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Preface

The generation of synthetic data through advanced generative models represents
a transformative method for enhancing and sharing data. While watermarking
techniques have been widely developed for synthetic images and texts, their application
to synthetic tables has been limited. To addresses the essential need for traceability
and auditability in synthetic tabular data to prevent misuse and potential harm, this
work introduces Ripple, an innovative watermarking algorithm specifically designed
for latent tabular diffusion models, bridging a significant gap in the application of
watermarking techniques to synthetic tabular data.
Ripple is a novel watermarking algorithm tailored for tabular diffusion models

during the sampling phase. By embedding watermarks in the Fourier space of the initial
noise matrix, Ripple effectively balances data quality, detectability, and robustness.
This approach ensures the watermark remains invisible to human observers while
being detectable by algorithms and resilient to various post-editing operations.

Extensive evaluation across four diverse datasets demonstrates Ripple’s effective-
ness in preserving synthetic data quality in terms of resemblance, discriminability,
and downstream utility. The average quality difference between watermarked and
non-watermarked data is less than 0.6%, ensuring the synthetic tables remain useful for
machine learning tasks and other applications. In terms of detectability, Rippledelivers
outstanding results, with statistical p-values for watermark detection averaging more
than 25 times lower than 0.02 across all datasets, representing an improvement of more
than 2 orders of magnitude compared to the tree-ring baseline. Additionally, Ripple
demonstrates strong robustness against various post-editing attacks, including the
deletion and distortion of rows, columns, and values. Robustness analysis reveals that
85% of the p-values remain below 0.05 across different attack scenarios, highlighting
Ripple ’s capability to maintain watermark integrity under malicious conditions.

By successfully embedding watermarks while preserving data quality and ensuring
high detectability and robustness, Ripple sets a new benchmark for traceability and
auditability in synthetic tabular data. This contribution is significant as the use of
synthetic data continues to expand in fields such as healthcare, finance, and social
sciences.

This master’s thesis is completed under the dedicated supervision of Prof. Lydia
Chen, with valuable guidance and support from Prof. Robert René Maria Birke and
PhD student Chaoyi Zhu. Their academic expertise significantly contributed to the
depth and rigor of this work. I am also deeply grateful for their warm patience and
assistance, which have been instrumental in my personal and professional development.
Additionally, I extend my sincere gratitude to Prof. Avishek Anand, for his support as
my committee member, and to my family for their unwavering support throughout
this journey.

Jiayi Tang
Delft, June 2024
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Ripple Watermarking for Latent Tabular Diffusion Models

RIPPLE WATERMARKING FOR LATENT TABULAR DIF-
FUSION MODELS

ABSTRACT

Synthetic tabular data generated by tabular generative models represent an effec-
tive means of augmenting and sharing data. It is of paramount importance to trace
and audit such synthetic data, avoiding potential harms and risks associated with
inappropriate usage. While watermarking techniques are increasingly used for
synthetic images, little is known about how to watermark synthetic tables such that
they are imperceptible for humans, detectable by algorithms, and robust against
post-editing. In this paper, we present the first watermarking algorithm for tabular
diffusion models, which inserts novel ripple watermarks into the latent space of
tables. For every synthetic table, the watermark initiates from a central ring within
the Fourier-transformed latent of the table, extending gradually across a large por-
tion of the space. The watermark can be detected by calculating the distance
between the Fourier-transformed tabular latent and the ground-truth watermark
patch. Additionally, we develop post-editing attacks, including row/column/value
deletion and distortion, to evaluate the robustness of the watermark. Our eval-
uation on four datasets demonstrates that our watermarking scheme effectively
preserves the quality of synthetic tables in terms of resemblance, discriminability,
and downstream utility. The average quality difference is less than 0.6% compared
to non-watermarked data, while maintaining high detectability, with average sta-
tistical p-values over 25× lower than 0.02. Additionally, our robustness analysis
shows that the watermark is resilient against various post-editing actions, with
85% of the p-values remaining below 0.05 across all 18 attack settings on four
datasets.

1 INTRODUCTION

Synthetic data from generative models is becoming integral to today’s data management and ar-
tificial intelligence services. Synthetic tables generated from tabular generative adversarial net-
works [55, 47] and tabular diffusion models [23] are used to augment the data for training machine
learning models and substitute the original data for protecting privacy [13]. As such synthetic data
is increasingly adopted for critical tasks, it is paramount to ensure its traceability and auditability to
avoid harm and misusages. Recent advancements in watermarking technology [22, 24, 45, 56, 48]
have demonstrated significant promise in texts from language models and images from diffusion
models. Research indicates that embedded watermarking keys do not compromise the quality of syn-
thetic data, remaining imperceptible to human users while being detectable by algorithms. Besides
balancing data quality and detectability, another essential criterion for watermarking technologies is
their robustness against post-editing operations, such as deletions and insertions [24].

Existing studies on image and language generative models focus on embedding watermarking keys
during the training [11], sampling [45, 22], and post-editing phases [44, 3, 15]. Watermarking dur-
ing the training phase involves modifying the model weights, which enhances the trade-off between
quality and robustness but is time-consuming [11]. Conversely, post-editing watermarking methods,
which apply watermarks directly to existing data, significantly degrade data quality and are sus-
ceptible to removal or theft by third parties. Sampling-phase watermarking, which alters only the
sampling process without changing the model weights, yet maintains high data quality [45, 22] and
offers a favorable trade-off between computational overhead and robustness. This approach has gar-
nered significant attention due to its efficiency and effectiveness. In the context of language models
like GPT, secret keys [22] are used to modify the logit values of vocabulary tokens, thereby adjusting
token probabilities for the next-word generation according to the context and keys. For image mod-
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els, watermarking is proposed to be embedded in the latent space of image diffusion models [45].
To minimize the distortion to the image quality, Fourier transformation is first applied to the latent
space to identify the low-frequency area of latent space that has a lower impact on perceived quality.
Despite substantial research on watermarking synthetic texts and images, there is, unfortunately no
study on watermarking tabular generative models during the sampling phase.

Synthetic tables can be generated using a variety of models, including Bayesian networks [2],
variational autoencoder networks [1], generative adversarial networks [47, 55], and diffusion mod-
els [52, 23]. Prior research often addresses the challenge of representing discrete column variables,
such as gender and education levels, through advanced encoding schemes and network architectures.
One-hot encoding is a common method for representing these categorical variables [55, 47]. Tabular-
specific encoding schemes [1] unify the representation of continuous and categorical variables in a
single space, achieving scalability yet they suffer from poor scalability. Recently, language models
have been applied to table generation [6] due to their advantage in generalized encoding across text,
numerical, and discrete columns. However, the large model sizes and computational demands of
language models limit their practicality for tabular generation, which is inherently structured and
requires fewer vocabulary tokens than natural language. Consequently, tabular generative models
inspired by image generative models are more commonly adopted in industry [10], offering a bet-
ter balance between computational overhead and data quality, i.e., the similarity between real and
synthetic tables and the differences in downstream utility between using real and synthetic tables.

In this paper, we propose the first watermarking scheme, Ripple, for tabular generative models in
the sampling phase. The particular type of generative model considered is the latent tabular diffu-
sion model [52] that first encodes all types of column variables into a unified space via autoencoder
networks and then uses diffusion models to synthesize the latent codes. Ripple embeds watermark
keys in the Fourier space of the initial latent noise matrix that is used to generate a new table. Wa-
termarking in the Fourier space enhances coherence, as changes spread more evenly into the spatial
domain, and improves robustness, as attacks in the spatial domain are less effective in the Fourier
space. Existing tree-ring watermarking method [45], which embeds watermarks in the Fourier space
of images, is limited when applied to tables due to the different shapes of tables. This method only
watermarks the central low-frequency domain constrained by its employed radius for images. In
contrast, Ripple embeds a ripple pattern across a broader frequency spectrum, ensuring that many
more cells carry watermark keys, thus improving detectability. Additionally, Ripple maintains
good data utility by embedding the watermark in the noise matrix in the latent space, minimizing
the impact on the actual data. Another key component of Ripple is its watermark detection algo-
rithm. Given a synthetic table, the invertibility of diffusion models allows the table to be reversed to
its noise matrix. Detectability is then evaluated using statistical p-values, which describe the distri-
butional differences of the distances in the Fourier domain between the ground-truth patch and the
reversed noise matrices from watermarked and non-watermarked data.

We evaluate Ripple on four datasets with synthetic tables generated by TabSyn [52] for data qual-
ity comparison, and we further watermark these synthetic tables with tree-ring [45] and Ripple
respectively for watermark detectability comparison. Ripple achieves data quality comparable to
the original synthetic data in terms of shape quality, trend quality, discriminability, and machine
learning efficacy. Additionally, Ripple demonstrates significantly higher detectability, measured
by lower p-values across all four datasets. To assess the robustness of Ripple, we develop six
post-editing attacks: deletion and distortion at the row, column, and value levels. Among these,
row deletion is the most effective, reducing detectability by a significant margin on two of the four
datasets. Lastly, we conduct ablation studies to examine the impact of the watermarking area, wa-
termarking target, and attacking target. The results indicate that the combined use of the diffusion
model and variational autoencoder enhances data quality, watermark detectability, and watermark
robustness with the area to be watermarked being a hyperparameter to tune.

Our key contribution lies in designing and validating Ripple, the first watermarking scheme for
latent tabular diffusion models. The specific technical contributions are summarized as follows:

• The novel ripple watermarking pattern enables watermarking across cells in the synthetic
table, significantly increasing detectability by more than 2 orders of magnitude compared
to the tree-ring watermarking baseline.

• Six post-editing attacks specific to synthetic tables are developed for robustness evaluation,
involving the deletion and distortion of columns, rows, and cells.
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• Comprehensive empirical evidence demonstrates that Ripple achieves three critical
goals: i) maintaining high synthetic data quality with an average difference of less than
0.6% in quality measures despite the inclusion of the watermark, ii) ensuring high water-
mark detectability across all datasets with p-values on average more than 25 times lower
than 0.02, and iii) ensuring high robustness with 85% of the p-values remaining under 0.05
in the presence of different settings of post-editing attacks.

2 RELATED WORKS

2.1 WATERMARKS ON SYNTHETIC DATA

With the ability to create contents that mimic human creativity, generative AI models have achieved
notable proficiency in generating high-fidelity images, videos, texts and more [7, 29]. However,
this progress also introduces challenges, notably the potential for misuse, such as deepfakes and
misinformation enabling fraud and scams [35, 14, 19]. To control potential misuse and risks, wa-
termarking across various data modalities has been proposed as an effective strategy by embedding
hidden messages into all generated content that are later detectable to enhance traceability.

In image synthesis, watermarking can be integrated into generative models by modifying their train-
ing procedures. This approach involves embedding a watermark into the training data, ensuring that
the generated images inherently contain the watermark [50, 51, 54]. Alternatively, watermarking
can be implemented without requiring watermarked training data or retraining the generator from
scratch. Pivotal Tuning Watermarking [26] offers a method for watermarking pre-trained GANs by
adjusting the models during post-training. Methods that use the invertibility of diffusion models [45]
or employ additional encoders and decoders to embed a watermark message-matrix [46] can also be
used for watermarking without retraining the generative model.

In text synthesis, watermarking for large language models (LLMs) has seen significant development.
One approach involves embedding watermark messages into a subset of the training data using a wa-
termark embedding function [42, 41]. However, this method requires retraining the model, and the
model generates watermarked outputs only for specific inputs. Another approach is watermarking
during the logits generation, where the probability distribution of the next predicted token is modi-
fied using algorithms based on previous tokens. The watermark is detected based on the partitions in
the modified distributions [22, 56]. Alternatively, watermarking can be done during the token sam-
pling phase, where the logits for the next token are not altered, but the watermark message guides
the sampling of tokens. This can be implemented at the word level [24] or sentence level [17].

Watermarking has also been applied to other modalities of synthetic data. For instance, Riva-
GAN [53] watermarks videos by training a deep neural network adversarially to stamp a pattern
on synthetic images using a custom attention-based mechanism. Additionally, an approach that
predefines a text-image pair and fine-tunes the model allows for watermarking large-scale text-to-
image models without starting from scratch [54]. These diverse watermarking techniques ensure
the authenticity and integrity of AI-generated content, addressing potential misuse and preserving
trust in digital media. While little attention has been paid to synthetic tabular data, we extend wa-
termarking to latent tabular diffusion models with the proposed Ripple, which achieves high syn-
thetic data quality and superior watermark detectability while demonstrating remarkable resilience
to post-editing attacks.

2.2 DIFFUSION MODELS

Diffusion models, initially introduced by Sohl-Dickstein et al. [37], have gained considerable atten-
tion in recent years owing to their exceptional performance across a diverse array of domains. These
domains include image synthesis [16, 20], text-to-image generation [32, 33, 31], spatial-temporal
data modeling [43], tabular data synthesis [23, 52], and more. Based on their underlying assump-
tions and optimization objectives, the diffusion models can be broadly categorized into variational
diffusion models and score-based models [27].

Variational diffusion models operate by employing two Markov chains: a forward process that per-
turbs the data into pure Gaussian noise, and a reverse process that learns to recover the data from
this noise. These models are parameterized by neural networks that either aim to predict the original
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data from the noised data at various timesteps [37] or learn to predict the source noise influencing
the original data to the noised data at different timesteps [38].

In contrast, instead of the use of Markov chains, score-based models [39] originate from the concept
of the Stein score [18], also known as the score function. The score function is defined as the gradient
of the log probability density of a given probability distribution. Thus, given the original data, score-
based models perturb the data with a sequence of intensifying Gaussian noise and simultaneously
estimate the score functions for all noisy data distributions by training a deep neural network model
conditioned on noise levels.

These foundational diffusion models have been further refined through various enhancements, lead-
ing to models with more efficient sampling methods [9, 40, 20], improved likelihoods [28, 25] and
cross-modality integration [12, 30]. These developments enable diffusion models to excel in generat-
ing high-quality synthetic data that closely mimic real datasets, making it challenging to distinguish
between the two. Consequently, it is crucial to develop advanced watermarking techniques that
can effectively identify AI-generated content. This necessity underscores our approach, which in-
tegrates robust watermarking into the diffusion process, ensuring the traceability and authentication
of synthetic data while maintaining its quality and usability.

3 METHODS

3.1 LATENT TABULAR DIFFUSION MODEL

Latent tabular diffusion models are state-of-the-art tabular data generative models [52, 36]. In this
paper, we use them as the foundation to insert invisible watermarks in the synthesized tables. Indeed,
their latent space provides a safe environment where watermarks can be seamlessly injected and
detected since it requires access to the trained model, which we assume only the owner has. State-
of-the-art tabular diffusion models consist of a diffusion model, generating a latent variable, and an
autoencoder, decoding the latent variable into synthetic tabular data [52].

Autoencoder The autoencoder allows to unify the representation of continuous and categorical
columns. Further, it adds a layer of disguise for watermarking, making the watermark pattern less
discernable in the synthesized table.

The encoder E initially maps the original tabular data denoted as X , both continuous and categorical
columns, into a unified, continuous latent space, represented as Z = E(X). Subsequently, the
decoder D reconstructs the latent representation Z back into the original data space, yielding X̃ =
D(Z). Following the state-of-the-art work [52], we use variational autoencoders that can be trained
by minimizing the negative evidence lower-bound (ELBO) [21].

Diffusion model The diffusion model denoises a latent representation of the tabular data from a
noise matrix, which can be infused with a watermark and later detected using the ground-truth wa-
termark patch. While the architecture is oblivious to the specific choice of autoencoder architecture,
the choice of diffusion model requires careful consideration to guarantee deterministic diffusion and
sampling processes. Ensuring both deterministic processes allows for accurate recovery of the noise
matrix from the synthesized table, thereby enabling sound detection of the watermark.

Among the various diffusion models, Denoising Diffusion Implicit Model (DDIM) stands out for its
ability to facilitate both deterministic diffusion and sampling processes. DDIM extends the classical
Markovian diffusion process into a broader class of non-Markovian diffusion processes. Within
the DDIM framework, given the noise matrix ZT in the latent space, and a neural network ϵθ that
predicts the noise ϵθ(t, Zt) at each diffusion time step t, the generation of a sample Zt−1 from Zt

during the sampling process is described by the equation:

Zt−1 =
√
αt−1(

Zt −
√
1− αtϵθ(t, Zt)√

αt
) +

√
1− αt−1 − σ2

t · ϵθ(t, Zt) + σtϵt (1)

where α1, . . . , αT are computed from a predefined variance schedule, ϵt ∼ N (0, I) denotes stan-
dard Gaussian noise independent of Zt, and the σt values can be varied to yield different generative
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processes. Specifically, by setting σt to 0 for all t, the sampling process becomes deterministic:

Zt−1 =

√
αt−1

αt
Zt + (

√
1− αt−1 −

√
αt−1

αt
− αt−1)ϵθ(t, Zt) (2)

This deterministic sampling process ensures that a given noise matrix ZT consistently generates
the same latent matrix Z0. Consequently, when Z0 is fed into the decoder D, the resulting table
X̃ = D(Z0) will also be consistently the same.

Notably, in the limit of small steps (large value of T ), we can traverse the timesteps in the reverse
direction towards increasing levels of noise, yielding a deterministic diffusion process from Z0 to
ZT :

Zt+1 =

√
αt+1

αt
Zt + (

√
1− αt+1 −

√
αt+1

αt
− αt+1)ϵθ(t, Zt) (3)

Therefore, given the tabular latent Z0 = E(X) of a table X , the noise matrix ZT that is used to
sample the corresponding table can be derived. This latent tabular diffusion model with deterministic
sampling and diffusion processes enables the secure watermarking of synthetic tabular data. By
embedding the watermark into the noise matrix ZT , the watermark remains imperceptible to humans
and exerts minimal influence on the quality of the synthetic tables. By reversing the tabular data back
to the noise matrix, the watermark’s presence can be smoothly detected by assessing the distance
between the ground-truth watermark patch and the reversed noise matrix Z̃T .

3.2 RIPPLE WATERMARKING

3.2.1 WATERMARKING IN THE FOURIER DOMAIN

As Section 3.1 mentions, the watermark is embedded within the noise matrix inputted to the dif-
fusion model. The deterministic nature of our latent diffusion model suggests that embedding the
watermark directly into the latent noise matrix could introduce discernible patterns in the sampled
tabular latent, which may subsequently manifest as noticeable patterns in the generated tables.

To mitigate this, we adopt a method inspired by the Tree-Ring watermarking technique [45]. Instead
of embedding the watermark directly into the noise matrix, we first apply a fast Fourier transform
(FFT) to the matrix and then embed the watermark in the Fourier domain. Watermarking in the
Fourier domain offers two significant advantages over watermarking in the original spatial domain.

First, it enhances the imperceptibility of the watermark. Modifications in the Fourier domain are
more evenly distributed when transformed back to the spatial domain, allowing the watermark to
be spread across the entire matrix. This distribution minimizes the risk of noticeable artefacts that
could arise from embedding the watermark directly in the spatial domain. Second, watermarking
in the Fourier domain increases resistance to common spatial domain attacks such as cropping and
scaling. These operations typically have a less pronounced impact on the frequency components of
a matrix in its Fourier domain, thereby preserving the robustness of the watermark.

(a) (b) (d) (e)(c)

Figure 1: (a) The tree-ring watermark. (b) The ripple watermark. (c) The ground-truth ripple
watermark patch. (d) The ripple watermarked FFT transformed noise matrix. (e) The resulting
watermarked noise matrix.

The tree-ring watermark is specifically designed for images, taking into account the inherent char-
acteristics of image data. In the context of image synthesis, the dimensions of an image are typically

5



Ripple Watermarking for Latent Tabular Diffusion Models

square, such as a 256 × 256 matrix. The tree-ring watermark is centrally positioned and resembles
the concentric rings of a tree, as illustrated in Figure 1 (a).

In contrast, tabular data is typically generated with a significantly larger number of rows than
columns, resulting in a tall rectangular shape, for example, a 10000 × 40 matrix. Embedding a
small, centrally positioned tree-ring watermark in such a tall rectangle would render the watermark
undetectable. Another critical distinction between image and tabular watermarking is that image
watermarking applies to individual data samples, that is, a single image. On the other hand, tabular
data is often generated in batches containing multiple data samples, that is, multiple rows. Conse-
quently, we propose the ripple watermark, characterized by circles spreading across the rows, akin
to a ripple effect, watermarking a batch of rows at a time, as depicted in Figure 1 (b).

Specifically, given a predefined radius r representing the outermost circle of the ripple watermark,
a watermark patch K with the ripple originating from its center is generated using Algorithm 1.
Initially, a random matrix of the same size as the noise matrix is generated using Gaussian noise. Its
2D Fourier transform with the zero-frequency component shifted at the center, serves as the base for
the watermark patch. Subsequently, a ripple is created wherein each concentric circle of the ripple
has the same value, which is randomly sampled from the base matrix. The value of r is determined
empirically according to different datasets.

Algorithm 1 Generate watermark patch

1: Input: Radius r, shape (n,m) of the noise matrix where n is the number of rows and m is the
dimension of the latent for each row

2: N ← (Nij ∼ N (0, 1))1≤i≤n,1≤j≤m // Initialize a random Gaussian matrix
3: K ← fftshift(fft2d(N)) // Apply 2D Fourier transform to N and shift the components
4: Ktmp ← copy(K) // Copy K for value sampling in ripple circles
5: for k ← r downto 1 do
6: // From the outermost circle inward
7: v ← sample(Ktmp) // Sample a random value v for the i-th circle
8: for all (i, j) where 1 ≤ i ≤ n, 1 ≤ j ≤ m, (i− n

2 )
2 + (j − m

2 )
2 ≤ k2 do

9: K(i, j)← v // Assign v to position (i, j)
10: end for
11: end for
12: return K // Return the modified matrix

An example of the generated watermark patch is shown in Figure 1 (c). Plots of the watermarked
Fourier-transformed noise matrix and its inverse fast Fourier transform (IFFT), which is used to
sample synthetic tabular data, are presented in Figure 1 (d) and (e). As previously mentioned,
modifications in the Fourier domain spread out more evenly when transferred back to the spatial
domain. Therefore, the central ripple in the Fourier domain would impart a watermarking effect
across all rows and columns in the spatial domain. Furthermore, as illustrated in the figure, while
the ripple watermark is readily detectable in the Fourier domain, it does not exhibit an obvious
pattern in the spatial domain. The IFFT noise matrix resembles a Gaussian noise matrix, making it
suitable for sampling via the diffusion model.

3.2.2 THE INJECTION AND DETECTION OF WATERMARKING

Sampling process

Watermark detection

FFT... ...

Diffusion process

... ...IFFT

Watermark injection

FFT

Figure 2: The injection and detection phases of ripple watermarking.
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The watermarking injection and detection phases are depicted in Figure 2. In the injection phase,
specific matrix elements in the Fourier-transformed noise matrix are replaced by values from a
predefined watermark patch. Specifically, given the predefined watermark patch K and a binary
mask M with values of 1 in the ripple watermark region and 0 otherwise, the FFT-transformed noise
matrix F (ZT ) of an initial noise matrix ZT is watermarked as follows:

F (ZT )i,j =

{
Ki,j , if Mi,j = 1
F (ZT )i,j , otherwise where Mi,j =

{
1, if (i− n

2 )
2 + (j − m

2 )
2 ≤ r2

0, otherwise
(4)

The FFT-transformed noise matrix, which is watermarked, will then be applied with an inverse fast
Fourier transform (IFFT). Subsequently, a synthetic table incorporating the watermark is generated
through the diffusion model’s sampling process and the decoder’s decoding process.

In the detection phase, the synthetic tables are encoded back into the latent space and diffused back to
the noise matrix Z̃T . An FFT is applied again, and the detection process is based on the L1 distance
between the ground-truth watermark patch K and the watermarked area of the Fourier transformed
latent noise matrix F (Z̃T ). The distance metric is defined as:

d =
1

|M |
∑

Mi,j=1

∣∣∣Ki,j − F (Z̃T )i,j

∣∣∣ (5)

The watermark is then detected if the calculated distance d is less than a threshold τ , which is
empirically calibrated for different datasets.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets We used four widely utilized tabular datasets, including two small and two larger
datasets, to evaluate the influence of the proposed watermarking technique on synthetic data qual-
ity, the effectiveness of watermark detection, and its robustness against post-editing attacks. The
Shoppers [34] includes 12,330 samples featuring 18 mixed-type columns (10 continuous and 8 cat-
egorical) that capture online shoppers’ purchasing intentions. The Magic [5] dataset is designed for
simulating the registration of high-energy gamma particles and consists of 19,020 instances with 11
columns (10 continuous and 1 categorical). The Credit [49] dataset provides data on the default
payments of credit card clients, comprising 30,000 instances with a total of 24 mixed-type columns
(14 continuous and 10 categorical). Finally, the Adult [4] dataset contains information on individu-
als’ annual incomes, consisting of 48,842 instances with 15 mixed-type columns (6 continuous and
9 categorical).

Tabular generative model All experiments are conducted using a consistent latent tabular model
architecture. Watermarking is exclusively applied during the sampling processes; consequently,
each model requires training only once per dataset. The trained model can then be sampled multiple
times with various watermarked noise matrices to assess the watermark’s efficacy. Specifically, the
autoencoder module comprises an encoder and a decoder, each following a 2-layer Transformer
architecture. The hidden dimension of the Transformer’s feed-forward network (FFN) is set to 128.
The diffusion model comprises a 4-layer multi-layer perceptron (MLP) with a hidden dimension of
1024. For both the diffusion and sampling processes within the diffusion model, 1000 timesteps are
used. With these hyperparameters, the latent tabular model consistently generates high-quality data
in the absence of watermarking, achieving similarity metrics above 0.88, discriminability metrics
above 0.63, and utility metrics around 0.79 across all datasets. Therefore, the same architecture
is employed for all four datasets, while the number of training epochs is tuned for each dataset
individually.

Baselines Since our watermarking technique is applied during the sampling process, the baselines
differ in the initialization of noise matrices for sampling tabular data. Two baselines are estab-
lished: the non-watermarked baseline and the state-of-the-art tree-ring (TR) baseline [45]. The
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non-watermarked baseline, referred to as W/O in the tables, uses a random Gaussian noise matrix
without modifications. Data sampled from this baseline are used to evaluate the impact of water-
marking on synthetic data quality. The tree-ring baseline involves injecting the noise matrix with a
tree-ring watermark (TRrings from [45]), where the injection is the same as the injection of the rip-
ple watermark. However, unlike a broadly spread ripple watermark, the tree-ring watermark forms
a complete tree-ring shape that extends to the matrix’s edge. Specifically, given a noise matrix of
size (n,m) where n is much larger than m, this baseline is applied with the largest possible tree-
ring, meaning that for each dataset, the outermost radius of the tree-ring watermark is m/2. The
tree-ring baseline is used for both data quality and watermark detection comparison. This allows
us to analyze how different watermark types influence the synthesis quality and the effectiveness of
watermark detection.

4.2 DATA QUALITY

The quality of the synthetic data is evaluated on three aspects: similarity, discriminability, and utility.

Similarity This aspect assesses the statistical similarity between the synthetic data and the original
data through the following metrics:

• Shape quality: This metric evaluates resemblance by comparing the distribution of each
column in the synthetic data with its counterpart in the original data. A similarity score
is computed for each column based on the distributions in both datasets. In particular, we
use the complement of the Kolmogorov-Smirnov statistic for continuous columns and of
the total variation distance for categorical columns, respectively [8]. The average of these
scores across all columns reflects the shape quality of the synthetic table. A higher score
indicates a greater similarity between the synthetic and original tables.

• Trend quality: Since columns in the data may or may not relate to each other, this metric
assesses how well the synthetic data preserves these relationships. This involves calculating
the correlation between every pair of columns in both the synthetic and original datasets and
comparing them. A higher trend quality score indicates that the synthetic data accurately
represents the inter-column relationships found in the original data. The average of these
scores across all column pairs is used to represent the trend quality of the synthetic table.

Discriminability This aspect assesses how difficult it is for a machine learning model to distin-
guish between synthetic data and original data through the following method:

• Logistic Detection: A logistic regression model is trained to differentiate between the two
datasets. First, all rows from both the real and synthetic datasets are combined and then
split into training and validation sets. The machine learning model is trained on the training
set and evaluated on the validation sets. The performance of the model is measured based
on the averaged complement of ROC AUC score across all validation splits. A higher score
indicates that the model can not differentiate between synthetic and real data, suggesting
higher in-discriminability for the synthetic data, i.e. synthetic data being undistinguishable
from real data.

Utility This aspect evaluates the quality of the synthetic data in terms of their performance in
downstream machine-learning tasks. This evaluation is conducted using the following method:

• Machine Learning Efficacy (MLE): Following the training-on-synthetic and test-on-real
setting, each dataset’s classification or regression model is trained on the synthetic data
and evaluated using the real testing set. The performance of the model is measured by the
AUC score for classification tasks and the RMSE for regression tasks. A higher MLE score
indicates better machine learning utility of the synthetic data.

The results of the quality metrics are presented in Table 6. As shown, the synthetic data without
a watermark, with a tree-ring watermark, and with a ripple watermark exhibit generally similar
performance in terms of quality. The most notable difference across the entire table is the logistic
detection score between the no-watermark and ripple watermark in the Shoppers dataset, with a
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Table 1: Quality results of watermarking.

Shape quality Trend quality Logistic Detection MLE
W/O TR RP W/O TR RP W/O TR RP W/O TR RP

Shoppers 0.922 0.922 0.917 0.907 0.907 0.901 0.637 0.635 0.620 0.894 0.893 0.893
Magic 0.917 0.917 0.912 0.939 0.939 0.937 0.711 0.710 0.704 0.834 0.833 0.834
Adult 0.933 0.933 0.930 0.887 0.886 0.879 0.652 0.652 0.651 0.824 0.823 0.824
Credit 0.929 0.929 0.923 0.904 0.904 0.899 0.741 0.742 0.741 0.790 0.790 0.789

difference of 0.017, which is still quite small. This underlines how the watermarking does not
compromise the quality of the synthesized data.

4.3 DETECTION EFFECTIVENESS

As described in Section 3.2.2, the distance between the FFT-transformed inversed noise matrix
F (Z̃T ) and the ground-truth watermark patch K is used for watermark detection. For all detec-
tion results, we conduct 50 random runs for each dataset under three scenarios: no-watermark,
tree-ring watermark, and ripple watermark. Figure 3 (a) illustrates the resulting distances for the
Adult dataset. As depicted in the figure, the distances under the no-watermark setting are gener-
ally the highest. While tree-ring watermarked matrices exhibit distances close to the no-watermark
matrices, ripple watermarked matrices consistently show significantly lower distances. This can be
attributed to distortions arising from reconstruction errors in the VAE and the inverse diffusion pro-
cess, which can alter the values in the latent matrices and consequently distort the watermark in the
FFT-transformed noise matrix. These distortions are predominantly noisy and smoothy, tending to
concentrate around the low-frequency region of the tabular spectrum. As a result, the tree-ring wa-
termark, which primarily occupies the center in the Fourier space, experiences greater distortion. In
contrast, the ripple watermark covers more regions beyond the center where fewer distortions occur,
leading to smaller distances between the ripple watermarked noise matrices and the ground-truth
watermark patch.
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Figure 3: (a) The distances between the FFT-transformed reversed noise matrices and the ground-
truth watermark patches for the Adult dataset. (b) The distribution of the distances in the no-
watermark scenario for the Adult dataset.

For each dataset, the ripple watermark consistently induces a clear separation in the measured dis-
tances compared to the no-watermark scenario. This characteristic allows for the selection of a
threshold that achieves perfect detection accuracy (100%). However, relying solely on detection
accuracy can be overly simplistic. To provide a more nuanced assessment of detection effectiveness,
we leverage p-values. Specifically, given that the distances in the no-watermark scenario follow a
Gaussian distribution as shown in Figure 3 (b), the p-value quantifies the probability that a given dis-
tance is sampled from this distribution. Statistically, a p-value less than 0.05 shows that the distance
is unlikely to arise from the no-watermark distribution, while a p-value less than 0.02 indicates that
the distance is significantly unlikely to be observed from this distribution.

The p-values for every distance given by both the tree ring and ripple watermarking methods are
calculated. The average and maximum p-values are presented in Table 2. As shown in the table, tree
ring watermarking achieves a p-value below 0.05 in only one dataset, and its highest p-value reaches
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Table 2: Detection results of watermarking.

Tree-ring Ripple
mean p-value max p-value mean p-value max p-value

Shoppers 3.33e-2 4.85e-1 9.65e-8 3.27e-6
Magic 2.32e-1 8.50e-1 7.47e-4 1.01e-2
Adult 1.59e-1 1.00 7.07e-8 2.80e-6
Credit 7.58e-2 5.07e-1 8.40e-8 3.20e-6

1. In contrast, the ripple watermarking consistently exhibits significantly lower average p-values,
and its highest p-value still remains below 0.02.

4.4 ROBUSTNESS AGAINST ATTACKS

To assess the robustness of ripple watermarking, we introduce six attacks specifically designed for
tabular data. These attacks are categorized into two types: distortion attacks and deletion attacks.

Distortion attacks In distortion attacks, the attacker distorts a portion of rows, columns, or val-
ues in the synthetic tables using neighboring distortion. Specifically, given an attack percentage p,
a neighboring distance d, and the total number of rows (nr), columns (nc), and values (nv), the
following attacks are performed:

• Row distortion attack: The i-th row in the synthetic table is replaced by a random row
from its neighbors, ranging from the (i − d)-th row to the (i + d)-th row. A total number
of nr × p rows are attacked.

• Value distortion attack: The value at index (i, j) is replaced by a random neighboring
value in the same column, within the indices from (i, (j − d)) to (i, (j + d)). A total
number of nv × p values are attacked.

• Column distortion attack: In the j-th column, every value in the column is attacked by a
value distortion attack. A total number of max(1, nc × p) columns are attacked.

Deletion attacks In deletion attacks, a portion of rows, columns, or values in the synthetic tables is
randomly deleted by the attacker. Given an attack percentage p, the number of rows/columns/values
to be deleted is calculated as the total number of rows (nr), columns (nc), or values (nv) multiplied
by p. Thus, in the row deletion attack, nr×p rows are randomly sampled and deleted. In the column
deletion attack, max(1, nc × p) columns are randomly sampled and deleted to ensure that at least
one column is deleted if the number of columns is small. For the value deletion attack, nv×p values
across the entire table are randomly sampled and deleted.

As for the detection of the watermark after attacking, it follows the methodology outlined in our
watermark detection phase in Section 3.2.2. However, deletion attacks alter the table’s shape and,
consequently, the shape of the FFT-transformed reversed noise, making the computation of the dis-
tance to the ground-truth watermark patch tricky. To address this, we introduce an additional step to
detect deletion-attacked tables.

Specifically, for all deletion-attacked tables, we first standardize the shape of the data by adding
rows, columns, or values from a non-watermarked dataset to match the shape of the ground-truth
watermark patch. If rows are missing, an equivalent number of rows are randomly sampled from
a non-watermarked synthetic table and added to the attacked table. If columns are missing, the
corresponding columns from a non-watermarked synthetic table are added. For missing values, a
random value from the same column in a non-watermarked synthetic table replaces the missing
value. Once these additions are made, the deletion-attacked tables are restored to a complete shape,
enabling them to undergo detection as described in the watermark detection phase.

The results of deletion and distortion attacks on ripple-watermarked data are presented in Table 3
and Table 4. In this context, a p-value less than 0.02 indicates that the ripple watermarking is highly
robust, a p-value between 0.02 and 0.05 indicates reasonable robustness, and for a p-value greater
than 0.05 we consider that ripple watermarking fails to detect the attack. As shown in the tables,
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attacks targeting rows are more detrimental to the detection of the watermark compared to attacks
on columns and values. This suggests that the structural integrity of the watermark is more closely
related to the row structure. Removing entire rows significantly disrupts the underlying distribution
within the watermark, leading to a more substantial distortion than modifications to individual values
or columns.

Table 3: Deletion attack results.

No attack Row deletion Column deletion Value deletion
5% 10% 15% 5% 10% 15% 5% 10% 15%

Shoppers 9.65e-8 1.33e-1 1.65e-1 1.80e-1 3.93e-6 6.08e-4 1.36e-3 2.22e-7 1.36e-7 1.04e-5
Magic 7.47e-4 1.06e-2 2.16e-2 4.27e-2 2.67e-3 6.86e-3 7.54e-3 2.59e-3 4.61e-3 1.43e-2
Adult 7.07e-8 1.66e-2 3.31e-2 3.78e-2 5.00e-7 8.45e-7 1.92e-4 1.27e-6 1.52e-5 6.63e-5
Credit 8.40e-8 3.41e-2 5.14e-2 7.71e-2 8.00e-7 1.33e-4 1.95e-5 8.21e-6 1.67e-4 2.02e-3

For deletion attacks, row deletions are the most damaging. In the Shoppers dataset, the p-value
reaches 0.133 with just 5% row deletion. In the Credit dataset, ripple watermarking remains rea-
sonably robust with 5% row deletion but fails at 10%. The Magic and Adult datasets show p-values
of 0.0427 and 0.0378 with 15% row deletion, suggesting that ripple watermarking is reasonably
robust to row deletion in these datasets. Despite the significant impact of row deletions, ripple wa-
termarking demonstrates strong robustness to column and value deletion attacks across all datasets,
consistently producing p-values below 0.02 for attack percentages ranging from 5% to 15%.

Table 4: Distortion attack results.

No attack Row distortion Column distortion Value distortion
5% 10% 15% 5% 10% 15% 5% 10% 15%

Shoppers 9.65e-8 1.12e-3 4.34e-2 3.42e-1 1.31e-6 1.35e-6 1.22e-4 3.09e-5 1.20e-3 3.93e-3
Magic 7.47e-4 1.28e-2 6.98e-2 2.29e-1 4.41e-2 4.96e-2 8.69e-2 8.84e-3 3.70e-2 1.47e-1
Adult 7.07e-8 2.45e-5 1.21e-3 2.22e-2 2.06e-5 1.80e-5 4.01e-2 2.37e-5 1.27e-3 1.50e-2
Credit 8.40e-8 1.31e-5 5.75e-4 7.84e-3 7.10e-6 1.00e-5 2.02e-4 5.56e-5 3.46e-3 4.78e-2

For distortion attacks, row distortions are again the most harmful, yielding generally higher p-
values. Ripple watermarking shows less robustness in smaller datasets like Shoppers and Magic,
with p-values of 0.342 at 15% and 0.0698 at 10% row distortions, respectively. However, it remains
reasonably robust in larger datasets like Adult and Credit, where the p-value is 0.0222 for the Adult
dataset at 15% row distortion and consistently below 0.02 for the Credit dataset with all attack per-
centages. Similar to deletion attacks, ripple watermarking exhibits stronger robustness to column
and value distortion attacks. While it fails at the Magic dataset given 15% of column distortion and
value distortion, all other p-values remain below 0.05 across all datasets and attack percentages.

4.5 ABLATION STUDIES

4.5.1 IMPACT OF THE WATERMARKING AREA

The radius of the outermost circle in the ripple watermark is a critical hyperparameter in our water-
marking technique. For instance, if this radius is too small, similar to the tree-ring watermark at the
center of the table, the watermark becomes undetectable, as demonstrated in Section 4.3. To investi-
gate the optimal radius r for the outermost circle that ensures stable detectability of the watermark,
experiments with various settings of r are conducted. Specifically, for a given total number of rows
n, the radius r is set to the integer value of n/100, n/50, n/30, and n/10.

Table 5: Detection results on different sizes of ripple watermarks.

Ripple (r∼n/100) Ripple (r∼n/50) Ripple (r∼n/30) Ripple (r∼n/10)
Shoppers 8.81e-4 9.65e-8 7.85e-11 6.76e-23

Magic 4.18e-3 7.47e-4 8.99e-4 1.24e-1
Adult 2.98e-4 7.07e-8 4.00e-2 2.00e-1
Credit 9.34e-5 8.40e-8 6.50e-9 1.84e-20
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The average results of 50 random runs on the detectability of the ripple watermark with different
outermost radii are presented in Table 5. As indicated in the table, when r is approximately n/50,
ripple watermarking achieves a relatively high and stable detectability across all datasets, with all p-
values less than 0.02. However, when r is smaller, such as n/100, the p-values decrease, indicating
reduced detectability of the watermark. Conversely, when r is too large, the detectability becomes
unstable; the p-values decrease in the Shoppers and Credit datasets, while they increase in the Magic
and Adult datasets. This instability is likely due to the larger watermarks spanning both the low-
frequency (central) and high-frequency (peripheral) areas of the shifted Fourier transform. Reversion
errors during the VAE and diffusion processes may distort different areas of the reversed FFT noise
matrices across datasets, damaging the embedded watermark and thereby introducing sensitivity and
instability.

4.5.2 IMPACT OF THE WATERMARKING TARGET

As described in Section 3.2.2, the ripple watermark is injected into the FFT-transformed noise ma-
trix ZT before the sampling process in the diffusion model and is detected in the inverse FFT-
transformed Z̃T after the diffusion process. Alternatively, another potential watermarking target is
the FFT-transformed Z0, where the watermark is embedded after the sampling process of the dif-
fusion model but before the decoding process of the VAE, with detection occurring in the inverse
FFT-transformed Z̃0. To investigate how different watermarking targets might affect synthetic data
quality and watermark detectability, experiments are conducted using the same ripple watermark on
ZT and Z0.

Table 6: Quality results of watermarking on ZT and Z0.

Shape quality Trend quality Logistic Detection MLE
W/O W-ZT W-Z0 W/O W-ZT W-Z0 W/O W-ZT W-Z0 W/O W-ZT W-Z0

Shoppers 0.922 0.917 0.909 0.907 0.901 0.907 0.637 0.620 0.639 0.894 0.893 0.892
Magic 0.917 0.912 0.918 0.939 0.937 0.940 0.711 0.704 0.636 0.834 0.834 0.817
Adult 0.933 0.930 0.908 0.887 0.879 0.851 0.652 0.651 0.490 0.824 0.824 0.831
Credit 0.929 0.923 0.912 0.904 0.899 0.899 0.741 0.741 0.680 0.790 0.789 0.790

Table 7: Detection results of watermarking on ZT and Z0.

Watermerking on ZT Watermarking on Z0

mean p-value max p-value mean p-value max p-value
Shoppers 9.65e-8 3.27e-6 6.67e-10 2.75e-8

Magic 7.47e-4 1.01e-2 3.63e-16 1.16e-14
Adult 7.07e-8 2.80e-6 4.24e-1 1.00
Credit 8.40e-8 3.20e-6 5.24e-7 1.13e-5

The experiments comprised 50 random runs, with results for synthetic data quality and watermark
detectability presented in Table 6 and Table 7, respectively. Generally, watermarking on Z0 has
a more noticeable and unstable impact on both synthetic data quality and watermark detectability
compared to watermarking on ZT .

In the Shoppers, Magic, and Credit datasets, watermarking on Z0 always results in larger differences
in data quality scores (Table 6), and similar or better detectability (Table 7). This may be due to the
fact that Z0 is closer to the tabular data space, causing watermarking to have a greater influence
on the synthetic data. Additionally, detecting the watermark before the diffusion process leads to
possibly less distortion, thereby enhancing detectability.

However, watermarking on Z0 exhibits unusual behavior with the Adult dataset, as evidenced by
a logistic detection score of 0.490 for data quality and a mean p-value of 0.424 for watermark de-
tection. The Adult dataset is unique among the four datasets because it contains more categorical
columns than continuous ones. This suggests that the VAE alone may be insufficient for effectively
unifying and describing the latent space. The diffusion component appears to aid in further express-
ing the latent space, enhancing both watermark embedding and data sampling. This additional step
may account for the observed differences in the Adult dataset.
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4.5.3 IMPACT OF THE ATTACKING TARGET

Apart from the watermarking target, the attacking target is also an interesting point of investigation.
We can either attack the synthetic table X before the VAE encoder or the latent matrix Z̃0 just
after the VAE encoder but before diffusion. Although in practice, an attacker would rarely have
the opportunity to attack the latent matrix Z̃0, comparing attacks on X and Z̃0 allows us to assess
whether the VAE preserves the consistency of attacks between the original space and the latent space.
Fifty random runs of row deletion and distortion attacks, identified as the most harmful attacks in
Section 4.4, are conducted, with results presented in Table 8 and Table 9.

Table 8: Row deletion results on X and Z̃0.

No attack Row deletion on X Row deletion on Z̃0

5% 10% 15% 5% 10% 15%
Shoppers 9.65e-8 1.33e-1 1.65e-1 1.80e-1 1.15e-1 1.65e-1 1.90e-1

Magic 7.47e-4 1.06e-2 2.16e-2 4.27e-2 1.05e-2 2.69e-2 5.51e-2
Adult 7.07e-8 1.66e-2 3.31e-2 3.78e-2 1.56e-1 1.89e-1 2.40e-1
Credit 8.40e-8 3.41e-2 5.14e-2 7.71e-2 3.46e-2 5.26e-2 7.76e-2

Table 9: Row distortion results on X and Z̃0.

No attack Row distortion on X Row distortion on Z̃0

5% 10% 15% 5% 10% 15%
Shoppers 9.65e-8 1.12e-3 4.34e-2 3.42e-1 6.83e-4 3.94e-2 3.63e-1

Magic 7.47e-4 1.28e-2 6.98e-2 2.29e-1 8.80e-3 6.82e-2 2.25e-1
Adult 7.07e-8 2.45e-5 1.21e-3 2.22e-2 2.68e-5 1.64e-3 3.02e-2
Credit 8.40e-8 1.31e-5 5.75e-4 7.84e-3 1.12e-5 5.15e-4 8.68e-3

Intuitively, attacking the latent matrix Z̃0 would cause more significant harm to watermark detection.
However, this effect is only observed in the Adult dataset. In this dataset, while the watermark
remains reasonably robust under a 15% row deletion in the synthetic table X , it fails at a 5% row
deletion on Z̃0, with a p-value of 0.156. No significant differences are observed in other scenarios,
indicating that attacks before and after the VAE are generally consistent. The unique behavior in
the Adult dataset, which contains more categorical columns, suggests that the VAE’s unified latent
space offers some protection for the watermark when attacked in the original space. This finding
underscores the VAE’s role in maintaining attack consistency and preserving watermark robustness
in datasets with diverse column types.

5 CONCLUSION

In this paper, we introduce Ripple, the first watermarking algorithm specifically designed for
tabular diffusion models during the sampling phase. Our novel approach embeds ripple watermarks
in the Fourier space of the initial noise matrix, effectively balancing data quality, detectability, and
robustness.

Our comprehensive evaluation on four datasets demonstrates that Ripple preserves synthetic data
quality, with an average quality difference of less than 0.6% compared to non-watermarked data.
This ensures that the synthetic tables retain their resemblance, discriminability, and downstream
utility. Moreover, Ripple achieves high watermark detectability, with average statistical p-values
over 25× lower than 0.02 across all datasets, representing an improvement of more than 2 orders
of magnitude compared to the tree-ring baseline. This significant enhancement in detectability is
attributed to our innovative ripple watermarking pattern, which embeds watermarks across a broad
frequency spectrum. Additionally, our robustness analysis shows that Ripple is resilient against
various post-editing attacks, including the deletion and distortion of rows, columns, and values.
Specifically, 85% of the p-values remain below 0.05 in the presence of different attack settings,
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demonstrating Ripple’s effectiveness in maintaining watermark integrity under malicious condi-
tions.

In summary, Ripple represents a significant advancement in the field of watermarking for synthetic
tabular data. By effectively embedding watermarks while preserving data quality and ensuring high
detectability and robustness against post-editing, Ripple sets a new standard for traceability and
auditability in synthetic tabular data. While Ripple is effective, several aspects warrant further
development. First, since each row in a table represents a single data sample, and Ripple water-
marks the entire noise matrix used to generate a complete table, Ripple watermarking operates
at the batch level. More fine-grained watermarking techniques focused on the sample/row level of
tabular data are an interesting area for further research to enhance watermark detectability and ro-
bustness. Additionally, exploring the application of Ripple to other types of generative models
or developing a generic watermarking scheme for all types of generative tabular models would be
valuable directions for future investigation as well.
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care record datasets. arXiv preprint arXiv:1807.01514, 2018.

[3] Mauro Barni, Christine I Podilchuk, Franco Bartolini, and Edward J Delp. Watermark embed-
ding: Hiding a signal within a cover image. IEEE Communications magazine, 39(8):102–108,
2001.

[4] Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

[5] R. Bock. MAGIC Gamma Telescope. UCI Machine Learning Repository, 2007. DOI:
https://doi.org/10.24432/C52C8B.

[6] Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Lan-
guage models are realistic tabular data generators. arXiv preprint arXiv:2210.06280, 2022.
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2
Extended Related Works

2.1. Generative Models for Data Synthesis
Data generation has been a cornerstone of machine learning, with techniques pro-
gressing from basic statistical models to sophisticated deep learning architectures.
Early works rely on simpler models for data synthesis. The Gaussian Mixture Model
(GMM) [26] is one of the fundamental machine learning models for data synthesis,
by representing data as a combination of Gaussian distributions and enabling data
synthesis by sampling from the learned distributions. However, GMMs struggle with
complex data structures and high dimensionality. Another representative and simple
generative model is Naive Bayes [12], which learns joint probability distributions and
generates new data by sampling from them. Similar to GMMs, Naive Bayes lacks the
flexibility to model intricate relationships within data. While these early approaches
laid the groundwork for generative modeling, they are limited in their ability to capture
complex data patterns, particularly for tabular datasets. In recent years, the advent of
deep learning has significantly advanced generative modeling capabilities.

Generative Adversarial Networks (GANs) [13; 4; 53; 8]are one of the most popular
deep generative models, which pit a generative network against a discriminative net-
work in a game-like setting. The generator learns to produce data that the discriminator
cannot distinguish from real data. While powerful, GANs can be challenging to train
due to potential convergence issues and mode collapse, where the generator gets stuck
in a loop, producing a limited set of outputs.

Variational Autoencoders (VAEs) [20; 16; 33] offer a probabilistic approach to data
generation by learning a latent representation of the data, which models the distribution
more explicitly than GANs. These models use an encoder-decoder architecture. The
encoder compresses input data into a latent space, and the decoder reconstructs the
data from that latent representation. Generating new data points is done by sampling
from the latent space. However, VAEs can suffer from information loss during the
encoding process, potentially impacting the fidelity of the generated data.

Flow-based generative models, also known as normalizing flows [11; 30; 28; 43]
represent another class of explicit generative models. They leverage invertible transfor-
mations to map a simple distribution (e.g., Gaussian) into a complex data distribution.
Using the Change of Variable Theorem, they estimate the density of the transformed
data based on the original distribution. This allows for efficient sampling and the
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generation of new data points. However, the effectiveness of flow-based models can be
hampered by the complexity of the data distribution, particularly for tabular data with
mixed data types.

Diffusion models [34] are a recent development in generative modeling, achieving
impressive results in various applications. These models [17; 31; 19] operate in two
stages: a forward diffusion process that gradually adds noise to the data, and a reverse
diffusion process that aims to recover the original data from the noise. By reversing
the diffusion process with controlled noise, synthetic data can be generated. While
these models exhibit great promise, their application raises concerns such as training
data privacy and synthetic data authenticity, therefore requiring further investigation.

2.2. Watermarking on Generative Models
Recent advancements in generative artificial intelligence (AI) have blurred the lines
between human-produced and synthetic content. These models can now generate
high-fidelity images, text, and various forms of synthetic data indistinguishable from
their real-world counterparts, highlighting its significant utility [29; 37]. While this
technology holds immense potential across various fields, it also presents signifi-
cant challenges, particularly concerning its potential for misuse in disseminating
misinformation.

Sophisticated AI models are capable of creating deepfakes – highly realistic but
fabricated audio, video, or images that purport to depict real-world events or indi-
viduals engaging in actions or uttering statements they never did (Deepfakes Web).
This technology can be weaponized to erode trust in institutions, manipulate public
opinion, and damage reputations [1; 18; 7]. Furthermore, generative AI can be used to
generate convincing text, emails, or voices that mimic individuals or organizations,
facilitating phishing scams, identity theft, and other forms of fraud [32; 14]. To mitigate
these risks, watermarking AI-generated content has emerged as a promising solution.
By embedding an invisible identifier within the content itself, watermarks can aid in
tracing the origin of the content and enhancing its authenticity.

2.2.1. Watermarking in Image Generation
For image synthesis, watermarking methods have been mainly proposed for two types
of deep generative models: the generative adversarial networks (GANs) and diffusion
models. In the context of generative adversarial networks (GANs), watermarking
during training involves inserting watermarks into all training data, thereby embedding
the watermark into generated images during sampling. Examples of this approach
include methods [45; 46] that modify the training procedure to achieve watermarking
in subsequent image generation. PTW [25] introduces a method that embeds an
n-bit watermarking message into the latent space used by the generator, allowing for
watermarking with pre-trained generators and eliminating the need for watermarked
training data.

In diffusion models, similar strategies are employed to implant watermarks into the
training data. Zhao et al. describe an approach for unconditional image generation
where an encoder embeds watermarks into the training data, and a decoder extracts
the watermark from generated images [51]. For conditional image synthesis, the same
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work predefines text-image pairs to fine-tune the generative model, thus avoiding
the need to train large-scale models like Stable Diffusion from scratch. Tree-ring
watermarks [40] offer a method that bypasses the need for training or fine-tuning. This
technique embeds a detectable watermark in the frequency domain of the initial noise
matrix and utilizes the invertibility of the diffusion model to recover the noise matrix
and detect the watermark.

Xiong et al. [41] propose an end-to-end method for watermarking images generated
by latent diffusion models (LDMs) using an encoder-decoder framework. The message
encoder transforms a user-specific message into a message matrix, which is then
embedded into the image by the fine-tuned LDM. The message can be extracted from
the watermarked image using a message decoder. This method allows for flexible
message embedding and robustly defends against message embedding escape attacks,
outperforming existing post-hoc and LDM-specific watermarking methods.

While several studies have developed innovative watermarking techniques and
evaluated their robustness against known attacks, concerns have been raised regarding
the adequacy of these robustness assessments. Adaptive attacks, which assume that
the attacker knows the watermarking algorithm but not the secret key, have been shown
to compromise the robustness of many watermarking methods in image classifiers [24].
This highlights the need for more rigorous evaluations of watermarking robustness in
generative models.

2.2.2. Watermarking in Text Generation
In the realm of large language models (LLMs) such as GPT-4 [3], Gemini [36], and
Llamma [39], impressive capabilities have been showcased across various tasks,
spanning from machine translation to dialogue systems and code generation. However,
as these models grow in size and complexity, their capacity to rapidly disseminate
information, including misinformation, presents significant challenges concerning
intellectual property and content authenticity. Text watermarking emerges as a
viable solution to embed unique, subtle markers within content generated by LLMs,
facilitating tracking and attribution to address concerns regarding accountability and
intellectual property rights in LLM deployment.

Recent advancements in LLM security have enabled the development of robust
watermarking techniques. These techniques effectively embed watermarks within the
generated text and maintain their detectability even after post-generation modifications.
This is achieved by manipulating the model’s logits and probabilities associated
with token selection during next-token generation. A prominent strategy involves
segmenting the vocabulary into ’green’ (preferred) and ’red’ (non-preferred) lists based
on a hashed value derived from a secret key and previous tokens. The logit values,
which represent the model’s internal preference for each token, are then adjusted
for green tokens. This adjustment, controlled by a bias parameter 𝛿 and a hyper-
parameter 𝛾, increases the likelihood of selecting green tokens during generation,
subtly embedding the watermark within the text. This approach was pioneered by
Kirchenbauer et al [21], who innovatively organized the model’s vocabulary to bias
the decoding process towards green tokens.

Several advancements have been proposed to improve watermark robustness against
user modifications. Zhao et al. [50] introduced a technique maintaining a consistent red-
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green split, achieving double the robustness compared to earlier models. Additionally,
Kirchenbauer et al. [21] explored detection schemes effective for identifying texts
embedded within larger documents. Kuditipudi [23] proposed a watermarking scheme
that utilizes a key as long as the generated text for calculating alignment costs. This
ensures the watermark’s persistence even after post-watermarking edits like insertions
or deletions. Sampling methods proposed by OpenAI [2] maintain the original
probability estimates while incorporating controlled randomness. These approaches
utilize an exponential scheme to select tokens based on unaltered probabilities and
a vector of random numbers influenced by historical inputs and the secret key.
Instead of a single watermark, a recent development, Duwak [52], significantly
improves watermark detection efficiency and text quality. This method utilizes
dual watermarking, embedding two independent secret patterns into the token
probability distribution and sampling scheme. Compared to single watermarking,
Duwak significantly improves watermark detection efficiency and maintains high text
quality.

2.2.3. Watermarking in Other Modalities
While most existing research focuses on watermarking image generative models and
large language models, watermarking techniques are also crucial in other modalities
such as tables, videos and text-image multimodalities.

One watermarking approach applied to the generation of tabular data is by He et
al. [15]. This method is a post-processing technique, where the watermark is added
after the original table has been generated. It strategically embeds watermarks through
data binning, dividing the range of feature values into finely segmented intervals
and inserting watermarks within selected "green list" intervals. The effectiveness of
this technique is supported by a statistical hypothesis-testing framework, ensuring
watermark detection under minimal assumptions. The WavMark [9] framework
demonstrates robust audio watermarking through an invertible encoder-decoder
architecture that embeds watermarks in the frequency domain, ensuring durability
against signal alterations and noise. In video synthesis, techniques like RivaGAN [49]
use adversarial networks with attention-based mechanisms to embed watermarks
into videos, providing security against digital tampering. In the rapidly evolving
field of synthetic text-to-image synthesis, models like DALL-E 2 and Imagen adopt
methods such as SteganoGAN [48], which integrate watermarks directly into the
image generation process, ensuring the authenticity and origin verification of AI-
generated visual content. These innovations illustrate the expanding scope of digital
watermarking, adapting to the complexities of modern media while safeguarding
intellectual property.



3
Additional Experimental Results

In this chapter, supplementary experimental results are presented, focusing on the com-
parison between different generative models and providing additional visualizations
of the Ripple watermarking method. Section 3.1 compares six different generative
models to evaluate their respective capabilities in generating tabular data. Section 3.2
provides visualization results to demonstrate the imperceptibility and detectability of
the Ripplewatermarking technique.

3.1. Comparison Between Tabular Generative Models
To evaluate the performance of various tabular generative models, six different tabular
synthesizers are trained and compared. These include three GAN-based models:
CTGAN [42], CopulaGAN [35], and ADS-GAN [44]; one statistical model: Gaussian
Copula [27]; and two diffusion-based models: TabDDPM [22] and a latetn tabular
diffusion model(LTDM) based on TabSYN [47].

GAN-based models
Three distinct Generative Adversarial Networks (GAN) models are considered:

• CTGAN [42] focuses on conditional generation using GANs. It addresses
non-Gaussian and multimodal distributions in continuous columns through
mode-specific normalization and mitigates class imbalance in categorical columns
with a conditional generator that employs a conditional vector and a training-by-
sampling method.

• CopulaGAN [35] enhances CTGAN by using cumulative distribution function-
based transformations with Gaussian Copulas, which model dependencies
through multivariate normal errors. This approach improves the inference
process using a likelihood-based method, thereby enhancing the model’s ability
to capture real data trends.

• ADS-GAN [44] is a conditional GAN framework designed to generate synthetic
data while minimizing re-identification risk. It incorporates a record-level
identifiability metric based on weighted Euclidean distances into the generator’s
loss function, achieving a balance between data utility and anonymization.
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Statistical models
While deep neural networks are often preferred for synthesizing tabular data, simpler
statistical modeling approaches, such as Gaussian Copulas, have also demonstrated
considerable success. The Gaussian Copula (GC) method [27] utilizes the training data
to fit Gaussian Copula functions to the empirical distribution. These functions model
a Gaussian joint probability distribution that effectively captures both the marginal
distributions and interdependence structures of the data.

Difussion models
Diffusion models have recently become a prominent paradigm in generative modeling
for computer vision and natural language processing. Here, two models are considered
for tabular synthesis:

• TabDDPM[22] employs the Gaussian diffusion process, a fundamental component
of the original DDPM[17], to effectively model numerical columns. It also utilizes
a multinomial diffusion process to model categorical and binary features by
introducing uniform noise across classes, thereby strategically corrupting the
data to facilitate accurate modeling.

• Latent Tabular Diffusion Model (LTDM), based on TabSYN [47], transforms both
continuous and categorical features into a unified continuous latent space using
an autoencoder. A unified diffusion model is then applied to noise and denoise
the continuous latent features. Unlike TabSYN, which employs a score-based
diffusion model, LTDM uses the reversible diffusion model DDIM.

Two Python libraries are utilized for implementing five of the mentioned tabular
data generative models. Specifically, Synthetic Data Vault (SDV) 1 is employed for
CTGAN, CopulaGAN, and Gaussian Copula and Synthcity 2 is used for ADS-GAN
and TabDDPM. LTDM is implemented based on the repository of TabSYN 3 while
the diffusion model is re-implemented. To ensure a fair comparative analysis, neural
networks used across all models were configured with the same architecture, consisting
of three multi-layer perceptron (MLP) layers, each with 256 dimensions.

Metrics and datasets
Given an original dataset, these synthesizers generate synthetic tabular data, and
the quality of the synthetic data is measured from three aspects: i) resemblance, ii)
discriminability, and iii) utility. These metrics assess whether the synthetic results
are similar to the original data and practically useful. The metrics are developed based
on common practices in synthetic data generation, encompassing both statistical and
machine learning-based approaches, and are reported as scores in the 0-100 range.

The resemblance metric measures how closely the distribution and inter-correlation
of the columns in the synthetic data match those of the original data, ensuring that the
synthetic data captures the statistical patterns and characteristics of the original data.
The resemblance metric is composed of five similarity measures:

1https://github.com/sdv-dev/SDV
2https://github.com/vanderschaarlab/synthcity
3https://github.com/amazon-science/tabsyn
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• Column Similarity This calculates the correlation between each original and
synthetic column, using Pearson’s coefficient for numerical columns and Theil’s
U for categorical columns.

• Correlation Similarity This measures the correlation between the correlation
coefficients of each column pair. First, the Pearson correlation for numerical pairs,
Theil’s U for categorical pairs, and the correlation ratio for numerical-categorical
cases are calculated. Then, the correlation between these coefficients is calculated.

• Statistical Similarity This employs Spearman’s Rho to correlate descriptive
statistics (minimum, maximum, median, mean, and standard deviation) of
numerical columns in synthetic and original data.

• Jensen-Shannon Similarity This uses the Jensen-Shannon distance, a symmetric
distance measure between the probability distributions of the original and
synthetic columns. One minus this distance is used so that higher scores are
better, as in the other metrics.

• Kolmogorov-Smirnov Similarity This uses the Kolmogorov-Smirnov distance to
measure the maximum difference between the cumulative distributions of each
original and synthetic column. Once again, one minus the distance is used so
that a higher score is better.

The discriminability metric measures how closely the synthetic data resembles the
real data such that a binary classifier (XGBoost) cannot differentiate between the two.
This is measured with the mean-absolute error between the classifier’s probabilities
and the uniform distribution (50% probability for either class), which is 0 when the
classifier cannot distinguish between the two datasets. One minus the mean-absolute
error is used and scaled to a score of 0-100 so that higher scores are better.

The utility metric measures how well the synthetic data performs like the original
data in downstream machine learning tasks. For each column, a classifier or regressor
(XGBoost) is trained with 3-fold cross-validation to predict the column from the
remaining columns. Models are trained either on real or synthetic data, but in both
cases, evaluated on a hold-out set of real data. The downstream performance is
calculated by taking the 90th percentile of macro-averaged F1 scores for categorical
columns and D2 absolute error scores (clipped to 0 and 1) for continuous columns. The
utility score is derived from the ratio of the downstream performance of the synthetic
data to that of the real data and scaled to 0-100.

The generative models undergo evaluation across four distinct datasets. The
Loan dataset[5] comprises demographic details of 5000 customers, encompassing 14
features categorized into binary, interval, ordinal, and nominal measurements. The
Housing dataset[38] pertains to houses within a specified California district, offering
summary statistics derived from the 1990 Census data. It comprises 20,640 instances,
featuring 1 categorical and 9 numerical attributes, with a total of 207 missing values.
The Adult dataset[6] encompasses data concerning individuals’ annual incomes and
associated variables. With 48,842 instances, it consists of 15 mixed datatype features
and a total of 6465 missing values. The Cardiovascular Heart Disease dataset[10]
furnishes detailed insights into the risk factors associated with cardiovascular disease,
comprising 70,000 instances featuring 13 mixed-type columns. For each dataset, every
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synthesizer generates a synthetic dataset of identical size to the training dataset for
subsequent evaluation.

Results

Table 3.1: Synthetic data quality of six tabular generative models

Dataset Method Resemblance Discriminability Utility

Loan

CopulaGAN 92 95 70
CTGAN 92 85 93

ADS-GAN 93 95 73
Gaussian Copula 86 82 78

TabDDPM 98 100 97
LTDM 96 98 100

Housing

CopulaGAN 94 90 62
CTGAN 94 92 64

ADS-GAN 93 87 74
Gaussian Copula 91 84 32

TabDDPM 96 98 93
LTDM 98 98 95

Adult

CopulaGAN 93 97 81
CTGAN 90 79 83

ADS-GAN 88 59 83
Gaussian Copula 80 50 56

TabDDPM 96 98 98
LTDM 95 98 100

Cardio

CopulaGAN 87 93 96
CTGAN 84 68 97

ADS-GAN 90 71 100
Gaussian Copula 81 63 86

TabDDPM 95 99 100
LTDM 100 95 100

Table 3.1 presents detailed results quantifying the quality of synthetic data across
all four datasets using the six described generative models. Regarding synthetic data
quality, larger datasets (Adult and Cardio) generally exhibit lower resemblance and
discriminability scores compared to smaller ones (Loan and Housing). These findings
suggest that larger datasets pose more challenges to synthesizers due to increased
dataset sizes potentially introducing greater diversity and complexity, thus making
data synthesis more challenging.

However, utility scores tend to increase with dataset size. This phenomenon
may be attributed to the utility metric being evaluated based on the performance of
downstream machine learning tasks, which are inherently influenced by the size of the
training data. In our experiments, the size of the synthetic dataset remains consistent
with the corresponding real dataset. Consequently, small real datasets lead to small
synthetic datasets, which may result in suboptimal performance in machine learning
tasks and subsequently lower utility scores.
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As depicted in the table, the latent tabular diffusion model (LTDM) consistently
produces synthetic data of the highest quality, surpassing other synthesizers. Across
all datasets, LTDM consistently achieves scores exceeding 95 in terms of resemblance,
discriminability, and utility compared to other synthesizers. Following closely, the
TabDDPM emerges as the second-best synthesizer. Conversely, the Gaussian Copula
performs less favorably, being outperformed by other synthesizers across all datasets.

3.2. Attional Experimental Results of Ripple
The detection distances across all four datasets (Shoppers, Magic, Adult and Credit)
used in the research paper in Chapter 1, under the no-watermark, tree-ring watermark,
and Ripplewatermarking settings, are presented in Figure 3.1. As illustrated in the
figure, the distances under the no-watermark setting are generally the highest for all
datasets. Distances under the Tree-ring watermarking exhibit distances that are close to
those of the no-watermark ones. In contrast, distances under the Ripplewatermarking
consistently display significantly lower distances. These lower distances correspond
to the much lower p-values achieved by Ripplewatermarking compared to tree-ring
watermarking in the research paper.
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(a) Detection distances on the Shoppers dataset
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(b) Detection distances on the Magic dataset
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(c) Detection distances on the Adult dataset
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(d) Detection distances on the Credit dataset

Figure 3.1: Detection distances of no-watermark, tree-ring watermarking and ripple watermarking on
four datasets

Moreover, examples of ten rows of synthetic tables generated with no watermark,
tree-ring watermark, and Ripplewatermark across all four datasets are provided from
Figure 3.2 to Figure 3.5. As demonstrated in these figures, no discernible differences are
apparent to be noticed, thereby supporting the imperceptibility of the watermarks and
their minimal impact on the quality of the synthetic data, as discussed in Chapter 1.
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Administrative Administrative_Duration Informational Informational_Duration ProductRelated ProductRelated_Duration BounceRates ExitRates PageValues SpecialDay Month OperatingSystems Browser Region TrafficType VisitorType Weekend Revenue
0.0 0.0 0.0 0.0 36.0 1419.2334 0.012470942 0.037224118 0.0 0.0 Mar 2 2 9 1 Returning_Visitor False False
0.0 0.0 0.0 0.0 6.0 32.30736 0.0 0.030620452 0.0 0.0 May 2 2 5 2 Returning_Visitor False False

11.0 3398.75 0.0 0.0 33.19255 3956.3347 0.009090909 0.028499221 0.0 0.0 Mar 2 2 1 10 Returning_Visitor True False
0.0 0.0 0.0 0.0 3.0 177.53471 0.008333333 0.054278463 0.0 0.0 May 2 10 1 18 Returning_Visitor False False
5.0 209.73753 0.0 0.0 39.65166 1301.1072 0.0 0.0 0.0 0.4 May 2 2 3 4 Returning_Visitor False False

11.0 3398.75 0.0 0.0 6.0 1000.98334 0.0 0.019284725 0.0 0.0 Nov 3 2 1 8 New_Visitor False False
5.0 230.6708 4.0 491.32297 19.0 1095.3977 0.0 0.008326806 129.43388 0.0 Dec 1 1 1 1 Returning_Visitor False True
1.0 53.994637 0.0 0.0 309.01248 159.36723 0.2 0.022222223 0.0 0.0 Dec 2 2 1 11 Returning_Visitor False False
0.0 0.0 0.0 0.0 2.0 37.989777 0.0 0.1083213 0.0 0.0 Dec 3 2 1 1 Returning_Visitor False False
7.0 208.27109 0.0 0.0 22.0 775.0539 0.0 0.0051278304 97.61065 0.0 May 2 2 6 3 New_Visitor False True
0.0 0.0 0.0 0.0 42.77108 1320.3123 0.0 0.1477904 0.0 0.0 Dec 2 1 2 1 Returning_Visitor False False

(a) Ten rows of the synthetic table on the Shoppers dataset without watermark
Administrative Administrative_Duration Informational Informational_Duration ProductRelated ProductRelated_Duration BounceRates ExitRates PageValues SpecialDay Month OperatingSystems Browser Region TrafficType VisitorType Weekend Revenue

0.0 0.0 0.0 0.0 40.19058 1581.5741 0.010526316 0.03333333 0.0 0.0 Mar 2 2 3 1 Returning_Visitor False False
0.0 0.0 0.0 0.0 6.350493 101.67554 0.0 0.029741054 0.0 0.0 Nov 2 2 7 2 Returning_Visitor True False

12.0 3394.9893 0.0 0.0 27.0 1642.1317 0.009090909 0.032520384 0.0 0.0 Mar 2 2 1 3 Returning_Visitor True False
0.0 0.0 0.0 0.0 2.0 86.10672 0.013152794 0.06666667 0.0 0.0 May 2 10 1 18 Returning_Visitor False False
5.0 135.55235 0.0 0.0 67.279106 1955.3083 0.0 0.0 0.0 0.0 Mar 2 2 3 2 Returning_Visitor True False

10.615869 3398.75 0.0 0.0 7.0 1131.8263 0.0 0.02135201 0.0 0.0 Nov 2 2 1 8 New_Visitor True False
13.0 3398.5696 17.55803 2523.0215 40.8462 3455.0322 0.0 0.008333333 63.192017 0.0 Dec 1 1 3 1 Returning_Visitor False True

5.0 57.188534 0.0 0.0 190.19827 583.88995 0.2 0.03083427 0.0 0.0 Dec 2 2 1 3 Returning_Visitor True False
0.0 0.0 0.0 0.0 2.0 27.018652 0.0 0.11403274 0.0 0.0 Dec 2 2 1 1 Returning_Visitor False False

10.0 304.19354 0.0 0.0 26.0 807.60315 0.0 0.0050394437 119.50438 0.0 May 2 2 8 3 New_Visitor False True
5.0 0.0 0.0 0.0 59.0 1535.6113 0.0 0.12926589 0.0 0.0 Aug 2 1 2 18 Returning_Visitor False False

(b) Ten rows of the synthetic table on the Shoppers dataset with Ripplewatermark
Administrative Administrative_Duration Informational Informational_Duration ProductRelated ProductRelated_Duration BounceRates ExitRates PageValues SpecialDay Month OperatingSystems Browser Region TrafficType VisitorType Weekend Revenue

11.0 0.0 0.0 0.0 22.980406 817.04675 0.011626511 0.2 0.0 0.0 Aug 4 2 1 18 Returning_Visitor False False
0.0 0.0 0.0 0.0 16.0 516.3611 0.0 0.0 0.0 0.0 Mar 3 2 3 2 Returning_Visitor True False

10.885049 842.6082 0.0 0.0 24.0 1054.134 0.0 0.003842031 0.0 0.0 Dec 2 4 1 8 Returning_Visitor False False
8.0 2471.4114 0.0 0.0 4.0 122.33771 0.0 0.03333333 0.0 0.0 May 1 1 1 3 New_Visitor False False
0.0 0.0 0.0 0.0 14.0 2812.441 0.017515253 0.021665828 0.0 0.0 Nov 2 2 4 1 Returning_Visitor False False
0.0 0.0 0.0 0.0 79.03469 154.56235 0.0024481292 0.008080037 0.0 0.0 Nov 3 2 6 3 Other True True

25.404018 3397.0461 22.921463 2530.3472 682.21704 63401.188 0.0 0.008333333 13.024882 0.0 Nov 2 2 1 2 Returning_Visitor True False
0.0 0.0 0.0 0.0 6.0 2.8846 0.2 0.056491632 0.0 0.0 Nov 2 10 2 1 Returning_Visitor False True

22.179543 3398.75 11.784934 1983.758 69.941696 5037.2793 0.005269276 0.013316727 0.0 0.0 May 1 1 3 2 Returning_Visitor False False
12.0 3398.75 0.0 0.0 80.3354 9228.197 0.005771693 0.020486265 0.0 0.0 Mar 2 2 1 2 Returning_Visitor True False

16.257164 3398.75 0.0 0.0 53.0 4440.7163 0.0 0.0063757957 35.660645 0.0 Mar 1 1 3 1 Returning_Visitor False False

(c) Ten rows of the synthetic table on the Shoppers dataset with Tree-ring watermark

Figure 3.2: Example of synthetic tables on the Shoppers dataset

Length Width Size Conc Conc1 Asym M3Long M3Trans Alpha Dist class
29.50316 16.06165 2.4496179 0.39709762 0.20315146 53.773563 33.78526 -9.367778 24.631697 265.00458 h

17.136372 0.0 2.1388857 0.8415834 0.554925 26.037418 9.776217 4.9141445 88.5079 205.97107 h
34.49897 12.264082 2.799134 0.3750155 0.22525023 28.233248 -19.095558 -12.837495 1.957272 196.48692 g
74.72992 17.113258 2.6486304 0.29616234 0.16084436 100.98778 -54.09752 -12.060159 1.7024609 184.64902 g
25.97611 11.8562565 2.542755 0.47538552 0.2656954 21.594048 19.897678 -8.934775 46.408955 71.51735 g

28.009651 15.409279 2.4101448 0.19649765 0.244889 2.4382112 23.145662 11.474078 82.28989 123.640335 h
45.237206 7.3382106 2.7647102 0.36546847 0.1911917 -25.520956 -25.400356 3.504286 89.993576 198.70453 h
23.502459 16.53841 2.8302739 0.44337276 0.15362787 -7.514536 16.252663 -6.795991 34.763218 140.16533 h
59.866985 16.664644 2.4689484 0.32336682 0.17421067 88.79034 24.151981 14.311558 11.957585 206.63376 g
156.47713 50.012974 4.0026875 0.08306128 0.043591972 226.59204 142.38239 -35.127693 2.3645737 276.75076 g
112.35931 31.943472 3.3610618 0.1682879 0.083864145 -37.024055 72.93012 -20.228468 0.37044546 347.88327 g

(a) Ten rows of the synthetic table on the Magic dataset without watermark
Length Width Size Conc Conc1 Asym M3Long M3Trans Alpha Dist class

35.30307 16.64472 2.5245123 0.38694882 0.1954228 46.70417 37.965256 -7.3183727 9.8207855 245.57162 g
13.062335 7.2635226 2.0781827 0.8664315 0.5752393 26.4537 8.316785 10.70612 85.97891 200.21384 h
40.524975 12.844649 2.7349188 0.36952683 0.20444609 34.750706 -24.953712 -11.650808 0.3556718 190.99416 g
45.505928 16.594114 2.6194267 0.3290552 0.17959978 59.461304 -32.29623 -8.444348 1.6397188 168.18362 g

25.67888 11.674168 2.5552065 0.47450054 0.2659148 15.444065 19.572388 -6.5131006 27.112617 73.268196 g
26.885931 15.534331 2.3730001 0.25279206 0.2631005 -4.2416224 17.202438 13.265056 78.76212 121.51649 h
27.589327 0.0 2.4141476 0.59803575 0.32005686 -39.763725 -17.585285 4.8646398 89.99968 212.41422 h
23.296146 16.836401 2.7585526 0.4370695 0.1678857 -11.364904 15.757224 7.7258067 11.883816 134.031 g
39.100918 13.33985 2.2458668 0.3922745 0.20304327 70.04794 18.370302 11.954219 16.58858 199.17256 g
97.981735 26.262829 3.239584 0.26989132 0.15214784 73.92106 83.37061 -21.477163 2.4486513 330.8961 g
106.55097 29.985685 3.3542128 0.17734703 0.091438055 -84.89384 72.538734 -19.269552 0.2206306 341.63913 g

(b) Ten rows of the synthetic table on the Magic dataset with Ripplewatermark
Length Width Size Conc Conc1 Asym M3Long M3Trans Alpha Dist class

208.68639 69.79462 3.1185472 0.18984744 0.13966085 56.81338 52.309174 -16.986662 71.44638 339.78656 h
320.13016 227.56863 5.1784062 0.013124045 0.0008054634 575.2407 -330.97327 -203.11964 66.871826 221.59763 h

69.38346 14.864264 2.9102473 0.6039451 0.18567702 -49.095432 -37.856884 11.437894 44.312267 124.532585 g
27.499226 0.0 2.6140897 0.726563 0.43497753 28.593939 -14.905209 5.8833833 88.89875 219.9429 h
37.079006 13.125928 2.4100616 0.3786842 0.1986684 70.21424 -21.964241 -13.339236 17.042065 197.8729 g
21.748087 12.045411 2.4047985 0.4842891 0.26615497 20.249588 8.193292 9.382959 1.9900787 222.11835 g
187.20859 83.46023 4.402744 0.0297663 0.007401169 -318.84048 163.65921 67.14243 2.0158803 194.94618 g

30.57708 13.872212 2.745715 0.5154582 0.31112507 14.441536 -13.944984 -24.758919 33.181526 59.399075 h
31.141603 13.693857 2.8263843 0.62804705 0.3524597 -1.8333604 -28.27726 7.720078 36.904804 63.103016 h
23.628618 24.422411 3.4936821 0.51250327 0.1286727 29.223211 52.452522 19.462797 13.253972 185.51393 g
31.047913 9.575477 3.1065223 0.42309067 0.1833185 17.17553 21.999958 -7.8504424 7.3477874 175.30763 g

(c) Ten rows of the synthetic table on the Magic dataset with Tree-ring watermark

Figure 3.3: Example of synthetic tables on the Magic dataset



3.2. Attional Experimental Results of Ripple 29

age workclass fnlwgt education education.num marital.status occupation relationship race sex capital.gain capital.loss hours.per.week native.country income
74  Private 142912.86  Doctorate 16  Never-married  Handlers-cleaners  Not-in-family  White  Male 0 0 1.7616923  United-States  <=50K
28  Private 92000.266  HS-grad 9  Never-married  Machine-op-inspct  Own-child  Black  Female 0 0 40.0  United-States  <=50K
39  Private 168469.9  HS-grad 9  Married-civ-spouse  Sales  Husband  White  Male 0 0 40.0  United-States  >50K
31  Private 185862.73  Masters 14  Never-married  Handlers-cleaners  Unmarried  White  Male 0 0 40.0  United-States  <=50K
12  Self-emp-not-inc 55883.098  12th 9  Married-civ-spouse  Adm-clerical  Husband  White  Male 0 0 40.0  United-States  <=50K
89  Private 107622.016  Bachelors 13  Never-married  Prof-specialty  Not-in-family  White  Female 0 0 45.0  United-States  >50K
25  Private 23580.691  HS-grad 9  Separated  Craft-repair  Not-in-family  White  Male 0 0 40.0  United-States  <=50K
36  Private 204678.81  HS-grad 5  Married-civ-spouse  Exec-managerial  Husband  White  Male 0 0 38.0  United-States  <=50K
43  Private 209074.66  HS-grad 9  Never-married  Other-service  Not-in-family  White  Female 0 0 40.0  United-States  <=50K
72  State-gov 20041.28  Masters 14  Married-civ-spouse  Exec-managerial  Husband  White  Male 0 0 70.0  United-States  >50K
90  Private 60455.375  HS-grad 9  Never-married  Other-service  Own-child  White  Female 0 0 2.952189  United-States  <=50K

(a) Ten rows of the synthetic table on the Adult dataset without watermark
age workclass fnlwgt education education.num marital.status occupation relationship race sex capital.gain capital.loss hours.per.week native.country income
19  Private 201545.2  Some-college 10  Never-married  Handlers-cleaners  Not-in-family  White  Male 0 0 7.9444246  United-States  <=50K
17  Private 102290.56  11th 7  Never-married  Adm-clerical  Own-child  Black  Female 0 0 25.0  United-States  <=50K
25  Private 197866.8  HS-grad 9  Married-civ-spouse  Sales  Husband  White  Male 0 0 40.0  United-States  >50K
21  Private 213089.47  Assoc-acdm 12  Never-married  Handlers-cleaners  Unmarried  White  Male 0 0 40.0  United-States  <=50K
17  Federal-gov 97476.79  Assoc-voc 10  Married-civ-spouse  Sales  Other-relative  White  Male 0 0 50.0  United-States  <=50K
28  Private 126329.79  Bachelors 13  Never-married  Prof-specialty  Not-in-family  White  Female 0 0 99.0  United-States  >50K
19  Private 22148.027  Some-college 10  Married-civ-spouse  Other-service  Wife  White  Male 0 0 40.0  United-States  <=50K
21  Private 200636.6  HS-grad 9  Married-civ-spouse  Other-service  Husband  White  Male 0 0 40.0  United-States  <=50K
22  Private 235846.14  HS-grad 9  Never-married  Other-service  Not-in-family  White  Female 0 0 40.0  United-States  <=50K
28  State-gov 23695.045  Assoc-acdm 12  Married-civ-spouse  Exec-managerial  Husband  White  Male 0 0 99.0  United-States  <=50K
18  Private 30012.25  10th 7  Never-married  Other-service  Own-child  White  Female 0 0 40.0  Mexico  <=50K

(b) Ten rows of the synthetic table on the Adult dataset with Ripplewatermark
age workclass fnlwgt education education.num marital.status occupation relationship race sex capital.gain capital.loss hours.per.week native.country income
45  Private 683944.0  11th 14  Married-civ-spouse  Farming-fishing  Not-in-family  White  Male 0 0 40.0  United-States  <=50K
43  Self-emp-inc 189298.31  12th 4  Married-civ-spouse  Exec-managerial  Husband  White  Male 0 0 40.0  United-States  >50K
90  Self-emp-inc 46515.07  HS-grad 9  Widowed  Sales  Not-in-family  Asian-Pac-Islander  Female 0 0 1.0001146  United-States  <=50K
74  Private 262124.05  HS-grad 9  Married-civ-spouse  Sales  Husband  White  Male 0 0 20.0  United-States  >50K
29  Private 78480.125  Bachelors 13  Never-married  Adm-clerical  Unmarried  White  Female 0 0 40.0  United-States  <=50K
31  Private 185271.81  11th 6  Never-married  Transport-moving  Own-child  White  Male 0 0 60.0  Honduras  <=50K
43  State-gov 45369.926  Masters 10  Married-civ-spouse  Prof-specialty  Wife  White  Male 0 0 40.0  United-States  <=50K
38  Federal-gov 12628.181  Bachelors 14  Never-married  Prof-specialty  Unmarried  White  Female 0 0 40.0  United-States  <=50K
47  Self-emp-not-inc 24133.389  Some-college 9  Married-civ-spouse  Tech-support  Own-child  White  Male 0 0 40.0  Honduras  <=50K
26  Private 225767.98  HS-grad 9  Married-civ-spouse  Sales  Not-in-family  White  Male 0 0 20.0  United-States  <=50K
27  Private 427466.12  Bachelors 13  Married-civ-spouse  Prof-specialty  Husband  White  Male 0 0 99.0  United-States  <=50K

(c) Ten rows of the synthetic table on the Adult dataset with Tree-ring watermark

Figure 3.4: Example of synthetic tables on the Adult dataset

LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6 BILL_AMT1 BILL_AMT2 BILL_AMT3 BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_AMT2 PAY_AMT3 PAY_AMT4 PAY_AMT5 PAY_AMT6 default payment next month
100000.0 1.0 1.0 1.0 33.0 2.0 0.0 0.0 2.0 2.0 0.0 91072.07 90660.79 97961.65 96949.19 82487.48 91973.98 3761.7832 8859.494 0.0 0.0 2987.2556 7000.0 1.0

50000.0 1.0 2.0 2.0 35.0 0.0 0.0 0.0 0.0 0.0 0.0 42065.6 42840.277 28171.018 43986.27 42295.918 41520.81 3072.1812 0.0 2000.0 2000.0 0.0 2000.0 0.0
50000.0 2.0 2.0 1.0 27.0 4.0 -1.0 0.0 0.0 0.0 0.0 8557.187 17124.283 18049.11 110609.83 20210.748 6903.548 316.35168 4500.0 1500.0 69.37378 11000.0 3370.758 0.0

220000.0 1.0 2.0 2.0 28.0 0.0 0.0 0.0 0.0 0.0 0.0 213664.56 212401.3 215268.77 209971.4 205908.88 207556.25 8670.784 9792.453 8001.257 8215.5 6165.684 9006.611 0.0
140000.0 2.0 1.0 1.0 32.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 103.59358 362.39655 390.0 205.76213 380.02808 390.0 166.97078 390.0 0.0 390.0 422.4124 503.69104 0.0

30000.0 1.0 3.0 2.0 27.0 0.0 0.0 0.0 0.0 0.0 0.0 4559.7427 17813.152 77690.09 49172.3 29314.723 -325.5894 27781.266 183993.12 3500.0 0.0 0.0 0.0 0.0
10000.0 2.0 3.0 1.0 35.0 -1.0 -1.0 0.0 -1.0 0.0 0.0 412.76013 1801.2444 2137.53 2334.1714 3396.526 3878.2593 1880.2987 1159.3396 1800.0 406.7712 601.8035 876.6561 0.0
30000.0 1.0 2.0 2.0 29.0 1.0 2.0 2.0 2.0 2.0 2.0 15877.836 16915.332 19554.615 26416.115 22770.645 22874.314 2372.8005 1102.955 0.0 2000.0 648.63934 1000.0 0.0

110000.0 2.0 2.0 2.0 26.0 -1.0 -1.0 0.0 0.0 0.0 0.0 264.50412 761.49243 1402.1102 1628.6847 780.0 854.3064 1000.0 1000.0 1000.0 0.0 184.93259 401.54663 0.0
100000.0 1.0 3.0 2.0 27.0 0.0 0.0 0.0 0.0 0.0 2.0 47978.812 98416.29 39855.535 34534.81 90439.734 59448.047 39278.434 5900.3003 0.0 11060.515 0.0 4317.272 0.0
999948.6 1.0 1.0 2.0 58.0 0.0 0.0 0.0 0.0 0.0 0.0 964511.0 983931.0 1663817.0 891524.56 927171.0 335812.03 110314.79 135308.28 66102.7 108745.04 48846.746 0.0 0.0

(a) Ten rows of the synthetic table on the Credit dataset without watermark
LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6 BILL_AMT1 BILL_AMT2 BILL_AMT3 BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_AMT2 PAY_AMT3 PAY_AMT4 PAY_AMT5 PAY_AMT6 default payment next month

80000.0 1.0 1.0 1.0 33.0 2.0 0.0 0.0 2.0 2.0 0.0 71602.25 70928.62 79310.14 79751.05 68528.414 76675.7 3014.5173 7463.565 0.0 0.0 2329.8477 6269.427 1.0
38455.24 1.0 2.0 2.0 30.0 0.0 0.0 2.0 0.0 0.0 2.0 30807.248 36416.145 35834.176 36363.33 37751.3 38465.35 4159.132 0.0 1800.0 3225.1611 0.0 2000.0 0.0

30000.0 2.0 2.0 1.0 27.0 1.0 -1.0 0.0 0.0 0.0 0.0 1804.6637 4648.249 14322.85 29471.4 14296.628 5783.4126 0.0 3010.6128 1393.5848 308.79 5000.0 2572.9504 0.0
100000.0 1.0 2.0 2.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 96390.516 91415.69 90646.81 84676.83 82537.77 83839.695 4000.0 5000.0 4000.0 3632.4062 5972.8066 5000.0 0.0
200000.0 2.0 1.0 1.0 34.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 197.93697 390.0 391.8788 326.0 390.0 492.93848 219.2799 396.29715 35.626717 416.16876 626.0029 600.0 0.0

50000.0 2.0 2.0 1.0 29.0 0.0 0.0 0.0 0.0 0.0 0.0 18553.621 17464.39 40627.027 27069.342 15622.588 -74.13714 7000.0 71945.28 3000.0 0.0 0.0 0.0 0.0
10000.0 2.0 3.0 1.0 59.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 0.0 396.0 390.0 372.6952 390.0 549.8378 358.37967 730.4432 224.0587 510.73883 745.6274 51619.594 0.0
80000.0 1.0 2.0 1.0 35.0 1.0 2.0 2.0 2.0 2.0 2.0 9461.342 8548.105 19941.62 45513.957 25297.838 12294.612 1977.5104 1427.9312 0.0 2100.0 50.777027 1000.0 0.0

230000.0 2.0 2.0 2.0 28.0 -1.0 -1.0 -1.0 -1.0 0.0 -1.0 316.0 390.0 397.90817 780.0 320.6721 479.4576 262.14572 447.51248 1000.0 0.0 565.6138 689.44794 0.0
100000.0 1.0 3.0 2.0 28.0 0.0 0.0 0.0 0.0 0.0 2.0 53967.53 114432.41 47753.465 31880.475 80112.71 55920.875 18867.768 5000.0 0.0 10000.0 0.0 5000.0 0.0

1000000.0 1.0 1.0 2.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0 964511.0 983931.0 1664089.0 891539.3 927171.0 705982.56 133273.56 209266.42 133141.95 188432.08 40853.543 27854.514 0.0

(b) Ten rows of the synthetic table on the Credit dataset with Ripplewatermark
LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6 BILL_AMT1 BILL_AMT2 BILL_AMT3 BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_AMT2 PAY_AMT3 PAY_AMT4 PAY_AMT5 PAY_AMT6 default payment next month
110000.0 1.0 1.0 1.0 33.0 0.0 7.0 0.0 0.0 -1.0 0.0 23667.592 0.0 0.0 3870.639 149453.75 0.0 0.0 5729.6626 2000.0 498.28143 0.0 1000.0 0.0

20000.0 2.0 2.0 2.0 22.0 0.0 0.0 0.0 0.0 0.0 0.0 14584.515 14996.015 15311.722 14646.04 13629.849 12767.647 1434.4639 1352.5215 925.73517 591.4808 769.27747 787.0758 0.0
90000.0 2.0 2.0 1.0 26.0 2.0 2.0 0.0 0.0 0.0 0.0 90972.555 101824.27 90770.21 85061.28 54324.984 53848.86 2001.9437 3696.651 3045.161 1841.2418 2500.0 2400.7705 0.0

160000.0 1.0 1.0 1.0 31.0 0.0 0.0 0.0 0.0 0.0 0.0 63282.21 37648.312 42846.58 70254.734 79041.92 60226.613 10971.515 2601.0754 6839.0967 486.49402 0.0 4378.6763 0.0
290000.0 1.0 2.0 1.0 48.0 0.0 0.0 0.0 0.0 0.0 0.0 69723.15 15370.212 92426.51 55315.99 20357.893 1373.82 3019.7297 1296.8167 6519.47 0.0 1300.0 0.0 0.0

146542.53 2.0 1.0 1.0 41.0 -2.0 -2.0 -2.0 -2.0 -2.0 2.0 1918.2117 5340.1177 2010.2666 55353.016 19853.752 15708.672 2000.0 4000.0 4000.0 6045.6357 327439.9 113180.09 0.0
743007.2 2.0 1.0 1.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 951025.0 974905.0 1620647.9 882448.5 920895.56 373505.06 43935.117 49489.5 30000.0 46144.082 33114.45 43712.816 1.0
290000.0 2.0 2.0 2.0 29.0 0.0 0.0 0.0 0.0 0.0 0.0 203915.3 181392.14 146728.47 155547.19 156579.28 198783.83 4675.71 5000.0 5005.544 4082.1897 5032.9604 9625.043 0.0

50000.0 2.0 2.0 1.0 55.0 2.0 2.0 2.0 2.0 0.0 -1.0 450.97476 221.83966 150.35072 0.0 -79720.67 148.38493 0.0 1399.4729 0.0 0.0 9198.504 8451.303 1.0
30000.0 2.0 3.0 1.0 30.0 2.0 0.0 0.0 0.0 0.0 0.0 16712.34 21325.828 20443.957 29473.66 28696.158 32560.898 1400.5197 1500.0 3000.0 3300.6133 1000.1316 0.0 0.0
80000.0 2.0 1.0 1.0 31.0 0.0 0.0 0.0 0.0 0.0 0.0 2406.2847 17324.477 73509.12 19861.025 18368.504 39884.426 0.0 2500.0 5404.487 12887.499 0.0 1000.0 0.0

(c) Ten rows of the synthetic table on the Credit dataset with Tree-ring watermark

Figure 3.5: Example of synthetic tables on the Credit dataset
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Conclusion

The generation of synthetic data using advanced generative models is a transformative
method for augmenting and disseminating data, providing significant advantages for
machine learning tasks and data privacy. Ensuring the traceability and auditability
of synthetic data is crucial to prevent misuse and potential harm. While extensive
research has developed watermarking techniques for synthetic images and texts, a
notable gap exists in the application of these techniques to synthetic tabular data. To
address this gap, this thesis answers three critical research questions (RQs):

• RQ1: Can a novel watermark be designed for synthetic tables such that it spreads
across the entire table while remaining imperceptible?

• RQ2: What are the possible post-editing attacks on watermarks in synthetic
tabular data?

• RQ3: To what extent does the tabular watermark achieve the three goals of
watermarking: i) maintaining high synthetic data quality, ii) ensuring high
detectability, and iii) remaining highly robust to post-editing attacks?

This work addresses these critical challenges by introducing Ripple, a novel
watermarking algorithm specifically designed for latent tabular diffusion models. The
contributions of this work are as follows:

Contribution 1: Ripple is the first watermarking algorithm tailored for tabular
diffusion models during the sampling phase. By embedding Ripplewatermarks across
a broad spectrum in the Fourier space of the initial noise matrix during sampling,
it enables watermarking across cells in the synthetic table, significantly increasing
detectability.

Contribution 2: Six post-editing attacks specific to synthetic tables are developed
for robustness evaluation against Ripple watermarking. These attacks involve the
deletion and distortion of columns, rows, and cells.

Contribution 3: Comprehensive evaluation on four diverse datasets demonstrates
Ripple’s effectiveness in preserving synthetic data quality. The average quality differ-
ence between watermarked and non-watermarked data is less than 0.6%, indicating
that Ripplemaintains the resemblance, discriminability, and downstream utility of
the synthetic tables. In terms of detectability, Ripple achieves remarkable results.
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The statistical p-values for watermark detection are, on average, more than 25 times
lower than 0.02 across all datasets, showing an improvement of more than 2 orders of
magnitude compared to the tree-ring watermarking baseline. Additionally, Ripple
exhibits strong robustness against various post-editing attacks, including the deletion
and distortion of rows, columns, and values. Our robustness analysis shows that
85% of the p-values remain below 0.05 across different attack settings, demonstrating
Ripple ’s ability to maintain watermark integrity under malicious conditions.

By effectively embedding watermarks while preserving data quality and ensuring
high detectability and robustness, Ripple sets a new standard for traceability and
auditability in synthetic tabular data. This advancement is particularly significant
as the use of synthetic data continues to expand across various fields, including
healthcare, finance, and social sciences. Despite its demonstrated effectiveness,
Ripple opens several promising avenues for future research. One potential direction
involves developing more fine-grained watermarking techniques that operate at the
sample or single row level, thereby enhancing watermark detectability and robustness.
Additionally, exploring the application of Ripple to other types of generative models,
or creating a generic watermarking scheme applicable to all types of generative tabular
models, would significantly broaden the impact and utility of this watermarking
approach. In summary, Ripple paves the way for safer and more reliable use of
synthetic data in various applications, contributing to the advancement of data
management and artificial intelligence.
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