. In conclusion,
if your data set is small, it is less likely to be representative of the general
population of the data that you are researching, and will lead to the problem
of overfitting.

For the biological sequence data that we worked with, the problem of
overfitting is caused by the fact that there are lots of random mutations that
are not related to resistance. If you have enough columns, it will be possible
to perfectly classify your data using these random mutations. However,
such trees will perform very poorly on test data. To tackle the problem
of overfitting we added some more variables and constraints in Section 5.2
to the basis MIO formulation of Section 5.1, and we used a larger data set
to construct the trees.

4.3 CART algorithm

As mentioned before we compared our MIO-based approach to the CART
algorithm. In this section we will explained the way this decision tree
constructing algorithm works.

The CART algorithm is a greedy algorithm, meaning it solves local
optimization problems at each stage. In the context of classification trees this
means that the algorithm starts at the root node of a tree with a predefined
depth. To decide which feature would be best to split on, it calculates the
Gini impurity of the child nodes:

G =
∑
k∈C

pk(1− pk),

where C is the set of classes, and pk is the fraction of samples in that node
that belong to class k. This impurity indicates the purity of leaf. A node is
‘pure’ if all of the data points in that node belong to the same class, otherwise
the node is ‘impure’. If a node is pure, then the Gini impurity is equal to

21

zero. The CART algorithm then makes its decision by minimizing the sum
of Gini impurity measures over all child nodes of that node. After doing so
for the root node, it then executes the same process for each child node of
the root node, and so on.

For an example on the way the CART algorithm works, we recommend
the MSc thesis by Van Dijk, [2] page 15.

22

5 Univariate optimal classification trees

In this chapter we will introduce the Mixed Integer Optimization formulation
of the classification trees.

5.1 Basis mixed integer optimization formulation

In this first section we will start by introducing the basis Mixed Integer
Optimization formulation that we took from the article of Bertsimas & Dunn
on optimal classification trees [3], which Van Dijk also used an adapted in
his MSc thesis [2].

5.1.1 The data and tree structure

We will start by explaining the notation of the data from the Candida glabrata
data sets that we used. As explained before in Section 3.1, the data that we
work with is binary. It is in the general form (xi, yi) for i = 1, . . . , n. Here
xi ∈ {0, 1}p are the sequences of DNA of length p, meaning they can be seen
as vectors where the indices j = 1, . . . , p are the features. These features are
0 if there is no mutation on that position in the DNA, and 1 if there is. The
yi are the binary values that indicate whether the organisms that the DNA
is from were resistant or susceptible. These are therefore the two classes k
that the data points can belong to.
We will now look into the structure and formulation of the classification
trees that we will be creating. A tree of depth D contains T = 2D+1 − 1
nodes, of which t ∈ TB = {1, . . . , bT/2c} are the branch nodes, and t ∈
TL = {dT/2e, . . . , T} are the leaf nodes. The branch nodes can apply splits,
which we denote by aTt xi < 1. This is the split applied by node t. It is
the inner product of the split vector at and the data point xi. The split
vector at ∈ {0, 1}p contains at most one entry that is 1, the others are all 0,
since the classification tree that we are creating is univariate. The index of
the entry that is 1, indicates therefore what feature is being split on. If the
inner product aTt xi is equal to 0, the data point will descend down the left
branch, and if it is equal to 1, it will descend down the right branch. A data
point always ends up in a leaf in our MIO formulation. We then denote all
the ancestors of the leaf t where such a data point took the left branch by
AL(t) and all the ancestors where it took the right branch by AR(t). Hence,
AL(t) ∪ AR(t) denotes all the ancestors of leaf t. Furthermore, the parent

23

node of a node t is denoted by p(t).

5.1.2 The variables and parameters

Now that we have all the basic notation we can start introducing variables
used in the MIO formulation from [2].
The split vector at, t ∈ TB that we talked about before is the main decision
variable in our MIO problem. The variable decides which feature every
branch node splits on. We start off by requiring each branch node to apply
a split on exactly one feature, by adding the following constraint to our
problem:

p∑
j=1

ajt = 1, ∀t ∈ TB (1)

There are several indicator variables that we will introduce for an easier
formulation of all the other constraints. Eventually we want to label every
leaf with the class of the most common class of training data points in
that leaf, and minimize the amount of training data points that are in a
leaf of a different class. Or, in other words, we want to minimize the total
misclassification error.

Therefore we will first introduce the indicator variable zit =
1{xi is in node t ∈ TL}. To make sure this variable receives the correct
values, we set the following constraints:

aTmxi − (1− zit) ≤ 0, ∀t ∈ TL, ∀m ∈ AL(t) (2)

aTmxi + (1− zit) ≥ 1, ∀t ∈ TL, ∀m ∈ AR(t) (3)

Now, if a data point i is in a leaf t, meaning zit = 1, the it should suffice the
splits aTm ≤ 0 for all it’s left ancestor branch nodes, and aTm ≤ 0 for all it’s
right ancestor branch nodes.

Then, to enforce that each data point is assigned to exactly one leaf, we
add the constraint: ∑

t∈TL

zit = 1, i = 1, . . . , n (4)

24

Now we can determine the total number of points in leaf node t:

Nt =
n∑

i=1

zit, ∀t ∈ TL (5)

We then want to determine the predicted class k of leaf t, which is the
most common class of the data points in that leaf. We therefore introduce the
parameter matrix Yik = 1{yi = k}, indicating the class of each data point.
With this parameter we can then define the number Nkt of data points of
class k in leaf t with the following constraint:

Nkt =
n∑

i=1

Yikzit, k = 0, 1, ∀t ∈ TL (6)

Now the predicted class k of leaf t becomes ckt = 1{ct = k}, where ct =
argmaxk=0,1{Nkt}. We want to ensure that each leaf gets assigned exactly
one class. Therefore we add the constraint to limit ckt:∑

k∈{0,1}

ckt = 1, ∀t ∈ TL (7)

The objective is to minimize the misclassification error, so:

min
∑
t∈TL

Lt (8)

where

Lt = Nt −max
k=0,1
{Nkt} = min

k=0,1
{Nt −Nkt}

In [2] and [3] Lt was linearized by the following constraints:

Lt ≥ Nt −Nkt − n(1− ckt), k = 0, 1, ∀t ∈ TL (9)

Lt ≤ Nt −Nkt + nckt, k = 0, 1, ∀t ∈ TL (10)

Lt ≥ 0, ∀t ∈ TL (11)

25

The constraint (9) is indeed necessary, because if the predicted class of a leaf
t is indeed k, so ckt = 1, then Lt must be equal to the total number of data
points in leaf t, Nt, minus the number of data in leaf t belonging to class k,
since we defined this to be the in-sample misclassification. However, if the
predicted class of a leaf t is not equal to k, so ckt = 0, then this should not
define the lower bound of Lt. We have found, however, that the constraint
(10) was not necessary, since the objective is to minimize Lt. Therefore, we
do not need an upper bound for Lt.

Combining all of this together yields the following basic MIO formulation
for constructing optimal classification trees:

min
∑
t∈TL

Lt

s.t. Lt ≥ Nt −Nkt − n(1− ckt), k = 0, 1, ∀t ∈ TL
Lt ≥ 0, ∀t ∈ TL

Nkt =
n∑

i=1

Yikzit, ∀k = 0, 1, ∀t ∈ TL

Nt =
n∑

i=1

zit, ∀t ∈ TL∑
k∈{0,1}

ckt = 1, ∀t ∈ TL

aTmxi − (1− zit) ≤ 0, ∀t ∈ TL, ∀m ∈ AL(t)

aTmxi + (1− zit) ≥ 1, ∀t ∈ TL, ∀m ∈ AR(t)∑
t∈TL

zit = 1, i = 1, . . . , n

p∑
j=1

ajt = 1, ∀t ∈ TB

ajt ∈ {0, 1}, i = 1, . . . , n, ∀t ∈ TB
zit ∈ {0, 1}, i = 1, . . . , n, ∀t ∈ TL

26

5.2 Forcing at least a certain number of training data
points in each leaf

The main issue in other papers on this subject when creating deeper optimal
trees, seemed to be the run time of the program and overfitting. To tackle
the problem of overfitting, we now want to enforce the tree to have a minimal
number of training data points in each leaf. It might then be better to not
apply a split at all at a certain branch node, and therefore have some empty
leaves, to prohibit overfitting. The adaptations that this extension on the
basic MIO formulation requires, were already described in [3], but they were
not used by M. van Dijk in [2]. The adaptations are that we will add a
parameter Nmin, the required minimal number of training data points in a
leaf, and an indicator variable dt = 1{node t applies a split}, and indicator
variable lt = 1{leaf t contains any points}.

We start by introducing lt, defined by the constraint:

zit ≤ lt, i = 1, . . . , n ∀t ∈ TL (12)

Note that we can have lt = 1 even if the leaf t contains no points. However,
this is not a problem for our further formulation so we do not add more
constraints to define lt. Introducing lt means we also need to adjust constraint
(7), since if a leaf t is empty, it should not be labelled with a class. The
constraint to limit ckt then becomes:∑

k∈{0,1}

ckt = lt, ∀t ∈ TL (13)

Now we can enforce the Nmin in the tree, by simply adding the constraint:

n∑
i=1

zit ≥ ltNmin, ∀t ∈ TL (14)

Lastly we have to add the option for a branch node to not apply a split. We
start by simply requiring all entries of at to be 0 when a branch node t does
not apply a split, by changing constraint (1) to:

p∑
j=1

ajt = dt, ∀t ∈ TB (15)

27

Furthermore, a branch node may not apply a split if the parent does not
apply a split. This is to preserve the structure of the tree. We can enforce
this by adding the constraint:

dt ≤ dp(t), ∀t ∈ TB \ {root} (16)

This concludes the extension to the basis MIO formulation of forcing at least
a certain number of training data points in each leaf. However, when running
the program, we found that there were still some issues when interpreting the
results in a biological context. In Section 5.3 we explain the further changes
we made to the MIO formulation to improve this.

5.3 Avoiding ‘meaningless’ splits

When running this program, we ran into a problem that troubled the biological
interpretation of the tree. Since the tree was forced to apply a split at each
branch node, this sometimes meant that when forcing an Nmin, the tree would
apply a ‘meaningless split’ at a branch node t, rather than setting dt to zero.
With a ‘meaningless split’ we mean a split that still sends all training data
points down the same branch, because it splits on a feature that had already
been split at at an ancestor node, or it splits on a feature that is the same
for all training data points in that branch node. This made the biological
interpretation the tree troublesome, because if a tree splits on such a feature it
does not mean that that feature has a mutation that is relevant for resistance
of an organism or not. We therefore altered the MIO-formulation, so that in
such cases the dt would be set to zero, rather than applying a ‘meaningless
split’.

Therefore we changed zit to be for all nodes t ∈ T , so we could add the
constraint:

n∑
i=1

zit ≥ dp(t), ∀t ∈ T \ {root} (17)

This constraint ensures that if a node contains no training data points, the
dt of the parent node is set to zero. We then required some more constraints
for the values of zit, t ∈ TB. Therefore we changed constraints (2) and (3)

28

to:

aTp(t)xi − (1− zit) ≤ 0, ∀t ∈ T \ {root}, if t is the left child of p(t) (18)

aTp(t)xi + (1− zit) ≥ 1, ∀t ∈ T \ {root}, if t is the right child of p(t) (19)

These constraints imply that if the parent p(t) of node t does not apply a
split, so aTp(t) is a null vector, then constraint (18) is always satisfied, and

constraint (19) is never satisfied. This means that if a branch node does not
apply a split, all data points will go to the left child of the node.

Now that we changed these constraints to only be for the parent, rather
than all ancestors, we must add a constraint to preserve the structure of the
tree. We must require zit to be zero if it is zero in its parent node, which is
executed by the following constraint:

zit ≤ zip(t), i = 1, . . . , n ∀t ∈ T \ {root} (20)

This constraint also ensures, together with constraint (4) that zit = 1 for
exactly one node at each depth of the tree, for all i = 1, . . . , n. Therefore,
the value of zit is automatically set to one at the root node for i = 1, . . . , n.
So now zit is correctly defined for all nodes t ∈ T \ {root}, and not just the
leaf nodes.

Combining all of this together yields the following extended MIO formulation
for constructing optimal classification trees with at least Nmin training data
points each leaf and the option for a branch node not to apply a split, where
the constraints that we added to the basis MIO formulation are highlighted.
Note however that we, from now on, include the added constraints regarding
dt when referring to the ’basis’ MIO formulation, since these do not affect
the misclassification. They only help to interpret the results in a biological
context. The ‘extended’ MIO formulation, for classification trees that have
at least a certain number of training data points in each leaf, thus only
contains constraint (14) as an extra constraint compared to the ‘basis’ MIO

29

formulation, which is highlighted in red.

min
∑
t∈TL

Lt

s.t. Lt ≥ Nt −Nkt − n(1− ckt), k = 0, 1, ∀t ∈ TL
Lt ≥ 0, ∀t ∈ TL

Nkt =
n∑

i=1

Yikzit, ∀k = 0, 1, ∀t ∈ TL

Nt =
n∑

i=1

zit, ∀t ∈ TL∑
k∈{0,1}

ckt = lt , ∀t ∈ TL

aT
p(t)

xi − (1− zit) ≤ 0, ∀t ∈ T \ {root}, if t is the left child of p(t)

aT
p(t)

xi + (1− zit) ≥ 1, ∀t ∈ T \ {root}, if t is the left child of p(t)∑
t∈TL

zit = 1, i = 1, . . . , n

zit ≤ lt, i = 1, . . . , n ∀t ∈ TL
n∑

i=1

zit ≥ ltNmin, ∀t ∈ TL

p∑
j=1

ajt = dt , ∀t ∈ TB

dt ≤ dp(t), ∀t ∈ TB \ {root}
n∑

i=1

zit ≥ dp(t), ∀t ∈ T \ {root}

zit ≤ zip(t), i = 1, . . . , n ∀t ∈ T \ {root}

ajt ∈ {0, 1}, i = 1, . . . , n, ∀t ∈ TB
dt ∈ {0, 1}, ∀t ∈ TB
zit ∈ {0, 1}, i = 1, . . . , n, ∀T
lt ∈ {0, 1}, ∀t ∈ TL

30

6 Feature sampling

In [5] a method to reduce the number of options of features to split on
for each branch node is used, for a different MIO formulation with column
generation. This could reduce the running time of the Optimal classification
tree program, which may help to be able to construct deeper trees, which
may help to further reduce overfitting.

6.1 Feature sampling procedure

The feature sampling procedure can be described by Algorithm 1. The
input of the algorithm are the parameters τ, α and qt, and it initializes
Cset(t) = ∅, t ∈ TB and r = 0. The way that the algorithm works is it
selects α% of the input data, and uses the CART algorithm to construct
a tree CARTtemp. The features, in our case the nucleotide positions, that
are being split on are returned. The selected feature of each branch node
t, indicated by CCARTtemp(t) is then added to the Cset(t). Cset(t) is a list
of the features that was split on by the CART algorithm at branch node t.
Therefore, the union operator here means adding the feature that is split on
at branch node t, which is part of the output of the CART algorithm, to the
list Cset. Then, if the feature that is chosen to split on at the root node has
already been selected to split on at the root node a previous run of the CART
algorithm, the r is increased with 1. If the feature that is chosen to split on
at the root node has never been selected to split on at the root node at a
previous run of the CART algorithm before, the r is again set to 0. After
adding the features to the Cset’s and adjusting the value of r, the CART
algorithm is run again. The algorithm keeps running the CART algorithm
until the feature that is chosen to split on at the root node has already been
selected to spit on at the root node τ times before, then the algorithm stops.
The algorithm returns the qt most frequent features j in Cset(t) for all t ∈ TB.

The values that we used for the parameters are also taken from [5], being:
α = 90%, τ = 300, qroot = b150TB c, qt = b100TB c t ∈ TB \ {root}

31

Algorithm 1 Feature sampling procedure

1: INPUT: Parameters τ, α, qt ∈ Z+

2: Initialize: Cset(t) = ∅, ∀t ∈ TB and r = 0
3: while r < τ do
4: Randomly select α% of data, and use CART to construct a tree

CARTtemp

5: Cset(t)← Cset(t) ∪ {CCARTtemp(t) = j ∈ {1, . . . , p}},∀t ∈ TB
6: if CCARTtemp(root) ∈ Cset(root) then
7: r ← r + 1
8: else
9: r ← 0

10: end if
11: end while
12: OUTPUT: The qt most frequent features j in Cset(t),∀t ∈ TB.

The difficulty in implementing the algorithm is mainly in line 5. Reason
being that the feature output from the CART algorithm is not a simple list
with all features listed in order. This is since the CART algorithm allows
branch nodes not to apply a split. We also implemented that, however our
tree then still remained fully balanced, with all data points ending in a leaf
node. However, if the CART algorithm decides not to apply a split at a
branch node, the branch node is turned into a leaf node and the rest of the
tree is pruned, making it unbalanced. Therefore the structure of the tree has
to be represented in the feature output. We will explain the structure of the
feature output of the CART algorithm with the following example. Say we
have a depth 3 tree, where branchnodes are numbered as shown in figure 5,
and it has the feature output of the CART algorithm is the following:

[f0, f1, f3,−2,−2,−2, f2,−2,−2]

The first element of the feature output indicates the feature that is split on
at the root node. It then descents left down the tree, and the next element
indicates the feature at node 1, and the next at node 3. However, if it reaches
a branch node that does not apply a split, or a leaf node, the element in the
list is −2. It then goes back up the tree and descents the first possible new
branch down the right. Then it continues the same. The tree in our example
therefore actually look like the tree shown in figure 6.

32

Figure 5: An example of a classification tree of depth 3.

Figure 6: The classification tree of CART algorithm example.

The difficult part is keeping track of the node number that the list is
at. To read the feature output from the CART algorithm we executed the
exact procedure mentioned earlier in Algorithm 2. Here CCARTtemp is the list
that is the feature output from the CART algorithm. Then it iterates over
that list. If the item in the list CCARTtemp is a feature, it is added to the
appropriate branch node, starting at the root node, t = 0. Again, the union
operator here means adding an element to a list. Then the next node is the
left child node, thus t is set to 2t + 1. If the item in the list CCARTtemp is
not a feature, so it is −2, then we want to go back up the tree, and down
the first not yet explored branch to the left. Therefore t goes back to its
ancestors, until it reaches a node that is a left child. Then t is set to be the
right child of the parent of that left child. This process is continued until we
have iterated over all elements in the CCARTtemp list. Automatically, t never
becomes higher than the number of nodes minus one, where the number of
nodes is 2D+1 − 1. Then the algorithm is finished, and the output is the list
of features that is split on by the CART algorithm, in the order of the node
numbers, from the root node to the bottom right leaf.

33

Algorithm 2 Reading the features output from the CART algorithm

1: INPUT: CCARTtemp

2: Initialize: t = 0
3: for element f in CCARTtemp do
4: if not f equal to −2 then
5: Cset(t)← Cset(t) ∪ f, f ∈ {1, . . . , p}
6: t← 2t+ 1
7: else if k is not the last element in CCARTtemp then
8: Initialize: ancestor = t
9: while ancestor is a right child do

10: ancestor ← parent of ancestor
11: end while
12: t ← ancestor + 1
13: end if
14: end for
15: OUTPUT: Cset(t), t ∈ TB

6.2 Feature sampling in MIO formulation

Now that we have the algorithm to execute feature sampling, we are yet
to implement it into our MIO formulation. Luckily, this is rather simple.
The only extra constraint needed is to set all entries in at, t ∈ TB of the
features that are not in Cset(t) to zero, which can be exercised by the following
constraint:

ajt = 0, ∀j ∈ {1, . . . , p} \ Cset(t), ∀t ∈ TB (21)

34

7 Results

We have now created an extended version of the MIO model that [2] and [3]
constructed. First we made the output of the model much easier to interpret,
in both a mathematical and a biological context. We did this by adding many
print statements, and by circumventing forced splits, which we did by adding
more constraints for dt. Furthermore, we extended the MIO formulation by
adding the option to force at least a certain number of training data points
in the leaves. And lastly we added the option to apply feature sampling
before running the MIO model. In this chapter we will mainly be validating
our different extensions of the MIO model by running the different versions
on the data sets that we received from the Westerdijk Fungal Biodiversity
Institute and the CDC Atlanta combined for many different parameters, and
by comparing it to the CART algorithm, in Python. We executed these
validations to check whether the extensions to the program have made the
program more accurate, have reduced the problem of overfitting, and have
reduced the running time of the program, in which case we could create
deeper trees.

7.1 Information on the Python program

We ran our MIO model on the data by implementing it in Python. The solver
we used to find the optimal solution for the MIO formulation is Gurobi.
The results in this chapter were determined by running the program 100
times, and calculating the accuracies. The in-sample/out-of-sample accuracy
is defined as:

accuracy =
mean number of correctly classified training/test data points

total number of training/test data points per run
·100%

.

The basis shell of the program simply looked like this for running the
program once:

from OptimalClassificationTree import *

print(’Data is imported!’)

test = percentage of data used as test data
depth = depth of the tree

35

feature sampling = enter ‘y’ or ‘n’
Nmin and dt = enter ‘n’ or a list of Nmin values
OCT(text,depth,feature sampling,Nmin and dt)

And when running the program multiple times to calculate the accuracy the
last line of the basis shell was changed to:

nr of runs = number of times you want to run the program
OCT Error(text,depth,feature sampling,Nmin and dt,nr of runs)

For determining the accuracy of the CART algorithm on our data this last
line was changed to this:

CART Error(test,depth,nr of runs)

In the validations in this chapter, the nr of runs was always set to 100.

7.2 The hotspot data set

We first ran our MIO model on the data set from the Westerdijk Fungal
Biodiversity Institute that only consisted of the known first hotspot of the
FKS1 gene, containing three mutations. There was only one resistant isolate
in the data set, which was the only one to contain a mutation in the hotspot
on amino acid position 1895: GAT −→ GGT, meaning amino acid mutation
D −→ G on position 632. We therefore conclude from this that this is a
relevant mutation for causing resistance, though the data set is too small to
be certain.

7.3 Comparing different portions of test data

From the MSc thesis by Van Dijk [2] it was clear that if you take a larger
portion of training data from the data set, and therefore a smaller portion
of test data, the in-sample accuracy would decrease, and the out-of-sample
accuracy would increase. In this section we will show the results of when we
tested whether this was also the case for our two large data sets of the genes
FKS1 and FKS2.

36

MIO CART
Portion
test data

in-sample
accuracy

out-of-sample
accuracy

in-sample
accuracy

out-of-sample
accuracy

12.5% 88.02% 86.83% 87.09% 85.6%
25% 88.17% 86.62% 87.15% 85.59%
37.5% 88.18% 86.48% 87.3% 85.78%
50% 88.47% 86.16% 87.53% 85.46%

Table 1: Accuracy results for depth two trees, created with the basis MIO
formulation and CART, for different portions of test data from the data of
FKS1.

MIO CART
Portion
test data

in-sample
accuracy

out-of-sample
accuracy

in-sample
accuracy

out-of-sample
accuracy

12.5% 89.51% 88.80% 89.31% 88.6%
25% 89.59% 88.20% 89.1% 88.69%
37.5% 89.87% 87.17% 89.2% 88.31%
50% 90.01% 86.94% 89.38% 87.89%

Table 2: Accuracy results for depth two trees, created with the basis MIO
formulation and CART, for different portions of test data from the data of
FKS2.

As shown in table 1 and 2, the in-sample accuracy did not change much
when adjusting the portion of the data used as test data. Hence, we have
decided that from now on we will only test an extension of the program by
taking either 12.5% 25% of the data as test data, instead of testing it on
multiple different portions. We chose these percentages, since if the number
of training data points is lower, the run time is shorter, but it is always better
to use sufficient training data to get accurate results, therefore we decided
on these distribution. We generally chose 25%, for run time reasons, when
we wanted to run the program for many different values of parameters, and
12.5% if we wanted to place results in a biological context.

37

7.4 Comparing basis MIO model with and without
feature sampling

In this section we will compare the accuracy of the basis MIO formulation to
the accuracy of the MIO model with feature sampling applied. We will also
talk about the run time improvement by using feature sampling, which was
another aim of our research.

Gene feature
sampling
applied

in-sample
accuracy

out-of-sample
accuracy

FKS1 no 88.17% 86.62%
yes 87.24% 86.30%

FKS2 no 89.59% 88.20%
yes 89.49% 88.85%

Table 3: Accuracy results for depth two trees, created with the basis MIO
formulation, with and without feature sampling, with 25% used as test data.

When running the MIO model for depth 2 trees 100 times without feature
sampling, with 12.5% of the data used as test data and Nmin set to zero, the
run time of the program for both the FKS1 and FKS2 gene was around half
an hour. When using feature sampling this was reduced to only one third of
the time.

38

7.5 Comparing different depths

In this section we will compare the accuracy of the basis MIO model for trees
of different depths. We will also be comparing these trees of different depths
to trees of such depths created by the CART algorithm. For run time reasons
we were obliged to apply feature sampling. The results are shown in Tables 4
and 5. It is also interesting to note that the run time hardly increased when
increasing the depth of the trees, a fantastic result of feature sampling.

MIO CART
Depth in-sample

accuracy
out-of-sample
accuracy

in-sample
accuracy

out-of-sample
accuracy

2 87.23% 86.22% 87.21% 85.53%
3 88.28% 86.23% 87.87% 86.15%
4 88.85% 86.41% 88.4% 86.22%
5 88.84% 86.10% 88.73% 86.16%

Table 4: Accuracy results for trees of different depths, created with the basis
MIO model and feature sampling, and the CART algorithm, from the data
of the FKS1 gene, with 25% used as test data.

MIO CART
Depth in-sample

accuracy
out-of-sample
accuracy

in-sample
accuracy

out-of-sample
accuracy

2 89.49% 88.85% 89.31% 88.56%
3 90.26% 88.44% 90.07% 87.70%
4 91.24% 87.83% 91.06% 87.98%
5 91.82% 87.68% 91.53% 87.79%

Table 5: Accuracy results for trees of different depths, created with the basis
MIO model and feature sampling, and the CART algorithm, from the data
of the FKS2 gene, with 25% used as test data.

39

7.6 Comparing different depths in combination with
different Nmin

In this section we will compare the accuracy of the basis MIO model to the
accuracy of the MIO model, when extended with the option to force at least
a number of Nmin training data points in each leaf, for different depths. We
first determined, using the basis MIO model, the number of training data
points in the leaf containing the least training data points for trees of depth
2, and then took the mean of that number of 100 trees. For FKS1 this mean
was equal to 3.37 training data points, and for FKS2 this mean was equal to
2.44 training data points. Based on these numbers we decided which different
values for Nmin we were going to look at. The results are shown in Tables 6
and 7 for the FKS2 and FKS1 gene respectively.

depth Nmin in-sample
accuracy

out-of-sample
accuracy

2 0 89.55% 88.47%
1 89.63% 88.26%
2 89.54% 88.41%
3 89.2% 88.22%
4 88.8% 87.67%

3 0 90.31% 87.99%
1 90.21% 88.14%
2 90.05% 87.64%
3 89.58% 88.01%
4 88.99% 87.80%
5 88.56% 87.05%

4 0 91.22% 87.64%
1 91.31% 87.54%
2 90.14% 88.07%
3 89.72% 88.28%
4 89.02% 87.32%

Table 6: Accuracy results for different depth trees, created with the extended
MIOM and threshold sampling, for different values for Nmin, from the data
of the FKS2 gene, with 25% used as test data.

40

depth Nmin in-sample
accuracy

out-of-sample
accuracy

2 0 87.33% 85.98%
1 87.19% 86.52%
2 87.08% 86.22%
3 86.99% 86.36%
4 86.79% 86.69%
5 86.74% 86.6%
6 86.58% 86.33%

3 0 86.99% 86.36%
1 88.24% 86.02%
2 87.83% 86.25%
3 87.39% 86.30%
4 87.44% 86.40%
5 87.28% 86.30%
6 86.97% 86.16%

4 0 88.92% 85.88%
1 88.84% 85.94%
2 87.81% 86.1%
3 87.62% 86.22%
4 87.27% 86.48%
5 87.07% 86.68%
6 86.87% 86.15%

Table 7: Accuracy results for different depth trees, created with the extended
MIOM and threshold sampling, for different values for Nmin, from the data
of the FKS1 gene, with 25% used as test data.

7.7 An example of a classification tree created by the
MIO model

In Figure 7 an example of a classification tree produced by our MIO model
is shown.

41

Figure 7: An example of a classification tree of depth 3 created by the
extended MIO model, with feature sampling, Nmin = 3, 25% as test data,
where the black feature in a branch node is a nucleotide position in the FKS1
gene, and the red features in the branch nodes are nucleotide positions in the
FKS2 gene. The leaves are black if their label is susceptible, and blue if it
is resistant. In the leaves the distribution is shown, where the top numbers
represent the total number of ‘susceptible, resistant’ training data points in
that leaf, and the bottom numbers represent those of the test data.

7.8 Using protein sequences instead of DNA sequences

In MEGA we are able to translate the DNA sequences into protein sequences,
as explained in Section 3.1.2. In this section we will discuss the accuracy of
the MIO model when using these protein sequence data sets. In Section 7.9
we will elaborate on the biological context of these results.

gene sequence type in-sample
accuracy

out-of-sample
accuracy

FKS1 DNA 87.24% 86.30%
protein 92.23% 90.85%

FKS2 DNA 89.49% 88.85%
protein 92.73% 91.10%

both
combined

protein 92.77% 91.23%

Table 8: Accuracy results for trees of depth 2, created with the basis MIO
model and feature sampling, from the data of the FKS1 and FKS2 gene, with
25% used as test data.

42

7.9 Interpreting the results in biological context

After running the basis MIO model 100 times on the DNA sequences data in
Section 7.3, we also let the program generate a dictionary containing all the
locations in the DNA of the FKS1 and FKS2 gene that are chosen to split
on in those 100 trees, and the number of times that they are chosen. With
this information we were able to make the bar plots 8a and 8b, from which
we can identify the nucleotide positions of mutations for which there is most
evidence of being related to resistance.

We did the same for the protein sequence data sets, which gave the bar
plots as shown in Figure 9a and 9b for the FKS1 and FKS2 gene respectively.

We then repeated this process one more time, for the DNA sequence data
sets of the FKS1 and FKS2 gene combined, which is shown in Figure 10a, and
for the protein sequence data sets of both genes combined, which is shown
in Figure 10b

(a) (b)

Figure 8: Two bar plots of the number of times that nucleotide locations in
the DNA sequences of the FKS1 (a) and FKS2 (b) gene are chosen to split
on, in depth 2 trees without feature sampling and Nmin = 0, with 12.5% of
the data used as test data.

43

(a) (b)

Figure 9: Two bar plots of the number of times that amino acid locations in
the protein sequences of the FKS1 (a) and FKS2 (b) gene are chosen to split
on, in depth 2 trees without feature sampling and Nmin = 0, with 12.5% of
the data used as test data.

(a)
(b)

Figure 10: Two bar plots of the number of times that nucleotide (a) and
amino acid (b) locations in FKS1 and FKS2 combined are chosen to split on,
in depth 2 trees using feature sampling, with Nmin = 0, and with 25% of the
data used as test data. The two left nucleotide locations and the four left
amino acid locations refer to FKS1, and the other locations refer to FKS2.

44

8 Conclusion

We wrote a Python program to preprocess and merge all data sets from the
Westerdijk Fungal Biodiversity Institute and CDC Atlanta automatically,
and wrote a user manual on how to use it in Section 3.2. We then succeeded
in making the output of the python program of the model by Van Dijk
much easier to interpret, in both a mathematical and a biological context,
by returning more information as output. We then extended the basis MIO
formulation by circumventing meaningless splits, and forcing at least a certain
number of training data points in each leaf, as explained in Chapters 5.2 and
5.3. Lastly we succeeded in applying feature sampling, which allows us to
create deeper trees without run time issues. We will now discuss the results
that we found in Chapter 7 when validating our model.

Generally we have found that the percentages did not fluctuate much
in terms of out-of-sample and in-sample accuracy for different generated
training and test sets. Van Dijk found that the quality of his model was highly
dependent on the distribution of the test and training data. We resolved this
problem by using a much larger data set to perform our analysis on and using
100 repetitions when validating our method, while Van Dijk used only 20.

In Table 1 we can see that if the portion of the data on the FKS1 gene
that is used as test data is increased, the in-sample accuracy also increases,
but the out-of-sample accuracy decreases. The same is true for the data on
the FKS2 gene, as shown in Table 2. This is also what Van Dijk found in his
MSc thesis [2].

Furthermore, our MIO model has both a higher in-sample accuracy as
well as a higher out-of-sample accuracy than the CART algorithm for the
data on the FKS1 gene. For the FKS2 gene, the in-sample accuracy of our
MIO model is higher than that of the CART algorithm, though this is not
the case for the out-of-sample accuracy, which is roughly equal for the two
algorithms.

Lastly, the in-sample accuracy of our MIO model is 2.5% to 5% higher
(in absolute percentages) than what Van Dijk found, and the out-of-sample
accuracy is around 15% higher, which we think is mostly due to the larger
data set.

In Table 3 the accuracy of the basis MIO model with and without using

45

feature sampling is shown for both genes, with 25% of the data used as
test data. From these results we can conclude the following. For FKS1 the
in-sample accuracy is around 0.9% lower when using feature sampling, and
the out-of-sample accuracy only around 0.3% lower. For FKS2 the in-sample
accuracy is around 0.1% lower, though the out-of-sample accuracy is 0.65%
higher when using features sampling than without. These are nice results,
especially considering that the run time is around 3 times as short for depth
2 trees, and that the run time does not increase for deeper trees.

In Tables 4 and 5 one can see that for both genes the in-sample accuracy
increased when the depth of the trees was increased. The out-of-sample
accuracy did not change significantly for trees of different depths for FKS1,
and it decreased slightly for FKS2, but that could be because it is not
necessary to make deep trees for this data set. For both genes and for
all depths, our MIO model was more accurate or approximately equally as
accurate as the CART algorithm.

In Tables 6 and 7 forcing at least a number of Nmin training data points
in each leaf definitely had a positive impact on the out-of-sample accuracy.
While the in-sample accuracy decreased when increasing theNmin for different
depths, the out-of-sample accuracy was slightly, up to 0.5%, higher for certain
values of Nmin than when Nmin = 0. Therefore we can conclude that forcing
an Nmin can reduce overfitting, especially when creating deeper trees.

In Table 8 we found that both the in-sample accuracy as well as the
out-of-sample accuracy is much higher when using the protein sequences
of the FKS1 and FKS2 gene, than when using the DNA sequences, namely
around 5% for FKS1 and around 3% for FKS2. When combining the data sets
of both genes into one, both the in-sample accuracy and the out-of-sample
accuracy were the highest that we found over all, namely 92.77% and 91.23%
respectively.

In Sections 7.2 and 7.9 we have found several nucleotide and amino acid
positions that seem important in the mechanisms that cause resistance in C.
glabrata.

In Section 7.2 it is explained that from the small hotspot data set we
found that the mutation in the hotspot on amino acid position 1895: GAT
−→ GGT, meaning amino acid mutation D −→ G on position 632, might be

46

a relevant mutation for causing resistance, thoug the data set is too small to
be certain.

In Figure 8a we can see that the nucleotide positions 708 and 1885 of
FKS1 are selected most often by the MIO model. Nucleotide position 1885
translates to amino acid position 629, which is indeed located in the first
hotspot of the FKS1 gene [6], and therefore an accurate result. However, we
also found that nucleotide position 708 appears often in trees constructed by
the MIO model, but when translating it to a protein we realized that this
is a silent mutation. Hence, it is unlikely to be indeed related to resistance.
Such errors can be avoided by using amino acid sequences as input.

In Figure 9a we can see that the most often occuring amino acid positions
for FKS1 are 14 and 271. However, a mutation in position 271 is only
found in one isolate, so there is not enough information to say that this
mutation is relevant for causing resistance. The biological consequence of
this mutation could be researched further to check whether this is relevant
or not. Increasing Nmin could help to avoid finding mutations that appear
only in a limited number of sequences. Amino acid position 14 translates
to the mutation in nucleotide postion 14, which is also found relevant in
Figure 8a, though it is not in a known hotspot. Investigating the biological
consequence of this mutation might be interesting for further research. The
only amino acid positions that are found that are located in a known hotspot
are those on position 629 and 631, although they are not very frequent in
our bar plot.

In Figure 8b we can see that there are several nucleotide positions for
FKS2 that seem important in causing resistance, namely 1975, 1976, 1986
and 1987, which are all located in a known hotspot, and non of these are
silent mutations. However, only position 1987 out of these four positions
also shows up in Figure 9b, translated to amino acid location 663. The other
amino acid locations that have a high frequency in Figure 9b are not located
in a known hotspot, so they may also be interesting for further biological
research.

Lastly in Figure 10 we can see the important nucleotide and amino acid
positions that we found when running the program on the combined data set
of both genes. The most frequent nucleotide positions are 1885 of FKS1, and
1976, 1986 and 1987 of FKS2, which are all located in known hotspots and
are not silent mutations. Therefore these mutations could indeed be related
to resistance. The most frequent amino acid positions are 271 and 631 of
FKS1, and 663, 716 and 1695 of FKS2. Again, a mutation in position 271 of

47

FKS1 is only found in one isolate, so we do not think that we have enough
evidence to conclude that this mutation is related to causing resistance. The
same is true for position 716 and 1695 of FKS2. However, position 631 of
FKS1 and 663 of FKS2 are located in known hotspots, so these results are
promising.

Our overall conclusion of the results found in Chapter 7 is that a bigger
data set indeed led to both a higher in-sample and out-of-sample accuracy.
We outperformed the CART algorithm. Feature sampling indeed led to a
much shorter run time, while still being nearly as accurate as when the
program was run without using it. Moreover, feature sampling made it
possible to create deeper trees, without problems with running time or overfitting.
For deeper trees, the out-of-sample accuracy remained roughly the same. By
forcing at least Nmin training data points in each leaf, we were able to increase
the out-of-sample accuracy slightly, for all depths, with certain values of Nmin

depending on the depth, thus we were able to reduce the effect of overfitting
slightly. Running the program on the protein sequences instead of the DNA
sequences gave unexpectedly high in-sample and out-of-sample accuracies
for both genes, especially for the data set of both genes combined. When
placing our result in biological context, we validated some of our results with
the already available knowledge on hotspots in the FKS1 and FKS2 gene,
and found that some seemingly insignificant mutations were still being picked
up by our MIO model. This can be avoided by forcing at least Nmin training
data points in each leaf, and by using protein sequences as input, rather than
DNA sequences. Moreover, we have also found some mutations that may be
interesting for further research.

48

9 Discussion

9.1 Interpreting the validations of our model

When executing a comparative analysis on the results found in Chapter 7, it
is important to keep in mind that there were still some fluctuations of around
0.2% in the results.

Furthermore, we used the data set that Van Dijk used from the CDC
Atlanta to validate our MIO model in Chapter 7, along with a different data
set from the Westerdijk Fungal Biodiversity Institute. This not only meant
that we had a larger data set than Van Dijk had in his MSc thesis, but also
that the ratio of susceptible and resistant isolates was different. Only 15%
of our data set was resistant, which was 48 isolates, whereas 35% of Van
Dijks data was resistant. Furthermore, he distributed the data into training
and test data differently than we did. Therefore, if the tree did not apply
any splits, then all of the data points would end up in the bottom left leaf,
and because there were more susceptible data points, the label of the leaf
would be susceptible, and all resistant data points would be misclassified.
Because of the way that we distributed our data into training and test data,
if we used 25% of our data as test data, which was 323 isolates in total, the
in-sample accuracy was 323·0.75−48·0.75

323·0.75 = 85.12% if the tree did not apply any
splits, and the out-of-sample accuracy was 323·0.25−48·0.25

323·0.25 = 85.19%. Therefore
one should also keep in mind, when executing a comparative analysis on
the results found in Chapter 7, that an in-sample accuracy of 85.12% and
an out-of-sample accuracy of 85.19% were the trivial lower bound on the
optimum, using our MIO model and distribution of the data. That is also
the reason that the results in Table 7 do not get worse after Nmin = 10, and
after Nmin = 20 in Table 6, after increasing this value further, for they have
reached the lower bound on the optimum.

9.2 Using protein sequences instead of DNA sequences

As we discussed previously, there are certain advantages and disadvantages
to use protein sequences instead of DNA sequences.

A major advantage is the three-fold downsizing of data set, since three
nucleotide columns are replaced by a single amino acid column. This results
in a shorter run time. Furthermore, if a nucleotide mutation is silent (meaning

49

it does not change the encoded amino acid), it will be removed from the
protein input sequence, which further downsizes the data set. Moreover,
removal of silent mutations makes the data set biologically more relevant,
since silent mutations can not confer resistance. This is illustrated in our data
set: when we ran the program using DNA sequences we identified nucleotide
708 as a hotspot 8a. However, this is not a known hotspot, and it turns
out that mutation is silent (GCC −→ GCT, which are both translated into
Alanine). This error was avoided when using protein sequences as input 9a.

There is also a major disadvantage of using protein sequences. We converted
the protein sequences to binary data, meaning changes were indicated by a
one for any given column, and no changes by a zero. However, there are 20
amino acids, and it could be that at a given position, 19 amino acids are
drug sensitive and only 1 amino acid change confers drug resistance (this
appears indeed to be the case at some positions: see reference [6]). In such
a scenario, our model may fail to detect the importance of this change, since
the mutation is indicated equally as any other non-relevant mutation.

This is the case for the nucleotide position 1976 in the FKS2 gene for
example. In the Excel data file it is shown that three different types of
mutations have taken place on this position in different isolates: a T −→
C mutation in two resistant isolates, a T −→ A mutation in one resistant
isolate, which both are not silent mutations, and a deletion in three isolates.
On nucleotide position 1975 there is also a deletion in three isolates, and a T
−→ G mutation in one, which is not silent. All these different mutations in
these two adjacent nucleotide positions translate to different amino acids on
amino acid location 659, but since the data is binary our model will fail to
differentiate between these different mutations in the amino acid locations.

This is also an issue when using DNA sequences, but here the detection
problem is much smaller (there are only 4 nucleotides, and usually only two
per column). This difference in detection sensitivity may explain why the
hotspots that were identified in the DNA sequences (fig 8) do not exactly
align with the hotspots in the protein sequences (fig 9).

However, when we compare DNA and protein hotspot sequences and look
for overlap, we may be able to find the most important hotspots. Indeed,
hotspot amino acid 629 of FKS1 corresponds to hotspot nucleotide 1885 and
hotspot amino acid 663 of FKS2 corresponds to the hotspot nucleotides 1986
and 1987. Both amino acids were indeed shown to be true hotspots when
using drug sensitivity tests [6].

Note that these problems would be resolved when using one hot encoding

50

when converting the data sets to binary data, or by using ternary trees
instead of binary trees, as Van Dijk did [2].

9.3 Further research

As mentioned before, this BSc thesis was based on improving the results
found by the MSc thesis by Van Dijk. However, there are of course still
more things that could be researched within the topic of Mixed Integer
Optimization to create optimal classification trees to classify Candida isolates.
Considering the success regarding overfitting of applying feature sampling
combined with forcing at least a certain number of training data points in a
leaf, it might be interesting to apply this on data sets where deeper trees are
needed, for this did not seem to be the case with our data sets.

We also discovered the limitations of converting our data sets to binary
data when placing the results in a biological context. A solution would be to
combine this research with that of Van Dijk, by not converting the data to
binary data, and creating ternary trees as done by Van Dijk, in combination
with our extensions of feature sampling and forcing at least a certain number
of training data points in each leaf.

Other suggestions for further research are to not just look at the frequency
of chosen locations, but also take into consideration which locations were
chosen to split at at the root node, for example, since this is probably the
most important split.

We also found very high in-sample and out-of-sample accuracies when
running the program on the protein sequences, rather than the DNA sequences,
especially when combining the data sets of the FKS1 and FKS2 gene together.
So further research on running different versions of the MIO on these data
sets might give more interesting results, not just regarding the mathematical
point of view, but also the biological. We decided not to do all our validations
in Chapter 7 on the protein sequences, because we could not translate the
Excel data into protein sequences, and we wanted to do our validations on
as large a data set as possible.

Lastly, as mentioned in the conclusion, some locations in the FKS1 and
FKS2 gene that were marked as significant for causing resistance by our
model are not in known hotspots. Further research on the biological influence
of these mutations would give more clarity on whether these mutations are
relevant or not.

51

A Appendix

A.1 OptimalClassifiationTree.py

from gurobipy import *

import numpy

import Bio

import sklearn.datasets

from Bio.Seq import MutableSeq

from Bio import SeqIO

from Bio.Seq import Seq

from numpy import zeros

from numpy import ones

from numpy import vstack

from numpy import hstack

from sklearn import tree

from sklearn.preprocessing import normalize

from numpy import linalg

from sklearn import datasets

import random

import EditData

##

Data import

gene = 'FKS1'

Data from CLC excel files

filename_data5 = 'CLC_Data_Analysis_Susceptible_strains_finished'

total_data5 = 55

filename_data6 = 'CLC_Data_Analysis_Resistant_strains_finished'

total_data6 = 28

filedirectory = r'/Users/maaike/Dropbox/Documenten/TU/TW_bachelor_jaar_3/'

filedirectory += 'BEP/programma/data/'

52

X_5 = EditData.readdata_excel(filename_data5,filedirectory,total_data5,gene)

X_6 = EditData.readdata_excel(filename_data6,filedirectory,total_data6,gene)

resistant_sequences5 = []

resistant_sequences6 = list(range(total_data6))

print('Number of susceptible sequences from excel: ',len(X_5))

print('Number of susceptible columns from excel: ',len(X_5[0]))

print('Number of resistant sequences from excel: ',len(X_6))

print('Number of resistant columns from excel: ',len(X_6[0]))

X_unordered1, columns_withmutations1, resistant_sequences1, total_data1 = \

EditData.mergefiles(

X_5[1:],X_5[0],resistant_sequences5,total_data5,

X_6[1:],X_6[0],resistant_sequences6,total_data6)

print('Number of sequences from excel: ',len(X_unordered1))

print('Number of columns from excel: ',len(X_unordered1[0]))

Data from new fasta files

total_data2 = 240

if gene == 'FKS1':

filename_data2 = 'PRJNA524686_FKS1_edited'

##filename_data2 = 'PRJNA524686_FKS1_proteins'

else:

filename_data2 = 'PRJNA524686_FKS2_edited'

##filename_data2 = 'PRJNA524686_FKS2_proteins'

X_unordered2, columns_withmutations2 = EditData.createbinarydata(

filename_data2)

print('Number of sequences from fasta: ',len(X_unordered2))

print('Number of columns from fasta: ',len(X_unordered2[0]))

filename_MICvalues = 'MIC_values_edited'

sheetname = 'All isolates'

filedirectory = r'/Users/maaike/Dropbox/Documenten/TU/TW_bachelor_jaar_3/'

filedirectory += 'BEP/programma/data/'

53

Y_unordered, resistant_sequences2 = EditData.determineclass(

filename_MICvalues,filedirectory,sheetname,total_data2)

combining both data sets

X_unordered_combined, columns_withmutations, resistant_sequences, total_data =\

EditData.mergefiles(

X_unordered1,columns_withmutations1[:-1],resistant_sequences1,total_data1,

X_unordered2,columns_withmutations2[:-1],resistant_sequences2,total_data2)

X, Y, data_S, data_R = EditData.createordereddata(

X_unordered_combined,resistant_sequences,total_data)

print('Number of sequences combined: ',len(X))

print('Number of columns combined: ',len(X[0]))

###

def Create_train_and_test(test,data_feature_sampling):

test = test/100

train = 1 - test

#Create indices train and test

if data_feature_sampling == 'n':

n_train = round(total_data*train)

train_index_resistant = sorted(random.sample(

range(data_S,total_data),math.ceil(data_R*train)))

train_index_susceptible = sorted(random.sample(

range(data_S),n_train-len(train_index_resistant)))

test_index_susceptible = sorted(list(set(

range(data_S))- set(train_index_susceptible)))

test_index_resistant = sorted(list(set(

range(data_S,total_data)) - set(train_index_resistant)))

else:

54

total_data_feature_sampling = len(data_feature_sampling[0])+len(

data_feature_sampling[1])

n_train_feature_sampling = round(total_data_feature_sampling*train)

train_index_resistant_full = data_feature_sampling[0]

train_index_susceptible_full = data_feature_sampling[1]

train_index_resistant = sorted(random.sample(set(

train_index_resistant_full),math.ceil(

len(train_index_resistant_full)*train)))

train_index_susceptible = sorted(random.sample(set(

train_index_susceptible_full),n_train_feature_sampling-len(

train_index_resistant)))

#Create train and test sets

X_Train = []

for i in train_index_susceptible:

X_Train.append(X[i])

for i in train_index_resistant:

X_Train.append(X[i])

X_Test = []

if data_feature_sampling == 'n':

for i in range(len(test_index_susceptible)):

X_Test.append(X[test_index_susceptible[i]])

for i in range(len(test_index_resistant)):

X_Test.append(X[test_index_resistant[i]])

Y_Train = [0]*len(train_index_susceptible) + [1]*len(train_index_resistant)

if data_feature_sampling == 'n':

Y_Test = [0]*len(test_index_susceptible) + [1]*len(test_index_resistant)

else:

Y_Test = []

return X_Train,X_Test,Y_Train,Y_Test,train_index_resistant,\

train_index_susceptible

###

def CART_features(alpha,depth,X_Train,Y_Train):

55

Tree CART

D = depth

clf=tree.DecisionTreeClassifier(max_depth=D)

clf=clf.fit(X_Train,Y_Train)

features_CART = clf.tree_.feature

return features_CART

###

def CART_algorithm(test,depth):

X_Train,X_Test,Y_Train,Y_Test,t_i_r,t_i_s = Create_train_and_test(test,'n')

Tree CART

D = depth

clf=tree.DecisionTreeClassifier(max_depth=D)

clf=clf.fit(X_Train,Y_Train)

#calculate misclassification

out_of_sample_misclassification = 0

in_sample_misclassification = 0

for i in range(len(Y_Test)):

if clf.predict([X_Test[i]])!=Y_Test[i]:

out_of_sample_misclassification += 1

for i in range(len(Y_Train)):

if clf.predict([X_Train[i]])!=Y_Train[i]:

in_sample_misclassification += 1

#print(clf.tree_.feature)

return in_sample_misclassification, out_of_sample_misclassification

###

def Feature_Sampling(depth,data_feature_sampling):

56

tau = 300

alpha = 90

D = depth

Tb = int((2**(D+1)-1)/2)

q_root = int(150/Tb)

q_j = int(100/Tb)

C_set = [[] for i in range(Tb)]

r = 0

while r < tau:

test = 100 - alpha

X_Train,X_Test,Y_Train,Y_Test,t_i_r,t_i_s = Create_train_and_test(

test,data_feature_sampling)

C_CART_temp = CART_features(alpha,D,X_Train,Y_Train)

if C_CART_temp[0] in C_set[0]:

r += 1

else:

r = 0

node_index = 0

for k in range(len(C_CART_temp)):

#this code reads the features output given by the CART algorithm

#which walks through a tree via the left

#and indicates a non-split by -2

#if a node applies a split, add it to C_set

if C_CART_temp[k] != -2:

C_set[node_index].append(C_CART_temp[k])

node_index = node_index*2 + 1

#if node does not apply a split, and it is not the last node,

#go back up the tree to a new branchnode

elif k != len(C_CART_temp)-1:

57

ancestor = node_index

while ancestor % 2 == 0: #while parent right child

ancestor = int((ancestor-1)/2)

node_index = ancestor + 1 #go back up

features_notused = []

features_restricted = []

for t in range(Tb):

#make a dictionary of the frequency of the features

max_features = {}

for feature in C_set[t]:

if feature in max_features.keys():

max_features[feature] += 1

else:

max_features[feature] = 1

#make a list of the features sorted by frequency

sorted_max_features = sorted(max_features, key=max_features.get, \

reverse=True)

#determine select q_j most frequent features

if t == 0:

features_restricted.append(sorted_max_features[0:q_root])

else:

features_restricted.append(sorted_max_features[0:q_j])

#determine features that are not in those most frequent features

features_notused_t = []

for feature in range(len(X[0])):

if not (feature in features_restricted[t]):

features_notused_t.append(feature)

features_notused.append(features_notused_t)

print('Set of restricted features: ',features_restricted)

locations_restricted = [[] for i in range(len(features_restricted))]

for node_nr in range(len(features_restricted)):

58

for elt_feature in features_restricted[node_nr]:

locations_restricted[node_nr].append(columns_withmutations[

elt_feature])

print('Which are the locations: ',locations_restricted)

return features_notused, features_restricted

##

def OCT(test,depth,feature_sampling,Nmin_and_dt):

X_Train,X_Test,Y_Train,Y_Test,train_index_resistant,\

train_index_susceptible = Create_train_and_test(test,'n')

if feature_sampling == 'y':

data_feature_sampling = [train_index_resistant]+[

train_index_susceptible]

features_notused, features_restricted = Feature_Sampling(

depth,data_feature_sampling)

print('Feature sampling done!\n')

if Nmin_and_dt == 'n':

Nmin_lst = [0]

else:

Nmin_lst = Nmin_and_dt

###

#loop to run program several times with other N_min values

in_sample_misclassification_lst = []

out_of_sample_misclassification_lst = []

text = ''

for run_time in Nmin_lst:

#Create a new model called Optimal Classification Tree (OCT)

m = Model("OCT")

59

#Number of classes

K = 2

#Set tree depth D

D = depth

#Number of features to select on

p = len(X_Train[0])

#Minimum number of elements in leaves

Nmin = run_time

#Number of sequences

num_of_seq = len(X_Train)

#Leaf nodes and branch nodes

T = 2**(D+1)-1

Tb = range(0,int(T/2))

Tl = range(int(T/2),T)

#Left- and right ancestors

Ar=[] #list of right ancestors per leaf

Al=[] #list of left ancestors per leaf

for i in Tl:

left_ancestors=[]

right_ancestors=[]

node=i

while node>0:

parent=int((node-1)/2)

if node%2 == 1: #if i odd

left_ancestors.append(parent)

else: # if i even

right_ancestors.append(parent)

node = parent

Ar.append(right_ancestors)

Al.append(left_ancestors)

60

#Create variables

a = m.addVars(p,len(Tb), vtype=GRB.BINARY, name="a")

z = m.addVars(num_of_seq,T, vtype=GRB.BINARY, name="z")

l = m.addVars(len(Tl), vtype = GRB.BINARY, name="l")

N = m.addVars(K, len(Tl), vtype=GRB.CONTINUOUS, name="N")

N2 = m.addVars(len(Tl), vtype=GRB.CONTINUOUS, name="N2")

c2 = m.addVars(K,len(Tl), vtype=GRB.BINARY, name="c2")

L = m.addVars(len(Tl), vtype = GRB.CONTINUOUS, name="L")

d = m.addVars(len(Tb), vtype=GRB.BINARY, name="d")

m.update()

#Objective

sum_list=[]

for i in range(len(Tl)):

sum_list.append(L[i])

m.setObjective(sum(sum_list), GRB.MINIMIZE)

(15)

for t in Tb:

sum_list = []

for j in range(p):

sum_list.append(a[j,t])

m.addConstr(sum(sum_list)==d[t])

(16)

for t in Tb:

if t != 0:

61

pt = int((t-1)/2) #parent

m.addConstr(d[t]<=d[pt])

(12)

for t in range(len(Tl)):

for j in range(num_of_seq):

m.addConstr(z[j,t+len(Tb)]<=l[t])

(4)

for j in range(num_of_seq):

sum_list = []

for t in range(len(Tl)):

sum_list.append(z[j,t+len(Tb)])

m.addConstr(sum(sum_list)==1)

(20)

for j in range(num_of_seq):

for t in range(1,T):

pt = int((t-1)/2)

m.addConstr(z[j,t]<=z[j,pt])

(18)

for t in range(1,T):

if t%2 == 1:

q = int((t-1)/2)

for j in range(num_of_seq):

sum_list=[]

for k in range(p):

sum_list.append(X_Train[j][k]*a[k,q])

m.addConstr(sum(sum_list)-(1-z[j,t])<=0)

(19)

for t in range(1,T):

if t%2 == 0:

q = int((t-1)/2)

for j in range(num_of_seq):

sum_list=[]

for k in range(p):

62

sum_list.append(X_Train[j][k]*a[k,q])

m.addConstr(sum(sum_list)+(1-z[j,t])>=1)

Create Y adjacency matrix

Ymatrix = numpy.zeros((num_of_seq,K))

for i in range(num_of_seq):

for k in range(K):

if Y_Train[i]==k:

Ymatrix[i,k]=1

else:

Ymatrix[i,k]=-1

(6)

for k in range(K):

for t in range(len(Tl)):

sum_list=[]

for j in range(num_of_seq):

sum_list.append((1+Ymatrix[j][k])*z[j,t+len(Tb)])

m.addConstr(N[k,t]==0.5*sum(sum_list))

(5)

for t in range(len(Tl)):

sum_list=[]

for j in range(num_of_seq):

sum_list.append(z[j,t+len(Tb)])

m.addConstr(N2[t]==sum(sum_list))

(13)

for t in range(len(Tl)):

sum_list=[]

for k in range(K):

sum_list.append(c2[k,t])

m.addConstr(sum(sum_list)==l[t])

(9)

for t in range(len(Tl)):

for k in range(K):

m.addConstr(L[t]>=(N2[t]-N[k,t]-num_of_seq*(1-c2[k,t])))

63

m.addConstr(L[t]>=0)

(14)

if Nmin_and_dt != 'n':

for t in range(len(Tl)):

sum_list=[]

for j in range(num_of_seq):

sum_list.append(z[j,t+len(Tb)])

m.addConstr(sum(sum_list)>=l[t]*Nmin)

(17)

for t in range(1,T):

sum_list=[]

for j in range(num_of_seq):

sum_list.append(z[j,t])

pt = int((t-1)/2) #parent

m.addConstr(sum(sum_list)>=d[pt])

()

if feature_sampling == 'y':

for t in Tb:

if features_restricted[t]:

for j in range(p):

if j in features_notused[t]:

m.addConstr(a[j,t]==0)

else:

m.addConstr(d[t]==0)

#Create optimal classification tree

m.optimize()

###

##Determine structure of OCT en classify test data

#determines the splitting features (columns)

split_features=[]

64

split_features_print=[]

no_split_applied = len(X[0])-1

for t in Tb:

sum_indices_a_t = []

for i in range(p):

sum_indices_a_t.append(round(a[i,t].X))

if round(a[i,t].X)==1:

split_features.append(i)

split_features_print.append(i)

if sum(sum_indices_a_t) == 0:

split_features.append(no_split_applied)

split_features_print.append('no split')

#classifies test data

leaf_test=[]

leaf_test_susceptible = [0]*len(Tl)

leaf_test_resistant = [0]*len(Tl)

for t in range(len(Tl)):

data_points_per_leaf = []

for i in range(len(X_Test)):

#determines if datapoint i is in leaf t

#p is not a feature but an ancestor node

if all([X_Test[i][split_features[pt]]== 0 for pt in Al[t]]) \

and all([X_Test[i][split_features[qt]]==1 for qt in Ar[t]]):

data_points_per_leaf.append(i)

if Y_Test[i]==0:

leaf_test_susceptible[t] += 1

else:

leaf_test_resistant[t] += 1

leaf_test.append(data_points_per_leaf)

#determines out of sample misclassification

out_of_sample_misclassification = 0

leaf_classes = []

for t in range(len(Tl)):

leaf_class = numpy.argmax([c2[0,t].X,c2[1,t].X])

leaf_classes.append(leaf_class)

if leaf_test[t]: #if leaf is non-empty with test data

65

for i in leaf_test[t]:

if Y_Test[i]!= leaf_class:

out_of_sample_misclassification += 1

#determines in sample misclassification

in_sample_misclassification = int(m.objVal)

in_sample_misclassification_lst.append(in_sample_misclassification)

out_of_sample_misclassification_lst.append(

out_of_sample_misclassification)

#determines locations in DNA that was split on

split_locations = []

for split_feature in split_features:

split_locations.append(columns_withmutations[split_feature])

###

#prints useful information about OCT

text += '\nN_min = ' + str(Nmin)

if Nmin_and_dt != 'n':

text += '\ndt = '

for t in Tb:

text += str(int(d[t].X))+" "

text += '\nThe features that are split on: ' + str(

split_features_print)

text += '\nWhich are locations: ' + str(split_locations)

text += '\nAmount of susceptible traindatapoints in leaves: '

for t in range(len(Tl)):

text += str(int(N[0,t].X))+" "

text += '\nAmount of resistant traindatapoints in leaves: '

for t in range(len(Tl)):

text += str(int(N[1,t].X))+" "

text += '\nClasses of the leaves: ' + str(leaf_classes)

text += '\nThe in sample misclassification is ' + str(

in_sample_misclassification)

text += '\nAmount of susceptible testdatapoints in leaves: ' + str(

leaf_test_susceptible)

text += '\nAmount of resistant testdatapoints in leaves: ' + str(

66

leaf_test_resistant)

text += '\nThe out of sample misclassification is ' + str(

out_of_sample_misclassification)

text += '\n'+'#'*50 + '\n'

print(text)

return in_sample_misclassification_lst, \

out_of_sample_misclassification_lst, split_locations

###

def OCT_Error(test,depth,feature_sampling,Nmin_and_dt,n_runtimes):

if Nmin_and_dt != 'n':

Nmin_and_dt = [Nmin_and_dt]

#run OCT n_runtimes times and calculate total misclassification errors

sum_lst_in_sample_misclass = []

sum_lst_out_sample_misclass = []

split_locations_lst = []

for run_nr in range(n_runtimes):

print('This is the ', run_nr+1, 'th run')

temp_in_sample_misclass_lst, temp_out_sample_misclass_lst, \

split_locations = OCT(test,depth,feature_sampling,Nmin_and_dt)

sum_lst_in_sample_misclass.append(temp_in_sample_misclass_lst[0])

sum_lst_out_sample_misclass.append(temp_out_sample_misclass_lst[0])

for split_location in split_locations:

split_locations_lst.append(split_location)

#print('sum lsts ',sum_lst_in_sample_misclass,sum_lst_out_sample_misclass)

#calculate mean misclassification errors

mean_in_sample_misclass = sum(sum_lst_in_sample_misclass)/n_runtimes

mean_out_sample_misclass = sum(sum_lst_out_sample_misclass)/n_runtimes

#calculate the misclassification error percentages

n_train_data = round(total_data*(100-test)/100)

67

n_test_data = total_data - n_train_data

perc_in_sample_misclass = (mean_in_sample_misclass/n_train_data)*100

perc_out_sample_misclass = (mean_out_sample_misclass/n_test_data)*100

accuracy_in_sample = 100 - perc_in_sample_misclass

accuracy_out_sample = 100 - perc_out_sample_misclass

#create dictionary of the frequency of split locations

split_locations_dict = {}

for split_location in split_locations_lst:

if split_location in split_locations_dict.keys():

split_locations_dict[split_location] += 1

else:

split_locations_dict[split_location] = 1

text = ''

text += 'The program has been run ' + str(n_runtimes) + ' times \n'

text += 'Data from gene '+gene+' was used'

text += ' with test = ' + str(test) + '% \n'

if feature_sampling == 'n':

text += ' Feature sampling was not used \n'

else:

text += ' Feature sampling was used \n'

if Nmin_and_dt == 'n':

text += ' The Nmin was 0 \n'

else:

text += ' The Nmin was ' + str(Nmin_and_dt[0]) + '\n'

text += ' The depth of the trees was ' + str(depth) + '\n'

text += 'The mean in sample misclassification error is: ' + str(

round(mean_in_sample_misclass,2)) + '\n'

text += 'and the mean out of sample misclassification error is: ' + str(

round(mean_out_sample_misclass,2)) + '\n'

text += 'So the in sample accuracy is: ' + str(round(accuracy_in_sample,2)) + '\n'

text += 'and the out sample accuracy is: ' + str(round(

accuracy_out_sample,2))

text += '\nThe frequency of locations in the DNA being chosen to split on: \n'

text += str(split_locations_dict)

text += '\nWhich in order of most frequent to least are: \n'

text += str(sorted(split_locations_dict, key=split_locations_dict.get, \

68

reverse=True))

print(text)

print(str(round(accuracy_in_sample,2))+'\% & '+str(round(

accuracy_out_sample,2))+'\%')

return accuracy_in_sample, accuracy_out_sample

###

def CART_Error(test,depth,n_runtimes):

sum_lst_in_sample_misclass = []

sum_lst_out_sample_misclass = []

for run_nr in range(n_runtimes):

print('This is the ', run_nr+1, 'th run')

temp_in_sample_misclass, temp_out_sample_misclass = CART_algorithm(

test,depth)

sum_lst_in_sample_misclass.append(temp_in_sample_misclass)

sum_lst_out_sample_misclass.append(temp_out_sample_misclass)

#calculate mean misclassification errors

mean_in_sample_misclass = sum(sum_lst_in_sample_misclass)/n_runtimes

mean_out_sample_misclass = sum(sum_lst_out_sample_misclass)/n_runtimes

#calculate the misclassification error percentages

n_train_data = round(total_data*(100-test)/100)

n_test_data = total_data - n_train_data

perc_in_sample_misclass = (mean_in_sample_misclass/n_train_data)*100

perc_out_sample_misclass = (mean_out_sample_misclass/n_test_data)*100

accuracy_in_sample = 100 - perc_in_sample_misclass

accuracy_out_sample = 100 - perc_out_sample_misclass

text = ''

text += 'The program has been run ' + str(n_runtimes) + ' times \n'

text += 'Data from gene '+gene+' was used'

text += ' with test = ' + str(test) + '% \n'

text += 'The depth of the trees was ' + str(depth) + '\n'

69

text += 'The mean in sample misclassification error is: ' + str(round(

mean_in_sample_misclass,2)) + '\n'

text += 'and the mean out of sample misclassification error is: ' + str(

round(mean_out_sample_misclass,2)) + '\n'

text += 'So the in sample accuracy is: ' + str(round(accuracy_in_sample,2)) + '\n'

text += 'and the out sample accuracy is: ' + str(round(

accuracy_out_sample,2))

print(text)

print('& '+str(round(accuracy_in_sample,2))+'\% & '+str(round(

accuracy_out_sample,2))+'\%')

return accuracy_in_sample, accuracy_out_sample

70

A.2 EditData.py

import Bio

from Bio.Seq import MutableSeq

from Bio import SeqIO

from Bio.Seq import Seq

import pandas as pd

def readdata_excel(filename,filedirectory,total_data,gene):

#imports DNA data from excel documents

#import data

file_directory = filedirectory+filename+'.xlsx'

data = pd.read_excel(file_directory, sheet_name = gene)

#create X

X = []

for row_nr in range(total_data+1):

row = data.iloc[row_nr,:]

X.append(list(row))

return X

def mergefiles(X_unordered1,position_nrs1,resistant_sequences1,total_data1,

X_unordered2,position_nrs2,resistant_sequences2,total_data2):

#merges two DNA data sets, both X and Y

#combine data

columnindex_1 = 0

columnindex_2 = 0

locations = []

X_combined = [[] for i in range(len(X_unordered1)+len(X_unordered2))]

while columnindex_1 < len(position_nrs1) and columnindex_2 < len(

position_nrs2):

#if both column indices are at the same DNA position:

if position_nrs1[columnindex_1] == position_nrs2[columnindex_2]:

71

#add elements

for rowindex_1 in range(len(X_unordered1)):

X_combined[rowindex_1].append(X_unordered1[rowindex_1][

columnindex_1])

for rowindex_2 in range(len(X_unordered2)):

X_combined[rowindex_2+len(X_unordered1)].append(

X_unordered2[rowindex_2][columnindex_2])

locations.append(position_nrs1[columnindex_1])

columnindex_1 += 1

columnindex_2 += 1

#if columnindex_1 is at an earlier DNA position:

elif position_nrs1[columnindex_1] < position_nrs2[columnindex_2]:

for rowindex_1 in range(len(X_unordered1)):

X_combined[rowindex_1].append(X_unordered1[rowindex_1][

columnindex_1])

for rowindex_2 in range(len(X_unordered2)):

X_combined[rowindex_2+len(X_unordered1)].append(0)

locations.append(position_nrs1[columnindex_1])

columnindex_1 += 1

#if columnindex_2 is at an earlier DNA position:

else:

for rowindex_1 in range(len(X_unordered1)):

X_combined[rowindex_1].append(0)

for rowindex_2 in range(len(X_unordered2)):

X_combined[rowindex_2+len(X_unordered1)].append(

X_unordered2[rowindex_2][columnindex_2])

locations.append(position_nrs2[columnindex_2])

columnindex_2 += 1

locations.append('none')

#calculate total_data

total_data = total_data1 + total_data2

#determine resistant_sequences

for item_nr in range(len(resistant_sequences2)):

resistant_sequences2[item_nr] = resistant_sequences2[item_nr] +\

total_data1

resistant_sequences = resistant_sequences1 + resistant_sequences2

72

return X_combined, locations, resistant_sequences, total_data

def determineclass(filename,filedirectory,sheetname,total_data):

#determines whether sequences are resistant or not by MIC value

file_directory = filedirectory+filename+'.xlsx'

data = pd.read_excel(file_directory, sheet_name = sheetname)

#read values and calculate their sums

Y_unordered = []

for row_nr in range(0,total_data):

#print(data.iloc[:,13])

row = []

MIC1 = data.iloc[row_nr, 11]

MIC2 = data.iloc[row_nr, 12]

MIC3 = data.iloc[row_nr, 13]

row = sum([float(MIC1),float(MIC2),float(MIC3)])

Y_unordered.append(row)

#print(Y_unordered)

#determine their class by their sum

resistant_sequences = []

for elt_nr in range(len(Y_unordered)):

if Y_unordered[elt_nr] < 1.5:

Y_unordered[elt_nr] = 0

else:

Y_unordered[elt_nr] = 1

resistant_sequences.append(elt_nr)

return Y_unordered, resistant_sequences

def readdata_fasta(filename):

#makes list of data from document

X=[]

73

for seq_record in SeqIO.parse(filename+".fasta", "fasta"):

seq = seq_record.seq

mutable_seq = seq.tomutable()

sequence=[]

for j in range(0,len(mutable_seq)):

sequence.append(mutable_seq[j])

X.append(sequence)

return X

def findwildtype(X,i):

#finds wildtype letter of column i

#create dictionary of column i of the data

wildtype_dict = {}

for elt_index in range(len(X)):

elt_str = X[elt_index][i]

if elt_str in wildtype_dict.keys():

wildtype_dict[elt_str] += 1

else:

wildtype_dict[elt_str] = 1

#print(wildtype_dict)

#find most common element in column

wildtype_val = 0

wildtype_elt = 0

for key in wildtype_dict.keys():

if wildtype_dict[key] > wildtype_val:

wildtype_val = wildtype_dict[key]

wildtype_elt = key

return wildtype_elt

def createwildtype(filename, X):

#creates wildtype list

wildtype = []

for i in range(0,len(X[0])):

74

wildtype_elt = findwildtype(X,i)

wildtype.append(wildtype_elt)

return wildtype

def createbinarydata(filename):

#creates binary array of data

X = readdata_fasta(filename)

wildtype = createwildtype(filename, X)

#binarydata = np.zeros((len(X),len(X[0])))

binarydata = []

for i in range(len(X)):

binaryseq = []

for j in range(len(X[0])):

if X[i][j] != wildtype[j]:

binaryseq.append(1)

else:

binaryseq.append(0)

binarydata.append(binaryseq)

X_shorter, columns_withmutations = removeredundantcolumns(binarydata)

return X_shorter, columns_withmutations

def removeredundantcolumns(X):

#removes columns where all sequences have the same value

X_shorter = [[] for i in range(len(X))]

columns_withmutations = []

for column_nr in range(len(X[0])):

column_sum = 0

for row_nr in range(len(X)):

column_sum += X[row_nr][column_nr]

if column_sum != 0:

columns_withmutations.append(column_nr+1)

for row_nr in range(len(X)):

75

X_shorter[row_nr].append(X[row_nr][column_nr])

columns_withmutations.append('none')

return X_shorter, columns_withmutations

def createordereddata(X_unordered,resistant_sequences,total_data):

#creates an ordered X with susceptible first, then resistant

#and creates a Y

#from a resistant indices list

X_susceptible = []

X_resistant = []

for sequence_nr in range(total_data):

if sequence_nr in resistant_sequences:

X_resistant.append(X_unordered[sequence_nr])

else:

X_susceptible.append(X_unordered[sequence_nr])

X_ordered = X_susceptible + X_resistant

data_S = len(X_susceptible)

data_R = len(X_resistant)

#add a zeros column, used when introducing d_t

for row in range(len(X_ordered)):

X_ordered[row].append(0)

Y = [0]*data_S + [1]*data_R

print('number of susceptible isolates: ',data_S)

print('number of resistant isolates: ',data_R)

return X_ordered, Y, data_S, data_R

References

[1] MEGA. https://www.megasoftware.net. Accessed: 28-06-2019.

76

https://www.megasoftware.net

[2] M. Dijk, van. Classifying candida species using mixed integer
optimization based optimal classification trees. Master’s thesis, Delft
University of Technology, 2019. http://resolver.tudelft.nl/uuid:

068ff836-099b-4abe-8d9e-cf96706169df.

[3] Bertsimas D. Dunn, J. Optimal classification trees. Machine Learning,
106(7):1039–1082, 2017.

[4] Rajendra Prasad (ed.). Candida albicans: Cellular and Molecular
Biology. Springer, 2017.

[5] Crognier G.-Gabor A. F. Zhang Y. Hurkens C.A.J. Firat,
M. Constructing classification trees using column generation.
arXiv:1810.06684 [cs.LG], 2018.

[6] Alastruey-Izquierdo A. Healey K. R. Johnson M. E. Perlin D. S. Edlind
T. D. Katiyar, S. K. FKS1 and FKS2 are functionally redundant but
differentially regulated in candida glabrata: Implications for echinocandin
resistance. Antimicrobial Agents and Chemotherapy, 56(12):6304–6309,
2012.

[7] Bolden-C. B. Kuykendall R. J. Lockhart S. R. Pham, C. D. Development
of a luminex-based multiplex assay for detection of mutations conferring
resistance to echinocandins in candida glabrata. Journal of clinical
microbiology, 52(3):790–795, 2014.

[8] Negri M.-Henriques M. Oliveira R. Williams D. W. Azeredo J. Silva, S.
Candida glabrata, candida parapsilosis and candida tropicalis: biology,
epidemiology, pathogenicity and antifungal resistance. Journal of fungi,
36(2):288–305, 2017.

[9] N. Yapar. Epidemiology and risk factors for invasive candidiasis.
Therapeutics and clinical risk management, (10):95–105, 2014.

77

http://resolver.tudelft.nl/uuid:068ff836-099b-4abe-8d9e-cf96706169df
http://resolver.tudelft.nl/uuid:068ff836-099b-4abe-8d9e-cf96706169df

	Abstract
	Acknowledgements
	Introduction
	Related work and our contribution

	Candida glabrata
	Drug resistance of Candida glabrata
	Our Candida glabrata data set

	In depth explanation of our data and the preprocessing steps
	A general explanation of the data sets and the preprocessing steps
	Our fasta data sets and the preprocessing steps
	Exporting fasta files as protein sequences
	Our Excel data sets and the preprocessing steps
	Combining the large fasta and Excel data sets

	Explanation of the preprocessing steps in the Python program
	DNA data in fasta files
	MIC values in an excel document
	DNA data in Excel files
	Merging fasta and Excel data sets

	Classification trees
	The general concept
	Constructing Classification trees
	CART algorithm

	Univariate optimal classification trees
	Basis mixed integer optimization formulation
	The data and tree structure
	The variables and parameters

	Forcing at least a certain number of training data points in each leaf
	Avoiding `meaningless' splits

	Feature sampling
	Feature sampling procedure
	Feature sampling in MIO formulation

	Results
	Information on the Python program
	The hotspot data set
	Comparing different portions of test data
	Comparing basis MIO model with and without feature sampling
	Comparing different depths
	Comparing different depths in combination with different Nmin
	An example of a classification tree created by the MIO model
	Using protein sequences instead of DNA sequences
	Interpreting the results in biological context

	Conclusion
	Discussion
	Interpreting the validations of our model
	Using protein sequences instead of DNA sequences
	Further research

	Appendix
	OptimalClassifiationTree.py
	EditData.py

	Bibliography

