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A B S T R A C T

The robust decision-making framework (RDM) has been extended to consider multiple objective functions and
scenarios. However, the practical applications of these extensions are mostly limited to academic case studies.
The main reasons are: (i) substantial cognitive load in tracking all the trade-offs across scenarios and the
interplay between uncertainties and trade-offs, (ii) lack of decision-makers’ involvement in solution generation
and confidence. To address these problems, this study proposes a novel interactive framework involving
decision-makers in searching for the most preferred robust solutions utilizing interactive multiobjective
optimization methods. The proposed interactive framework provides a learning phase for decision-makers to
discover the problem characteristics, the feasibility of their preferences, and how uncertainty may affect the
outcomes of a decision. This involvement and learning allow them to control and direct the multiobjective
search during the solution generation process, boosting their confidence and assurance in implementing the
identified robust solutions in practice.
1. Introduction

Sustainable decision-making, e.g. environmental management, with
a long-term planning horizon involves continuous changes and uncer-
tain future states of the world, e.g., technological, social, and climate
changes. Accurate and reliable forecasting of future outcomes and
transitions relevant to decision-making is hardly possible because of
various external uncertainties. Such situations, where the likelihoods
of plausible future scenarios are unknown, or the decision-makers and
stakeholders cannot agree on them, are called deep uncertainty (Walker
et al., 2010). Note that, in this study, we refer to stakeholders as
the involved party that either affects or is affected by the decision
to be made. Those stakeholders who have the power and are directly
involved in the decision-making process are called decision-makers.

When facing deep uncertainty, the context experts1 cannot identify
all outcomes, problem boundaries, or probability distributions (Lempert
et al., 2003; Walker et al., 2013b). For example, one may specify
various plausible climate change scenarios based on different levels of
CO2 emissions. Nonetheless, an exact estimation of their occurrence
probabilities and forecasting their impacts is impossible because of
many external influential but uncertain factors, such as governments
and society’s adherence to the (inter)national agreements, long-term

∗ Corresponding author.
E-mail address: babooshka.b.shavazipour@jyu.fi (B. Shavazipour).

1 A context (or domain) expert is a non-profit/for-profit consultant involved party who provides expertise for the problem.

maintenance plans and their actual impacts, natural disasters, future
technological inventions, and social transformations.

Under deep uncertainty, it is advised that decisions need to be ro-
bust, meaning that their performance is less sensitive to the variability
resulting from uncertainty (Lempert et al., 2006; Shavazipour et al.,
2021a; Shavazipour and Stewart, 2021). Using scenarios to represent
the variability as plausible future states of the world can help visual-
ize, plan, and interpret different future realizations without assuming
any probability distributions (Durbach and Stewart, 2012; Shavazipour
et al., 2021b; Shavazipour and Stewart, 2021; Shavazipour et al., 2020).
In this sense, robust decisions are those that stay acceptable (or are
not vulnerable) in a wide range of future scenarios (Lempert et al.,
2006). Decision Making under Deep Uncertainty (DMDU) methods
are designed to support decision-makers in solving complex decision
problems and finding robust solutions. Accordingly, robustness plays
the role of an effective measure for decision-making under (deep)
uncertainty and has become the basis of many methodological develop-
ments for robust decision-making (Herman et al., 2015; Kasprzyk et al.,
2013; Kwakkel and Haasnoot, 2019; Lempert et al., 2006; Shavazipour
et al., 2021a, 2022b; Shavazipour and Stewart, 2021; Walker et al.,
2013a). One of the most commonly used DMDU approaches is the Ro-
bust Decision Making (RDM) framework, which has been successfully
https://doi.org/10.1016/j.envsoft.2024.106233
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applied in various practical applications (Lempert and Groves, 2010;
Lempert et al., 2006, 2013; Nascimento de Lima et al., 2021; Moallemi
et al., 2020; Shi et al., 2023; Ciullo et al., 2023).

Besides uncertainty, many real-life decision-making problems en-
tail the simultaneous consideration of multiple conflicting objectives
of the various stakeholders (e.g., social, economic, and environmen-
tal objectives). In response, many-objective RDM (MORDM) was put
forward (Bartholomew and Kwakkel, 2020; Kasprzyk et al., 2013;
Quinn et al., 2017; Shavazipour et al., 2021a; Watson and Kasprzyk,
2017). MORDM complements RDM by considering multiple objective
functions in a multiobjective optimization step for the generation of
promising decision alternatives. When facing multiple conflicting ob-
jective functions, even in deterministic problems, no single solution
exists that would be optimal for all the objectives; instead, there
are several compromise solutions (reflecting trade-offs between ob-
jective functions) called Pareto optimal solutions. Preference-based
multiobjective optimization methods are typically classified into three
categories based on when decision-makers provide their preferences:
before, during, or after the solution-generation process, corresponding
to a priori, interactive, and a posteriori methods, respectively (Chankong
and Haimes, 1983; Hwang and Masud, 1979; Miettinen, 1999).

A lack of expertise or a deep understanding of the problem may
result in unrealistic preferences, either too optimistic or too pessimistic,
reducing the success rate of using a priori methods. On the other
hand, generating a broad and diverse set of Pareto optimal solutions,
which is the goal of a posteriori methods, can pose challenges for
computationally complex problems and increase the cognitive load
on decision-makers as they analyze trade-offs and navigate through
multiple objectives, particularly when the number of objectives in-
creases. In contrast, interactive multiobjective optimization methods
aim to mitigate the drawbacks of the other approaches by involving
an iterative solution-generation process. This allows decision-makers to
deepen their understanding of the problem, explore trade-offs between
objectives, and refine their preferences based on what is feasible. In
general, interactive multiobjective optimization methods, compared
to a posteriori methods, reduce computational demands and cogni-
tive load by focusing on solutions of interest to the decision-makers,
while still allowing exploration of different Pareto optimal solutions if
desired (Miettinen et al., 2008, 2016; Xin et al., 2018).

Furthermore, under deep uncertainty, the performances of a deci-
sion should be evaluated over numerous scenarios (Shavazipour and
Stewart, 2021, 2023), resulting in a second-order trade-off between
the performance of a decision alternative in individual scenarios and
the robustness of this performance over a set of scenarios: a robustness
optimality trade-off (also known as the price of robustness (Bertsimas
and Sim, 2004; Schöbel and Zhou-Kangas, 2021)). Various further
extensions to MORDM have been suggested to address this concern
including multi-scenario MORDM (Bartholomew and Kwakkel, 2020;
Eker and Kwakkel, 2018; Hamarat et al., 2014; Kwakkel et al., 2015;
Quinn et al., 2017; Trindade et al., 2017; Watson and Kasprzyk, 2017),
many-objective robust optimization (Hamarat et al., 2014; Kwakkel
et al., 2015; Trindade et al., 2017), and multi-scenario multiobjec-
tive robust optimization (Shavazipour et al., 2021a). This, however,
further complicates the decision-makers’ task and introduces a sub-
stantial cognitive load because they now have to consider not just
trade-offs within a given scenario but also how trade-offs vary across
scenarios (Shavazipour et al., 2021a,b). Note that the main focus of
this study is on DMDU methods using multi/many-objective optimiza-
tion (MOO) methods to generate solutions such as MORDM methods
and their applications; from now on, we only discuss these kinds
of methods and call them DMDU-MOO methods. By MORDM meth-
ods, we refer to DMDU-MOO methods using the RDM framework and
multi/many-objective optimization for solution generation.

As pointed out by Stanton and Roelich (2021), the practical appli-
cations of DMDU methods (including MORDM) are mostly limited to
 d

2 
academic case studies performed by analysts2. At least, the authors did
not report any details of the interactions with actual decision-makers
in their publications. Only a few very recent studies (Bonham et al.,
2024b; Shavazipour and Sundström, 2024) have reported the details of
interactions with the decision-makers during some parts of the decision-
making process, mainly for robustness and trade-off analyses. Apart
from these recent studies, most DMDU-MOO-related studies concen-
trated on methodological advancement and only reflected the usability
and scientific view of the methods from an analyst’s perspective and did
not talk much about the vital role of the decision-makers and how they
can arrive at a final decision, even in a hypothetical manner, perhaps
because the interactions with decision-makers was not an objective of
their studies.

However, the way of utilizing decision support tools, the amount
of interaction with the tool, how intuitive the guidelines and visual-
izations are, and how much the decision-makers understand about the
problem, the solution process, and the existing trade-offs have substan-
tial impacts on the decision-making process and converging to a final
decision that is to be implemented (Stanton and Roelich, 2021; Termeer
et al., 2012). For example, Bonham et al. (2024b) developed a web
app to involve decision-makers in a posteriori robustness exploration
of already generated solutions/policies for the Colorado River Basin
problem. They showcased how this involvement can raise the decision-
makers understanding of the existing trade-offs and lead them to refine
their preferences and robustness definitions. Similarly, Shavazipour
and Sundström (2024) proposed a decision-support tool prototype for
sustainable and robust forest harvest planning in a Swedish case study.
After solution generation, they also interact with the decision-maker
in the trade-off and robustness analyses in multiple iterations. They
described how investigating the effects of uncertainty on performances
and existing trade-offs provided a better understanding of the complex-
ity of the problem and the expectations of the decision-maker, which
also led to the modification of robustness criteria and avoiding too
optimistic preferences. The vital role of having interactive and intuitive
visualizations has also been highlighted in various studies (Raseman
et al., 2019; Shavazipour et al., 2021b; Hakanen et al., 2023). Indeed,
the decision-makers should first get insight into the problem and learn
the problem’s characteristics, inter-dependencies between the objective
functions, scenario effects, and possible vulnerabilities before compar-
ing candidate solutions and their robustness (Tsoukiàs, 2007). Lack of
insight and confidence on the above-mentioned aspects of the problem
is one of the reasons why DMDU-MOO methods are not widely applied
beyond academia (Malekpour et al., 2016; Stanton and Roelich, 2021).

As discussed earlier, involving decision-makers in different steps of
the decision-making process can help them increase their understand-
ing of the problem. However, a gap exists in involving decision-makers
in the optimization-support solution-generation process of the DMDU-
MOO methods. The lack of interaction of DMDU-MOO methods with
the decision-makers during the process of generating candidate solu-
tions (i.e. the optimization-supported solution process) could be an
essential missing piece in fostering broader real-world uptake. Decision-
maker involvement in this phase would foster communication and
discussion, in turn enabling learning by the various parties to the
decisions, which is known to be critical in DMDU applications (Stanton
and Roelich, 2021). Of course, there are various challenges for co-
production and involving different parties in multi-actor systems under
deep uncertainty (e.g., see a meta-analysis of 50 cases across 25 coun-
tries in Moallemi et al. (2023)). Despite the challenges, many DMDU
studies mention the need for deliberation with analysis, which implies
interaction between analysts, decision-makers and other parties to the
decision, particularly in the solution process, deliberation with analysis
has yet to be (explicitly) considered in DMDU-MOO methods.

2 An analyst is responsible for modeling, identifying suitable meth-
ds, conducting the robustness analyses, and overall supporting of the
ecision-makers.
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To the best of our knowledge, none of the existing DMDU-MOO
methods hitherto directly have involved decision-makers during the
solution process, because all the existing DMDU-MOO methods used
a posteriori type of methods to solve the multiobjective optimization
problem. In a posteriori methods, decision-makers see generated solu-
tions (often tens or hundreds) and need to choose one amongst them.
Of course, they may ask to produce different solutions; however, they
annot directly control and guide the search during the solution generation
rocess.

Nevertheless, many interactive multiobjective optimization methods
ave been developed (e.g., Miettinen and Mäkelä, 2006; Miettinen
t al., 2016; Miettinen and Ruiz, 2016; Saini et al., 2022) and are being
sed in various practical applications (e.g., Sindhya et al., 2017; Eyvin-
son et al., 2018; Montonen et al., 2019; Shavazipour et al., 2022a;
aini et al., 2023). Some of them have also been further extended and
pplied to consider some degree of uncertainty (Miettinen et al., 2014;
immegeers et al., 2019; Shavazipour et al., 2022b; Zhou-Kangas and
iettinen, 2019). In interactive multiobjective optimization methods, a

ecision-maker iteratively leads the search to the most preferred region
y providing their preferences. Then, only the solutions in the region of
nterest are computed and shown to the decision-makers. This reduces
oth the computation expenses and cognitive load at each iteration,
ompared to a posteriori methods (Miettinen et al., 2016, 2008; Xin
t al., 2018). Utilizing different types of preference information is an
xample of differences between the interactive multiobjective optimiza-
ion methods (we refer the interested readers to Miettinen et al. (2008,
016) and Xin et al. (2018) for details of interactive multiobjective
ptimization methods).

Note that interactive multiobjective optimization methods still al-
ow for exploring various regions. However, instead of utilizing a lot
f computational resources and time to explore all the feasible space
nce, limit the search to a region one at a time and give control of the
earch to the decision-makers. Indeed, experimental usage of interac-
ive multiobjective optimization methods observed that the interactive
ecision-making process can be divided into two phases: the learning
nd the decision phases. In the learning phase, decision-makers explore
ifferent solutions in various regions to improve their understanding of
he problem. Then, in the decision phase, they fine-tune the search to
heir region of interest to identify the most preferred solution (Mietti-
en et al., 2008). Furthermore, the decision-makers can interactively
earn about their preferences’ feasibility and the inter-dependencies
etween the objective functions during the solution process when they
rovide their preferences at each iteration. They can change their
references as much as they want and continue the solution process
or as many iterations as they like. This learning opportunity, which
s the most important advantage of interactive methods compared to
posteriori and a priori methods, lets them gain deeper insight into

he problem characteristics and trade-offs and raises their confidence
nd satisfaction, significantly increasing the chance of implementing
he final solution in practice. Note that, in this study, for simplicity
nd to avoid confusion, we assume there is a single decision-maker,
r a group of unanimous decision-makers who are willing to provide
references and identify the most preferred solution, as handling the
hallenges of group decision-making is out of the scope of this paper
nd requires its own specific method developments.

Our primary aim in this paper is to fill the gap, at the proof of
oncept level, in enabling interaction between analysts and decision-
akers during the optimization-support solution generation process

nd to pave the way for increasing the impact of the DMDU-MOO
ethods beyond academia. To this end, we contribute by proposing a
ovel interactive framework for multiobjective robust optimization and
ecision-making under deep uncertainty and we test it in a hypothetical
ater management problem, as a proof of concept. Furthermore, as
art of this framework, we propose, for the first time, how interac-
ive multiobjective optimization methodology can be integrated into

MDU-MOO methods (particularly into MORDM). Indeed, we provide

3 
a framework to involve decision-makers in the search for the most
preferred robust solutions, helping them to learn about the problem
characteristics, how uncertainty may affect the outcomes of a decision,
and trade-offs between objective functions across various scenarios. In
addition to guiding the search into the region of interest, they can also
incorporate their preferences on the robustness in a specific portion
of the scenario space and influence the robustness of the generated
solutions by specifying the scenarios to be considered within the search
resulting in identifying the solutions that are robust over the selected
scenario set, any feasible solution exists. For example, a decision-maker
might want to concentrate on the robustness (or even feasibility in
general) in some scenarios (or a particular portion of the scenario
space) they believe would be critical or more likely than the others
to happen. Therefore, they can generate candidate solutions ensuring
their feasibility, higher performances, and/or robustness in the selected
scenarios and then conduct a scenario analysis across a broader range
of scenarios for a more comprehensive robustness investigation.

In any case, the decision-maker is the one who chooses the final
solutions based on their understanding and preferences. Involving the
decision-makers in the solutions process and providing the opportunity
to explore the consequences of applying different solutions in various
possible future scenarios not only give them a deeper insight into
the multiple aspects of the problems and their decisions but can also
divide the cognitive burden and complexity of comparisons, increase
the explainability, reduce the computation expenses, and more im-
portantly, give the decision-makers confidence when they choose the
final solution for implementation (or at least for further investigations).
Based on positive experiences of applying interactive multiobjective
optimization methods in various real-life applications, e.g., Miettinen
et al. (2008), Sindhya et al. (2017), Eyvindson et al. (2018), Montonen
et al. (2019), Shavazipour et al. (2022a), Saini et al. (2023), we
believe integrating this methodology into the DMDU-MOO methods can
decrease the differences between the methods’ outputs and the actual
decision being made, boosting the chances of practical usage.

The distinguishable features of the proposed framework from the ex-
isting DMDU-MOO methods in the literature and the main contributions
of this study are summarized as follows:

• To the best of our knowledge, this is the very first study that
proposed the involvement of the decision-makers in directing
the search during the optimization-support solution generation
process, which is a substantial mind change from the existing
DMDU-MOO methods.

• The decision-makers can also iteratively select the scenarios, or
a particular portion of the scenario space, they believe would be
critical or more likely than the others to happen to ensure the
feasibility, higher performances, and robustness of the generated
solutions with the optimization models.

• In contrast to the existing (MO)RDM methods, the proposed
framework conduct the scenario discovery upfront as part of the
modeling phase to better understand the problem’s characteristics
and limitations of the (formulated) model, uncertainty effects,
and possible ranges of achievements (across scenarios) with this
model/strategy in different scenarios.

• We also propose a novel benchmark problem for robust decision-
making with multiple objectives under deep uncertainty because,
as shown in Shavazipour et al. (2021a), the favored lake prob-
lem (Carpenter et al., 1999) fails to properly showcase the robust-
ness optimality trade-offs. We, therefore, propose a hypothetical
water management example as a new benchmark problem for
decision-making under deep uncertainty, which addresses the
issues observed in the lake problem. We also use this new problem
to demonstrate how the proposed interactive framework can be

applied.
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We may need to emphasize that our ultimate goal in this study is
to support decision-makers during the entire model-assisted decision-
making process, from model framing to uncertainty analysis, Pareto
optimal solution generation, trade-off analyses, and converging to the
most preferred solution (among various compromise alternatives) to
be implemented. Indeed, because of the existing conflict between the
objectives and performance variations due to uncertainty, there is no
single best, optimal, and robust solution to be identified mathemati-
cally without incorporating the subjective preferences of the involved
decision-makers. Therefore, as also showcased in our case study, all
we aim to offer with the proposed framework is intuitive analytical
support in different stages of a decision-making process. We provide
such support by allowing the decision-makers to freely explore different
parts of the search space in multiple iterations where only a few alter-
native solutions are generated and compared, instead of generating and
comparing hundreds/thousands. This way, we can reduce the cognition
load of high dimensional comparisons to a manageable level.

The rest of the paper is organized as follows. Section 2 is allocated to
defining necessary concepts and notations for the rest of the paper and
a brief description of methods used in this study. The proposed interac-
tive framework is described in detail in Section 3. Section 4 introduces
a novel explanatory case as a new benchmark problem for decision-
making under deep uncertainty and illustrates an application of the
proposed framework. We discussed, in Section 5, the conceptual dif-
ferences between the conventional, robust decision-making framework
and the proposed interactive one as well as the limitations of using
interactive multiobjective optimization methodology. Finally, Section 6
concludes the study and raises potential future research directions.

2. Background

2.1. Multi-scenario multiobjective optimization

We consider the following form of a multi-scenario multiobjective
optimization problem:

maximize {𝑓1𝑞(𝐱),… , 𝑓𝑘𝑞(𝐱)}, 𝑞 ∈ 𝛺
ubject to 𝐱 ∈ 𝐗, (1)

here 𝛺 = {1,… , 𝑠} is a scenario space; 𝑠 is the number of scenarios; 𝑘
≥ 2) is the number of objective functions ; 𝑓𝑖𝑞 represents an objective

function 𝑖 in a scenario 𝑞; 𝐗, in the so-called decision space R𝑛, includes
all feasible solutions, each represented by a vector of decision variables
𝐱 = (𝑥1,… , 𝑥𝑛)𝑇 . The image of a solution 𝐱 under the conditions of a
scenario 𝑞 is represented by an objective vector 𝐳𝑞 = (𝑓1𝑞(𝐱),… , 𝑓𝑘𝑞(𝐱))𝑇 ,
and the set of all objective vectors constructs the objective space R𝑘.

We call a feasible solution (i.e., decision (variable) vector) 𝐱∗ and
the corresponding objective vector Pareto optimal if no other feasible
solution 𝐱′ can be found so that its values in all objective functions
and all scenarios are better than or equal to the objective values of 𝐱∗
i.e., for all 𝑖, 𝑞; 𝑓𝑖𝑞(𝐱∗) ≥ 𝑓𝑖𝑞(𝐱′)), and, at least in one objective function
in one scenario 𝑢, 𝑓𝑗𝑢(𝐱∗) > 𝑓𝑗𝑢(𝐱′). In other words, a feasible solution

s Pareto optimal if it has the best values in at least one objective
unction and one scenario (i.e., non-dominated in the objective space
f at least one scenario) among all feasible solutions. In what follows,
e call the set of Pareto optimal objective vectors a Pareto front and

he set of Pareto optimal decision vectors a Pareto set.
The vectors representing the best and the worst attainable values

or each objective function in each scenario among the Pareto optimal
olutions, respectively, called an ideal (𝐳̄ = (𝑧̄11,…, 𝑧̄𝑘𝑠)𝑇 ) and a nadir
𝐳 = (𝑧11,…, 𝑧𝑘𝑠)

𝑇 ) vector. One can calculate the components of the
ideal vector, that is, the ideal value for any objective function in a given
scenario by solving the corresponding single-objective single-scenario
optimization problem (by ignoring the other objective functions). In
contrast, the computation of the components of the nadir vector, that
is nadir values, is usually estimated (Miettinen, 1999).
4 
2.2. Scalarization functions

Converting a multiobjective optimization problem into a single-
objective one is one way to solve these problems. To this end, the
decision-makers’ preferences are incorporated using so-called scalariza-
tion functions (see, e.g., Miettinen, 1999; Miettinen and Mäkelä, 2002;
Ruiz et al., 2009). One of the widely used scalarization functions is an
achievement scalarizing function (ASF) (Wierzbicki, 1986), which has
recently been extended for multi-scenario multiobjective optimization
problems (Shavazipour et al., 2020, 2021a). We consider the following
formulation of the multi-scenario ASF:

minimize max
𝑖,𝑞

[𝑤𝑖𝑞(𝑓𝑖𝑞(𝐱) − 𝑔𝑖𝑞)] + 𝜖
𝑘
∑

𝑖=1

𝑠
∑

𝑞=1
𝑤𝑖𝑞(𝑓𝑖𝑞(𝐱) − 𝑔𝑖𝑞)

subject to 𝐱 ∈ 𝐗,

(2)

where 𝑔𝑖𝑞 with 𝑧̄𝑖𝑞 ≤ 𝑔𝑖𝑞 ≤ 𝑧𝑖𝑞 , is an aspiration level representing
a decision-maker’s preferences in terms of a desirable value for the
objective function 𝑖 in scenario 𝑞, and 𝑤𝑖𝑞 is a corresponding weight-
ing coefficient that can be used for normalization purposes. A vector
constructed by all aspiration levels is called a reference point. The
augmentation term (multiplied by 𝜖) guarantees that the solution to (2)
is Pareto optimal, where 𝜖 is a small, positive scalar binding trade-offs
(for details of the augmentation term, see, e.g., Miettinen, 1999).

Different reference-point-based scalarization functions are mainly
distinguishable by the distinct directions they use to reach the Pareto
front from the given reference point, which can lead to various Pareto
optimal solutions. Therefore, one can generate different Pareto opti-
mal solutions from a single reference point using dissimilar scalar-
ization functions, although sometimes multiple scalarization functions
may produce the same Pareto optimal solution (see, e.g., Miettinen
and Mäkelä, 2002; Ruiz et al., 2009). We follow the guidelines of
choosing scalarization functions in Miettinen and Mäkelä (2002) to
boost the chance of generating more diverse solutions (but, the pro-
posed framework is not limited to these functions). In this paper,
similar to the multi-scenario ASF, we also expand the formulation of
three other scalarization functions for multi-scenario problems. The
extended multi-scenario formulation of the Step method (STEM) (Be-
nayoun et al., 1971), the GUESS method (Buchanan, 1997), and the
satisficing trade-off method (STOM) (Nakayama, 1995; Nakayama and
Sawaragi, 1984), can be found in Appendix.

2.3. Scenario analysis/discovery:

Determining vulnerable scenarios (or vulnerable subspace of the
uncertainty space) is often referred to as scenario discovery or scenario
analysis. Over the years, various scenario discovery approaches have
been developed in the literature (Bryant and Lempert, 2010; Dalal
et al., 2013; Shavazipour et al., 2021a). In this study, we follow the
scenario discovery method proposed in Shavazipour et al. (2021a),
which utilizes the ideal values. This approach includes the follow-
ing steps: (1) computing the ideal values for all objective functions
for all scenarios in the generated ensemble of scenarios by solving
corresponding single-scenario single-objective optimization problems
extracted from the multiobjective optimization model formulated for
the original problem. (2) Then, vulnerable scenarios, the combinations
of deeply uncertain parameters causing these vulnerabilities, can be
specified by comparing the distinctions between the ideal values in
different scenarios (see Shavazipour et al. (2021a) for more details).

3. The proposed two-phase interactive framework

As mentioned earlier, none of the existing MORDM methods involve
decision-makers during the optimization-support solution generation
process to direct the search to the region of interest, nor do the corre-
sponding papers report how they converge to the final solution among
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many candidate solutions. This limits the practical implementation of
the methods (Stanton and Roelich, 2021). To fill this gap, in this
section, we propose a two-phase interactive framework to support more
involvement of the decision-makers in guiding the search process. We
contend that this will also boost the chance of practical implementation
of the final solution found.

In contrast to the existing (MO)RDM methods, we propose to per-
form the uncertainty/scenario analysis already in the modeling phase
(the first phase) to investigate sources of vulnerability. This way,
one can modify the models and (or) robustness measures (if needed)
before solution generation, which saves time and computational costs.
Furthermore, decision-makers can learn more about the problem’s com-
plexity and existing uncertainties, which is crucial under deep uncer-
tainty. In the second phase, we involve the decision-makers in the
solution process and let them direct the search to the region of interest
through their preferences. This way, they can learn about the problem
characteristics, how uncertainty may affect the outcomes of a decision,
and trade-offs between objectives across various scenarios. Indeed,
this phase includes three main stages: (2a) preference expression—
where the decision-makers provide their preferences, e.g., on desired
values for each objective in each scenario; (2b) solution generation—
where their preferences are used to generate solutions in the region
of interest; and (2c) trade-off analysis and decision-making—where
decision-makers track the outcomes and trade-offs of the generated
solutions.

Fig. 1 describes the general scheme of the proposed interactive
framework. It has five iterative stages. As mentioned, we divide the
whole process into two main interactive phases named: (1) scoping
the model (interactive modeling phase) and (2) interactive robust
decision-making phase detailed as follows:

Phase 1. Scoping the model (interactive modeling phase)

Like any other model-based framework, we need a model represent-
ing the problem to start with. Therefore, the first phase is devoted to the
model development. This phase contains two iterative stages described
below.

a. Decision problem formulation (1a)
As the first stage, we formulate the decision problem that includes,

e.g., the decision(s) to be made (decision variables), performance mea-
sures (objective functions), problem limitations (constraints), (deeply)
uncertain parameters/factors, and robustness measures. Based on the
problem characteristics, one can formulate a decision-making problem.
We use here the so-called XLRM framework (Lempert et al., 2006),
where the letter X denotes uncertain factors, L decision variables (to
be identified by the optimization model), R the system/phenomenon
relationships forming the whole model, and M performance (objec-
tive functions) and robustness measures. Different robustness measures
have been introduced in the literature, e.g., mean/standard devia-
tion (Hamarat et al., 2014) and the domain criterion (Starr, 1963), to
measure the robustness of each objective across scenarios. In our case
study, we use the latter; other measures can also be used.

b. Uncertainty/scenario analysis (1b)
The second stage focuses on scenario discovery to identify vulnera-

bilities (i.e., determining scenarios with poor performances). Scenario
discovery seeks to specify some (cluster) of scenarios (or sub-spaces of
the scenario space) that cause vulnerabilities and possibly poor per-
formances of generated solutions (Bryant and Lempert, 2010; Kwakkel
and Jaxa-Rozen, 2016). Therefore, we can identify which combinations
of the uncertain factors potentially provoke failures (i.e., poor perfor-
mances). The vulnerable scenarios can be found by investigating the
feasible regions and the best possible values for each objective function
in each scenario (the ideal values) as proposed in Shavazipour et al.
(2021a).
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Accordingly, we (i) generate hundreds/thousands of scenarios, rep-
resenting the scenario space, using key uncertain parameters and a
sampling technique like Latin Hypercube Sampling. Then, (ii) we find
the optimal value for each objective function (ideal values) in each
of these scenarios by solving a corresponding single-objective single-
scenario optimization problem. Finally, as shown in Shavazipour et al.
(2021a), we can (iii) identify the combinations of the uncertain pa-
rameters driving the poor performances and find vulnerable scenarios.
This information will be shown to the decision-makers so they can
learn about the problem’s characteristics and limitations. Then, they
(together with an analyst) can go back and modify the model or some
other parameters, if so desired. This process can help all the involved
parties to learn about the limitations of the (formulated) problem, un-
certainty effects, and possible ranges of achievements (across scenarios)
with this model/strategy in different scenarios.

This phase is to be iterated as much as required to confirm the
formulated decision problem, including testing and validation. Indeed,
by performing this scenario analysis at this stage (i.e., before any
solution generation), one can get more insight into the problem and
scenario effects at this early stage. More importantly, this analysis can
provide a suitable overview of the strengths and weaknesses of the
formulated model. Therefore, if there exists a fundamental shortcoming
in the formulated model, e.g., infeasibility in an ample part of the
scenario space, or if there is a need to redefine the robustness measure
(e.g., as the case of Bonham et al. (2024b)), we can identify the issue
at this stage and modify the model and robustness measures before
spending a significant amount of time, computation resources, and en-
ergy to generate (irrelevant) solutions, useless re-evaluations, and avoid
confusion. Therefore, from this aspect, compared to previous (MO)RDM
methods (considering multiple iterations of the whole process), the
proposed framework saves time and reduces computation expenses and
the cognitive load of the decision-makers.

Phase 2. Interactive robust decision-making phase

After learning about the problem characteristics, vulnerable scenar-
ios, developing the basic model, and selecting robustness measures, we
need to identify some solutions and show them together with relevant
analyses to decision-makers to study the trade-offs and find the most
preferred solution in the decision-making phase. The decision-making
phase has three iterative stages, as described below.

a. Preferences expression (2a)
Considering the information of scenario analysis mentioned above,

decision-makers need to express their preferences about:

1. scenarios to be considered in the model and robustness analyses,
2. their desired values (aspiration levels) for the objective functions

in the selected scenarios and,
3. the maximum number of intermediate solutions to be compared

in the interactive solution process and trade-off/robustness anal-
yses (optional).

At this stage, because of scenario analysis in the previous stage
(1b), decision-makers already have information about the extreme
areas of the scenario space (i.e., vulnerable (cluster of) scenarios and
the ones in which one can expect significant performances in one
(or more) objectives) that should be considered in scenario selection
and robustness analyses. Therefore, here, decision-makers have the
opportunity to affect the scenario selection process by providing their
preferences on scenarios that are of interest to them. In this way, they
lead the solution process to focus on the Pareto optimal solutions that
are feasible robust in these scenarios i.e., there is no other solution
that dominates these solutions in all objective functions and in all
selected scenarios) and track the trade-offs between various objective

functions across the selected scenarios. For instance, they may find
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Fig. 1. General scheme of the proposed interactive framework compared to the MORDM.
some critical/vulnerable/important (cluster of) scenarios to be con-
sidered explicitly in trade-off analysis and be emphasized in solution
generation (i.e., direct the search within the feasible region of the
selected scenarios to find Pareto optimal solutions in these scenarios).
Of course, an analyst can still suggest some scenarios for consideration.
If decision-makers do not want to select scenarios, an analyst will then
select a set of representative scenarios (e.g., using systematic scenario
selection procedures such as Eker and Kwakkel (2018) and Giudici et al.
(2020) or utilize sub-sampling metrics such as Bonham et al. (2024a)).

Although, in theory, any number of scenarios can be selected,
some computational and cognitive limitations should be considered.
In this regard, we follow the guidelines in multi-scenario multi-criteria
decision analysis and suggest considering four to six scenarios (Stew-
art et al., 2013). Moreover, Stewart et al. (2013) recommends that
the selected set of scenarios should be representative in pointing out
6 
the fundamental relationship between uncertain factors and extreme
scenarios, which is in line with the goals of scenario analysis in the
previous stage (stage 1b). Nonetheless, identifying a representative set
of scenarios is out of the scope of this paper and lies in our future
research directions.

After the set of scenarios has been specified, the analyst calculates
and presents the ideal and estimated nadir values for each objective
function in these scenarios to inform the decision-makers of the best
and the worst possible achievements in each objective function in
each scenario. Consequently, the decision-makers need to provide their
preferences (e.g., their desired values (aspiration levels)) regarding
each objective in each selected scenario.

Note that, in this paper, for simplicity, we assume that decision-
makers can consensually provide preferences for all objective functions
in all selected scenarios. However, the objective-scenario combinations
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and, therefore, the cognitive load of expressing preferences in all
scenarios can quickly explode, when the number of scenarios increases.
Even for a recommended number of 4–6 considered scenarios and a
moderate number of objective functions (around 4 or 5), the cognitive
oad of providing preferences can be considerable. In these cases, the
ecision-makers can set the same preferences for some (or all) the
cenarios (e.g., as done in Shavazipour et al. (2020)), or they can
nly set their preferences for some scenarios and use some preference
imulation methods (e.g., as proposed in Shavazipour et al. (2022b)) to
ill in the missing information.

Finally, as a natural choice, as often considered in interactive multi-
bjective optimization methods (e.g., Eyvindson et al., 2018; Miettinen
nd Mäkelä, 2006; Shavazipour et al., 2022a), the decision-makers can
pecify the maximum number of intermediate solutions to be compared
t each iteration of the interactive solution process and trade-off analy-
es. In this way, they can also control the cognitive load (that they are
appy to face) and computational expenses (e.g., may affect the waiting
ime between the iterations) in the interactive solution process, if so
esired. The recommended number is between three to seven based on
he cognitive limitations of human decision-makers (Miller, 1956).

. Solution generation (2b)
Based on the preferences provided by the decision-makers in stage

a, the analyst formulates and solves a relevant multi-scenario multi-
bjective optimization model (involving the selected set of scenarios)
o produce multiple solutions that follow the preferences as well as
ossible. In this paper, similar to Shavazipour et al. (2021a), we first
onvert the problem into a single-objective one using reference point-
ased scalarization functions and then solve the scalarized problems
y utilizing broadly developed single-objective methodologies (Bazaraa
t al., 2013). However, based on the preference type and problem
haracteristics, a different type of multiobjective optimization solver
ay be utilized. The proposed framework is not limited to only this

ype of a method.
As mentioned earlier, in the proposed framework, the maximum

umber of intermediate solutions (𝑚) can be set by the decision-
akers (at stage 2a). Then, the analyst can generate up to 𝑚 different

olutions, reflecting the decision-makers’ preferences, by solving the
ultiobjective optimization problem with 𝑚 scalarization functions.

. Trade-off analysis (2c)
Pareto optimal solutions generated in stage 2b (and their corre-

ponding objective vector) are presented to the decision-makers using
ifferent visualizations designed for trade-offs analysis. Since the se-
ected set of scenarios was considered in the solution process, the
enerated solutions are feasible and robust in all selected scenarios,
f any are available. Moreover, the generated solutions reflect the
ecision-makers’ preferences, so they can be expected to be of interest
o the decision-makers.

As mentioned earlier, the decision-makers received an initial
verview of the problem characteristics, vulnerabilities, and opportuni-
ies in stages 1a-1b. At this stage, however, they compare the generated
olutions and the existing trade-offs between objective functions in
he selected scenarios. Indeed, the decision-makers explore the perfor-
ances and robustness of the generated solutions to learn about the

nter-dependencies between the objective functions in selected scenar-
os. In addition, they can select all or some of the generated solutions in
ifferent iterations and add them to a so-called wish list. Then, they can
bserve the robustness (stress testing) results of the selected solutions
ver a broad generated set of scenarios to get confidence in choosing
he final solution for implementation.

The intermediate steps of stage 2c are the following:

Step 0. Show the objective vectors of the generated solutions in
selected scenarios to the decision-makers. They can choose
all or some of these solutions to be added to a wish list (an
7 
option). At this point, if some other solutions have already
been added to the wish list (not possible in the first iteration),
decision-makers can ask to compare all the solutions listed
there.

Step 1. Ask the decision-makers if they want to select all or some
solutions for stress tests over a broader range of scenarios. If
yes, go to the next step; otherwise, go to stage 2a to generate
new solutions by providing new preferences (e.g., updating
the aspiration levels and/or selected scenarios).

Step 2. Conduct the stress tests of the selected solutions (by re-
evaluating the solutions over a broad generated set of sce-
narios) and present the results (including the robustness mea-
sures) to the decision-makers.

Step 3. If the decision-makers, perhaps after all the comparisons and
analyses in multiple iterations, are satisfied with a solution
(from the current set or one of the previous ones) and confi-
dent to make the final decision, stop; otherwise, go to stage
2a to generate new solutions by providing new preferences.

Note that, as an option, at any stage, the decision-makers can ask
o return to the first phase (the modeling phase) to update the model,
f they feel the need. We demonstrate the stages of the proposed
ramework and how one can use them to solve a decision-making
roblem under deep uncertainty in the next section via an explanatory
ase.

. Applying the proposed framework to an explanatory case

In this section, we demonstrate in a detailed narrative form how
ne can apply the proposed framework for decision-making under deep
ncertainty. As pointed out in Shavazipour et al. (2021a), the most
ommonly used benchmark problem in robustness comparison (i.e., the
ake problem (Carpenter et al., 1999)) has some issues such as not
eflecting trade-offs between objective functions in various scenarios.
e also tested the use of a fishery problem, introduced in Hadjimichael

t al. (2020), and found out that no feasible solutions can be generated
y the formulated model in many scenarios. Although having no fea-
ible solution in some scenarios is an interesting feature that can be
he case in some real-world problems, the main goal of this study is
o highlight the existing trade-offs between scenarios in addition to the
rade-offs between the objective functions in many DMDU problems.
herefore, here, we propose an extended version of a widely used water
anagement problem (Narula and Weistroffer, 1989) in nonlinear mul-

iobjective optimization to be utilized in robust decision-making under
eep uncertainty. Note that the proposed formulation of the problem is
ntirely hypothetical and obtained from exhaustive trial and error tests
o ensure its ability to represent some specific characteristics that make
t suitable for various benchmarking purposes, such as reflecting trade-
ffs between objective functions in different scenarios, including both
eterministic and uncertain objective functions, nonlinear relations
etween the deeply uncertain parameters, and relatively strong conflict
etween objective functions and robustness values. Therefore, as a
roof of concept, we apply the proposed framework to this problem
hile one of the authors played the role of the decision-maker(s) to

howcase the usage of the proposed framework.

.1. Scoping the model

.1.1. Decision problem formulation (1a) - Water management problem
The original problem proposed in Narula and Weistroffer (1989)

escribes the management of water quality (dissolved oxygen (DO)
oncentration) in a river near a hypothetical city (Fortuna) with two
ources of pollution (milligrams of biochemical oxygen demanding
aterial (BOD)): municipal waste produced by the city and industrial
ollution caused by a Fresh Fishery located eighty kilometers upstream
rom Fortuna (see Fig. 2). The primary existing treatment facilities can
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Table 1
Deeply uncertain parameters and the baseline scenario.

Deeply uncertain variables Range Baseline scenario

Notation Description

𝛼 Water quality index at the Fresh Fishery [3.6, 4.24] 4.07
𝛽 Parameter to calculate BOD reduction rate at the Fresh Fishery [2.25, 2.29] 2.27
𝛿 BOD reduction rate at the city [0.075, 0.092] 0.08
𝜉 The effective rate of BOD reduction at the Fresh Fishery on the

city’s water quality
[0.067, 0.083] 0.075

𝜂 Combined effective BOD reduction rate at the city [1.2, 1.50] 1.39
𝑟 Investment return rate [5.1, 12.5] 8.21
Fig. 2. A hypothetical view of the river problem.

reduce the pollution of the city and the Fresh Fishery by thirty percent
(in a gross discharge), and extra treatment facilities’ costs would decline
the Fresh Fishery’s investment return and raise the city’s tax rate.

Two decisions to be made are the proportional amounts of BOD
to be removed from water discharge at the Fresh Fishery (𝑥1) and at
the city (𝑥2). The pollution control commission and the stakeholders
consider the following four objective functions: (i) maximize the quality
of water at the Fresh Fishery (mg/L of DO); (ii) maximize the quality
of water at the city (mg/L of DO); (iii) maximize the Fresh Fishery’s
investment returns (%), and; (iv) minimize the rise in the city’s tax rate
(1/1000 of EURO).

The original problem considered fixed values for all the parameters.
However, in this paper, we assume some of the parameters to be deeply
uncertain, and only a range of plausible values is known for each.
The deeply uncertain parameters are: water quality index at the Fresh
Fishery (𝛼); BOD reduction rate at the Fresh Fishery (calculated by
𝑙𝑜𝑔((𝛽∕2 − 1.14)2) + 𝛽3); water quality index at the city (𝛾 = 𝑙𝑜𝑔((𝛼∕2 −
1)) + 𝛼∕2 + 1.5); BOD reduction rate in the city (𝛿); the effective rate
of BOD reduction at the Fresh Fishery on the city’s water quality (𝜉); a
combined effective BOD reduction rate in the city (𝜂), and investment
return rate (𝑟). Table 1 describes these deeply uncertain parameters and
their ranges. Any scenario in the scenario space 𝛺 can be generated
by combining sampled values of these deeply uncertain parameters
within their ranges. The last column of Table 1 represents the baseline
scenario3.

3 The baseline values were selected to keep the baseline scenario relatively
close to the original deterministic problem.
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Table 2
Ideal values for each objective function in the best- and the worst-case scenario across
10 000 generated scenarios.

Objective functions

𝑓1 𝑓2 𝑓3 𝑓4
Best-case scenario 7.224 5.440 11.790 0.00
Worst-case scenario −0.998 3.854 4.390 0.00

Then, we propose the following corresponding formulation for the
uncertain variant of the water management optimization problem:

maximize 𝑓1(𝐱) = 𝛼 + (𝑙𝑜𝑔(( 𝛽2 − 1.14)2) + 𝛽3)𝑥1
maximize 𝑓2(𝐱) = 𝛾 + 𝛿𝑥1 + 𝜉𝑥2 +

0.01
𝜂−𝑥21

+ 0.30
𝜂−𝑥22

maximize 𝑓3(𝐱) = 𝑟 − 0.71
1.09−𝑥21

minimize 𝑓4(𝐱) = −0.96 + 0.96
1.09−𝑥22

subject to 0.3 ≤ 𝑥1, 𝑥2 ≤ 1.0,

(3)

where 𝛾 = 𝑙𝑜𝑔(( 𝛼2 − 1)) + 𝛼
2 + 1.5.

Moreover, we use the domain criterion (Starr, 1963) for each ob-
jective function as the robustness measure. Thus, our decision-maker
(in practice they can be the Pollution Control Commission and the
stakeholders) sets the following criteria for robustness and vulnerability
analyses:

𝑓1 water quality at the Fresh Fishery > 4.2 (mg/L),
𝑓2 the quality of water at the city > 4.2 (mg/L),
𝑓3 investment return > 5%,
𝑓4 rise in the city’s tax rate < 0.1 (1/1000 of EURO).

4.1.2. Scenario analysis (1b)
Apart from the given baseline scenario shown in Table 1, we further

generated 9999 scenarios (using Latin Hypercube Sampling) and con-
sidered an ensemble of 10 000 scenarios in the scenario and robustness
analyses (i. scenario generation). Then, we solved the correspond-
ing single-scenario single-objective optimization problems for the four
objective functions in all scenarios to calculate the ideal values. In gen-
eral, this meant solving 40 000 single-objective optimization problems
(ii. calculating the ideal values). The ideal values for each objective
function in the best- and the worst-case scenario4 across all 10 000
scenarios are portrayed in Table 2. Note that as the fourth objec-
tive function involved no uncertain parameter, there is no variation
in its values. Therefore, the total number of single-objective opti-
mization problems to be solved is reduced to 30 001. Solving these
single-objective optimization problems is fast, and they only need to
be calculated once before involving the decision-makers. For instance,
solving all the 30 001 problems took only 1.5 min with a laptop.

4 Note that the best- and the worst-case scenario may differ when evaluating
the performance of each objective function (i.e., not all the worst/best values
for all objectives necessarily happen in a single scenario).
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Fig. 3. Combinations of uncertain parameter values leading to failure in different objectives (a–c), and invulnerable scenarios (d).
In Table 2, we see that the domain criteria set for the first two
objective functions are not feasible in some scenarios (at least in the
worst-case ones), giving insight into the limitation of the problem fram-
ing. To get more details about problem limitations and vulnerabilities,
we explore the scenario space to identify which fractions of this space
lead to poor performances in each objective function. Indeed, we check
if the ideal values satisfy the domain criteria for each objective function
in each generated scenario. Then, we investigate the combination of
the uncertain parameters constructing scenarios in which the domain
criteria are violated (call them vulnerable scenarios). Therefore, we
can identify if any specific combination (or values) of the uncertain
parameters caused vulnerabilities. This valuable information, which
can be driven from the ideal values, is described in Fig. 3. Based on this
analysis, in the best case, the water quality is worse than the domain
criterion (4.2 mg/L) in 30.73% and 16.68% of the scenarios at the Fresh
Fishery and the city, respectively. The primary source of vulnerability
in water quality at the Fresh Fishery is 2.272 < 𝛽 < 2.287 (Fig. 3(a)),
while the vulnerability in water quality in the city is caused mainly by
some nonlinear combinations of small values of 𝛼, 𝛼 < 3.91, and large
values of 𝜂, 𝜂 > 1.32, (Fig. 3(b)). Also, the domain criteria (at least 5%)
on Fresh Fishery investment’s return is infeasible in at least 8.24% of
the scenarios that happen when 𝑟 < 5.71 (Fig. 3(c)).

Similarly, we investigate the scenario space to determine the in-
vulnerable part, depicted in Fig. 3(d). Counting these scenarios shows
that 53.33% of the scenarios are not vulnerable (i.e., satisfying all
the domain criteria). In contrast, it highlights that about half of the
scenario space (46.67%) is vulnerable, based on the domain criteria.
Fig. 4 shows pairwise comparisons of the values of the deeply uncertain
parameters and the portion of the scenario space leading to poor
performances in the ensemble of 10 000 scenarios. Each dot represents
a scenario. Green dots (∙∙∙) correspond to vulnerable scenarios where at
least one domain criterion is not met, while blue dots (∙∙∙) belong to
scenarios that meet all the domain criteria.

By getting insight into the problem’s characteristics and limitations,
uncertainty effects, and possible ranges of achievements (i.e., the best
and the worst values that can be reached in each objective function)
in different scenarios, decision-makers can modify the model or other
parameters and measures before solving the problem, if needed. Here,
based on the analysis, the decision-maker found that, even in a single-
objective form, identifying solutions satisfying all the domain criteria
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is impossible with the formulated model in about half of the scenario
space (leaving aside the effects of potential trade-offs in simultaneous
consideration of all the objective functions). Thus, they decided to
modify their setting for the robustness measure slightly. Accordingly,
they reduced the first two criteria to 4 mg/L and the third one to 4%
return. After this and performing similar analyses, the vulnerability
declined to 26.77% and 3.26% in water quality, respectively, at the
Fresh Fishery and the city. Also, no vulnerable scenarios were found for
the new domain criterion in the third objective. The decision-makers
then confirmed the model and the domain criteria.

4.2. Interactive robust decision-making phase

Iteration 1.

Decision-makers’ preferences (2a)
Now that the decision-makers have obtained an initial understand-

ing of the problem’s limitations and vulnerabilities, we proceed to
phase 2.

(i) Scenarios to be considered: The decision-maker picked the baseline
scenario and wanted to randomly choose five more scenarios (i.e., six
in total) in the way that the subset includes at least one vulnerable
scenario that does not satisfy the domain criterion set for the first
objective function (i.e., 2.273 < 𝛽 < 2.286). Table 3 represents the
six selected scenarios. We are aware of the limitations of choosing
a few scenarios and how they (and how many of them) should be
chosen to have a good representative set of scenarios. As mentioned
in Section 3, apart from the decision-makers choice, the analyst should
also ensure (or at least consult with the decision-makers) that the
selected small subset of scenarios is representative enough, e.g., by
applying a systematic scenario selection procedure proposed in Eker
and Kwakkel (2018) and Giudici et al. (2020). However, as shown
in Shavazipour et al. (2021a), considering multiple scenarios within
the optimization problem improves the robustness of the generated
solution. Therefore, to avoid distraction from our primary purpose
in this study, we leave further investigation of this matter to future
studies.

(ii) Desired values for the objective functions in the selected scenarios:
After scenario selection, the analyst showed each objective’s ideal and
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Fig. 4. Combinations of uncertain parameter values leading to failure.In the legend, ‘y’ means ‘yes’ and refers to vulnerable scenarios, and ‘n’ means ‘no’ and refers to invulnerable
scenarios.
estimated nadir values in the selected set of scenarios to inform the
decision-makers of the best and the worst possible achievement values
for each objective function in selected scenarios among the Pareto
optimal set. We consider the same estimated nadir vector (slightly
worse than the lowest possible values that can be reached in each
objective function in the worst-case scenario in the feasible region) for
all selected scenarios as 𝐳 = (−5, 0, 0, 10)𝑇 ,5 while the calculated ideal
vectors for various scenarios are represented in Table 4. Accordingly,
the decision-makers provided their aspiration levels for each objective
function in each selected scenario, shown in Table 5. Note that, in
the proposed framework, the decision-maker can give a value better
or worse than the ideal and nadir vectors to emphasize the objectives’
importance (similar to providing importance weights).

(iii) Maximum number of intermediate solutions to be generated (op-
tional): The decision-makers wanted to see a maximum of four solutions
at each iteration.

Solution generation (2b)
Given this setup, the analyst solved the corresponding optimiza-

tion problem with four objective functions and six scenarios (i.e., a
multiobjective optimization model with 19 (meta-)objective functions)
using four different scalarization functions discussed in Section 3. Four

5 Note that the fourth objective function is to be minimized while the others
are to be maximized. We convert the last objective to be maximized in the
calculations and visualizations (multiplying its values by -1).
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Table 3
Six selected scenarios.

Scenarios Combination of deeply uncertain parameters

𝛼 𝛽 𝛿 𝜉 𝜂 𝑟

𝑠1 4.070 2.270 0.0800 0.0750 1.39 8.21
𝑠2 3.868 2.262 0.0869 0.0782 1.47 10.28
𝑠3 3.620 2.278 0.0835 0.0750 1.23 5.84
𝑠4 3.372 2.254 0.0903 0.0814 1.35 11.76
𝑠5 3.124 2.270 0.0801 0.0686 1.29 7.32
𝑠6 4.116 2.286 0.0767 0.0718 1.41 8.80

Table 4
Ideal values for each objective function in each selected scenario.

Scenarios Ideal values

𝑓1 𝑓2 𝑓3 𝑓4
𝑠1 5.17 4.52 7.50 0
𝑠2 6.02 4.19 9.57 0
𝑠3 3.02 4.61 5.13 0
𝑠4 6.14 3.87 11.05 0
𝑠5 4.22 3.70 6.61 0
𝑠6 4.44 4.52 8.09 0

solutions are generated and their performances (corresponding objec-
tive functions values) visualized in a parallel coordinate plot in Fig. 5,
where each poly-line describes the performance of a single solution on
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Fig. 5. Comparing solutions’ performances reflecting the given preference information in the 1st iteration. The improvement direction of all objective functions is unified as
(upwards (↑)).
Table 5
Preferences in the first iteration for each objective function in each selected scenario.

Scenarios Objective functions

𝑓1 𝑓2 𝑓3 𝑓4
1 5 4.5 7 0.00001
2 5 4.5 5.5 0.00001
3 10 4.5 4 10
4 5 8 6 0.1
5 5 8 6 0.1
6 4.5 4.5 9 0.1

Table 6
Preferences in the second iteration for each objective function in each selected
scenario.

Scenarios Objective functions

𝑓1 𝑓2 𝑓3 𝑓4
1 4 15 4 0.00001
2 4 15 4 0.00001
3 10 15 4 0.00001
4 4 15 4 0.00001
5 4 15 4 0.00001
6 4 15 4 0.00001

all four objective functions in six selected scenarios (different colors
distinguish solutions)6. As mentioned, since the last objective function
has no uncertain parameters, its objective value is not varied across the
scenarios. Therefore, we only present its value once independent of the
scenarios in all the visualizations. Also, we unified the improvement
direction of all objective functions (upwards (↑)) in the plots.

Trade-off analysis and decision-making (2c)
Step 0. Following the procedure described in Section 3 (interme-

diate steps of stage 2c), after observing the solutions and trade-offs
between objective functions in selected scenarios, the decision-maker
chose the first two solutions to be saved in the wish list. However,
they wanted to continue searching for different solutions. Mainly as
the values of the second objective function in all six scenarios were
too low and far from the ideal values, they sought to find some Pareto

6 Note that the ideal and nadir points should be used for the ranges of axes.
However, we manually changed and unified some of them here to increase the
visibility and ease the comparisons.
11 
optimal solutions with higher values in the second objective function
and compare them to the selected solutions.

Iteration 2.

Decision-makers’ preferences (2a)
The ecision-maker updated the preferences (shown in Table 6) to

lead the search in a region of interest. This time, they raised the
aspiration levels for the second objective function in all scenarios while
sacrificing their desires for the other objective functions in various
scenarios. The decision-maker kept using the same six scenarios and
wished to identify up to four Pareto optimal solutions following their
new preferences.

Solution generation (2b)
The analyst then solved the problem using the new preferences and

showed the performances of the four new solutions to the decision-
maker, as visualized in Fig. 6.

Trade-off analysis and decision-making (2c)
Step 0. The new solutions, to some extent, followed the preferences,

particularly solution 5, in which the values of the second objective
function in all scenarios were the same as the ideal values (i.e., it is
one of the extremes). Checking the decision variables for this solution
shows that they both reached their maximum bound (i.e., 𝑥1 = 𝑥2 = 1),
meaning a hundred percent pollution reduction (in a gross discharge)
at both the Fresh Fishery and the city. However, the cost of these extra
treatment facilities would excessively drop the investment return of the
Fresh Fishery and increase the city’s tax rate extremely in all scenarios.
This fall in investment return would even be negative in two out of
the six selected scenarios, probably making the Fishery’s stakeholders
to veto this solution. Nonetheless, as this solution (solution 5) gives the
highest values for the second objective function (the quality of water
in the city) in all scenarios, the decision-maker chose this and the last
two solutions to be added to the wish list (because solution 8 gives the
best values for the first objective function in five scenarios and solution
7 gives the best value for the last objective function (zero tax rise))
and wanted to compare all the five solutions selected so far. They are
visualized in Fig. 7.

As the decision-maker found tracking the trade-offs between ob-
jective functions in various scenarios a bit difficult with parallel co-
ordinate plots, following Shavazipour et al. (2021b), we visualized
the results using so-called all-in-one SB-EAFs (scenario-based empirical
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Fig. 6. Comparing solutions’ performances reflecting the given preference information in the 2nd iteration. Gray lines represent the solutions generated in the previous iteration.
The improvement direction of all objective functions is unified as (upwards (↑)).
achievement functions) and showed the pair-wise comparisons between
the first three objective functions (Fig. 8). Since the value of the last
objective function was constant across all the scenarios, we eliminated
comparisons with this objective. Besides, to provide a more detailed
comparison of the exact objective values of these five Pareto optimal
solutions in all selected scenarios, we also visualized the results with
so-called scenario-based heatmaps (Shavazipour et al., 2021b) in Fig. 9.
Then, the decision-maker could study the trade-offs in detail from
various perspectives.

In Fig. 8, each broken line represents the performance of a solution
in the corresponding pair of objective functions in various scenarios.
The scenarios are named as 𝑠1, 𝑠2,… , 𝑠6, and the solutions are distin-
guishable by different symbols and colors. The color code (shown on
the right-hand side of each plot) describes the number of scenarios in
which that region is achievable by at least one solution. For instance,
the dark purple area ( ) represents the area that guarantees the objec-
tive values achievable in all scenarios by at least one solution (called
the worst attainment surface). Here, as seen in the top-left plot (DO-
Fishery vs. DO-City) in Fig. 8, by choosing solution 1 (○), one can assure
the minimum achievement of 3.02 mg/L at the Fresh Fishery (𝑓1) that
would be expected to happen if 𝑠3 realizes, while the lowest water
quality at the city (𝑓2) would be 2.84 mg/L occurring in the case of 𝑠5
substantiation (the exact values extracted from the heatmaps in Fig. 9).
The top-right plot, comparing the objective values of the water quality
at the Fresh Fishery (𝑓1) and the investment return (𝑓3), demonstrates
that the worst attainment surface for investment rate (𝑓3) by applying
the same solution (solution 1 (○)) is bounded by 5.13%, if 𝑠3 unfolds.
This plot (top-right plot in Fig. 8) also presents a significant trade-off
gap between solutions 1 (○), 2 (□), 7 (▵), and solutions 5 (▿) and 8
(◊) (i.e., they can be divided into two separate clusters). A similar
conclusion follows from the bottom plot (DO-City vs. Return). So, if
this region of the objective space is of interest to the decision-makers,
it may be worth searching to see if some feasible solutions exist within
this region.

In contrast, the best possible attainment surface is represented by
the yellow area ( ), meaning that it can be attained only by one
solution in one scenario. For example, by taking a glance at the bottom
plot in Fig. 8, we can observe that the domain criterion for the water
12 
quality in the city (DO-City(𝑓2) > 4 mg/L) can be reached in none
of the six selected scenarios if solutions 1 (○), or 2 (□), or 7 (▵)
is selected, although they would guarantee a satisfactory investment
return in almost all selected scenarios.

Apart from comparing the exact values in scenario-based heatmaps
in Fig. 9, the decision-maker can study the trade-offs from a different
perspective. Clearly, a whole white row in front of the fourth objective
in solution 5 (▿) describes the worst performance in this objective
function, while the dark cells of the second row (𝑓2), in the same
heatmaps associated with the solution 5 (▿), demonstrate the highest
values for this objective function. In contrast, the other solutions have
very dark cells in their fourth rows, but some lighter or white cells
in other rows describing the existing trade-offs between the objective
functions in various scenarios.

After a detailed study of the trade-offs in the selected scenarios, the
decision-maker decided to go back to the previous stage (2a) and check
the possibility of finding more balanced solutions. Indeed, they were
seeking less costly solutions (compared to solutions 5 (▿) and 8 (◊)) that
also provide better values for the second objective function (compared
to solutions 1 (○), 2 (□), and 7 (▵)).

Iteration 3.

Decision-makers’ preferences (2a)
This time, the decision-maker, who, by now, had learned about

the existing trade-offs between the objective functions (particularly
the second objective function against the third and the fourth ones),
decided to reduce aspiration levels in the fourth objective function
and slightly relax it in all the scenarios. At the same time, they set
aspiration levels for the first and the third objective functions close
to the ideal values in each scenario. Still, they wished to improve the
second objective function by setting the aspiration levels 30–50% above
the ideal values in different scenarios (Table 7 presents the preferences
provided in the third iteration). The maximum number of solutions
to be generated at this iteration and six selected scenarios remained
unchanged.

Solution generation (2b)
Fig. 10 visualizes the performances of four new Pareto optimal

solutions (in a parallel coordinate plot).
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Fig. 7. Comparing the performances of the five solutions selected in the 1st and 2nd iterations. The improvement direction of all objective functions is unified as (upwards (↑)).
Table 7
Preferences in the third iteration for each objective function in each selected
scenario.

Scenarios Objective functions

𝑓1 𝑓2 𝑓3 𝑓4
1 5 5.4 7 5
2 5.5 6.4 9 5
3 3.1 6.4 4.5 5
4 5.5 6 10 5
5 4 6 5 5
6 4.4 6.4 7 5

Trade-off analysis and decision-making (2c)
Step 0. As seen in Fig. 10, updating the preferences successfully

led the search into the region of interest. The decision-maker could
find two new solutions (solutions 9 and 12) that best followed their
wishes and added those to the wish list to compare them with the
previously found solutions. Therefore, the performances of all seven
solutions in the wish list are visualized in a parallel coordinate plot and
scenario-based heatmaps in Fig. 11 and shown to the decision-maker
for trade-off analysis.

Step 1. After a detailed comparison of these seven solutions, the
decision-maker chose solutions 7, 9, and 12 for stress testing over a
broader range of scenarios.

Step 2. To stress-test the selected three solutions in terms of the
domain criterion robustness measure, for each objective function, the
analyst re-evaluated each of these solutions over the previously gener-
ated ensemble of 10 000 scenarios (Fig. 12) and computed the number
of scenarios meeting the domain criteria in each solution. Fig. 13,
compares the robustness trade-offs of the three selected solutions with
the domain criteria.

Step 3. Comparing the robustness trade-offs clearly shows that
the robustness of solution 12 in the second and the third objective
functions outperformed the robustness of the other solutions. In the
first objective function, the robustness measures in all three solutions
were exceptionally close. The only objective function in which the
performance of solution 12 and its robustness were defeated was the
fourth one (i.e., additional city’s tax rate). However, looking at the
performances and the robustness of other objectives, particularly in the
second (water quality in the city) and the third (investment return)
ones, assured the decision-maker of choosing solution 12 as the final
solution and ending the solution process. The decision variable values
of solution 12 were 𝑥 = 0.8, 𝑥 = 0.95. Thus, they need to upgrade
1 2

13 
the treatment facilities both at the Fresh Fishery and in the city to
reduce water pollution by up to eighty and ninety-five percent (in a
gross discharge), respectively.

5. Discussion

In general, because decision-makers’ role in guiding the search
through interactive methods is entirely subjective, a fair comparison of
the interactive methods is challenging, and the literature lacks suitable
quality indicators for assessing their performance (Afsar et al., 2021).
In any case, none of the existing MORDM methods use an interactive
multiobjective optimization method to generate solutions. Moreover,
comparing methods of different types (interactive and non-interactive
ones) is not meaningful either. For example, one of the vital goodness
criteria of evolutionary multiobjective optimization methods, which
are mostly introduced as a posteriori methods, is diversity. However,
diversity is not essential in interactive methods where the decision-
makers direct the search to focus on a region of interest. Therefore,
we cannot directly compare the proposed interactive method with the
existing ones, which are all a posteriori. Although, very recently, a
few steps have been taken by identifying some desirable properties
of interactive multiobjective optimization methods (what should be
measured) (Afsar et al., 2021; AghaeiPour et al., 2022), introducing a
quality indicator (AghaeiPour et al., 2024), and designing a randomized
control trial-like experience (Afsar et al., 2024) in the deterministic
multiobjective optimization literature. Yet, such steps are to be taken
for uncertain problems that involve extra complexity. Therefore, in
this section, we briefly discuss their conceptual and computational
differences.

As mentioned earlier, all MORDM methods often disconnect solu-
tion generation, trade-offs, robustness analysis, and decision-making
processes. They involve the decision-makers before (i.e., in the model
specification step) and (or) after the solution generation and robustness
exploration, where a mass of solutions with different trade-offs between
the objective functions in various scenarios are shown to the decision-
makers to compare and select one to be implemented. Of course, in
theory, the whole process is iterative, and the decision-makers can
ask to redo some parts or the whole process and observe the new
results. Nonetheless, the solution process (generating a representative
approximation of the Pareto front in various scenarios) and robustness
analysis over a broad range of scenarios can be highly time-consuming
and require considerable computational resources, leaving aside the
heavy cognitive load in comparisons. Therefore, even a few iterations
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Fig. 8. Comparing solutions’ performances in the 2nd iteration.
of the whole process mean laborious work for all the involved par-
ties. Moreover, decision-makers cannot directly guide the search to
the region of interest in those kinds of iterations, with most likely a
big temporal gap between the interactions. Therefore, they may not
sufficiently learn about the various aspects of the problem and get
enough confidence to implement the identified solutions instead of
the current (conventional) one, even though the analyses show the
potential for performance and (or) robustness improvements.

In contrast, the proposed interactive framework provides a flexible
learning opportunity. It lets them direct the search for solutions in the
region of interest (in both objective and scenario space) and examine
the feasibility of their preferences. In this way, the cognitive load in
comparisons and trade-off analyses is tremendously reduced and makes
them feel confident in the identified solutions.

Indeed, interactive solution processes, in multiobjective optimiza-
tion problems, can often be observed to be divided into learning and
decision phases (Miettinen et al., 2008). In the first phase, decision-
makers explore various solutions to learn about the problem and iden-
tify a region of interest. In the decision phase, they then fine-tune
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solutions in the region of interest to determine the most preferred
solutions. In our proposed interactive framework, we also extend this
learning phase for uncertainty and robustness in stage 1a. In contrast
to MORDM, we propose to perform the uncertainty/scenario analysis
already in the modeling phase before starting the search for solutions.
In this way, as mentioned in Shavazipour et al. (2021a), analysts
and decision-makers can investigate vulnerable scenarios and identify
possible sources of vulnerability before solution generation enabling
them to modify the models and/or robustness measures upfront, if
needed. Apart from huge saving in time and computational resources,
involving the decision-makers in this phase helps them learn more
about the existing uncertainties and the complexity of the problem that
is essential under deep uncertainty (Bhave et al., 2016; Stanton and
Roelich, 2021).

During the interactive, robust decision-making phase, decision-
makers can learn about the problem characteristics, how uncertainty
may affect the outcomes of a decision, and trade-offs between objective
functions across various scenarios. Besides directing the search to the
region of interest, they can also incorporate their preferences to the
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Fig. 9. Comparing solutions’ performances with scenario-based heatmaps, in all objective functions the darker the color, the better the values.
Fig. 10. Comparing solutions’ performances reflecting the given preference information in the 3rd iteration. Gray lines represent the solutions generated in the previous iterations.
The improvement direction of all objective functions is unified as (upwards (↑)).
robustness in a specific portion of the scenario space and influence
the robustness of the generated solutions by specifying the scenarios
(e.g., scenarios they believe would be critical or more likely than
the others to happen) to be considered within the search resulting
in identifying the solutions that are robust over the selected scenario
set, if any feasible solution exists. Based on positive experiences of
applying interactive multiobjective optimization methods in various
real-life applications, we believe integrating these methods into the
15 
DMDU methods can decrease the differences between the methods’
outputs and the actual decision being made. However, more validation
in real-world problems are needed.

Moreover, the computation cost is much less in the proposed in-
teractive framework compared to a posteriori methods. Shavazipour
et al. (2021a) showed that multi-scenario MORO is computationally
more efficient than the other MORDM methods for the search phase
of MORDM. However, it was still an a posteriori method, and then
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Fig. 11. Comparing the performances of all seven solutions selected in three iterations.
one needs to produce tens of solutions (e.g., 50 solutions, as done
by Shavazipour et al. (2021a)) while we only generated twelve solu-
tions in our case study in this paper, no need to mention additional
re-evaluations of the solutions required for the robustness analyses in
a posteriori methods. Obviously, the proposed interactive framework is
considerably more efficient than all the MORDM methods in terms of
computation cost.

Nevertheless, there are also some limitations in using interactive
multiobjective optimization methods that we should consider. First of
all, the decision-makers must be willing to be closely involved, inves-
tigate the problems, and identify the final solution. Furthermore, the
waiting time for new solution generation should not be long. There is
no specific recommendation for the waiting time in the literature; how-
ever, the decision-makers must agree with it in advance. For example,
sometimes, the decision-makers might agree to have the iterations on
different days. To conduct the whole process in a day, the waiting time
should often be less than 10-15 minutes, based on our personal experi-
ences. Nevertheless, we must emphasize that solving the multiobjective
optimization problems using the scalarization functions to generate
a few Pareto optimal solutions is considerably faster than generating
the whole Pareto front with evolutionary multiobjective optimization
methods that have been usually used in DMDU-MOO methods. So,
e.g., if converging to the Pareto front of a problem by an evolutionary
multiobjective optimization algorithm takes multiple days, it should not
at all be considered as the expected time for generating a few Pareto
16 
optimal solutions via scalarization functions, which is usually very fast
because the lower dimension of the optimization problem to be solved.
Furthermore, there are different ways to accelerate the decision-making
process in interactive multiobjective optimization problems involving
computationally expensive function evaluations and simulators. We
will discuss them briefly in the Conclusions.

6. Conclusions

This study addressed the gap in involving decision-makers during
the optimization-support solution-generation process of the DMDU-
MOO methods (particularly MORDM) by proposing a novel frame-
work integrating interactive multiobjective optimization methods into
MORDM. In contrast to previous MORDM methods, the proposed
framework provides a learning phase for the decision-makers during
the solution process to gain insight into various aspects of the problem,
which was hitherto missing.

These interactions of the decision-makers during the solution pro-
cess not only help them to learn about the model’s complexity and
limitations, the feasibility of their preferences, uncertainty effects on
the outcomes of a decision, and existing trade-offs between objective
functions in various scenarios but also reduce the cognitive load and
computation resources and allows them to directly control and lead the
search to the most preferred robust solution boosting their confidence
and increasing the chance of practical implementation of the final
solution.
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Fig. 12. Comparing the performances of the three selected solutions across an ensemble of 10 000 scenarios. The improvement direction of all objective functions is unified as
(upwards (↑)).

Fig. 13. The robustness trade-offs of the selected solutions with the domain criterion measure in the 3rd iteration.
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In this paper, we concentrated on the general concepts and frame-
work structure and narrowed down the details of each stage for sim-
plicity and to avoid readers’ confusion. Indeed, each stage could be
customized for a particular type of problem and/or the application
area. Also, different types of preferences, robustness measures, solution
methods, and different ways of scenario selection can be used in the
proposed framework. We also introduced a simple, but not obvious,
example, to illustrate the various stages of the proposed interactive
framework and showcased how decision-makers can interact in differ-
ent phases, leading them to identify their most preferred robust solution
as a proof of concept. Unlike many existing benchmark problems, this
novel hypothetical problem clearly reflects trade-offs between objective
functions in different scenarios and has no infeasibility issues. There-
fore, it can be used as a new benchmark problem for robustness analysis
in DMDU.

We believe that involving the decision-makers in the solution pro-
cess, e.g., as we proposed in this study, can increase the real-world
uptake of DMDU methods, based on similar experiences in the interac-
tive multiobjective optimization literature and our recent experiment of
applying a similar approach in a real-life case Shavazipour and Sund-
ström (2024). Nonetheless, the proposed interactive MORDM method
needs to be validated in real-life applications as the current work is only
a proof-of-concept study. Also, as briefly discussed in the Discussion,
there are challenges in comparing interactive multi-scenario MORO and
the a posteriori types of MORDM. However, designing a randomized
control trial-like experience with different decision-makers (e.g., some
students) to compare different approaches will be an interesting future
research direction for this study.

Moreover, different real-world problems usually have some specific
needs and challenges to tackle, alongside the primary stages proposed
in this paper, that need particular extensions of some parts of the
proposed generic framework. For instance, in our example in this
study, we assumed the analytical formulation of the objective functions
were available, and function evaluations were not expensive (in the
sense of computational time and resources). However, these function
evaluations might be time-consuming in some real problems, or we
may only have some data extracted from, e.g., some simulations or
real experiences. In these cases, we can use some so-called surrogates
or metamodels to approximate the objective function (or constraints)
values (Tabatabaei et al., 2015; Chugh et al., 2016). Alternatively, one
can also use a pre-calculated set of Pareto optimal solutions to skip
performing long simulation/optimization processes when interacting
with the decision-makers (see, e.g., Eskelinen et al. (2010), Kania et al.
(2021), Saini et al. (2022)). The proposed framework can be extended
to be utilized in such problems.

In this paper, we also assumed that the decision-makers had pro-
vided their preferences unanimously, and the means of preference
elicitation were out of the scope. However, in reality, group decision-
making is crucial. Over time, many approaches for group decision-
making have been developed in the multiple criteria decision-making
literature (see, e.g., Hwang and Lin (1987)) and successfully applied
in practice. Indeed, investigating participatory methods best suited to
be used within the proposed framework is another interesting and
important future research direction.

Lastly, as mentioned earlier, having no feasible solution in some sce-
narios is not impossible. In this paper, we assumed the same constraints
for all scenarios. However, there might be problems where different
constraints must be satisfied in various scenarios. In such a case, to
ensure the feasibility of the generated solutions, all those scenarios
must be considered in the multi-scenario multiobjective optimization
model. As the proposed framework allows simultaneous consideration
of multiple scenarios in the optimization model, it could be helpful for
those types of problems and worth further investigation. Alternatively,
one can think of multi-stage, multi-scenario, multiobjective optimiza-
tion models (e.g., Shavazipour and Stewart (2021, 2023)) and focus
on adaptations and finding contingency plans for various scenarios.
Extending the proposed framework for such cases is also an interesting

topic for future development.

18 
Reproducibility and software

All metadata (CSV files and Python Jupyter notebooks) created and
used in this research can be found at Shavazipour (2024) or https:
//zenodo.org/records/12709705.

CRediT authorship contribution statement

Babooshka Shavazipour: Writing – review & editing, Writing –
riginal draft, Visualization, Validation, Software, Methodology, In-
estigation, Formal analysis, Data curation, Conceptualization. Jan
. Kwakkel: Writing – review & editing, Methodology, Conceptual-

zation. Kaisa Miettinen: Writing – review & editing, Methodology,
onceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

All metadata created and used in this research can be found at
ttps://zenodo.org/records/12709705.

cknowledgments

This research was partly funded by the Research Council of Finland
grant no. 322221). This research is related to the thematic research
rea Decision Analytics utilizing Causal Models and Multiobjective
ptimization (DEMO, jyu.fi/demo) of the University of Jyvaskyla.

ppendix. Multi-scenario variant of scalarization function

Here we describe the extended multi-scenario version of the original
ormulation of the Step method (STEM) (Benayoun et al., 1971), the
UESS method (Buchanan, 1997), and the satisficing trade-off method

STOM) (Nakayama, 1995; Nakayama and Sawaragi, 1984) utilized in
his study.

ulti-scenario STEM

inimize max
𝑖,𝑞

[
𝑤𝑖𝑞

∑𝑘
𝑖=1

∑𝑠
𝑞=1 𝑤𝑖𝑞

(𝑓𝑖𝑞(𝐱) − 𝑧̄𝑖𝑞)]

subject to 𝐱 ∈ 𝐗,
(4)

where 𝑤𝑖𝑞 =
|𝑧𝑖𝑞−𝑧̄𝑖𝑞 |

max[|𝑧𝑖𝑞 |,|𝑧̄𝑖𝑞 |]
.

ulti-scenario STOM

inimize max
𝑖,𝑞

[𝑤𝑖𝑞|𝑓𝑖𝑞(𝐱) − 𝑧̄𝑖𝑞|] + 𝜖
𝑘
∑

𝑖=1

𝑠
∑

𝑞=1
𝑤𝑖𝑞 .𝑓𝑖𝑞(𝐱)

subject to 𝐱 ∈ 𝐗,

(5)

where 𝑤𝑖𝑞 =
1

|𝑔𝑖𝑞−𝑧̄𝑖𝑞 |
.

Multi-scenario GUESS

minimize max
𝑖,𝑞

[𝑤𝑖𝑞 .𝑓𝑖𝑞(𝐱)] + 𝜖
𝑘
∑

𝑖=1

𝑠
∑

𝑞=1
𝑤𝑖𝑞 .𝑓𝑖𝑞(𝐱)

subject to 𝐱 ∈ 𝐗,

(6)

where 𝑤𝑖𝑞 =
1 .
|𝑧𝑖𝑞−𝑔𝑖𝑞 |
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