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Abstract

Clock synchronization among the nodes of a wireless acoustic sensor network (WASN) is
a significant issue that affects the performance of multi-channel noise reduction schemes.
Since independent sensors are utilized, each accompanied by its internal clock, clock
offsets are inevitable, even if the mismatch in the sampling frequencies is negligible. In
this thesis, clock offsets are mathematically modeled and the problem of multi-channel
linear filtering for speech enhancement is addressed through signal subspace methods.
For this purpose, the generalized eigenvalue decomposition (GEVD) of the cross-power
spectral density (CPSD) matrices of the noise and target speech processes is capitalized.
Beamformers based on this technique are proved to be invariant to sensor clock offsets
when used in a blind manner, exploiting only network measurements. This result is
confirmed through experiments in a simulated environment.
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Introduction 1
Portable personal devices, such as smartphones, tablets and laptops, are increasingly
penetrating the business and private lives of people. These devices are equipped with
multiple sensors for different functions and may support various kinds of wireless inter-
faces for data communication. From an acoustical point of view, these devices usually
include embedded microphones and can therefore be used to form an ad hoc network
with the goal of completing a speech signal processing task. An example can be a tele-
conferencing application, where the overlapping speech from multiple participants can
result in poor intelligibility for the remote listener, especially in a reverberant room.

In systems like this, multi-microphone schemes, such as beamforming, can be used
to enhance the noisy signal prior to broadcasting. Their major advantage is that
they exploit spatial characteristics of the acoustic scenario, in addition to the spectral
characteristics of the sources, and can distinguish among target speech sources and
noise sources that have different positions.

A wide class of beamformers assume a fixed regularly arranged microphone array with
accurately known microphone positions, and they usually also require knowledge of the
direction of the desired sound source. Blind beamforming techniques are another cate-
gory, which does not assume prior knowledge of the microphone and source positions.

Traditional array techniques are not always applicable to ad hoc distributed sensor
networks, bevause they differ from a centralized array in several ways and that creates
challenges for the processing of the recorded signals. For instance, they include limited-
power processing units and not any dedicated audio hardware.

A critical component in these networks is the clock synchronization, as each sensor
has its own clock and a common time system is needed for tasks of signal processing.
This is often the cause of reduced beamforming performance. This problem is the main
motivation for the work presented in this thesis, which focuses on how the performance
of typical linear beamformers is adjusted under clock imprecisions.

1.1 Research Statement and Outline

To cover the above topic, in this thesis the following general research question is ad-
dressed:

What is the effect of sensor clock offsets on the noise reduction performance of linear
filters and, particularly, filters based on signal subspace techniques?

The rest of the thesis is organized as follows. Chapter 2 presents some fundamental
terms in the field of speech signal processing and introduces the mathematical model
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for the rest of the work. In Chapter 3 the problem description is given, highlighting the
importance of dealing with sensor clock offsets. In Chapter 4 signal subspace methods
for speech enhancement are introduced and the form of optimal linear beamformers
based on themis given. Chapter 5 presents the main contribution of this thesis, which
is the incorporation of clock offsets into the system model and the study of how sig-
nal subspace-based beamformers perform when these are present. Chapter 6 provides
simulation results that support the analysis in the preceding chapter. Finally, Chap-
ter 7 gives a brief summary and critique of the findings and identifies areas for further
research.
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Preliminaries 2
This introductory chapter discusses some fundamental terms in the field of speech signal
processing and presents the mathematical system model that the subsequent analysis
is based on.

2.1 Background Theory

2.1.1 Speech Signal Processing

The focus of this thesis is speech signals. A speech signal is created by changes in air
pressure and can be represented as a function of time f(t), with f representing the air
pressure at time t. Speech signals are captured by acoustic sensors (microphones) in
an intricate manner. Microphones operate based on different physical principles but
they all share the main function of converting the air pressure variations of a sound
wave into alternating voltage fluctuations. A component used alongside microphones is
the analog-to-digital (A/D) converter, which samples the analog electrical signal of the
microphone at regular time intervals and converts it to a digital signal. This conversion
is necessary since the devices (e.g., computers) where the signal analysis and processing
take place are digital in nature and have finite precision available for the depiction of
the signal values.

Speech signal processing entails all activities that concern the acquisition, storage,
representation and manipulation of speech signals and the information they contain
[1].

In principle, a signal can have any functional form and it is possible to produce signals,
such as sound waves, with extraordinary richness and complexity. Signal analysis is
important, as a means of extracting information, drawing conclusions and commenc-
ing the processing of the signals. This analysis can take place in different domains,
principally the time and the frequency domains.

In the field of speech signal processing, most speech enhancement algorithms are per-
formed in the frequency domain. Frequency analysis or spectral analysis is a powerful
mathematical tool and has developed greatly since its advent. A signal can be converted
between the time and frequency domains with a pair of mathematical operators called
a transform. The transform relevant to this study is the Fourier transform, which con-
verts a time function into a sum of sine waves of different frequencies, denoted frequency
components, possibly infinite in number. After the processing in the Fourier domain,
the inverse Fourier transform is used to reconstruct the signal into a time function.
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The two most common Fourier representations for discete-time signals are the discrete-
time Fourier transform (DTFT) for infinitely long data sequences, and the discrete
Fourier transform (DFT) for finite-duration sequences. More information on the DTFT
can be found in [1]. All information on the DFT necessary for this thesis can be found
in Appendix A.2.3.

2.1.2 Fundamentals of Random Processes and Systems

Part of this thesis concerns wide-sense stationary (WSS) processes [2]. For WSS pro-
cesses, the mean of the process µX(k) = E[X(k)], where E(·) is the mathematical
expectation operator, is a constant, independent of time. In most analyses, it is as-
sumed that the processes are zero-mean, meaning µX(k) = µX = 0. Moreover, the
autocorrelation sequence rX(k, l) = E[X(k)X(l)] depends only on the difference k − l,
which is called the lag, and not the time itself. Permitting a slight abuse in notation,
the zero argument is dropped and the autocorrelation is simply written as a function
of the lag [2], as in rX(k, l) = rX(k − l, 0) ≡ rX(k − l).
Applying the Fourier transform to the study of random processes is not straight-
forward, as they are collections of signals. That is why a different approach is
adopted: The power spectrum or power spectral density (PSD) of a random WSS
process {Xn} is the Fourier transform of its autocorrelation sequence rX(k), i.e.,
SX(ω) =

∑∞
k=−∞ rX(k)e−jωk.

The focus of this thesis is linear time-invariant (LTI) systems [2]. Such a system is
fundamentally described by its impulse response function, which is its response to an
impulse function, modeled as a Kronecker delta function for discrete-time systems. For
an LTI system, knowledge of the impulse response function h(n) suffices to describe
the system, since the output to any arbitrary input x(n) can be simply computed as

y(n) =
∞∑

k=−∞

x(k)h(n− k) = x(n) ∗ h(n), (2.1)

where ∗ stands for linear convolution.

This concept extends easily to multiple-input multiple-output systems. If an LTI system
is excited by the inputs xp(n), p = 1, . . . , P , which generate the outputs yq(n), q =
1, . . . , Q, then the system outputs will be given by

yq(n) =
P∑
p=1

xp(n) ∗ hp,q(n),

where hp,q(n) is the impulse response connecting input xp(n) to output yq(n).

An LTI system is described in the Fourier domain by its frequency response function
H(ω), which if the Fourier representation of h(n). This function is obtained as

H(ω) =
Y (ω)

X(ω)
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and is the linear mapping of the Fourier transform of the input X(ω) to that of the
output Y (ω). The frequency response of a system is a special case of the transfer
function of a system, which is defined in the Z-transform domain. More on this can be
found in [3].

2.1.3 Time-Frequency Analysis

A signal in time domain may be regarded as a representation with perfect time reso-
lution and no frequency information. On the other hand, the Fourier transform of a
signal may be considered to have perfect spectral resolution but no time information;
that is because, in principle, frequency analysis is conducted as an average over all
time. As such, spectral analysis loses all chronological information and fails to convey
when different events occur in the signal. This is not a problem for stationary signals,
as their frequency components remain constant over time. However, it is a problem for
non-stationary signals, such as speech and audio signals. In such a case it is important
to investigate how the frequency content of a signal varies over time. What is more, this
averaging over the complete history of the signal can be challenging, especially in real-
time applications. That is why it would be useful to divide the signal into segments,
so that the processing can begin before the entire signal has been received.

The above are reasons that led to the development of methods in the time-frequency do-
main. Time-frequency representations provide both temporal and spectral information
at the same time. Thus, they are particularly practical for the study of signals con-
taining time-varying frequency components. Given the number of different applications
and some theoretical limitations that cannot be overcome, the problem of describing a
signal in a joint time and frequency manner does not admit a unique answer.

The most typical time-frequency representation is obtained via the short-time Fourier
transform (STFT). This is the method relevant to this study and it is analyzed in
Appendix A.3. The STFT replaces the global Fourier analysis with a series of local
analyses: the signal is localized by moving an observation window along the time axis,
and applying the Fourier transform to obtain the frequency content of the signal for
each position of the window. This transform provides a uniform resolution in time and
frequency. In practice, the STFT is computed as

Xm(k) =

N/2−1∑
n=−N/2

x(n+mR)wA(n)e−j2πkn/N ,

where x(n) is the input signal, wA(n) is the analysis window function of length M ,
R is the window hop size in samples and Xm(k) is the DFT of the windowed data
centered around time mR, with m indicating the time frame. Often, it is R < M , in
which case windows are overlapping. The number of frequency components has to be
greater than the length of the windowed input data, which means that the DFT length
should be N ≥ M . It is typically N = 2j, j ∈ N+, so as to accelerate the fast Fourier
transform (FFT) algorithm.
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The time signal is reconstructed using the Inverse STFT (inverse STFT (ISTFT)),
which is the inverse DFT (IDFT) of this sum, possibly including a synthesis window
wS(n)

x(n) =
∞∑

m=−∞

N−1∑
k=0

Xm(k)wS(n−mR)e−j2πk(n−mR)/N .

2.2 Acoustic Concepts

In the field of acoustics, the room impulse response (RIR) function formally represents
the sound transmission from a source to a particular receiving point in a room. It
contains all information regarding the audible properties of the sound field in the spe-
cific acoustic scene. It covers all kinds of phenomena that a wave undergoes while it
propagates, such as reflection, diffraction, refraction and scattering on obstacles.

This thesis follows the approach of geometrical room acoustics [4], which, admittedly,
dictates a substantial simplification of the wave propagation laws. This simplification
is ensured by adopting the notion of vanishingly small wavelengths. This assumption
is justified when the dimensions of the room including all its details are large compared
to the sound wavelength. In typical rooms, this holds for frequencies larger than 1000
Hz [4].

Geometrical room acoustics assumes that the sound sources are point sources and that
the boundaries and surfaces in the room are plane and smooth. It considers reflections
to be specular and reflection coefficients to be frequency-independent. In addition,
it regards homogeneous media that do not cause any energy loss. Any typical wave
effects other than reflection are neglected, since propagation in straight lines is its
central premise. This hypothesis is invalid especially for low frequencies, where this
method fails to accurately represent the sound propagation.

Obviously, this approach can only partially convey the acoustical phenomena occurring
in a room. Nevertheless, it is of great importance because of its conceptual simplicity
and the ease of computations it provides.

A simple description of the mechanism for reflections is the following: A spherical wave
propagates away from the source in all directions. The sound that first reaches the
receiver position corresponds to the wave component that has traveled directly from
the source to the receiver and is called the direct sound. This holds provided, of course,
that the direct path is not blocked by obstacles. This component is soon followed by
others that have been reflected one or multiple times by boundaries or objects before
reaching the receiver. Besides the difference in arrival time, normally these reflections
are weaker than the direct sound. This is because the sound intensity is reduced as
the area of the spherical wavefront increases (spherical distance attenuation) [5]. The
reflections appear at first rather sporadically, later at higher density. In an idealized
form, an RIR is composed of infinitely many reflections, if the surfaces do not cause
any attenuation. It is more realistic to assume, though, that reflected wave components
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Figure 2.1: Illustration of a room impulse response function.

will continue to reach the receiver until all energy has been absorbed by the boundaries
or objects.

If all absorption coefficients are frequency-independent, the observed signal at any
position will be the superposition of (infinitely) many replicas of the source signal. The
RIR is then

h(t) =
∑
n

Anδ(t− tn)

where An is the magnitude of the particular reflection, tn is the respective traveling
time for the wave and δ(t) is the Dirac delta function.

Although the reflection components of an RIR all admit the same physical description,
they vary greatly from a subjective point of view. A reflection is not perceived as a
separate event as long as its delay and amplitude compared to the direct sound do not
exceed certain limits [4]. It only leads to perceiving the source sound as longer and
louder. Thus, the “early reflections” give support to the source and improve the intel-
ligibility of speech. The numerous weak reflections which reach the listener with longer
delays merge into what humans perceive as reverberation and create a diffused noise
environment, as they arrive at approximately the same level and time from multiple lo-
cations. These reflections may contribute, for example in a concert hall, to the warmth
and brilliance of music. However, in acoustically non-specialized environments, such
as a swimming pool, this late reverberation field can be very detrimental for speech
intelligibility. This distinction of reflections is qualitatively illustrated in Fig. 2.1.

2.3 A General System Model

At this point, a general signal model will be introduced for this study. According
to this model, Ns point sound sources which are static in space and (spatially and
temporally) mutually uncorrelated are producing continuous time signals sn(t), n =
1, . . . , Ns. These signals propagate in a reverberant room and impinge on an M -element
microphone array. The signals captured by the microphones are further corrupted by
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temporally white and spatially uncorrelated additive sensor noise with time signal zm(t),
m = 1, ...,M , e.g., thermal noise. A homogeneous, lossless medium is assumed. For
each source, the effect of the room reverberation and the microphone set-up on its
signal is modeled as an LTI system. This system operates as a finite impulse response
(FIR) filter on it. This clearly exposes that this model cannot account for the entirety
of reflections in the room, but only for a number of them.

Under these assumptions, the continuous-time signal at the output of the m-th micro-
phone is given by

ym(t) =
Ns∑
n=1

hn,m(t) ∗ sn(t) + zm(t) (2.2)

=
Ns∑
n=1

s′n,m(t) + zm(t), (2.3)

m = 1, . . . ,M , where hn,m(t) is the acoustic RIR from the n-th source to the m-th
microphone and s′n,m(t) = hn,m(t) ∗ sn(t) is the clean signal originating from the n-th
source, as observed at the m-th microphone. All previous signals are considered to be
real and broadband. For now, it is also assumed that they are realizations of zero-mean
WSS processes.

After sampling ym(t) and applying the DFT, Eqs. (2.2)–(2.3) are rewritten in the
Fourier domain as

Ym(f) =
Ns∑
n=1

Hn,m(f)Sn(f) + Zm(f)

=
Ns∑
n=1

S ′n,m(f) + Zm(f), m = 1, 2, ...,M,

where Ym(f), Hn,m(f), Sn(f), S ′n,m(f) = Hn,m(f)Sn(f), and Zm(f) are the frequency-
domain representations of ym(t), hn,m(t), sn(t), s′n,m(t), and zm(t), respectively. Note
that the frequency components delivered by the DFT are discrete. Hence, variable f
actually stands for fk, where k is the frequency bin index. The subscript k is dropped
for readability purposes.

Considering that the processing will take place separately for each frequency compo-
nent, the frequency variable f will be omitted in the sequel, as in

Ym =
Ns∑
n=1

Hn,mSn + Zm

=
Ns∑
n=1

S ′n,m + Zm.

8



If all M microphone signals in the frequency domain Ym are stacked in a column vector
the following representation is obtained

y =
Ns∑
n=1

hnSn + z (2.4)

=
Ns∑
n=1

s′n + z,

where

y = [Y1 Y2 · · · YM ]T ,

hn = [Hn,1 Hn,2 · · · Hn,M ]T , (2.5)

z = [Z1 Z2 · · · ZM ]T ,

s′n =
[
S ′n,1 S

′
n,2 · · · S ′n,M

]T
= [Hn,1 Hn,2 · · · Hn,M ]TSn

= hnSn,

and superscript T denotes the transpose of a matrix.

The elements Hn,m in vector hn of Eq. (2.5) are called the acoustic transfer functions
(ATFs) and they are defined separately for each microphone m. As the frequency-
domain equivalent of the RIR, they describe the frequency-dependent effects of both
the environment (e.g., room reverberations) and the sensor setup on the n-th source
signal [6]. The ATF vector hn is indicative of the relative positions between the sound
source n and the microphones. For this problem, the ATF vectors are considered time-
invariant, since the sources and sensors are static in space and the room characteristics
do not change.

From this point on, without loss of generality, the first microphone (m = 1) will be
considered as the reference microphone. With this in mind, Eq. (2.4) can be rearranged
in the following form

y =
Ns∑
n=1

dnS
′
n,1 + z, (2.6)

where

dn = [1 Dn,2 · · · Dn,M ]T

=
1

Hn,1

[Hn,1 Hn,2 · · · Hn,M ]T

=

[
1
Hn,2

Hn,1

· · · Hn,M

Hn,1

]T
(2.7)

=
1

Hn,1

hn,
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and S ′n,1 = Hn,1Sn is the clean speech DFT coefficient of the n-th source, as observed
at the reference microphone m = 1.

The relative transfer function (RTF) is defined as the ratio between the ATFs of two
sensors. Typically, in a multi-channel setting, one specific microphone is chosen as the
unique reference, as was done above, and all ATFs are normalized with respect to it.
In this case, the elements Dn,m in vector dn Eq. (2.7) represent the RTFs for the n-th
source with respect to reference microphone m = 1. The RTF vector dn is called the
steering vector, it is, of course, frequency-dependent and, for this thesis, time-invariant.

It should be noted that for the general model discussed in this section and summarized
in Eq. (2.6), no distinction was made between target sources and interfering sources.

2.4 A More Specific System Model

In this section, the model described in Section 2.3 will be particularized to the exact
scenario that the rest of the thesis will study and the DFT analysis so far will be
substituted by the STFT analysis.

Consider the model of Section 2.3 and suppose that, out of the Ns active sources, K are
the desired sources to be preserved (target sources) and the rest are interfering sources.
The signals are received by M sensors arranged in an arbitrary array. For the rest of
this work, the effect of the noise sources will be clearly distinguished from that of the
target sources. The continuous-time signal at the m-th microphone is

ym(t) =
K∑
n=1

hn,m(t) ∗ sn(t) +
Ns∑

n=K+1

hn,m(t) ∗ sn(t) + zm(t) (2.8)

= xm(t) + vm(t),

m = 1, . . . ,M , where xm(t) =
∑K

n=1 hn,m(t) ∗ sn(t) is the received target signal at

microphone m, and vm(t) =
∑Ns

n=K+1 hn,m(t) ∗ sn(t) + nm(t) is the total noise signal
observed at the microphone, including the convolved interfering signals and the spatially
and temporally uncorrelated sensor self-noise signal.

To obtain the STFT representation of the signal, the multiplicative transfer function
(MTF) approximation will be exploited. This approximation assumes that the support
of the RIRs is finite and sufficiently short compared to the duration of the STFT analysis
window. If so, the convolution with an RIR in the time domain can be converted into
a multiplication in the STFT domain. As the length of the analysis window increases,
the MTF approximation becomes more accurate [7].

With this in mind, Eq. (2.8) is transformed into the STFT domain using a window of
length NDFT , as in

Ym(k, l) =
K∑
n=1

Hn,m(l)Sn(k, l) +
Ns∑

n=K+1

Hn,m(l)Sn(k, l) +Nm(k, l)

= Xm(k, l) + Vm(k, l),
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where k is the frame number and l is the frequency bin index. Note that the LTI ATFs
Hn,m(k, l) do not change with time, therefore the frame number has been dropped.

Stacking the received microphone signals Ym(k, l), m = 1, . . . ,M , in a vector y and
similarly for Xm(k, l) and Vm(k, l), leads to the following signal model

y(k, l) = x(k, l) + v(k, l),

or, dropping the frame number k and the frequency bin index l from the notation,
simply

y =
K∑
n=1

dnS
′
n,1 + v, (2.9)

= x + v, (2.10)

where S ′n,1 is the DFT coefficient of the n-th source at this frame and frequency bin,
dn is the steering vector containing the RTFs from the n-th source to the microphones
and y, x and v are of size M × 1, .

For each particular frequency bin, it is assumed that the signals y, x and v are real-
izations of the respective zero-mean WSS processes, the latter being denoted by the
corresponding capital letter. It is further assumed that the received target and noise
processes are spatially uncorrelated, meaning E[XVH ] = E[VXH ] = 0M×M , where the
superscript H denotes the conjugate transpose operator and 0M×M is a matrix of size
M ×M with all its elements equal to 0.

For each frequency bin, the cross-power spectral density (CPSD) matrix of the received
process Y is given by

RY = E[YYH ] = RX + RV, (2.11)

where RX = E[XXH ] and RV = E[VVH ] are the CPSD matrices of X and V, respec-
tively. The size of these matrices is M ×M . Stemming from their definition, CPSD
matrices are in general positive semidefinite matrices.

The term “cross” refers to the multichannel character of these complex PSD matrices.
The CPSD matrix in the frequency domain is the equivalent of the correlation matrix
in the time domain.

Using Eq. (2.9), it is obvious that the received target CPSD matrix is

RX =
K∑
n=1

σ2
S,ndnd

H
n , (2.12)

where Sn,1 refers to the n-th source target process and σ2
S,n = E[S2

n,1] is its variance.
Obviously, it is rank(RX) = K since the MTF approximation is employed.

On the other hand, due to the sensor self-noise, it is rank(RY) = rank(RV) = M .
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2.4.1 Estimation of the Cross-Power Spectral Density Matrices

Access to the actual CPSD matrices of the processes is hardly ever possible. In practice,
these matrices are estimated using the data available.

The received noise CPSD matrix RV can be estimated as R̂V during “noise-only”
periods, whereas RY is estimated as R̂Y during “speech and noise” periods. This
necessitates the existence of a voice activity detector (VAD) [8] in the system. Direct
access to the samples of the target signals is most often impossible. Therefore, it is
typical to obtain the estimated received target CPSD as the difference of the two above
or

R̂X = R̂Y − R̂V. (2.13)

A customary approach is to estimate the CPSD matrices using temporal averaging.
This is the chosen estimation method in this thesis: The STFT is performed on the
respective signals and the average over a number of time frames is obtained. Thus, the
estimation of RY is done using un unbiased sample covariance matrix [9], as

R̂Y =
1

NY

NY∑
n=1

y(n)yH(n)

where y(n) is the observed signal in time frame n and NY is the number of frames used.

The same method is used for the noise CPSD matrix, during “noise-only” periods, and

R̂V =
1

NV

NV∑
n=1

v(n)vH(n),

where v(n) is the noice signal in time frame n and NV is the number of frames used.

This estimation process inevitably introduces inaccuracies, since the estimates reach
the actual matrices only for infinite number of samples. This methodology corresponds
to Welch’s method of modified periodogram averaging. The reader is referred to [2] for
an overview of non-parametric methods for spectrum estimation.
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Problem Background and
Related Work 3
This chapter sets the scene for the rest of the thesis by outlining the problem back-
ground; in particular, wireless acoustic sensor networks (WASNs) and their application
to speech enhancement are discussed, along with the synchronization problems they
face. An overview of related prior work that can be found in literature is given and,
finally, the specific scenario for this thesis, where clock offsets are present, is described.

3.1 Problem Background

3.1.1 Beamforming for speech enhancement

Speech enhancement is concerned with improving some perceptual aspect of speech
that has been degraded by noise [10], be that perception by humans or better decoding
by systems. Speech enhancement algorithms aim at improving the performance of
a system whose speech input is contaminated by noise, and this goal translates into
improving the quality and intelligibility of degraded speech. Better speech quality is
perceived as increased “pleasantness” of the speech signal and it is highly desirable, as
it can reduce listener fatigue. Improved intelligibility means that a noisy signal becomes
more comprehensible by the listener. All speech enhancement algorithms reduce the
background noise to some extent and are, therefore, referred to as noise suppression,
or reduction, algorithms.

The need for speech enhancement arises in a variety of situations in which the speech
signal originates from a noisy location or propagates through a noisy communication
channel. This noise may emanate from interfering sources, noisy system elements or
environment reverberations. Examples are voice communication applications, such as
cellular telephone systems, speech recognition systems, teleconferencing systems and
hearing aids. Depending on the application, intelligibility may be weighed as more
important than speech quality and vice versa.

Speech enhancement schemes are divided into single- and multi-microphone schemes.
Multi-microphone speech enhancement algorithms, the topic of this study, use measure-
ments from multiple microphones and exploit both temporal and spatial information.
These algorithms are also often referred to as acoustic beamforming methods ; beam-
forming is a signal processing technique that is used in sensor arrays with the purpose
of directional signal transmission or reception. When used at the receiving end, the
spatial samples collected by the array are processed with the aim of estimating the
signal arriving from a specific direction, in the presence of noise and interfering sig-
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nals. Thus, a beamformer performs spatial filtering to separate signals that overlap
frequentially and temporally but originate from different locations [11].

As in other domains, in acoustic applications beamforming algorithms achieve spatial
selectivity by relying on the concept that signals recorded by different microphones in
a room include components that are delayed and scaled versions of each other. By
appropriately adding these microphone signals, including delay and scaling compensa-
tion, signal amplification in a desired direction is accomplished. This thesis concerns
spectral speech enhancement methods of linear beamforming, in which the noisy speech
signal undergoes processing in the frequency domain.

Using the model y = x + v of Eq. (2.10), where y is the observed signal vector for the
specific frequency bin, the linear beamforming process can be symbolized as a filtering
operation with output

x̂ref = wHy,

where x̂ref is the estimate of xref , the target speech DFT coefficient of this frequency
bin and time frame at a reference microphone and

w =
[
w1 w2 . . . wM

]T
is a complex-valued filter with length M , equal to the number of microphones.

The objective is to extract the sum of the desired speech signals at the reference micro-
phone while minimizing the contribution of the noise terms, with little or no distortion
of the target signal [12]. In reality, a speech enhancement system faces an essential per-
formance limitation: the compromise between speech distortion and noise reduction.

3.1.2 Wireless Acoustic Sensor Networks (WASNs)

Wireless Acoustic Sensor Networks (WASNs) fall under the general category of wireless
sensor networks (WSNs), whose nodes consist of autonomous self-powered devices,
equipped with sensing, processing and communicating facilities [13].

WASNs are designed for acoustic signal processing tasks; each node is equipped with
one or more microphones and is connected to others via wireless links. A WASN allows
to deploy a large number of microphones at various positions, and can be exploited in
systems for hearing aids, speech communication, the acoustic monitoring of an environ-
ment [13], etc. WASNs can be deployed in wide areas, possibly close to target sources,
which can provide a high input signal-to-noise ratio (SNR) for the nodes.

When used for speech enhancement purposes, the topology of a WASN may include
a fusion center, with which all sensor nodes are able to communicate, either directly
or indirectly via relay nodes [14]. This center is responsible for gathering all measured
signals in the network and processing them using conventional centralized multi-channel
noise reduction algorithms. It may coincide with one of the network devices. However,
a set-up of this kind is not robust: the performance or even functionality of the network
may collapse in case the fusion center or other nodes important for data propagation
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in the network fail. In practice, WASN topologies are time-varying as nodes easily
join or leave the network, for instance at the event of a defect or an empty battery.
This raises scalability concerns for centralized algorithms. Other factors, such as power
restrictions, the limited sensor communication range and privacy considerations, may
render a fusion center undesirable in many applications [14].

Distributed speech enhancement algorithms have been developed in order to tackle
the shortcomings of centralized processing, by emphasizing the data transfer in local
neighborhoods and dividing the processing burden over multiple nodes. In such al-
gorithms, each node collects observations from the neighboring nodes, broadcasts its
own and processes these data locally. The goal is to obtain the same noise reduction
performance as with centralized algorithms. This approach provides more scalable so-
lutions for the network design of large WASNs. This is because local processing can
reduce computational complexity and the required communication bandwidth [14], as
transmissions of only the end result of local computations are required. Moreover, in
case a node leaves the network, the remaining nodes can in general still perform the
desired task, with the appropriate adaptation of the network topology. In particular,
some of the proposed distributed multi-microphone algorithms for speech enhancement
in WASNs can be found in [13, 15, 16].

The time-varying nature, together with the random connectivity due to the wireless
communication range, gives WASNs a largely dynamic character, with unpredictable
changes in network size and topology. This immediately points towards a design chal-
lenge for distributed algorithms: ensuring robustness against topology changes. This
is complemented by the issue of user privacy: the WASN nodes may belong to other
owners and not the users themselves. If so, then private data may become openly avail-
able, leading to serious privacy complications. Other problems arise from the limited
per-node energy resources for computations and communication, the unknown geom-
etry of the sensor array, the bandwidth usage and the fact that each node has only
partial access to the network data.

Besides the above, a major problem in distributed signal processing is the fact that each
device in the network has its own processor with an independent internal clock. Beam-
forming algorithms heavily depend on timing information, as hinted by Section 3.1.1.
Thus, their performance will heavily degrade when these clocks are not synchronized
[14]. This is the main topic of this thesis and is further explored in the next section.

3.2 Synchronization issues in WASNs

In distributed signal processing systems, every node samples the observed analog sig-
nals using its own A/D converter. This process is controlled by the individual clocks of
the nodes. In general, clock synchronization is a critical component for WSNs, as most
applications require the joint processing of time data belonging to different nodes. Syn-
chronization provides a common time system for the operation of the nodes and enables
functions such as data fusion, which is needed for extracting meaningful information.
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There are two aspects comprising the topic of clock synchronization in distributed sen-
sor networks: the clock skew and the clock offset. These two are explained in detail
below.

Time in most modern, inexpensive computers is derived from the oscillating frequency
of a quartz crystal [17]. Due to environmental changes (in temperature, pressure,
humidity, etc.) or minor manufacturing differences, variations in the crystal oscillation
frequency in the order of 15–25 parts per million (ppm) compared to the nominal
value are common [18]. A 32kHz oscillator commonly used for typical low-power sensor
networks exhibits, in the worst case, a variation of 40 ppm, i.e., 40 µs per second [19]
or 0.144 s per hour. The ratio of the actual sampling frequency over the nominal one
is called the absolute clock skew. The ratio of the actual frequencies of two clocks is
called the relative clock skew. It is obvious that the recorded signals of two sensors
drift further apart as the frequency deviation accumulates over time. This problem is
frequently encountered in literature as the sampling rate offset (SRO) problem.

The absolute clock offset is defined as the difference between the local time of a node and
the Coordinated Universal Time (UTC). In this work, the problem of the relative clock
offset is considered, which refers to the difference between the local time and the time
at a specified reference node clock inside the network. This offset depends heavily on
the time stamping of the packets and is mainly affected by the non-determinism in the
communication delay between nodes. A detailed description of sources of variability for
this delay can be found in [20, 21]. The delay components can be generally categorized
into two classes, deterministic and stochastic [18], and they mainly relate to the delay
during the message assembly, encoding and decoding, and sending and receiving the
entire length of a message over the channel. They may depend on the processed data
load, the bandwidth and the packet size and are often collectively referred to as the
“internal delay” of a sensor.

Fig. 3.1 shows a visual representation of the clock synchronization problem in a sim-
plified setting. The setting is the following: Consider two microphones in the far field
of a source equipped with perfectly synchronized to each other clocks. Imagine that
the microphones have the exact same RIR and register precisely the same signal, which
means that there is no self-noise at the sensors. In this case, the optimal beamformer
is an adaptation of the Delay-and-Sum beamformer and it simply averages the two mi-
crophone signals. This configuration is depicted in Fig. 3.1a, whose top part shows the
signal at the reference microphone and the bottom part at the second microphone. Con-
tinuous lines indicate continuous-time signals. The sampling frequency is arbitrary for
this simplified example and the samples collected are designated by dots. The dashed
vertical lines indicate the sampling moments for the first microphone. As easily verified,
the second microphone samples at the exact same moments. As a result, employing
the averaging beamformer will yield the original sampled waveform, as desired.

In Fig. 3.1b, the second microphone displays a clock skew with respect to the reference
microphone. Particularly, it has a higher sampling frequency or skew greater than 1.
Undoubtedly, the sampling moments of the two microphones do not coincide. It is clear
that the horizontal time difference between samples collected by the two microphones
with the same time tick increases. This means that the drift between samples iden-
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(a) Perfectly synchronized clocks.

(b) Clock skew. (c) Clock offset.

Figure 3.1: Illustration of clock synchronization issues.

tified by the same time tick grows. This phenomenon has a detrimental effect on the
beamformer: averaging the two waveforms will by no means recover the initial signal,
as the samples may be added constructively or destructively.

In Fig. 3.1c, the second microphone displays a clock offset with respect to the reference
microphone, but no clock skew. Again, the sampling moments of the two microphones
do not coincide, as indicated by the vertical lines. However, the horizontal time differ-
ence between respective samples collected by the microphones remains constant. This
phenomenon also causes the beamformer to fail, as the averaging of samples does not
reproduce the original signal.

Given the gravity of clock synchronization for signal processing in WSNs, several algo-
rithms addressing this issue have been suggested [18, 22–25]. Despite this, most studies
on multi-microphone speech enhancement in WASNs neglect the clock synchroniza-
tion problem and are built on the implicit assumption that the independent clocks are
perfectly synchronized, as for instance in [15]. If algorithms developed for other appli-
cations are to be used, it is important to check their applicability in practical scenarios
of distributed speech enhancement systems, since they are based on different princi-
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ples. Alternatively, it is of high value to investigate this issue specifically for WASNs,
as recently done in [26, 27].

In a WASN with uniform hardware, ensuring equal sampling rates for the A/D convert-
ers is usually manageable [18] and sometimes even unnecessary if the oscillators are of
sufficient quality, as evident in [26]. On the other hand, in non-uniform ad hoc WASNs
with devices from different manufacturers, clock skew is most often present, and the
resulting signal drift must be taken care of by dedicated synchronization algorithms.

Even if the mismatch in the sampling frequencies of independent devices are negligible,
the origins of time are generally much different [28]. Additionally, more often than not,
the sampling process does not launch simultaneously at all nodes, resulting in what
is termed delay in sampling start (DISS) [26]. All in all, clock offsets are inevitable
in WASNs and addressing them is essential for their operation. The problem of clock
offsets in a WASN is the central matter of this thesis. The problem of clock skew is
not examined.

3.3 Fixed Beamforming and Clock Offsets

In order to showcase the damaging effect of clock offsets on linear beamformers, the
behavior of the minimum variance distortionless response (MVDR) filter was evaluated,
when the actual location RTFs without clock offsets are used, but offsets are present
in the network. For this, the case of one target source, three interferers, and five
microphones with self-noise in a reverberant room was studied and the results are
found in Fig. 3.2. Four microphones exhibit an equal clock offset with respect to the
reference microphone, measured in samples, and the output SNR (see Section 6.1) is
plotted. The input SNR (see Section 6.1) was set to 0dB. The sampling frequency for
all sensors is 16kHz and an STFT window of 32ms is used.
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Figure 3.2: MVDR results when the location-based RTFs are used.

As the graph demonstrates, an offset of one sample for each microphone is enough to
bring the noise reduction down by 4dB. For larger offsets, this effect is stronger. This
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confirms that beamforming based on knowledge of the devices location is not effective
when clock offsets are present. The periodic elements the performance exhibits for
larger offsets is related to the fact that clock offsets in the frequency domain affect the
phase of the DFT coefficients in a periodic way. A closely-related proof for the clock
skew problem and the delay-and-sum beamformer can be found in [14].

3.4 Related Work in Literature

In this section, a small review of prior work in literature in the field of clock synchro-
nization for WASNs will be given.

In [29], time-of-arrival (TOA) measurements between sensors and sources, which include
the internal delays of the sensors, are exploited to achieve distributed microphone
localization. These delays are estimated using a structured total least squares (STLS)
approach. The resulting optimization problem is solved by each node separately.

In [30], a two-microphone scenario is studied and the energy-based source separation
technique of [31] is exploited to deal with both the clock skew and offset. This is a
technique based on independent component analysis (ICA). For varying offset values
and skew set to zero, the author concludes that the performance of this source sep-
aration technique is robust to a clock misalignment smaller than 12.5 ms. It should
be noted that this maximum value for the clock misalignment is well within the limits
of one frame, supposing it is set at between 20 and 30 ms. From then on, the paper
focuses on estimating the clock skew and it is found that this sound source separation
technique is less sensitive to drift errors than relevant TDOA-based ICA techniques.

In [28], a method for jointly estimating the time origins of different devices and local-
izing microphones and sources is proposed, using only recorded signals and assuming
identical sampling rates. For this, initially a coarse alignment is performed according
to the displacement that shows the maximum cross-correlation for the channel sig-
nals. Then, by calculating the cross-correlation frame by frame, single-source frames
are identified and time differences between any channels for each source are obtained,
which will include the differences in the time origins. Finally, an objective function is
defined by the square errors of these differences and minimized.

The authors in [27] focus on the clock skew problem. They observe that the increasing
signal drift is observed as a phase drift of the coherence between the signals and they
use it in a weighted least-squares framework to estimate the skew. The above takes
place assuming that the node with the reference clock acts as a central processor in the
WASN.

In [32], an unsupervised method for estimating the clock skew and offset in an ad hoc
microphone array is developed, meaning a method that does not require associating the
clock time of a sensor to the absolute time. The writers highlight that unsupervised
methods cannot deliver a precise estimate of the recording start offset without prior
information. However, they claim that, in a blind scenario of array signal processing,
a rough compensation of the recording start offset is sufficient and they obtain it by
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using the time shift with the maximum correlation. The authors argue that, assuming
the drifting time difference of signals is constant within each time frame, the effect
of the sampling frequency mismatch can be compensated in the STFT domain by a
linear phase shift. By considering motionless sources with stationary amplitudes, the
observation will be stationary when drift does not occur. Thus, a likelihood function
evaluating the stationarity in the STFT domain is used to calculate the drift compen-
sation needed. All in all, the suggested method delivers accurate compensation of the
drift and rough compensation of the recording start offset.

Many algorithms for distributed synchronization employ a series of time message trans-
missions. In [33], a two-stage procedure is used in a WASN. First, a two-way message
exchange protocol together with a Kalman filter is used to estimate the clock frequency
and time differences between pairs of nodes. In the second step, network-wide synchro-
nization is achieved through a gossiping algorithm which estimates the average clock
frequency and time of the nodes. These estimates are dealt with as frequency and time
of a virtual master clock, to which the clocks of the sensors are adjusted.

Finally, in [26] the authors develop an algorithm based on wideband correlation process-
ing. This algorithm provides accurate estimates for the SRO, without the assumption
of a constant SRO during the observation period. However, as demonstrated, it does
not deliver a reliable estimation of the DISS between the nodes. Nevertheless, the au-
thors remark that under the assumption that the biased estimates provided are close
enough the real DISS values, the bias effect can be absorbed into the estimation of the
acoustic impulse responses [34].

3.5 Problem Formulation

The setting for this thesis is an ad hoc uniform WASN consisting of sensor nodes
arbitrarily distributed in a reverberant room. Each sensor node has its own internal
clock and contains a single embedded microphone. The devices are connected over a
wireless network, and a central processor is available, which collects all network data
and performs the multi-channel processing of the microphone recordings.

It is assumed that the clock frequency is precisely the same across microphones. How-
ever, clock offsets are present, which incorporate the differences in the moments the
sampling process begins at each node. One node is chosen as reference and the rest
exhibit a clock offset, either positive or negative, with respect to it.

The formulation of the problem at hand has two parts: firstly, modeling the clock
offsets mathematically and, secondly, performing beamforming for noise reduction in
the WASN while dealing with the clock offsets.
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A Generalized Eigenvalue
Decomposition Approach to
Beamforming 4
In this chapter, the topic of beamforming for speech enhancement is addressed in more
detail. In particular, the generalized eigenvalue decomposition (GEVD) framework
to support signal subspace methods is described and applied to the system model of
Chapter 2.

4.1 Introduction

The GEVD-based filters belong to the class of signal subspace algorithms. These algo-
rithms are rooted primarily on linear algebra theory. More specifically, they are based
on the principle that the clean signal might be confined to a subspace of the noisy Eu-
clidean space [10]. That is why they take advantage of algebra methods to decompose
the space of the observed signal into a subspace that is occupied primarily by the clean
signal and a subspace occupied primarily by the noise signal. This decomposition can
be done using the singular value decomposition (SVD) or the eigenvalue decomposition
(EVD). Early work in this field was completed in [35] while more recent studies include
[36, 37].

4.1.1 Eigenvalue Decomposition (EVD)

Let A ∈ Cn×n be a square matrix. A vector z ∈ Cn, z 6= 0 and a scalar λ ∈ C fulfilling

Az = λz (4.1)

are called an eigenvector and an eigenvalue of A, respectively. The two of them together
form an eigenpair of A. To be more precise, z is a called a right eigenvector of A if it
fulfills Eq. (4.1) and a left eigenvector if it fulfills

zHA = λzH . (4.2)

By convention, unless otherwise stated, “eigenvector” means “right eigenvector”.

It is easily seen that if z is an eigenvector tied to eigenvalue λ, this is also true for all
vectors {αz : α ∈ C, α 6= 0}. An eigenvector defines a 1-dimensional subspace that is
invariant with respect to pre (or post-) multiplication by A [38]. A subspace S ⊆ Cn

satisfying the property x ∈ S = Ax ∈ S is said to be invariant for A.

Every n × n matrix has exactly n eigenvalues, out of which some may occur with
multiplicity greater than one. The eigenvectors connected to different eigenvalues are
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linearly independent. For an eigenvalue with multiplicity greater than one, the associ-
ated eigenvectors are not necessarily linearly independent.

Let V ∈ Cn×n and W ∈ Cn×n be the matrices whose columns are, respectively, the
right and left eigenvectors of A and let Λ = diag(λ1, . . . , λn) be a diagonal matrix
holding the corresponding eigenvalues in its diagonal. Then, according to Eqs. (4.1) –
(4.2), it holds that

AV = VΛ (4.3)

WHA = ΛWH . (4.4)

If and only if matrix A has n linearly independent eigenvectors, then V and W are
full-rank matrices, they are invertible, and Eqs. (4.3) – (4.4) can be rearranged into

A = VΛV−1 (4.5)

A = W−HΛW. (4.6)

Eqs. (4.5) – (4.6) give the eigenvalue decomposition (EVD), eigendecomposition or
spectral decomposition of matrix A. Matrices V and W are not unique, since any
matrix of the form VJ and WJ, where J ∈ Cn×n a diagonal matrix, will also give a
spectral decomposition for A.

If matrix A is Hermitian, then it definitely admits an eigendecomposition and its eigen-
values are all real. Moreover, a complete set of n orthonormal eigenvectors that form
a basis in Cn can always be found for it. Hence, V−1 = VH so that A = VΛVH and
the left and right eigenvectors coincide.

4.2 Generalized Eigenvalue Decomposition (GEVD)

In the generalized Hermitian eigenvalue problem (GHEP) [39], non-trivial solutions to
the problem

Au = λBu (4.7)

u ∈ Cn are sought, where matrices A,B ∈ Cn×n are Hermitian, meaning AH = A and
BH = B. The pair (A,B) is called a matrix pencil. Here, the additional assumption
is made that matrix B is positive definite, B � 0, in which case (A,B) is called a
Hermitian definite matrix pencil.

As proved in [38], for the Hermitian definite matrix pencil (A,B) there exists a non-
singular U = (u1,u2, . . . ,un)T , ui ∈ Cn, such that

UHAU = diag(a1, . . . , an) (4.8)

UHBU = diag(b1, . . . , bn). (4.9)

The vectors ui, i = 1, . . . , n, are called the generalized eigenvectors that satisfy
Eq. (4.7), thus Aui = λiBui, with λi = ai/bi the generalized eigenvalues. As in the
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EVD, the generalized eigenvectors are not unique. If (λi,ui) is a generalized eigenpair,
then so is every pair (λi, αui) with α ∈ C, α 6= 0.

Notice that normalizing the vectors ui in a way such that uHi Bui = 1 will set bi = 1
for all i. Then, Eqs. (4.8) – (4.9) can be rewritten as

UHAU = Λ (4.10)

UHBU = In, (4.11)

where Λ = diag(λ1, . . . , λn) and In is the n× n identity matrix.

From now on, the problem of the joint diagonalization of matrices A and B as in
Eqs. (4.10) – (4.11) will be referred to as the GEVD problem, and only Hermitian
definite pencils will be considered.

Since B � 0, rearranging Eq. (4.7) demonstrates that B−1Aui = λiui, for i = 1, . . . , n.
The latter means that the GHEP problem for the matrix pencil (A,B) is equivalent to
the eigenvalue problem for the matrix product B−1A and that the generalized eigenpairs
(λi,ui) are the right eigenpairs of B−1A. It should be noted, however, that the matrix
B−1A is not necessarily Hermitian; thus, U is in general not unitary, thus U−1 6= UH ,
and the vectors ui do not constitute an orthogonal basis for Cn. They, nevertheless,
form a basis for Cn. Note that the product B−1A is Hermitian if and only if A and B
commute, or AB = BA.

However, it is true that

B−1A = B−1/2
(
B−1/2AB−1/2

)
B1/2 = B−1/2SB1/2, (4.12)

with S = B−1/2AB−1/2, where B1/2 is the unique Hermitian square-root of B.
Eq. (4.12) reveals that B−11A is similar to the Hermitian matrix S and, therefore,
the two matrices share the same, real eigenvalues.

These n eigenvalues λi may be ordered decreasingly as λ1 ≥ λ2 ≥ . . . ≥ λn, and several
eigenvalues may coincide, as in the standard eigenvalue problem. If, additionally, A
is positive semidefinite, A � 0, it is λn ≥ 0, whereas if both matrices A and B are
positive definite, it is λn > 0, thus all eigenvalues are positive [39].

Rearranging Eqs. (4.10) – (4.11) reveals that

A = QΛQH (4.13)

B = QQH , (4.14)

where Q = U−H = (q1,q2, . . . ,qM)T , qi ∈ Cn. Bearing in mind that

QH
(
B−1A

)
= QH

(
QQH

)−1 (
QΛQH

)
= ΛQH ,

it is obvious that Q contains the left eigenvectors of B−1A as columns.

The left and right eigenvectors, of course, do not coincide, but they are bi-orthogonal.
This means that

qHi uj = δij, (4.15)
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for all i, j = 1, . . . , n, where δij is the Kronecker delta function defined as

δij =

{
1 if i = j,

0 if i 6= j.

This stems from the fact that QHU = U−1U = In.

4.3 The GEVD for the System Model

In this section, the GEVD will be obtained for the system matrices introduced in
Section 2.4. For this, the model y = x + v is considered, with y,x,v vectors of length
M , where M is the number of microphones. It is assumed that all signals originating
from the K target speech sources are incorporated in x, whereas the effect of interfering
sources is absorbed within v.

Now, the theory of Section 4.2 will be applied to the matrix pencil (RX,RV), with
RX,RV ∈ CM×M , as defined in Section 2.4. Due to the sensor self-noise, the received
noise CPSD matrix RV is full-rank, therefore RV � 0. The received target CPSD
matrix is generally RX � 0. The rank of RX is equal to the number of target sources,
rank(RX) = K. The GEVD of (RX,RV), will give, according to Eqs. (4.10) – (4.11),

UHRXU = Λ (4.16)

UHRVU = IM , (4.17)

where U, Λ are of size M ×M and Λ = diag(λ1, . . . , λM). It is λi ≥ 0 for all i, as
justified in Section 4.2.

The right generalized eigenpairs (λi,ui) are, equivalently, the right eigenpairs of matrix
product R−1

V RX. As mentioned earlier, matrix U is not generally unitary. The vectors
ui, i = 1, . . . ,M , constitute a basis for CM , albeit a non-orthogonal one, since matrix
R−1

V RX is not necessarily Hermitian.

Without loss of generality, it will be assumed that the eigenvalues are arranged in
descending order as λ1 ≥ λ2 ≥ . . . ≥ λM ≥ 0 within matrix Λ and the eigenvectors are
ordered correspondingly in U.

Eq. (2.11) states that the observed process CPSD matrix is RY = RX + RV, which is
full-rank, following RV. It is easily seen that

UHRYU = Λ + IM .

This means that, if (λi,ui) is an eigenpair of the pencil (RX,RV), then (λi + 1,ui) is
an eigenpair of the pencil (RY,RV), since

RYui = RXui + RVui = λiRVui + RVui = (λi + 1)RVui. (4.18)

This result can be translated as follows: the GEVD of matrix pencil (RX,RV) can be
obtained through the GEVD of matrix pencil (RY,RV), after adjusting the eigenval-
ues (by subtracting unity). This is highly important for practical applications since,
generally, access to RY or its estimation is easier than that of RX.
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Now, for the left eigenvectors, from Eqs. (4.13) – (4.14) one can see that

RX = QΛQH =
M∑
i=1

λiqiq
H
i (4.19)

RV = QQH =
M∑
i=1

qiq
H
i (4.20)

RY = Q (Λ + I) QH =
M∑
i=1

(λi + 1) qiq
H
i , (4.21)

where Q = U−H .

From Eq. (4.20), it can be seen that R−1
V = UUH , a fact that reveals that the left and

right eigenvectors are related to each other as U = UUHQ = R−1
V Q or that

ui = R−1
V qi,

for i = 1, . . . ,M .

Since rank(RX) = K, the ordering of the eigenvalues will in reality be λ1 ≥ λ2 ≥ . . . ≥
λK > λK+1 = . . . = λM = 0. In other words, the last M −K generalized eigenvalues
are equal to zero. This means that Eq. (4.19) can be adapted and matrix RX can be
expressed in terms of the first K left eigenvectors only, as

RX =
K∑
i=1

λiqiq
H
i . (4.22)

If this equation is looked at in parallel with Eq. (2.12), it is straightforward that the
eigenvectors qi, i = 1, . . . , K span the same subspace as the target source RTFs di,
i = 1, . . . , K. Notably, in the case of one target source or K = 1, the left eigenvector
corresponding to the largest eigenvalue coincides with the steering vector for the source.

To highlight the significance of this result, matrix U will be partitioned as follows,
essentially dividing the eigenvectors into two sets,

U =
[
U1 U2

]
,

where

U1 =
[
u1 u2 . . . uK

]
is of size M ×K and

U2 =
[
uK+1 uK+2 . . . uM

]
is of size M×(M−K), with 1 ≤ K ≤M . A similar partitioning of Q and Λ is implied.

Given this, Eq. (4.22) is rewritten as RX = Q1Λ1Q
H
1 and matrix RY or Eq. (4.21) is

partitioned as

RY =
[
Q1 Q2

] [Λ1 + IK 0
0 IM−K

] [
QH

1

QH
2

]
,
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where Q1 is of sizeM×K and Q2 is of sizeM×(M−K). Note that Λ2 = 0(M−K)×(M−K).

Eq. (4.22) reveals that matrix Q1 spans the speech subspace. Matrix U2 spans
an orthogonal subspace containing noise only. This follows from Eq. (4.16), since
UH

2 RXU2 = Λ2 = 0, which means that for any uj, j = K + 1, . . . ,M , that is a
column vector of U2 it is

uHj RXuj = 0⇔ E
[
|uHj X|2

]
= 0⇔ uHj X = 0. (4.23)

It is, naturally, QH
1 U2 = 0K×(M−K), as QHU = IM .

Fig. 4.1 shows the relation of these subspaces. The fact that the GEVD provides these
matrices justifies why it belongs to the class of signal subspace algorithms. Intuitively,
given this decomposition, it is expected that the clean signal can be estimated by nulling
the component of the noisy observations residing in the noise subspace [10].

Figure 4.1: Illustration of the speech and noise signal subspaces.

4.4 GEVD-based Optimal Linear Filters

Now that an interpretation for the components delivered by the GEVD is given, in
this section, the technique will be exploited in order to formally derive optimal linear
beamformers for speech enhancement.

Assume that the received target signal x1 at reference microphone m = 1 is to be
estimated from the observation vector y by means of beamforming, as described in
Section 3.1.1. The scalar x1 is the first element of vector x and actually stands for the
DFT coefficient at the specific frequency bin and time frame. The filtering equations
will be developed for the estimation of x1, but they easily can be adapted for any xm,
m = 2, . . . ,M . The output of the beamforming process is

x̂1 = wHy,
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where x̂1 is the estimate of x1 and w is the complex-valued filter of length M .

In conventional beamforming techniques, the coefficients wi, i = 1, . . . ,M , are calcu-
lated, such as in the delay-and-sum filter and the MVDR filter [40]. However, a different
methodology can be utilized: the filter can be expressed in the basis for CM formed by
the eigenvectors um, m = 1, . . . ,M , as

w = Ua, (4.24)

where vector a =
[
a1 . . . aM

]T
contains the coordinates of w in the new basis.

Instead of wi, i = 1, . . . ,M , the coordinates ai can be estimated. It is then easy to
determine w from Eq. (4.24).

In order to derive the optimal filter weights, the standard performance criterion of the
mean squared-error (MSE) between the beamformer output and the observed target
signal will be used, as in works like [37]. The MSE is

E
[
|X̂1 −X1|2

]
= E

[
|wHY −X1|2

]
= E

[
|wHX + wHV −X1|2

]
= E

[
|wHX−X1|2

]
+ E

[
|wHV|2

]
since E

[
XVH

]
= 0M×M , where capital letters denote the respective processes. The

term E
[
|wHX−X1|2

]
represents the signal distortion, whereas E

[
|wHV|2

]
represents

the residual noise variance.

The subsequent derivation is given in [41]. A compromise between signal distortion
and noise reduction can be achieved by defining the constrained optimization problem
[35, 37, 42]

minimize
w

E
[
|wHX−X1|2

]
subject to E

[
|wHV|2

]
≤ c,

(4.25)

where c is a parameter chosen by the user, with 0 ≤ c ≤ σ2
V1

, σ2
V1

= eH1 RVe1 is the
noise variance at the reference microphone before beamforming and e1 = (1, 0, . . . , 0)T

is the first column of IM .

Now, since the optimal beamformer is expressed as w = Ua, the objective function of
Eq. (4.25) becomes, using the GEVD,

E
[∣∣wHX−X1

∣∣2] = E
[∣∣wHX− eH1 X

∣∣2]
= E

[∣∣∣(Ua− e1)H X
∣∣∣2]

= aHUHRXUa− eH1 RXUa− aHUHRXe1 + eH1 RXe1

= aHΛa− 2 Re
{
aHUHRXe1

}
+ σ2

X1
,

where σ2
X1

= eH1 RXe1 is the target variance at the reference microphone before beam-
forming.
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The residual noise variance becomes

E
[
|wHV|2

]
= E

[∣∣∣(Ua)H V
∣∣∣2] = aHUHRVUa = aHa.

Thus, the problem of Eq. (4.25) is equivalently expressed with respect to a as

minimize
a

aHΛa− 2 Re
{
aHUHRXe1

}
+ σ2

X1

subject to aHa ≤ c.
(4.26)

The objective function is a convex function of a. The Lagrangian for this problem is

L(a, µ) = aHΛa− 2 Re
{
aHUHRXe1

}
+ σ2

X1
+ µ

(
aHa− c

)
,

with µ ≥ 0 a Lagrange multiplier. Let a∗ and µ∗ denote the primal and dual optimal,
respectively. From the Karush-Kuhn-Tucker (KKT) optimality conditions it must be

µ∗
(
a∗Ha∗ − c

)
= 0⇒ µ∗ = 0 or a∗Ha∗ = c

and

∇āL(a∗, µ∗) = 0⇒ Λa−UHRXe1 + µ∗a∗ = 0. (4.27)

Sticking to the general requirement µ ≥ 0, the constraint of Eq. (4.26) is forced to be
active at the minimum, meaning there has to hold a∗Ha∗ = c.

Hence, the minimum of Eq. (4.26) is obtained from Eq. (4.27) as

a∗ = (Λ + µ∗IM)−1 UHRXe1,

where µ∗ is chosen such that a∗Ha∗ = c. This means that the optimal beamformers w∗

are

w∗ = Ua∗ = U (Λ + µ∗IM)−1 UHRXe1

Now, from Eqs. (4.19) – (4.20) and since Q = U−H , it is

U (Λ + µ∗IM)−1 UH =
(
U−H (Λ + µ∗IM) U−1

)−1
= (RX + µ∗RV)−1 .

All in all, dropping all ∗ from notation, the optimal beamformers are

w = (RX + µRV)−1 RXe1 (4.28)

=
M∑
i=1

uiu
H
i

λi + µ
RXe1. (4.29)

The solution of Eq. (4.28) is referred to as the signal-distortion weighted (SDW) Wiener
filter [35, 42] and µ can be seen as a trade-off parameter that controls the signal dis-
tortion and noise reduction. Eq. (4.29) expresses the same beamformer in terms of the
generalized eigenvectors.
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4.5 The GEVD for the Low-Rank Approximation of RX

The analysis until here has assumed that there is direct access to the actual CPSD
matrices of the processes. This is hardly ever the case, though, and these matrices are
in practice estimated using the data available, as explained in Section 2.4.1.

In most cases, the target CPSD matrix is estimated as R̂X = R̂Y − R̂V, as Eq. (2.13)
states. When there are K target speech sources and the MTF approximation is
valid, it will be rank (RX) = K. However, in a practical implementation it will be

rank(R̂X) > K due to disturbances such as longer reverberation, microphone self-noise
and estimation inaccuracies. Additionally, using Eq. (2.13) does not guarantee positive

semi-definiteness for R̂X. This is especially true in high-noise scenarios and has been
observed to lead to unpredictable noise reduction performance [43]. That is why in
certain cases it is desired to replace RX by a low-rank approximation of it and not by
the difference of other estimates.

Based on Eq. (4.19), which states that RX =
∑M

i=1 λiqiq
H
i , a rank-R approximation

of RX can be computed in practice as such: firstly, the estimates R̂V and R̂Y are
calculated routinely. Then, the GEVD of matrix pencil (R̂Y, R̂V) is performed and the
generalized eigenpairs (λi + 1,ui), i = 1, . . . ,M are found (see Eq. (4.18)).

An R-rank approximation of RX can be then obtained by selecting only the first R
adjusted eigenvalues, as in

R̂X =
R∑
r=1

λrqrq
H
r . (4.30)

In case R = K, a good estimate of the real CPSD matrix is expected. The choice of
R can be based on prior information about the number of sources or by inspecting the
singular values delivered by the SVD of R̂Y − R̂V.

This technique implies that the last eigenvalues are set to zero, especially eigenvalues
that are possibly negative, a tactic also described in [44] and considered in [43, 45].

4.6 Optimal Variable Span Linear Filters

In this section, a convenient framework that manages to group together all optimal
linear beamformers will be described, using the findings of Section 4.4. This framework
will later be exploited in Chapter 5 to construct a mathematical proof.

When the optimal noise reduction filters w = Ua are designed using the actual CPSD
matrices with at most rank(RX) = K constraints, this will lead to filter coefficients
ai = 0 for i = K+1, . . . ,M , since there is no speech in the direction of U2, as Eq. (4.23)
and Fig. 4.1 indicate.

With this remark as motivation, it is argued in [37] that a more flexible linear filter can
be defined by forcing any desired number of coefficients to zero and choosing

w(P ) = UPaP ,
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where UP =
[
u1 u2 . . . uP

]
and aP =

[
a1 . . . aP

]T
.

These beamformers only use the first P eigenvectors contained in U and implicitly force
the last M−P elements of a to 0, although this generally holds only when P = K. The
resulting filter w(P ) is called a variable span (VS) linear filter [37] of length M and it
is w(P ) ∈ Span {u1,u2, . . . ,uP}. Hence the name of the filter, as adjusting parameter
P causes the filter to lie in a different vector span.

Given the general form of optimal filters in Eqs. (4.28) – (4.29), the general form of an
optimal VS filter is written here as follows [37]

w(P ) = UPaP = UP (ΛP + µIP )−1UH
P RXe1 (4.31)

=
P∑
i=1

uiu
H
i

λi + µ
RXe1, (4.32)

where µ is a tradeoff parameter that controls the signal distortion and noise reduction
and e1 is the first column of IM .

The estimate of the target signal at the output of the beamformer is

x̂1 = wH(P )y

= eT1 RXUP (ΛP + µIP )−1UH
P y.

By manipulating parameters P and µ, it is possible to build a wide range of filters with
controlled characteristics. The ensuing beamformers are broadly categorized as follows
and a summary of them is is given in Table 4.1:

• Setting µ = 0 and P ≤ K leads to VS minimum distortion filters. The MVDR
filter belongs here and is obtained for P = K.
• Setting µ = 1 leads to VS Wiener filters. The classical multi-channel Wiener filter

belongs here and is obtained for P = M .
• Setting 0 ≤ µ ≤ 1 leads to VS trade-off filters. The classical trade-off filter belongs

here and is obtained for P = M .

4.6.1 Optimal Vs Linear Filters with Low-Rank Approximation of RX

Combining the findings of Section 4.5 and Eqs. (4.31) – (4.32) it is possible to derive
directly optimal VS beamformers that use an R-rank approximation of RX as

wappr(P,R) = UP (ΛP + µIP )−1UH
P R̂Xe1

=
P∑
i=1

uiu
H
i

λp + µ

(
R∑
r=1

λrqrq
H
r

)
e1

=
P∑
i=1

uiu
H
i

λp + µ

(
R∑
r=1

λrq
∗
r(1)qr

)

=

min(P,R)∑
i=1

λi
λi + µ

q∗i (1)ui, (4.33)
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Table 4.1: Optimal Variable Span Linear Filters.

Name Expression

MVDR wMVDR =
K∑
i=1

uiu
H
i

λi
RXe1

Wiener wW =
M∑
i=1

uiu
H
i

λi + 1
RXe1

Tradeoff wT,µ =
M∑
i=1

uiu
H
i

λi + µ
RXe1

VS Minimum Distortion wMD(P ) =

P∑
i=1

uiu
H
i

λi
RXe1, P ≤ K

VS Wiener wW(P ) =

P∑
i=1

uiu
H
i

λi + 1
RXe1, P ≤M

VS Tradeoff wT,µ(P ) =

P∑
i=1

uiu
H
i

λi + µ
RXe1, µ ≥ 0

due to Eq. (4.15). Note that qHr e1 = q∗r(1), which is the first element of vector q∗r.

Eq. (4.33) reveals that, if RX is approximated by a low-rank version R̂X using the
GEVD the optimal VS filters that result are straightforward linear combinations of the
generalized eigenvectors.
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GEVD for Clock Offset Model 5
This chapter epitomizes this thesis; the system model for WASNs facing sensor clock
offsets is developed and the signal subspace methodology of Chapter 4 is applied to this
model. The end goal is to manifest the clock-offset invariant nature of GEVD-based
blind beamforming techniques.

5.1 System Model Including Clock Offsets

In order to build the mathematical model for systems who face clock offsets, the offset
of each microphone with respect to the reference microphone m = 1 is denoted τm,
m = 1, 2, . . . ,M , and τm ∈ R and it considered unchanging during the function of the
network. Note that τ1 = 0.

A positive clock offset implies that data entries registered with a specific time tick
were in reality collected at an earlier time than the entries of the reference microphone
bearing the same time tick. On the other hand, a negative clock offset means that
they were actually collected at a later time than them. This suggests that the new
system model with non-synchronized clocks can be built as follows: a positive offset is
equivalent to translating the specific microphone signal of the synchronized clock model
later in time and a negative one is equivalent to shifting it earlier in time.

It should be stressed that a clock offset, as described in this thesis, characterized a
specific microphone. This means that all signals recorded by the sensor are affected in
the same way, regardless of their origin.

Regarding notation, all quantities bearing a tilde will refer to the system that includes
clock offsets.

Thus, the continuous-time signal ỹm(t), m = 1, 2, ...,M , at the output of the m-th
microphone results from Eq. (2.8) after applying a translation in time as follows

ỹm(t) = ym(t+ τm) =
K∑
n=1

hn,m(t+ τm) ∗ sn(t) +
Ns∑

n=K+1

hn,m(t+ τm) ∗ sn(t) + zm(t+ τm)

= xm(t+ τm) + vm(t+ τm) (5.1)

= x̃m(t) + ṽm(t). (5.2)

where x̃m(t) =
∑K

n=1 hn,m(t + τm) ∗ sn(t) is the observed target signal at microphone

m, and ṽm(t) =
∑Ns

n=K+1 hn,m(t+ τm) ∗ sn(t) + nm(t+ τm) is the total noise signal. All
signals are, again, considered realizations of zero-mean WSS processes.
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Note that for the STFT representation of Eq. (5.1) to be obtained, the MTF approxi-
mation should still hold. This means that the support of the RIRs including the clock
offsets has to be small compared to the window length.

Before proceeding, it is important to remind the reader of the following property of the
Fourier transform regarding time shifts

• If signal g(t) is sampled and the DFT G(f) is obtained, then the same process for
g(t+ t0) will give G(f)ej2πft0 , where f is the frequency variable. This means that
only the phase of the DFT will be affected.

Using this property, Eq. (2.8) is rewritten into the STFT domain using a window of
length NDFT , as in

Ỹm(k, l) =
K∑
n=1

Hm,n(l)Sn(k, l)ej2πfkτm +
Ns∑

n=K+1

Hm,n(l)Sn(k, l)ej2πfkτm + Zm(k, l)ej2πfkτm

= Xm(k, l)ej2πfkτm + Vm(k, l)ej2πfkτm , (5.3)

where fk = k/N and N is number of frequency components. Stacking the M phase
difference components in a vector and dropping k will give the clock phase vector

τ (f) =
[
ej2πfτ1 ej2πfτ2 . . . ej2πfτM

]
. (5.4)

Dropping f from the notation, the vector representation of the observed signal in the
frequency domain, using Eqs. (2.10) and (5.4), becomes

ỹ = x ◦ τ + v ◦ τ (5.5)

=
K∑
n=1

(hn ◦ τ )Sn + v ◦ τ

=
Ns∑
n=1

(dn ◦ τ )Z1,n + v ◦ τ

=
Ns∑
n=1

d̃nZ1,n + v ◦ τ ,

where ◦ represents the Hadamard product operator (element-wise multiplication).

The above demonstrates that the ATF vector when clock offsets are present is

h̃n = hn ◦ τ (5.6)

and the RTF vector then is

d̃n =
1

H1,n

hn ◦ τ

= dn ◦ τ . (5.7)
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In other words, when sensors exhibit clock offsets, their ATFs (and RTFs) undergo a
transformation, given away by Eqs. (5.6) – (5.7) : they are perceived as having the
same amplitude but an adjusted phase component. This is as if the sensor was in the
far-field of a source (where attenuation is constant for all locations) and it was relocated
to a new position.

Now, a new matrix T that contains the phase difference elements in its diagonal will
be defined as

T =


ej2πfτ1 0 . . . 0

0 ej2πfτ2 . . . 0
...

...
. . .

...
0 0 . . . ej2πfτM



=


1 0 . . . 0
0 ej2πfτ2 . . . 0
...

...
. . .

...
0 0 . . . ej2πfτM


This matrix carries the significant property of being unitary, meaning

TTH = THT = I. (5.8)

Using T, another way to express Eq. (5.5) is

ỹ = Tx + Tv. (5.9)

Eq. (5.9) clearly shows that, when clock offset exist in the system, the new received
process, the new received target process and the new received noise process, compared
to the synchronized system, are, respectively,

Ỹ = TY

X̃ = TX

Ṽ = TV

Due to Eq. (5.8), the CPSD matrices of the new processes are

R̃Y = E[ỸỸH ] = E[(TY)(TY)H ] = TRYTH (5.10)

R̃X = E[X̃X̃H ] = TRXTH (5.11)

R̃V = E[ṼṼH ] = TRVTH . (5.12)

As apparent from Eqs. (5.10) – (5.12), all CPSD matrices corresponding to the new
processes are unitarily similar to the ones of the synchronized system, with T as the
base change matrix. That means the respective matrices share the same rank and eigen-
values, including their multiplicity. The respective eigenspaces are connected through
the base change matrix T.
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5.2 The GEVD for the Clock Offset Model

In this section, the GEVD for the new system matrices of the received signal model
ỹ = Tx + Tv of Eq. (5.9) will be formed. Again, it is assumed that all target speech
signals are incorporated in x, whereas the effect of interfering signals is absorbed within
v. The aim is to understand the effect the phase difference of the RTFs has on the
beamforming process.

As explained in Section 4.3, the GEVD of the matrix pencil (RX,RV) is equivalent to
the EVD of the matrix product R−1

V RX. As a reminder, this EVD gives R−1
V RX =

UΛU−1 = Q−HΛQH , where U contains the right eigenvectors, Q the left ones and Λ
the eigenvalues in its diagonal.

This matrix product for sensors exhibiting offsets becomes, using Eqs. (5.10) – (5.12),

R̃−1
V R̃X =

(
TRVTH

)−1 (
TRXTH

)
= TR−1

V RXTH . (5.13)

where T−1 = TH was used.

As apparent from Eq. (5.13), matrix R̃−1
V R̃X is also unitarily similar to the one of the

synchronized system, with T as the base change matrix.

Now, Eq. (5.13) will be rewritten using the GEVD of the initial matrix pencil

R̃−1
V R̃X = TR−1

V RXTH

= T
(
UΛU−1

)
TH

= (TU) Λ (TU)−1 . (5.14)

Eq. (5.14) shows the EVD of the new matrix product, with matrix Ũ = TU containing
the new right eigenvectors. The eigenvalues in Λ remain the same as when the clocks
are perfectly synchronized.

As for the left eigenvectors, the new matrix is Q̃ = TQ, since it is

R̃−1
V R̃X = TR−1

V RXTH

= T
(
Q−HΛQH

)
TH

= (TQ)−H Λ (TQ)H . (5.15)

Eqs. (5.14) – (5.15) provide the highly important result that the GEVD for the clock
offset system model will give

ŨHR̃XŨ = Λ

ŨHR̃VŨ = IM

R̃X = Q̃ΛQ̃H

R̃V = Q̃Q̃H

R̃Y = Q̃ (Λ + I) Q̃H .
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It should be noted here that, as mentioned in Section 4.2, the eigenvectors are generally
not unique. This means matrix Ũ = TU will not necessarily be the result of the GEVD
algorithm, if it ran on new data. If D is any diagonal unitary matrix of size M ×M ,
meaning D = diag(ejd1 , ejd2 , · · · , ejdM ) with DHD = DDH = IM , it is clear that

(TUD)HRX(TUD) = DHΛD = Λ, and (TUD)HRV(TUD) = DHIMD = IM .

Therefore, any matrices of the form Ũ = TUD and Q̃ = TQD will provide a general-
ized eigenvalue decomposition for the pencil (R̃X, R̃V).

5.3 Optimal Linear Filters for the Clock Offset Model

Now, the most general form of optimal linear filters w(P ) = UP (ΛP +µIP )−1UH
P RXe1

of Eq. (4.31), with P the number of eigenvectors included, will be worked upon for

the model including sensor clock offsets. For this, matrix R̃X = TRXTH will be used
together with the first P generalized eigenvectors contained in matrix ŨP = TUP . The
optimal VS filters, in this case, are given by

w̃(P ) = ŨP (ΛP + µIP )−1ŨH
P R̃Xe1

= (TUP )(ΛP + µIP )−1(TUP )H(TRXTH)e1

= TUP (ΛP + µIP )−1UH
P RXe1

= Tw(P ),

where w(P ) is the beamformer given in Eq. (4.31) for perfectly synchronized clocks,
since THT = IM and THe1 = e1. This result is easily proved to hold for any matrix
Ũ = TUD of Section 5.2.

The output of the beamforming operation in this case is

x̂1 = w̃H(P )ỹ

= (Tw(P ))H (Ty)

= wH(P )y. (5.16)

Eq. (5.16) reveals that GEVD-based beamformers are invariant to clock offsets and
produce the same target estimate as if the clocks were perfectly synchronized. This
means that the beamformer itself deals with the offsets and there is no need to explicitly
estimate and compensate for them. As typical beamformers, such as the MVDR and
the Wiener filters can be expressed in terms of the generalized eigenvectors, as desibred
in Section 4.6, it is suggested that in general blind beamforming techniques are invariant
to sensor clock offsets.

Going back to Fig. 3.2 of Section 3.3, if the beamformer is formed by the GEVD based
on prior data and then applied to offset-affected data, its output will be wH(P )ỹ =
wH(P )Ty 6= x̂1. That is why the location-based RTFs do not give a satisfying noise
reduction performance when sensor offsets are present.
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5.3.1 Optimal Filters with Low-Rank Approximation of RX

The decompositions Ũ = TU and Q̃ = TQ reveal that new generalized eigenvectors
are given by ũp = Tup and q̃p = Tqp, where uP and qp are the eigenvectors for perfectly
synchronized clocks.

When clock offsets are present in the network, the optimal filters with an R-rank
approximation of R̃X result from Eq. (4.33) as

w̃approx(P,R) =

min(P,R)∑
p=1

λp
λp + µ

q̃∗p(1)ũp

=

min(P,R)∑
p=1

λp
λp + µ

(
T ∗1,1q

∗
p(1)

)
(Tup)

= T

min(P,R)∑
p=1

λp
λp + µ

q∗p(1)up

= Twapprox(P,R).

since T1,1 = 1.

The output of the beamforming operation in this case is

x̂1 = w̃H
approx(P,R)ỹ

= (Twapprox(P,R))H (Ty)

= wH
approx(P,R)y. (5.17)

Eq. (5.16) shows that GEVD-based beamformers with a low-rank approximation of R̃X

once again take care of the offsets, sparing the need to estimate them explicitly.

5.4 Practical implementation

As affirmed in Eqs. (5.10) – (5.12), the CPSD matrices corresponding to processes
including offsets are unitarily similar to the ones of the synchronized system, as for
example in R̃Y = TRYTH .

In an practical scenario, the CPSD matrices have to be estimated, as explained in Sec-
tion 2.4.1. In this implementation, the sample covariance matrices of the same section
are utilized. The estimate for the received process CPSD matrix in a synchronized
system is repeated here

R̂Y =
1

NY

NY∑
n=1

y(n)yH(n),

where y(n) is the observed signal in time frame n and NY is the number of frames used.

38



For the mathematical analysis in Section 5.3 to hold precisely and the GEVD-based
beamformers to be clock-offset invariant in a practical implementation, the necessary
condition is for offset-affected estimated CPSD matrices to be unitarily similar to the
estimated ones of the synchronized system. If the sample covariance matrix for the
offset-affected received process is denoted RY, this condition translates to

RY = T

(
1

NY

NY∑
n=1

y(n)yH(n)

)
TH

=
1

NY

N∑
n=1

(Ty(n)) (Ty(n))H .

This extends to the other system processes, as well.

This implies that, when clock offsets are present, the microphone measurement vector
at time instant n should be

ỹ(n) = Ty(n). (5.18)

Is this claim, though, true?

Suppose that under absolute clock synchronization the set of time frames during the
processing of the signal is {Fi}, i = 1, . . . , Nt, where Nt is the total number of frames.

In a WASN with clock offsets, the received signals at the microphones are perceived
as having been shifted in time. The new set of frames during processing is denoted
{F ′i}, i = 1, . . . , N ′t , where N ′t is the new total number of frames, possibly different than
before.

However, the time signal in frame F ′n with frequency representation ỹ(n) will not be a
shifted version of the time signal in the respective frame Fn with frequency represen-
tation y(n). Due to the windowing operation of the STFT, some samples that were
found in frame Fn−1 or frame Fn+1 in the initial signal will be found under frame F ′n
after the translation in time is applied, depending on the direction of the translation.

Therefore, Eq. (5.18) does not hold exactly and the filters cannot achieve the exact
same noise reduction in the two cases. Nevertheless, the differences will be small and
expected to be mitigated if longer windows are used for the analysis.

39



40



Results in Simulated
Environment 6
In Chapter 5, it was proved how blind beamforming techniques are invariant to clock
offsets, when there is direct access to the CPSD matrices of the processes. In this
chapter, the results of tests conducted in a simulated environment are provided, to
support the claims of the previous chapter and to understand the effect the frame-by-
frame processing has on the results, as explained in Section 5.4.

6.1 Simulations Set-up

For the simulations, a room with dimensions 6m× 3m× 3m is considered. The exper-
iments are conducted for one or two target sources and a fixed number of interfering
sources, equal to 3. The number of microphones is fixed to M = 5 and they are
placed in a line, at a distance of 30cm to each other. This room setup is illustrated
in Fig. 6.1a for one target source and Fig. 6.1b for two target sources. The sensor
self-noise is created at 30dB level lower than the microphone measured signal.

For the calculation of the RIRs, the RIR Generator toolbox [46] of Emanuël A.P. Habets
for MatlabR© is used, which adopts the geometrical room acoustics assumptions of Sec-
tion 2.2 and, specifically, uses the image source method [47]. The reflection coefficients
are considered frequency-independent for all walls. The enclosure is considered empty,
in that no object possibly inside it is modeled. The microphones are omnidirectional,
with orientation at 0 degrees. The sampling frequency of all sensors is Fs = 16kHz.
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(a) Set-up with one target source.
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(b) Set-up with two target sources.

Figure 6.1: Room set-up for simulations.
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For the signal statistics, the sample covariance matrices, as given in Section 2.4.1 were
used. For the noise statistics, it is assumed that there is a long period at the beginning
(of 5s) where the target sources are inactive. To identify that, a VAD in the system
is assumed. The time samples of Section 2.4.1 were obtained by applying the STFT
with a rectangular window of 32ms duration and 50% overlap. For the beamforming,
the STFT was applied using a square root Hann analysis window and a square root
Hann synthesis window (see Appendix A.3). An overview of the beamformers is given
in Table 4.1. To permit the MTF approximation, the RIR are considered to have a
duration of 12ms, which is shorter that half the length of the window.

Clock offsets were introduced in the system by shifting the synchronized signal in time,
as explained in Section 5.1, for microphones m = 2, . . . , 5. The clock offset values
for all results are given in number of samples. The beamformers considered are two,
namely the Wiener filter and the trade-off filter with with µ = 0.2 and an R-rank
approximation of the RX for R = 3.

To measure the beamformer performance, the broadband output SNR is plotted over
the broadband input SNR, as calculated at the reference microphone m = 1. The
input SNR is defined as the ratio of the power of the time-domain desired signal over
the power of the time-domain noise at the reference microphone [7]. If s′1(n) is the
target signal and v′1(n) is the noise during the same period, then the input SNR is

iSNR = 10 log

∑N
n=1 s

′2
1 (n)∑N

n=1 v
′2
1 (n)

,

where N is the total number of time samples.

The output SNR has to be carefully defined, since there is no clear distinction of the
filtered desired signal and the residual noise at the output signal of the beamformer
in time. That is why it will be defined as the ratio of the power of the time-domain
desired signal over the power of the difference of the target signal and the beamformer
output in the time domain

oSNR = 10 log

∑N
n=1 s

′2
1 (n)∑N

n=1 (s′1(n)− ŝ′1(n))2
,

where ŝ′1(n) is the estimated target signal at the output of the beamformer.

6.2 Simulation Results

In this section, the beamforming results are plotted for the case of synchronized clocks
in comparison to non-synchronized clocks (systems with clock offsets). Ideally, the
performance of the beamformers has to be invariant to the existence of offsets.
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6.2.1 Varying clock offsets, one target source and stationary interferers

First, the results for different clock offsets are given for one target source and the
interfering sources producing white noise. It is reminded that in this case the RTFs are
estimated through the GEVD.

6.2.1.1 Wiener filter

The results for the GEVD-based Wiener filter for different offsets are shown in Fig. 6.2.
It can be seen that Fig. 6.2a and Fig. 6.2b show a small discrepancy between the
synchronized and non-synchronized problems for high input SNR values. It appears as
the filter performs better for positive clock offsets. This result is in absolute agreement
with the analysis in Section 5.4: the method is sensitive to the window characteristics.
It is impossible to obtain precisely the same SNR, as the signals are fragmented in
different windows by the STFT, which are not shifted versions of each other. It is
expected that the randomness of the offsets determines the exact performance, based
on whether the specific offsets increase or decrease the correlation of signals within one
time frame. In order to verify this, the simulations were also run with the smallest
offset possible: only one microphone is allowed to have an offset of one sample, either
positive or negative. This is illustrated in Figs. 6.2c and 6.2d. It is clear that in this
case the performance is the same, with the output SNR values diverging only in the
second decimal place.

In order to support this interpretation even further, the simulations were also run with
the same offsets as in Figs. 6.2a and 6.2b but with a longer STFT window of 48ms.
The results are shown in Figs. 6.3a and 6.3b. Increasing the window length leads to
a slightly reduced difference between the synchronized and non-synchronized cases, as
expected.

6.2.1.2 Trade-off filter with Low-Rank approximation of RX

The performance of the trade-off filter when the CPSD matrix RX is approximated by
a lower rank matrix is shown in Fig. 6.4 for R = 3. This choice results in a beamformer
with slightly worse noise reduction than the Wiener filter. This is predictable, as it
allows a smaller distortion of the target signal. Regarding synchronization, this filter
also behaves as the previous one and is almost entirely invariant to clock offsets.

6.2.2 Varying clock offsets, two target sources and stationary interferers

Here, the results are given for when there are K = 2 target sources. In this scenario,
the beamformers concentrate on enhancing the sum of the desired sources.
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(d) Offsets equal to [0, 0, 0, 1].

Figure 6.2: Wiener filter results for one target source and 32ms window.
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Figure 6.3: Wiener filter results for one target source and 48ms window.
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Figure 6.4: Trade-off filter with low-rank R̂X results for one target source and 32ms window.

6.2.2.1 Wiener filter

The results for the GEVD-based Wiener filter for different offsets and two target sources
are presented in Fig. 6.5. It is clear that the filters perform noise reduction and are
invariant to clock offsets, as in the case of one target source. It is thus confirmed
that the RTFs themselves need not be estimated: estimating their span is enough
to perform noise suppression. This result can be generalized to a greater number of
sources; however, one should not forget that when the number of target sources to be
preserved increases, the amount of noise reduction is reduced (due to the trade-off of
distortion and noise suppression). That is why the output SNR is lower here by 1−2dB
compared to the case of one target source of Fig. 6.2. The number of microphones is
an ultimate limitation to this problem.
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Figure 6.5: Wiener filter results for two target sources and 32ms window.

6.2.2.2 Trade-off filter with Low-Rank approximation of RX

The performance of the trade-off filter when the CPSD matrix RX is approximated is
shown in Fig. 6.6 for two target sources. The same remarks as for the Wiener filter
hold.
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Figure 6.6: Trade-off filter with low-rank R̂X results for two target sources and 32ms window.

6.2.3 Varying clock offsets, one target source and non-stationary interfer-
ers

In this section, it is studied whether the same beamforming performance and the in-
variance to clock offsets are evident when all three interferers are non-stationary. The
results are given in Fig. 6.7.
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In both cases, it is evident that the filters behave similarly to the earlier cases and that
they are suppressing the noise regardless of the non-stationarity of the interferers. This
result is supported by [44], which demonstrated that the noise reduction performance of
the GEVD-based filtering techniques is mainly dependent on the spatial characteristics
of the noise sources and not on their temporal characteristics. Still, some sensitivity
is expected with respect to the frequency content of the non-stationary interferers, a
topic further discussed below.

In these tests, two of the three non-stationary signals were chosen to be speech sig-
nals, simulating a teleconferencing environment when non-target speakers are active
at the same time with the target speakers. Interestingly, the plots suggest that the
performance slightly improves for both filters when the interferers have this form.

This result is believed to be related to the essence of the frequency-domain signal
subspace methods: the estimation of the span of the RTFs improves when the noise
component in the specific frequency bin is reduced. This suggests that the noise sup-
pression will be more effective in frequency bins where the target source components are
dominant. In the frequency range over which typical speech signals have components,
the speech subspace is well estimated. This is not true for frequency bins with high
noise but low target signal content. When the interfering sources produce speech-like
signals, their effect is well suppressed in the common frequency bins and the time sig-
nal, recovered by a form of averaging over frequencies, will have a good overall noise
suppression. If the interfering signals have a frequency content much different than the
target signals, it is expected that this result will not hold. For example, white noise
signals have content over all frequencies and the noise reduction will not be as effective
in the frequency bins where target speech is not present. Therefore, the GEVD-based
algorithms appear to be affected by the frequency content of the noise and not by its
non-stationarity.

-10 -5 0 5 10 15 20
iSNR

0

5

10

15

20

25

30

oS
N

R

Synchronized
Non-synchronized

(a) Wiener filter.

-10 -5 0 5 10 15 20
iSNR

0

5

10

15

20

25

30

oS
N

R

Synchronized
Non-synchronized

(b) Trade-off filter with low-rank R̂X.

Figure 6.7: Results for three non-stationary interferers and offsets equal to [5, 6,−12,−3] for
one target source and 32ms window.
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6.2.4 Online implementation

It is interesting to evaluate the system performance with a real-time implementation
of the algorithms. Fig. 6.8 refers to the case of one target source and 3 non-stationary
interferers, where RY is estimated online and the Wiener filter is used. RV is considered
to have been already estimated during a period where the target source is inactive. It
can be seen that the filters reduce the noise in clock-offset invariant way in this case,
as well. The noise reduction is only slightly lower, mainly at low input SNR values.
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Figure 6.8: Wiener filter online implementation results for one target source, 32ms window
and offsets equal to [10, 5, 6, 11].

6.2.5 Window tests

A number of experiments was conducted to check the effect of the STFT window used
for the estimation of the CPSD matrices on the beamforming process. The intention
was to discover whether the span of the RTFs calculated through the GEVD carries
some characteristics of the window. The STFT during beamforming is performed using
a square root Hann window (see Appendix A.3). Therefore, it was interesting to check
whether a CPSD matrix estimation method that uses the Hann window at 50% overlap
would outperform the one that uses the rectangular window at 50% overlap. The results
for the Wiener filter are given in Fig. 6.9a and for the trade-off filter with low rank
R̂X in Fig. 6.9b both for offsets equal to [−8,−3, 2, 6]. Therefore, these tests provide
the indication that the choice of window when estimating the CPSD matrices does not
affect the GEVD-based techniques. It appears that any of the two windows can be
used with Welch’s methodology of the modified periodogram to obtain a good estimate
of the CPSD matrices.
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Figure 6.9: Window tests for offsets equal to [−8,−3, 2, 6], for one target source and 32ms
window.
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Conclusions and
Recommendations 7
The distributed nature of WASNs raises important challenges for speech enhancement
systems; a crucial aspect of this is the synchronization of the node clocks. In this thesis,
it was explored how signal subspace methods, and particularly GEVD-based methods,
cope with the issue of clock offsets.

Connected to the research question, in Chapter 5 the clock offsets were modeled and
it was proved that blind beamforming techniques do not require an explicit estimation
of and compensation for the clock offsets. For this, the CPSD matrices should be
estimated using data of the processes as understood by the non-synchronized clocks.
That is to say, when clock offsets are considered possible in a WASN, the calculation
of the beamformers should not use prior information, for example the location-based
RTFs, as noise suppression capabilities will be limited. This result was confirmed by
simulations in Chapter 6, for stationary and non-stationary interfering sources. The
simulations were limited in face of modeling inadequacies concerning room acoustics,
and there could not be experiments for rooms with various shapes. However, generally
the form of the RIR appears not to have any effect on the algorithm. GEVD-based
beamforming techniques were found to work online as well, while the received process
CPSD matrix is constantly updated. It should be mentioned, however, that in general
these methods do not allow the estimation of the clock offset, in case this information
is needed.

7.1 Discussion

Concluding this report, it is important to discuss the importance of all findings and
some issues that could arise in practice. All in all, the GEVD provides a complete
tool to support speech enhancement schemes. It deals with the clock offsets in the
network and has other benefits, as well; mainly, that it does not require any knowledge
about the system and only uses the available measurements. That is in contrast with
conventional, fixed beamformers that are based on the knowledge of the RTFs, or,
equivalently, of the source and sensor locations.

In the case of one target source, the GEVD can be used to estimate the target RTFs.
This is also possible in a setting with multiple target sources, provided that for each of
them there is at least one time segment during which it is the only active source.

More importantly, for beamforming purposes that involve more than one target sources,
if GEVD-based methods are used, there is no need to know or explicitly estimate the
RTFs. It suffices to estimate the span where the RTFs lie, which is delivered by the
GEVD.
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Furthermore, the GEVD provides the basis for a low-rank approximation of the target
CPSD matrix, as an alternative to the difference of sample covariance matrices. In
Chapter 6 the performance of a beamformer using this approximation was shown.

Regarding the clock offset problem, blind techniques based on the GEVD deal with the
offsets internally, in a transparent way to the user, and it is not required to manually
synchronize the sensors or to rearrange them spatially, in order to tackle the offsets.
This outcome holds in both offline and online implementations. The latter exposes the
superiority of this approach compared to methods based on maximum correlation of
channel signals: they require entire data records to work, whilst they may not be as
accurate.

Admittedly, the clock offsets cannot be estimated by the use of the GEVD as described.
However, the offsets can be explicitly calculated in the case of one target source, by es-
timating the offset-affected RTFs using the GEVD and comparing them to the location
RTFs which do not include clock offsets, should they be known.

Contemplating the implementation of the algorithm on a real system, it should be
stressed that the clock offsets are arbitrary and unbounded, since the nodes are fully
independent. All the tests for this thesis considered offsets that are well within one
frame. That is why, in the most general case, when no prior information about the
sensor offsets is available, the signals have to be coarsely aligned so that the processing
can take place in time frames that are correlated for the channels. For an online appli-
cation, this can be done using side information that might be available in the network,
for example by exchanging frame indices or by broadcasting an acoustic signature upon
the start of operation [26]. For an offline application it is fitting to perform this rough
alignment based on maximizing the channel correlation for the entire signals. The per-
formance of the system is expected to be challenged for sensors placed far from each
other, as this alignment will not be a trivial task and traditional array techniques will
not work. In this work, the sensors were not placed closely together and in the far field
of sources, but they were still not placed in arbitrary locations in the room.

Finally, the signal subspace methods are connected to the general issue of the CPSD
matrices estimation and are, therefore, sensitive to estimation inaccuracies. Especially
for non-stationary signals, a number of time frames is needed to estimate the signal
statistics. In this study, it was assumed that a VAD is available in the system and that
a long period of only noise is available for the estimation, which might not be the case
in reality. For the tests, it is interesting to point out that the low-rank approximation
delivered good beamforming performance even if the number of sources was not con-
sidered known, simply but doing away with the eigenvectors with negative eigenvalues.
Last but not least, this study and implementation accepted the general limitation of
sources static in space, which might not hold in a teleconferencing application as the
speakers often move in the room. Therefore, it would be useful to investigate how this
element could be incorporated in the model.
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7.2 Future Directions

The following ideas, which build upon the work presented in this thesis, may be useful
for possible extensions and research topics.

It is suggested that future research be mainly directed to the distributed implementation
of the algorithm. In this work, both the CPSD matrices, as sample covariance matrices,
and the GEVD were evaluated at a central processor that has access to all the sensor
data. The next step towards an actual implementation of this method is to solve the
respective problems in a distributed way, possible through the primal-dual method of
multipliers (PDMM), as researched in [41].

Indisputably, the area of signal subspace methods, and the GEVD technique in par-
ticular, are closely tied to the estimation of the CPSD matrices of processes. In this
thesis, sample covariance matrices were used and it would be interesting to test how
other estimation methods perform, such as a recursive exponential smoothing. Apart
from the theoretical interest, this idea is practically relevant for cases when the clock
offsets are not time-invariant or for when the sources are moving. It is important to
also take the topology of the network into consideration, as large distances between the
sensors can affect the performance on multiple levels.

Additionally, in this work, uniform networks were considered, where the clock skew
problem is not normally present. A significant research direction is the inquiry into
the application of GEVD-based beamforming techniques in networks where the devices
are different and, therefore, clock skews are expected. Straightforwardly calculating
the CPSD matrices using the entire data records will not yield proper estimates of
the signal subspaces in this case, due to the asynchronous sampling instants. An idea
for this is to adapt the CPSD matrices using a forgetting factor, as the skew problem
can be perceived as a time-varying offset. It should be noted, however, that the skew
problem requires explicit synchronization of the signals, as argued in [26].

On a different topic, practical experiments are also needed, where the mechanisms of
communication could be tested and the real sensor offsets could be measured. A lot of
literature work neglects this part. What is more, the performance measure throughout
this work has been the SNR improvement from input to output. In a practical WASN,
for example used for teleconferencing purposes, it is essential to test the aspect of speech
intelligibility and how it is affected by the filtering operations and, more generally,
develop performance measures related to the application. An example could be the
intelligibility weighted signal distortion measure, described in [43].

As a final note, this thesis serves as proof of the significance of signal subspace methods.
Given their promising character, their application in a field other than beamforming
could be explored, for instance in a blind source separation (BSS) setting, as studied
in [36].
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Signals and Processes A
A.1 Wide-Sense Stationary (WSS) Processes

As a disclaimer, the purpose of this section is rather to provide the relevant definitions
for the subsequent analysis to be clear than to give strict mathematical descriptions for
all terms involved.

With this in mind, the following definition of a stochastic process is given: “A stochastic
(random) process is any collection, or ensemble, of random variables {Xn} depending
on time n ∈ T”, where T is the time range involved. Xn or X(n) symbolizes the
random variable associated with fixed time t. Time n takes discrete values, such as
n = 0, 1, 2, . . ., thus T is a discrete set. The reader is invited to refer to [48–50] for
more details on random variables and processes.

A stochastic process {Xn} is usually denoted by X. By allowing a slight abuse of
notation, it may also be denoted by Xn or X(n). In practice, only a single realization
xn of this process is typically observed. Any of the possible realizations is a function
of time n, as in xn = x(n), n ∈ T .

Now, on to some more problem-specific definitions.

For the real random process {Xn}, the autocorrelation sequence is given by

rX(k, l) = E[X(k)X(l)], (A.1)

and the autocovariance sequence is given by

cX(k, l) = E[(X(k)− µX(k)) (X(l)− µX(l))], (A.2)

where E(·) is the mathematical expectation operator and µX(k) = E[X(k)] denotes
the (deterministic) sequence known as the mean of the process. The autocovariance
and the autocorrelation sequences provide information about the statistical relationship
between two random variables that are derived from the same process [2], in this case
X(k) and X(l).

A random process {Xn} is said to be wide-sense stationary (WSS) if the following three
conditions are satisfied [2]:

1. The mean of the process is a constant, independent of time, meaning µX(k) = µX .

2. The autocorrelation rX(k, l) depends only on the difference k− l and not the time
itself.

3. The variance of the process is finite, or cX(k, k) <∞.
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The time difference k − l is called the lag, and the second condition, in other words,
requires rX(k, l) = rX(k−l, 0). Permitting a slight abuse in notation, the zero argument
is dropped and the autocorrelation is simply written as a function of the lag [2], as in

rX(k, l) ≡ rX(k − l). (A.3)

A.2 Signal Analysis

In principle, a signal can have any functional form and it is possible to produce signals,
such as sound waves, with extraordinary richness and complexity. Signal analysis is
important, as a means of extracting information, drawing conclusions and commencing
the processing of the signals. This analysis can take place in different domains and each
of them has its advantages and disadvantages, as explained in the following sections.

A.2.1 Time Analysis

The most fundamental way of analyzing signals is in the time domain, where the anal-
ysis takes place with respect to the independent variable designated as time. By using
techniques in this domain, it is possible to perform tasks such as peak detection, upsam-
pling, downsampling and detection of signal inactivity periods. By careful inspection,
it may also be possible to recognize periodicities in the signal.

A.2.2 Frequency Analysis

The frequency domain refers to the analysis of mathematical functions or signals with
respect to frequency, rather than time. Frequency analysis or spectral analysis is a
powerful mathematical tool and has developed greatly since its advent.

A signal can be converted between the time and frequency domains with a pair of
mathematical operators called a transform. The transform relevant to this study is the
Fourier transform, which converts a time function into a sum of sine waves of different
frequencies, denoted frequency components, possibly infinite in number. After possible
processing in the Fourier domain, the inverse Fourier transform is used to reconstruct
the signal into a time function.

The two most common Fourier representations for discete-time signals are the DTFT
for infinitely long data sequences, and the DFT for finite-duration sequences. More
information on the DTFT can be found in [1].

A.2.3 Discrete Fourier Transform

For finite-duration discrete-time sequences there exists a different Fourier representa-
tion, referred to as the DFT. The DFT is itself a sequence rather than a function of a
continuous variable. In addition to its theoretical importance as a Fourier representa-
tion of sequences, the DFT plays a central role in the implementation of digital signal
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processing algorithms. Its discrete nature makes DFT calculations the most common
practice for computers when extracting frequency information, since the DTFT cannot
be computed numerically. This has been the motivation that led to efficient algorithms
for the computation of the DFT, such as the FFT algorithm.

Consider a discrete-time signal x(n) defined for n = 0, . . . , N − 1. The IDFT and
DFTare written, respectively, as follows

x(n) =
1

N

N−1∑
k=0

X(k)ejωkn, n = 0, . . . , N − 1 (A.4)

and

X(ωk) =
N−1∑
n=0

x(n)e−jωkn, k = 0, . . . , N − 1, (A.5)

where N is the length of the sequence x(n) and the discrete frequency ωk is defined as
ωk = 2πk/N , k = 0, 1, . . . , N−1. The variable ωk has units of radians/sample, in which
case it is called the discrete normalized radian frequency variable. A silent assumption
here is that the sampling frequency is 1 Hz, or the sampling interval is 1 second. This
is most typical in the digital signal processing literature.

An important note at this point is that the DFT delivers frequency components X(ωk)
equal in number to the number N of the signal samples in the time domain.

Since the frequency variable in the DFT representation is discrete, each spectral sample
is associated with a small segment of the frequency continuum, rather than a point.
More specifically, the kth spectral sample X(ωk) is regarded as a measure of spectral
amplitude over a range of frequencies, nominally ωk−1/2 to ωk+1/2. This range is usually
called a frequency bin. The spectral index k is called the bin number.

An important property of the DFT is provided by the circular convolution theorem,
which states that circular convolution in the discrete-time domain becomes multiplica-
tion in the discrete-frequency domain., or

DFTωk
{x(n) ~ y(n)} = DFTωk

{x(n)} ·DFTωk
{y(n)}, (A.6)

where x(n), y(n) are discrete-time finite sequences, ~ denotes circular convolution and
DFTωk

{·} stands for the DFT of a sequence expressed in terms of the frequency variable
ωk.

A.2.3.1 Some notes

A system is described in the Fourier domain by the frequency response function, which
is the ratio of the output over the input. Consider an LTI discrete-time system with
impulse response h(n). Let x(n) be a real-valued sequence that is a realization of a
WSS discrete-time random process and is fed to the system as input.
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By careful application of the DFT convolution theorem to Eq. (2.1), the frequency
response function H(ωk) of a system is obtained as

H(ωk) =
Y (ωk)

X(ωk)
. (A.7)

In other words, it is the linear mapping of the Fourier transform of the input X(ejω)
to the Fourier transform of the output Y (ejω). The frequency response function of a
system is a special case of the transfer function of a system, which is defined in the
Z-transform domain. More on this can be found in [3].

At this point, it should be noted that spectral analysis, as described above, is used
for processing deterministic signals; however, it has a similar functionality in the study
of random processes. What differentiates the approach is that a random process is a
collection of signals, thus the Fourier transform cannot be applied to the process itself.

The power spectrum or power spectral density (PSD) of a random WSS process {Xn}
is the Fourier transform of its autocorrelation sequence rX(k), i.e.,

SX(ejω) = DTFTω{rX} =
∞∑

k=−∞

rX(k)e−jωk. (A.8)

where DTFTω{·} stands for the DTFT of a sequence expressed in terms of the fre-
quency variable ω.

In the field of speech signal processing, it should be noted that most speech enhancement
algorithms are performed in the spectral domain.

A.2.4 Time-Frequency Analysis

Looking back to the previous sections, a signal in time domain may be regarded as
a representation with perfect time resolution and no frequency information. On the
other hand, the Fourier transform of a signal may be considered to have perfect spectral
resolution but no time information; that is because, in principle, frequency analysis, as
demonstrated by Eq. (A.5), is conducted as an average over all time. As such, spectral
analysis loses all chronological information and fails to convey when different events
occur in the signal. This is not a problem for stationary signals, as their frequency
components remain constant with time. However, it is a problem from non-stationary
signals, such as speech and audio signals. In such a case it is important to investigate
how the frequency content of a signal varies over time.

What is more, as revealed by Eq. (A.4), the computation of one frequency component
necessitates the knowledge of the complete history of the signal. This can be challeng-
ing, especially in real-time applications. That is why it would be useful to divide the
signal into segments, so that the processing can begin before the entire signal has been
received.
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The above are reasons that led to the development of methods in the time-frequency
domain. Time-frequency representations provide both temporal and spectral informa-
tion at the same time. Thus, they are particularly practical for the study of signals
containing time-varying frequency components.

Given the number of different applications and some theoretical limitations that cannot
be overcome, the problem of describing a signal in a joint time and frequency manner
does not admit a unique answer. Numerous approaches and variations can be found
in literature, each with its advantages and shortcomings. The method relevant to this
study is described below.

A.3 Short-Time Fourier Transform (STFT)

The most typical time-frequency representation is obtained via the STFT. The STFT
replaces the global Fourier analysis with a series of local analyses: the signal is localized
by moving an observation window along the time axis, and applying the Fourier trans-
form to obtain the frequency content of the signal for each position of the window. This
transform provides a uniform resolution in time and frequency. Its usual mathematical
definition is [51]

Xm(f) =
∞∑

n=−∞

x(n)wA(n−mR)e−jωn, (A.9)

where x(n) is the input signal, wA(n) is the analysis window function of length M , R is
the window hop size in samples and Xm(f) is the DTFT of the windowed data centered
around time mR, with m indicating the time frame. Often, it is R < M , in which case
windows are overlapping.

While this definition of the STFT is useful for theoretical work, it does not provide a
practical method of calculating it. In practice, the STFT is computed as

Xm(k) =

N/2−1∑
n=−N/2

xA(n+mR)w(n)e−j2πkn/N . (A.10)

In this form, the input signal is translated in time so that the data of time mR are
moved to time 0 and then it is multiplied by the window w(n) of length M . Afterwards,
the DFT is performed in place of the DTFT. This sampling will not cause time aliasing
if the number of frequency components is greater than the length of the windowed input
data. This means then the DFT length should be N ≥M . It is typically a power of 2
to accelerate the FFT algorithm.

The time signal is reconstructed using the Inverse STFT (ISTFT), which is the IDFT
of this sum, possibly including a synthesis window wS(n)

x(n) =
∞∑

m=−∞

N−1∑
k=0

Xm(k)wS(n−mR)e−j2πk(n−mR)/N . (A.11)
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Throughout this thesis, it is assumed that wA(n) and wS(n) are real functions. Notice
that the two windows are different in the general case. If the two windows fulfill the
so-called completeness condition

∞∑
m=−∞

wA(n−mR)wS(n−mR) = constant, ∀n ∈ Z, (A.12)

then a signal is guaranteed to be perfectly reconstructed from its STFT coefficients.
However, for R ≤ M and for a given synthesis window wS(n), there might be an
infinite number of solutions to Eq. (A.12) [52]; therefore, the choice of the two windows
is generally not unique [53, 54].

In certain applications, e.g., when performing convolution using the STFT, the use of
a synthesis window is skipped. Then, the completeness condition becomes

∞∑
m=−∞

wA(n−mR) = constant, ∀n ∈ Z. (A.13)

There are various windows that fulfill Eq. (A.13) for different amounts of overlap. Some
commonly applied examples are the rectangular window at 0% overlap (R = M) and
the Bartlett, Hann and Hamming windows at 50% overlap (R = M/2). Since the
windows necessarily operate on a trade-off of the main lobe width and the side lobe
level, different windows are preferred for different applications.

When a synthesis window is used, that is typically chosen to be the same as the analy-
sis window, resulting in the constraint

∑∞
m=−∞w

2
A(n−mR) = constant,∀n ∈ Z. This

suggests a trivial way of constructing windows that satisfy Eq. (A.12) by taking the
square root of any window that satisfies Eq. (A.13). This works for all non-negative
windows and leads to windows such as the root-Hann or the root-Hamming.

The STFT evidently provides a series of benefits; however, it is worthwhile to mention
that its structure carries essential restrictions that are typical for all Fourier methods,
if used in a non-stationary context. The main limitation of the STFT is that it faces
a trade-off between the temporal and the frequential resolution. The time resolution
improves as the window becomes shorter; however, the frequency resolution degrades
at the same rate since the Fourier analysis is confined to this short window. Conversely,
a thinner frequency-resolution requires a longer window and, thus, yields a worse time
resolution. This result is dictated by the Heisenberg uncertainty principle [55].
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Glossary B
RIR room impulse response

ATF acoustic transfer function

RTF relative transfer function

A/D analog-to-digital

WSS wide-sense stationary

LTI linear time-invariant

STFT short-time Fourier transform

ISTFT inverse STFT

DTFT discrete-time Fourier transform

DFT discrete Fourier transform

FFT fast Fourier transform

IDFT inverse DFT

CPSD cross-power spectral density

GHEP generalized Hermitian eigenvalue problem

GEVD generalized eigenvalue decomposition

SVD singular value decomposition

EVD eigenvalue decomposition

FIR finite impulse response

MSE mean squared error

KKT Karush-Kuhn-Tucker

SDW signal-distortion weighted

MVDR minimum variance distortionless response

VS variable span
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WSN wireless sensor network

WASN wireless acoustic sensor network

ICA independent component analysis

UTC Coordinated Universal Time

MTF multiplicative transfer function

SNR signal-to-noise ratio

SRO sampling rate offset

DISS delay in sampling start

TOA time-of-arrival

VAD voice activity detector
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