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AMulti-Epoch Processing Strategy for PPP-RTK
Users

A. Khodabandeh, P. J. G. Teunissen, and D. Psychas

Abstract

The present contribution aims to address why the stochastic model of the PPP-RTK
user-filter is misspecified, and how one can limit the precision-loss associated with user
parameter solutions. By developing tools for measuring the stated precision-loss under
existing formulations of the user’s Kalman filter, we propose an alternative formulation that
recursively delivers close-to-minimum-variance filtered solutions when certain conditions
hold. Such conditions are discussed, and their impact on the user ambiguity-resolved
positioning performance is illustrated by supporting numerical results.

Keywords

Global Navigation Satellite System (GNSS) � Integer ambiguity resolution enabled precise
point positioning (PPP-RTK) � Kalman filter � Time-correlated corrections

1 Introduction

In PPP-RTK, one employs state-space representation for
positioning corrections so as to reduce their transmission
rate, i.e. the frequency with which the corrections are to
be provided to single-receiver GNSS users (Wubbena et al
2005; Laurichesse and Mercier 2007; Collins et al 2010;
Teunissen et al 2010). However, a reduction in the trans-
mission rate comes at the cost of delivering time-delayed
corrections. The user is therefore required to time-predict the
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corrections so as to bridge the gap between the corrections’
generation time and the user positioning time. Consequently,
next to the intrinsic uncertainty brought by the randomness of
GNSS measurements, ‘multi-epoch’ PPP-RTK corrections
also inherit extra uncertainty that is associated with their
time-prediction (Wang et al 2017).

As the user’s Kalman filter relies on the provision of
such random positioning corrections, his corrected observa-
tion equations become correlated in time. This violates the
Kalman filter’s key assumption, namely, that the input mea-
surements must be time-uncorrelated. As a consequence, the
user’s Kalman filter loses its minimum-variance optimality
property.

In this contribution we aim to identify the main factor
that makes the stochastic model of the PPP-RTK user-filter
misspecified, and thereby address how the user can limit
the precision-loss associated with his parameter solutions.
By developing tools for measuring the stated precision-
loss under existing formulations of the user’s Kalman filter,
alternative multi-epoch formulations are developed that can
recursively deliver close-to-minimum-variance filtered solu-
tions of the user parameters. To bound the corresponding
precision-loss experienced by the filtered solutions of such
formulations, certain conditions must hold. These condi-
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tions are discussed, and their impact on the user ambiguity-
resolved positioning performance is illustrated by supporting
numerical results.

2 User Model Aided by External
Corrections

Consider the (linearized) system of observation equations of
a single-receiver PPP-RTK user

u D B b C C c C n ; (1)

where the user observation vector u, together with the zero-
mean random noise n, are linked to the user’s unknown
parameter vector b and the unknown correction vector
c through the full-rank design matrices B and C . The
augmented design matrix ŒB; C � is rank-defect though,
meaning that the system is not solvable for both b and c.
The observation vector u may contain GNSS carrier-phase
and pseudorange (code) measurements, with b containing
the position coordinates, carrier-phase ambiguities, receiver
clock parameters, and instrumental biases. On the other
hand, the correction vector c may contain estimable
forms of satellite orbit and clock parameters, atmospheric
parameters, and phase/code biases (Leick et al 2015;
Odijk et al 2015; Teunissen and Montenbruck 2017).
The underscore symbol indicates the ‘randomness’ of
quantities.

Due to the rank-deficiency of ŒB; C � in (1), the user
cannot unbiasedly determine the unknown parameters b with
the sole use of his measurements. To obtain b unbiasedly,
the user has to take recourse to an external provider, e.g.,
a network of permanent GNSS stations (Wubbena et al
2005), to receive an unbiased solution of the correction
vector c. Let Oc denote such external correction solution.
With the provision of Oc, the user can extend his model (1)
to �

u
Oc

�
D

�
B C

0 I

� �
b

c

�
C

�
n

�

�
; (2)

with � being the zero-mean random noise vector that char-
acterises the ‘randomness’ of the correction solution Oc.
Since the user design-matrix B is of full-column rank, and
that the correction vector c can now be determined by
Oc, the system (2) is solvable. As far as the estimation of
the user parameters b is concerned, the system of equa-
tions (2) can be reduced for c. Such reduced model is
formed by pre-multiplying the matrix ŒI ; �C � with (2). This
gives

u � C Oc D B b C Qn ; with Qn WD n � C � (3)

The reduced model (3), with the user corrected observation
vector u � C Oc, forms the basis of existing PPP-RTK mod-
els (Wubbena et al 2005; Laurichesse and Mercier 2007;
Collins et al 2010; Teunissen et al 2010). In contrast to the
model (2) where both b and c are jointly estimated, (3)
does not directly allow a further update on the correction
solution Oc. From the perspective of a single-receiver user
who is merely interested in his parameters b, the reduced
model (3) is more appealing in the sense that it involves
fewer unknowns. In fact, the reduced model (3) can be
shown to deliver user parameter solutions that are identical
to those of (2) if the (co)variance propagation law to the
corrected observation vector u�C Oc is properly applied (Teu-
nissen 2000). This means all the information required for
the estimation of b is preserved when the user weights
the corrected observation vector u � C Oc in accordance
with the inverse-variance matrix of the noise vector Qn D

n � C �. In practice however, the variance matrix of the
correction solution Oc, i.e. the dispersion of � in Qn, may only
be partially known to the user. As a consequence, the user
takes recourse to the known part of such variance matrix
to weight his corrected observation vector u � C Oc, miss-
ing part of the required information, thereby experiencing
precision-loss in the estimation of b. The following theorem
provides a general means for measuring such precision-
loss.

Theorem (�-Suboptimality) Let the zero-mean random
vector p, with the full-column rank matrix L, perturb the
system of observation equations

y D A x C e C L p; (4)

in which the observation vector y, with its zero-mean resid-
ual vector e, is linked to the unknown parameter vector x by
the full-column rank design matrix A. Also, let the variance
matrix of e be given by the positive-definite matrix Qe . In
the absence of the variance matrix of p, say Qp , the least-
squares estimator

Ox D AC y; with AC WD .AT Q�1
e A/�1AT Q�1

e ; (5)

is not minimum-variance, and therefore, suboptimal. Its
precision-loss, in estimating every function � D f T x, can
be measured by the following variance-ratio bounds

1 C �min.MLAML
A?

/ �
Var.f T Ox/

Var.f T Ox�/

�1 C �max.MLAML
A?

/ (6)

with Ox� denoting the optimal (minimum-variance) least-
squares estimator. Matrices MLA and ML

A?
are given
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by MLA D QpLT
A.Qe C LQpLT /�1LA and ML

A?
D

QpLT
A?

.Qe C LA?QpLT
A?

/�1LA? , where LA D AACL

and LA? D L � LA. The symbols �min.�/ and �max.�/

denote the minimum and maximum eigenvalues of a matrix,
respectively. �

Proof The proof is given in Appendix. ut

To better appreciate the bounds in (6), compare the subop-
timal least-squares estimator (5) with its minimum-variance
counterpart (Koch 1999; Teunissen 2000)

Ox�D.AT Q�1
y A/�1AT Q�1

y y; with QyDQe C LQpLT

(7)

The theorem states that if, instead of the full variance matrix
Qy , the weighting of the observation vector y in (4) is
conducted based on the known part Qe , the increase in the
variance of the solutions f T Ox relative to that of their optimal
counterparts f T Ox� can always be bounded by (6). Ideally,
we wish to have the bounds .1 C �min/ and .1 C �max/ close
to unity. Their deviation from unity is due to the presence
of the nonnegative eigenvalues �min and �max. They indicate
smallest and largest precision-loss that is experienced by the
suboptimal estimator (5), respectively.

Such precision-loss is driven by the product of the two
matrices MLA and ML

A?
, each of which being a function

of the orthogonal projections LA and LA? of matrix L,
respectively. Here, the orthogonality is defined with respect
to the inner-product metric Q�1

e . Thus LT
AQ�1

e LA? D 0 and
L D LA C LA? . This implies, for nonzero matrices L, that
the two matrices MLA and ML

A?
cannot simultaneously be

made zero. In fact, these two matrices ‘compete’ to limit the
precision-loss experienced by the estimator Ox. To see this,
let us consider two extreme competing cases: (1) when L

completely lies in the column-space of the design matrix A

(i.e. when LA? D 0), and (2) when L is orthogonal to the
column-space of A (i.e. when LA D 0). The first case is
when L can be expressed as L D AP for some matrix P .
For this case, the random vector p is completely absorbed
by the parameter vector x, thus simplifying the model (4)
as y D A .x C P p/ C e. As a result, the model cannot
distinguish between x and x D x C P p, meaning that the
uncertainty due to p cannot be adjusted by any weighted
least-squares adjustment. Both the optimal and suboptimal
estimators Ox� and Ox would therefore experience the same
amount of uncertainty. This is also corroborated by the
bounds in (6) as the eigenvalues �min and �max become zero
through the equality LA? D 0 (or ML

A?
D 0).

The second case is when AT Q�1
e L D 0. For this case,

both the optimal and suboptimal estimators Ox� and Ox are
uncorrelated with the random vector p, i.e. Cov. Ox�; p/ D

Cov. Ox; p/ D 0. This follows by applying the covari-

ance propagation law, respectively, between (7) and p, and
between (5) and p, together with the equalities Cov.y; p/ D

LQp , AT Q�1
e L D 0 and Q�1

y D Q�1
e � Q�1

e L.Q�1
p C

LT Q�1
e L/�1LT Q�1

e . Thus, both the estimators Ox� and Ox

remain intact irrespective of the uncertainty-level of p. The
bounds in (6) also support this as the eigenvalues �min and
�max become zero through the equality LA D 0 (or MLA D

0). Apart from the two extreme cases discussed above, the
maximum eigenvalue �max is different from zero, leading the
estimator (5) to lose its minimum-variance property.

The result (6) can be used to quantify the suboptimality
level of PPP-RTK user parameter solutions when the correc-
tional uncertainty, i.e. the variance matrix of � in the reduced
model (3), is unknown to the user. To set the stage for mea-
suring the largest possible precision-loss that the user estima-
tor can experience, one needs to make the following settings
y 7! .u�C Oc/, A 7! B , e 7! n, p 7! �, and L 7! �C . In the
next section we employ the result (6) to assess the precision-
performance of ‘multi-epoch’ formulations that are used to
determine the user parameter vector b in a recursive manner.

3 Multi-epoch Formulations of the User
Model

In the context of PPP-RTK, the user parameter solutions
are to be computed in a near real-time manner, requiring
the application of least-squares estimation in its ‘recursive’
Kalman filter forms (Kalman 1960; Simon 2006; Teunissen
2001). Accordingly, the user parameter vector b may be
partitioned into a time-series of parameter vectors bj

(j D i ; i C 1; : : :), where the subscripts i and j indicate
the time-instance (epoch). Likewise, the time-uncorrelated
observation vectors uj (j D i ; i C 1; : : :) replace u. This
gives the ‘multi-epoch’ version of the user observation
equations (1) as follows

uj D Bj bj C Cj cj C nj ; j D i ; i C 1; : : : (8)

Given the system of equations (8), the user needs to receive
solutions of the correction vectors cj from an external
provider at every epoch j . In practice however, the provider
disseminates state-space correction solutions at � -second
intervals to minimize the amount of information required to
be transmitted to the user (Wubbena et al 2005). The longer
the sampling period � , the less the bandwidth required for
data-transmission. While each individual correction type
(e.g. satellite orbits versus clocks) can have its own sampling
period � , such distinction is not made here just for the sake of
presentation. We instead only show one common sampling
period � for all correction types. Let Ock� jk� denote the
solution of the correction vector ck� that is obtained based on
all the provider observations collected up to and including the
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epoch k� , where k is a positive integer indicating the number
of the � -second intervals. The user would need a correction
solution at epoch i � k� though. To this end, such solution
can be time-predicted using the delayed solution Ock� jk� if
information about the time-behavior of the corrections would
be known to the user. Such information can be expressed in
terms of the corrections’ dynamic models (Teunissen 2001)

oc
t D ct � ˆc ct�1 C wc

t ; t D 2; 3 : : : (9)

where the randomness of the zero-sampled pseudo-
observation oc

t is characterized by the time-uncorrelated
process noises wc

t . The transition matrix ˆc links the
correction parameters between two successive epochs. Thus,
ˆc

.j �i/ D
Qj �i

hD1 ˆc (j > i ) links the corrections from epoch
i to epoch j . Accordingly, the sought-for correction solution
can be time-predicted as Oci jk� D ˆc

.i�k�/ Ock� jk� .
As with the corrections, the time-behavior of the user

parameter vectors bj can also be incorporated into the esti-
mation process to improve the corresponding parameter solu-
tions. They are expressed by the following dynamic models

ob
j D bj � ˆb bj �1 C wb

j ; j D i C 1; i C 2 : : : (10)

where the transition matrix ˆb links the user parameters
over time, with the zero-sampled pseudo-observation ob

t and
time-uncorrelated process noises wb

j (j D i ; i C 1 : : :).

3.1 Representation in Batch Forms

The user can feed the time-predicted correction solution Oci jk�

into his measurement and dynamic models (8) and (10) so as
to run his recursive Kalman-filter. As the below will show,
different formulations for the user-filter can be established,
and the user ideally wishes to adopt the formulation that can
deliver parameter solutions with smallest precision-loss. To
measure the precision-loss under different formulations, one
can employ the result of the theorem given in (6). To do
so, one first needs to form the multi-epoch version of (2),
and consequently, identify the corresponding reduced model
(3).

Consider the epochs within a � -second time-interval j D

i ; : : : ; .k C 1/� � 1, where it is assumed that the user initial
epoch i is larger than or equal to the correction transmission-
time k� , i.e. i � k� . During this time-interval, the user-
filter relies on the provider filtered correction Ock� jk� . In
the next time-interval, i.e. at epoch j D .k C 1/� , the
user-filter can replace the out-dated correction Ock� jk� by
its newer counterpart Oc.kC1/� j.kC1/� . With this in mind, the
multi-epoch version of (2) follows by augmenting the user
measurement and dynamic models (8) and (10), with the
dynamic models of the corrections (9). This reads (Teunissen
2001)

2
66666666666666664

�
ui

Oci jk�

�
�

ob
iC1

oc
iC1

�

uiC1�
ob

iC2

oc
iC2

�

:::�
u.kC1/�

Oc.kC1/� j.kC1/�

�

3
77777777777777775

D

2
66666666666666664

�
Bi Ci

0 I

�

�

�
ˆb 0

0 ˆc

�
I

ŒBiC1 CiC1�

�

�
ˆb 0

0 ˆc

�
I

: : : �
B.kC1/� C.kC1/�

0 I

�

3
77777777777777775

2
666666666666664

�
bi

ci

�
�

biC1

ciC1

�
�

biC2

ciC2

�

:::�
b.kC1/�

c.kC1/�

�

3
777777777777775

C " (11)

On the left-hand side of (11), the user observation vectors
uj (j D i ; i C 1; : : : ; .k C 1/� ) are accompanied by the
correction solutions of the two successive time-intervals Oci jk�

and Oc.kC1/� j.kC1/� , together with the zero-sampled pseudo-
observations ob

j and oc
j . On the right-hand side of the equa-

tion, all the involved unknowns (both the user and correction
parameters bj and cj ) are linked to the measurements via
the ‘batch’ structure of the design matrices Bj and Cj ,
together with the transition matrices ˆb and ˆc . As with any
system of observation equations, the batch-form (11) is also
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accompanied by a zero-mean random vector ". This vector
can be expressed as a summation of four uncorrelated terms

as follows

"D

2
66666666666666664

�
ni

0

�
�
wb

iC1

0

�

niC1�
wb

iC2

0

�

:::�
n.kC1/�

0

�

3
77777777777777775

„ ƒ‚ …
I

C

2
6666666666666666664

2
4 0

iP
j Dk�C1

ˆc
.i�j / w

c
j

3
5

�
0

0

�

0�
0

0

�

:::�
0

0

�

3
7777777777777777775

„ ƒ‚ …
II

C

2
66666666666666664

�
0

0

�
�

0

wc
iC1

�

0�
0

wc
iC2

�

:::�
0

0

�

3
77777777777777775

„ ƒ‚ …
III

C

2
66666666666666664

�
0

ˆc
.i�k�/ O�k� jk�

�
�

0

0

�

0�
0

0

�

:::�
0

O�.kC1/� j.kC1/�

�

3
77777777777777775

„ ƒ‚ …
IV

(12)

The first term I contains the user-specific measurement
and process noises that are time-uncorrelated. The second
term II contains the accumulative process noise due to the
correction latency i � k� , i.e., the delay in time after the
corrections are filtered by the provider and the time they
are provided to the user. The third term III contains the
correction process noises that are also time-uncorrelated. In
contrast to the first three terms however, the fourth (last)
term IV contains the correction estimation-errors O�k� jk� D

Ock� jk� � ck� and O�.kC1/� j.kC1/� D Oc.kC1/� j.kC1/� � c.kC1/�

which are correlated, see e.g. Teunissen and Khodaban-
deh (2013). This implies that the variance matrix of "

is not ‘block-diagonal’, preventing the recursive computa-
tion of minimum-variance parameter solutions (Teunissen
2001). This shows that the stochastic model of the PPP-RTK
user-filter is always misspecified, and therefore, suboptimal
in the minimum-variance sense, no matter which formu-
lation is adopted. However, the user can still recursively
compute suboptimal parameter solutions by approximating
the stated variance matrix using a block-diagonal positive-
definite matrix. Each approximation adopted leads to a differ-
ent formulation of the user-filter. In the following we discuss
three different formulations and assess their corresponding
precision-loss in estimating the user parameters bj .

3.2 Case 1: Correctional Uncertainty
Ignored

A straightforward choice of the block-diagonal matrix that
can approximate the variance matrix of " is made by ignoring
the uncertainty of the corrections. In other words, the external

corrections Ocj jk� (j D i ; i C 1; : : : ; .k C 1/� ) are assumed
precise enough to be treated as non-random, the scenario
that is commonly exercised in practice (Khodabandeh 2021).
According to this choice, the presence of the last three terms
II, III and IV in (12) is discarded. Therefore, only the variance
matrix of the first term I is used to weight the underlying
observation vectors. At every epoch j , the user would then
work with the following measurement model

�
uj

Ocj jk�

�
�

�
Bj Cj

0 I

� �
bj

cj

�
C

�
nj

0

�
(13)

The reduced form of the above system, together the user
dynamic model (10), is used to setup the underlying user-
filter, that is

Case 1 W

�
measurement-model W uj �Cj Ocj jk� � Bj bj Cnj

dynamic-model W ob
j D bj �ˆb bj �1Cwb

j

(14)

Since the measurement noises nj are time-uncorrelated, the
user can run his Kalman-filter in its recursive form (Teunis-
sen 2001).

3.3 Case 2: Correction Process Noise
Ignored

The second choice for approximating the variance matrix of
" can be made by ignoring the uncertainty of the correction
process noises wc

j over the epochs j D i C 1; : : : ; .k C

1/� � 1. According to this choice, the presence of the last
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two terms III and IV in (12) is discarded. The user chooses the
variance matrix of ICII to weight his observation vectors. At
every epoch j , the user would then work with the following
measurement model

�
uj

Ocj jk�

�
�

�
Bj Cj

0 I

� �
bj

cj

�
C

2
4 nj

jP
hDk�C1

ˆc
.j �h/ w

c
h

3
5 (15)

Similar to Case 1, the reduced form of the above system,
together (10), is used to setup the underlying user-filter, that
is (compare with 14)

Case 2 W8̂̂
<̂
ˆ̂̂:

measurement-model W uj � Cj Ocj jk� � Bj bj

C .nj �
jP

hDk�C1

Cj ˆc
.j �h/ w

c
h/

dynamic-model W ob
j D bj � ˆb bj �1 C wb

j

(16)

Since the uncertainty of wc
j is ignored, the reduced measure-

ment noise vectors nj �
jP

hDk�C1

Cj ˆc
.j �h/ w

c
h can be treated as

if they are time-uncorrelated, allowing the recursive compu-

tation of the user parameter solutions. As with Case 1, Case
2 also delivers suboptimal parameter solutions. In contrast
to Case 1 however, Case 2 incorporates the uncertainty
due to the time-prediction of the corrections Ocj jk� into the
measurement model.

3.4 Case 3: Correction Estimation-Error
Ignored

As stated previously, it is only the last term IV in (12)
that makes the user-filter misspecified. One may therefore
approximate the variance matrix of " by neglecting the
presence of IV. The rationale behind such approximation
is that the provider filtered solutions Ock� jk� can become
precise enough so as to neglect their estimation error O�k� jk�

when the duration of the provider-filter initialization, i.e. the
time-difference between the epoch k� and the initial epoch
t D 1, becomes sufficiently large (e.g., �1 h), see (Wang
et al 2017; Khodabandeh 2021; Psychas et al 2022). Upon
making this approximation, the user would then work with
the following measurement and dynamic models (compare
with 16)

Case 3 W

8̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂:

measurement-model W

8̂̂
ˆ̂<
ˆ̂̂̂:

�
ui

Oci jk�

�
�

�
Bi Ci

0 I

� �
bi

ci

�
C

2
4 ni

iP
hDk�C1

ˆc
.i�h/ w

c
h

3
5

uj � ŒBj ; Cj �

�
bi

ci

�
C nj .j ¤ k�/

dynamic-model W

�
ob

j

oc
j

�
D

�
bj

cj

�
�

�
ˆb 0

0 ˆc

� �
bj

cj

�
C

�
wb

j

wc
j

�
(17)

Note the difference between the formulation of Case
3 and those of the two earlier cases. In Case 3, the
system is not reduced for the correction parameters cj .
This is because the reduced measurement noise vectors

nj �
jP

hDk�C1

Cj ˆc
.j �h/ w

c
h are time-correlated. In order to

run the filter in its recursive form, the user therefore
has to work with the augmented state-vector ŒbT

j ; cT
j �T

instead.
To numerically evaluate the maximum precision-loss

experienced by the user-filter under the formulation of the
three cases discussed above, we employ the result (6) and
compute the square-root of the upper-bound, i.e.

p
1C�max,

for the case where a dual-frequency Galileo user (E1/E5a)
is provided with clock-, bias- and ionospheric- corrections
every � seconds. The eigenvalue �max is evaluated on the
basis of the variance matrix corresponding to the multi-

epoch batch model (11). The corresponding results as a
function of the correction latency i � k� is shown in Fig. 1.
As illustrated in the figure, the stated upper-bounds of all the
three cases are close to unity in the absence of correction
latency (i.e. when i D k� ), indicating that they would
deliver parameter solutions almost as precise as those of the
minimum-variance estimation. However, the suboptimality
levels of Cases 1 and 2 rapidly get worse the higher the
latency becomes (the red and blue curves). Provided that
the duration of the provider-filter initialization is sufficiently
long, the precision-loss associated with Case 3 remains
marginal though (see the green curves in the right-panel of
the figure).

Next to the primary evaluation in Fig. 1, we also make
use of a Galileo dual-frequency (E1/E5a) real-world data-
set to study the positioning performance of the misspecified
user-filter. The data-set was collected with a 1Hz sampling-
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Fig. 1 The maximum increase in the standard-deviation ratio of the
suboptimal-to-optimal estimation of the user parameters using network-
derived corrections of a single station (thick lines) and twenty stations

(dashed lines). The duration of the provider-filter initialization is set to
5 min (left) and 1 h (right). The results of Cases 1, 2 and 3 are indicated
in red, blue and green, respectively

Fig. 2 Ambiguity-float results: The medians (50% percentiles) of the
absolute positioning errors corresponding to 300 user-filter realizations
within the area of their 25% and 75% percentiles. The horizontal axes

indicate the time lapsed (in seconds) since the user-filter has started.
The results of Cases 1, 2 and 3 are indicated in red, blue and green,
respectively

rate on 21 January 2022 by two GNSS permanent stations:
CUT0 and UWA0, both located in Western Australia. The
precise orbital corrections are a-priori applied to the data.
To emphasize the performance of the proposed filter for-
mulations (i.e. Cases 2 and 3) in handling time-delayed
corrections, we consider rather high correction latencies
than the typical latency of 5–10 s of current IGS real-time
PPP corrections (https://igs.org/rts/), see, e.g., Leandro et al
(2011). The clock corrections are made available to the user
every 10 s, ionospheric corrections every 30 s, and phase-
bias corrections every 10 min. The corrections are generated
via a single-station PPP-RTK setup (Khodabandeh 2021),
where the duration of the provider-filter initialization is set
to 1 h. Station CUT0 serves as correction-provider, whereas
station UWA0 serves as user that is about 8km away from the
provider.

In order to infer the overall performance of the user-filter
under the formulations offered by Cases 1, 2 and 3, we
generate 300 different realizations of the filtered positioning
solutions by shifting the user-filter starting epoch i every
15 s. The time-series of the medians (i.e. 50% percentiles)
of these realizations within the area of their 25% and 75%
percentiles are presented in Figs. 2 and 3 for the both the user
ambiguity-float and-fixed options, respectively. The medians
of the positioning errors corresponding to Cases 2 and 3 are
shown to be considerably smaller than those of Case 1. The
results also indicate that Case 3 outperforms Case 2 as it, on
average, delivers smaller medians of the positioning errors.
In particular, the difference in their performance becomes
considerable when the user fixes his float ambiguities. Note
also the presence of periodic jumps of the medians for all
the three cases. This behaviour is due to the periodic nature

https://igs.org/rts/
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Fig. 3 Ambiguity-fixed results: The medians (50% percentiles) of the
absolute positioning errors corresponding to 300 user-filter realizations
within the areas of their 25% and 75% percentiles. The horizontal axes

indicate the time lapsed (in seconds) since the user-filter has started.
The results of Cases 1, 2 and 3 are indicated in red, blue and green,
respectively

of the correction latencies that vary from zero to � � 1 s for
each data-transmission interval. The corresponding periodic
peaks become more pronounced in the solutions of the east
component when the float ambiguities are wrongly fixed.

4 Concluding Remarks

In this contribution we presented a general means for measur-
ing the precision-loss that is experienced by the misspecified
PPP-RTK user-filter. It was addressed why the stochastic
model of the user-filter is always misspecified, irrespective
of the multi-epoch formulation adopted, cf. term IV in (12).

By discussing three different formulations for the user-
filter, it was demonstrated that the user can potentially limit
the suboptimality level of his filter, i.e. when the correction
latency is not high and when the duration of the provider-
filter initialization is sufficiently long. In contrast to the
commonly-used multi-epoch formulation (Case 1), our pro-
posed formulations (Cases 2 and 3) were shown to deliver
user parameter solutions that are almost as precise as those
of the minimum-variance estimation.
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Appendix

Proof of the Theorem Let Q Ox and Q Ox� be the variance
matrices of the estimators Ox and Ox�, respectively. To prove
(6), we employ the following Rayleigh quotient-bounds of
the matrix-pair .Q Ox; Q Ox�/ (Magnus and Neudecker 2017)

�min.Q Ox Q�1
Ox� / �

f T Q Oxf

f T Q Ox�f
� �max.Q Ox Q�1

Ox� /: (18)

Defining matrix M D .Q Ox � Q Ox�/ Q�1
Ox� , (18) can be

expressed as

1 C �min.M/ �
f T Q Oxf

f T Q Ox�f
� 1 C �max.M/; (19)

as Q Ox Q�1
Ox� D I C M . What remains to show is �.M/ D

�.MLAML
A?

/. Application of the variance propagation law
to (5) and (7) gives the variance matrices of the estimators
Ox and Ox� as Q Ox D ACQyACT and Q Ox� D .AT Q�1

y A/�1,
respectively. Therefore, the matrix difference .Q Ox � Q Ox�/
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can be expressed as

Q Ox � Q Ox� D AC .Qy � AQ Ox�AT /„ ƒ‚ …
QOe�

ACT

D AC QyA?.A?T QyA?/�1A?T Qy„ ƒ‚ …
QOe�

ACT

D ACLQpA?.A?T QyA?/�1A?T QpLT ACT

(20)

The first equality follows from the identity ACA D I and
the least-squares residuals’ variance matrix QOe� D Qy �

AQ Ox�AT , while the second equality follows by expressing
QOe� in its conditional adjustment form (Teunissen 2000),
with A? being an orthogonal-complement basis matrix of A.
Thus AT A? D 0, and ŒA; A?� is a square, invertible matrix.
The last (third) equality follows from Qy D Qe C LQpLT

and ACQeA
? D 0. Substitution of the last expression, with

Q�1
Ox� D .AT Q�1

y A/, into M D .Q Ox � Q Ox�/ Q�1
Ox� gives

M D ACLQpA?.A?T QyA?/�1A?T„ ƒ‚ …
U

QpŒAACL�T Q�1
y A„ ƒ‚ …

V

(21)

As the nonzero eigenvalues of the matrix-product U V

remain invariant for switching the order of the involved
matrices as V U (Magnus and Neudecker 2017, p. 16), the
following matrix

V U D QpŒAACL�T Q�1
y ŒAACL�„ ƒ‚ …

MLA

� QpA?.A?T QyA?/�1A?T„ ƒ‚ …
ML

A?

(22)

inherits the same nonzero eigenvalues as those of (21). ut

References

Collins P, Bisnath S, Lahaye F, Heroux P (2010) Undifferenced GPS
ambiguity resolution using the decoupled clock model and ambiguity
datum fixing. Navigation 57(2):123–135

Kalman RE (1960) A new approach to linear filtering and prediction
problems. J Basic Eng 82(1):35–45

Khodabandeh A (2021) Single-station PPP-RTK: correction latency and
ambiguity resolution performance. J Geod 95(4):1–24

Koch KR (1999) Parameter estimation and hypothesis testing in linear
models. Springer, Berlin

Laurichesse D, Mercier F (2007) Proceedings of the 20th International
Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS 2007), pp 839–848

Leandro RF, Santos MC, Langley RB (2011) Analyzing GNSS data in
precise point positioning software. GPS Solut 15(1):1–13

Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th
edn. Wiley, New York

Magnus JR, Neudecker H (2017) Matrix differential calculus with
applications in statistics and econometrics, 3rd edn. Wiley, NewYork

Odijk D, Zhang B, Khodabandeh A, Odolinski R, Teunissen PJG (2015)
On the estimability of parameters in undifferenced, uncombined
GNSS network and PPP-RTK user models by means of S-system
theory. J Geod 90(1):15–44

Psychas D, Khodabandeh A, Teunissen PJG (2022) Impact and miti-
gation of neglecting PPP-RTK correctional uncertainty. GPS Solut
26(1):1–15

Simon D (2006) Optimal state estimation: Kalman, H [infinity] and
nonlinear approaches. Wiley, New York

Teunissen PJG (2000) Adjustment theory: an introduction. Delft Uni-
versity Press, Delft. Series on mathematical geodesy and positioning

Teunissen PJG (2001) Dynamic data processing. Delft University Press,
Delft. Series on mathematical geodesy and positioning

Teunissen PJG, Khodabandeh A (2013) BLUE, BLUP and the Kalman
filter: some new results. J Geod 87(5):1–13

Teunissen PJG, Montenbruck O (eds) (2017) Springer handbook of
global navigation satellite systems. Springer, Berlin

Teunissen PJG, Odijk D, Zhang B (2010) PPP-RTK: results of CORS
network-based PPP with integer ambiguity resolution. J Aeronaut
Astronaut Aviat 42(4):223–229

Wang K, Khodabandeh A, Teunissen PJG (2017) A study on predict-
ing network corrections in PPP-RTK processing. Adv Space Res
60(7):1463–1477

Wubbena G, Schmitz M, Bagg A (2005) Proceedings of ION GNSS,
pp 13–16

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a
credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A Multi-Epoch Processing Strategy for PPP-RTK Users
	1 Introduction
	2 User Model Aided by External Corrections
	3 Multi-epoch Formulations of the User Model
	3.1 Representation in Batch Forms
	3.2 Case 1: Correctional Uncertainty Ignored
	3.3 Case 2: Correction Process Noise Ignored
	3.4 Case 3: Correction Estimation-Error Ignored

	4 Concluding Remarks
	Appendix
	References


