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Abstract

In this report, a model is presented to alleviate some of the computational work that goes into the effort
of finding the magnetic properties of magnetocaloric materials. The model utilizes an interior point
optimization routine to solve for the minimal exchange energy configuration of a system, given the
exchange interactions of the material. The model is tested against four materials (Ni, MnO, Fe2P and
Mn2Sb). For Ni and MnO, the exchange interactions are also computed. Three iterations of the model
are compared. The base model, which only considers exchange interactions inside a chosen supercell,
the base model with the inclusion of boundary conditions, and the base model with boundary conditions
and the addition of an algorithm to find optimal solutions.
The algorithm analyzes the found results by the optimization routine, and if the result is considered
not properly symmetric, runs the optimization routine another time, from a symmetrical starting point
obtained from the outcome of the previous run.
In all versions of the model, effectiveness (percent of runs that resulted in the optimal configuration) and
average run times were recorded. Three initialization methods for the model were used, and also tested
for their effectiveness. For the algorithm, a parameter γ is introduced that changes the size of some of
the moments for the new starting points. Six different values for γ were tested for their effectiveness
against a test set of suboptimal solutions. The model with the addition of boundary conditions and the
algorithm performed the best out of the three iterations of the model, with an effectiveness of 99.895%,
and an average run time ranging from 0.62 s for 2×2×2 Ni, to 94.64 s for 3×3×3 Fe2P, in the case
of γ = 0.3. To conclude, the model with the inclusion of the boundary conditions and the algorithm
proves to be a robust method to evaluate the magnetic configuration of a material, especially for smaller
systems.
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1. Introduction

Magnets truly are curious materials. Natural magnets have already persisted throughout history for a
long period of time, but have mostly only been used as a compass for the majority of time since their
discovery. It was only after world war 2 that a large surge in research on magnetic materials really
started to kick in [1, pp. xiii–xv]. A large reason for this change was the discovery of neutron diffrac-
tion, a groundbreaking discovery that allowed for the closer study of individual atoms in a material.
This new rise of interest in magnets, also gave rise a great amount of applications. Not the least of which
is their usage in computers, which sparked even more research, applications, and so the cycle continued.
More recently a lot of research is conducted in the field of magnetocaloric materials [2] [3], magnetic
materials that, when their magnetic configuration is altered, heat up or cool down. These materials have
the potential to play a large role in the energy transition, as they can be utilized as an alternative for
current refrigerators, which utilize harmful gasses in their core cooling process [4]. Current research
concerning magnetocaloric materials is still very much in the exploration phase, and the search for the
best material for this application is still very much a work in process [5].
As there is an extreme amount of different potential materials, this search is an endeavor in which a lot
of testing has to be done per material considered. This means that, in the search for these new materials,
there are a lot of computationally intensive steps to take before the required information about a given
material is known.
Therefor, in this study, an attempt is made to simplify this process, specifically, the finding of the mag-
netic properties of a material. A model is proposed that, when the exchange interactions of a material
are known; models the magnetic structure of the material by utilizing the interior point optimization rou-
tine. The model is subsequently tested to a number of materials (Ni, MnO, Fe2P and Mn2Sb), to test its
effectiveness at predicting a magnetic structure. Three iterations of the model will be discussed; the base
model, the model with the inclusion of boundary conditions, and the model with boundary conditions
and a search algorithm.
This report will be structured in the following manner. First; the underlying theory supporting the model
will be discussed in section 2. This will include numerous concepts from the field of magnetic materi-
als, as well as numerical solving methods, and material properties for the materials listed above. Next,
in section 3, the methodology of the model and the data acquisition for the utilized materials will be
covered. This will include the methodology of each of the iterations of the model listed above. Sub-
sequently, the results of the model and the material data acquisition will be presented in section 4, and
the discussion and the conclusions in sections 5 and 6, respectively. Lastly, appendices A through D
will include a 3D image of the boundary conditions, a flow chart for the model, auxiliary results and the
python code of the model, respectively.
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2. Theory

A number of closely related, separate pieces of theory are used as a basis for the model described in
the next chapter. First, magnetism and related topics are discussed, followed by some computational
methods, mathematical concepts, and finally some information regarding materials used in this project.

2.1. Types of magnetism

Materials can be magnetic in a couple of different ways. The types of magnetism considered here are the
ones relevant to this project. Mainly, these types of magnetism can be subdivided into either a ordered
(in about 13 different ways) or disordered state. A material is called disordered (paramagnetic) when
its atoms have a random fluctuating magnetic moment in the absence of an external magnetic field,
resulting in a net zero magnetic moment. As soon as a magnetic field is applied; they align with the
external field1.
A material can also be ordered (see figure 1). A material is called ferromagentic when all magnetic
moments of atoms point in the same direction, and thereby creating a large magnetic field, even in
absence of an external magnetic field. Antiferromagnetic materials are ordered, but their moments
exactly cancel each other. Lastly (for the scope of this project;) we have ferrimagnetism, where like
an antiferromagnet, moments point in opposite directions, but like a ferromagnet, does induce a net
moment. This is due to the different sizes of moments. [1, pp. 87–197]

Figure 1: 2D example of the different types of magnetism. Magnetic moments of different atoms are represented by arrows.
Red and green is used to emphasize direction when applicable.

Note that the above examples are not a comprehensive list, as more exotic structures also exist (for
instance spin spirals, among others).
Each ’ordered’ magnetic material, only has this ordered property up until a certain temperature, at which
the material becomes paramagnetic. This is because a material is ordered as this is its lowest energy
configuration. As a material heats up however, atoms gain more and more thermal motion (entropy),
thereby getting less and less incentive to align their magnetic moments as the magnetic contribution
to the total energy of the atom is less and less significant [5]. Each magnetically ordered material
has a distinct magnetic phase transition (called the Curie (Tc) or Néel (TN ) temperature for ferro- and
antiferromagnetic materials respectively) above which the material loses its magnetic ordering.
One may wonder why some materials are differently ordered magnetically than others, or about the
origin of the magnetic order of materials. For that, we will have to look at exchange interactions.

1In general, though the temperature of a material also has to be considered. If the material is too warm, it may not be able
to be pushed into order. If the material is cold enough, it may already be ordered without an external field.
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Figure 2: Different positional options for two electrons. ψa, ψb and ψab represent the wave functions or electron a, b and
their combined wavefunction respectively.

2.2. Exchange interactions

The exchange interactions are a atomic scale property of materials that couple the direction of the mag-
netic moments of different atoms in its crystal structure. It exists because of the principle of indistin-
guishability of quantum particles and the Pauli exclusion principle in the context of the electrons of a
material. Indistinguishability tells us that if two identical quantum mechanical particles have an over-
lapping location probability, and one particle is measured in the overlapping area, there is no way of
telling which one of the two was measured. Then note that the Pauli exclusion principle tells us that
two fermions have an antisymmetric wavefuntion with respect to exchange [6]. From this, it is clearly
shown that the two interacting electrons have two options for their wavefunctions. Either their posi-
tional wavefunction is symmetric and their spin wavefuction is antisymmetric, or vice versa (as their
total wavefunction can be considered a product of the two). If we then look at the combined system,
note that both cases result in a different energy for the total system as the ideal position for the electrons
with respect to their atoms is different (see figure 2), and hence the energy associated with its position
is altered. This interaction is called the exchange interaction (1).

J = E↑↑ − E↑↓ (1)

Where J is the exchange interaction, and E↑↑ and E↑↓ are the energies for parallel and antiparallel
alignment, respectively. Crucially, which of the two states is optimal depends on the system. The energy
associated with the exchange interaction can now be described by equation 2:

E = −2Jklsk · sl (2)

Where sk and sl are the spin vectors of electron k and electron l, respectively, and Jkl is the exchange
interaction between the two. From this, we can derive a total exchange energy for a system of multiple
atoms, if we simplify the individual contributions of electrons into one exchange interaction per atom.
Note that the exchange interaction is the only term that we evaluate in the Hamiltonian of the system.

E = −2
∑
i ̸=j

JijSi · Sj (3)
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Where Si and Sj are the magnetic moments of atoms i and j, and Jij is the exchange interaction between
the two. Where the factor 2 is a convention, though sometimes written as 1/2 or 1 in some sources [7].
The minus sign is also up to convention. In this work a minus sign and a prefactor of 2 is used, following
the most common notation [8, 9, 10].

2.3. Magnetocaloric effect

The magnetocaloric effect (MCE), in general, is defined as a magnetic material heating or cooling due
to the removal or activation of a magnetic field [11]. The MCE is especially strong at a phase transition
(most commonly that of the Curie or Néel temperature), as then, the largest difference in magnetic field
over the smallest difference in temperature is present. This effect is interesting, as it allows the heating
or cooling of a material by changing the external magnetic field in a energy efficient manner, something
that can be exploited in a number of applications.
Quantitatively, the MCE can be explained by a thermodynamic process. Consider a paramagnetic ma-
terial under adiabatic conditions, i.e. a state in which the total entropy of the system is constant, for
instance due to isolation of the material. The disordered magnetic state results in a high entropy [12]. If
a magnetic field is applied, the magnetic configuration becomes ordered, and therefore loses part of its
entropy. As the total entropy of the material has to remain constant, the material is heated up.
More explicitly, it can be derived in formulas in the following way, using the Maxwell relations in
equations (4) and (5) [12]. (

∂SM (T,H)

∂H

)
T

=

(
∂M(T,H)

∂T

)
H

(4)

Where SM is the entropy due to magnetization M , T is temperature, H is external magnetic field, and
M is internal magnetic field. (

∂S(T,H)

∂T

)
H

=

(
C(T,H)

T

)
H

(5)

Where S is the total entropy in the system, and C is the heat capacity at constant pressure. For both
equations, T andH in the bottom right corner of a derivative indicates that said quantity is kept constant.
Equation (4) relates the difference in entropy at a constant temperature to the change in magnetization
at a constant external field. Equation (5) signifies the entropy change due to temperature T , at a constant
external magnetic field H . Combining these two expressions with the expansion of the derivative of
S shown in (6), where we use that the entropy of the system is constant (so dS = 0), we obtain the
following result (7).

TdS = T

(
∂S(T,H)

∂T

)
H

dT + T

(
∂S(T,H)

∂H

)
T

dH (6)

dT (T,H) = −
(

T

C(T,H)

)
H

(
∂M(T,H)

∂T

)
H

dH (7)

Finally, we integrate the obtained result with respect to H to obtain (8).

∆Tad(T )∆H =

∫ HF

HI

dT (T,H) = −
∫ HF

HI

(
T

C(T,H)

)
H

(
∂M(T,H)

∂T

)
H

dH (8)

Where ∆Tad is the adiabatic temperature difference, depending on temperature and the change in H .
HI and HF are the initial and final external fields, respectively. Equation (8) gives an expression for the
magnetocaloric effect. From (8), we can notice that the magnetocaloric effect dependent on temperature
and the external magnetic field. Secondly, it is also material dependent, and not easily calculated using
first principles [12].
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Figure 3: The magnetocaloric refrigeration cycle. Starting from the top left; activation of the magnetic field aligns and heats
up the material. Then, heat is expelled, to cool down the material. Next, the external field is turned off, and the temperature
of the material drops significantly. Lastly; the material extracts heat from the source, cooling down the source in the process.
Image retrieved from [3].

It should also be noted, that given this expression using the change in entropy, it is also more evident
that the magnetocaloric effect is largest at a magnetic phase transition, as the the change in entropy is
relatively large, resulting in a large temperature change.

2.3.1. Applications

As per time of writing; there are three main applications/areas of research for the magnetic effect. Two of
them operate near room temperature (refrigeration, and heat pumps), and one operates near the absolute
zero, called adiabatic demagnitization. The latter is the only of the three that is actively used already [4].
The first two will be discussed further.

Refrigeration In principle, the magnetocaloric refrigeration method functions the same as a standard
vapour compression devices, where the difference is that magnetocaloric refrigeration utilizes a mag-
netocaloric material and a (rotating) magnet attached to an electric motor as a driving force [4], where
gas refrigeration uses the expanding and compression of gas (see figure 3 for the magnetocaloric refrig-
eration cycle). The gasses utilized for this purpose are however quite harmful for the environment [2],
and their efficiency limit has been reached. Hence, this is an area where the magnetocaloric alternative
has a lot of advantages over its predecessor (namely a higher efficiency and less noise while operating),
although most applications are still on the expensive or experimental side [4].

Heat pumps Apart from providing a sustainable solution to classical refrigerators, for heat pumps,
magnetocaloric materials can add to a quickly developing, already sustainable field [13]. For heat
pumping, a thermodynamic cycle is used to extract heat from a reservoir, and transport it to the de-
sired location. Most well known are the geothermal heat pumps, that have their reservoir well below the
ground, and transport heat to a location at the surface. Magnetic materials are one of the many possibil-
ities for the further development of this popular technology [14]. Another application is using this heat
pumping process reversely; by turning the excess heat of industrial processes into cheap electricity [4].
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2.4. Magnetocrystalline anisotropy

Magnetocrystalline anisotropy (MCA) is an effect related to the magnetic moment of an atom where,
in contrast to the exchange parameters, the energy contribution generated by the magnetic field to a
Hamiltonian is dependent on the direction in a crystal. Usually, these directions correspond to the miller
indices of the crystal structure. For example: (100) and (110) could have a different MCA, thereby
changing the orientation of the magnetic field of the material along the axis where the MCA enery is
minimal. In general, the MCA energy is a very small contribution compared to the exchange interaction.
It is therefor also hard to determine, especially using first principles2 [1]. For illustration; the following
approximation can be made to determine the MCA energy:

E = K0 +K1

(
α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1

)
+K2

(
α2
1α

2
2α

2
3

)
+ · · · (9)

WhereE is the MCA energy,Ki are the anisotropy constants, and αi are the angles between the direction
of the magnetic field and the crystal axes. The anisotropy constants are the reason that the first principle
determination is hard, as they depend on the spin orbit coupling, which is in general not easily described
by first principles. A general theory and methodology is known however, called the force theorem. A
reasoning and proof behind this method can be found in [15]. In more recent years, numerous papers
have been released using a first principles method to describe the MCA energy ([16] and [17] for exam-
ple). However, those methods are still in early stages and limited to the field of hard magnets, which
mainly focus on rare earth metals (which are typically not readily available). As the magnetocrystalline
anisotropy usually only constitutes a small energy difference compared to the exchange interactions, and
it is difficult to determine using first principles, it will be disregarded in the model.

2.5. Density-functional theory

Density-functional theory (DFT) is a computational method to compute the Schrödinger equation for
many body systems. DFT approximates the solution of the Schrödinger equation. This is extremely
useful in practice, as it simplifies computation and makes solutions for other materials than the hydrogen
atom possible. It usually outputs these solutions in the form of Bloch waves. Bloch waves are one of
the ways to express the solution to a Schrödinger equation for a periodic structure. They are used as
the solution Schrödinger equation in a crystal structure. They can be seen as a plane wave modulated
by a periodic function. In this project, the Viena Ab initio simulation package (VASP) was used as an
implementation of DFT, as a part of the calculation of exchange interactions of a material.

2.6. Wannier functions

Wannier functions, just as Bloch waves, are a solution to the Schrödinger equation in crystalline struc-
tures. Wannier functions differ from Bloch waves in that they describe the system locally [18]. When a
set of Bloch waves is known, a set of Wannier functions can be constructed using the next equations. A
standard Bloch wave can be described as follows:

ψk(r) = eik·ruk(r) (10)

Where ψk(r) represents Bloch wave with index k, corresponding to a reciprocal lattice point. r rep-
resents the location in real space, and uk is a function with the periodicity of the lattice in each lattice
direction. Then, a Wannier function is defined as the following:

ϕR(r) =
1√
N

∑
k

e−ik·Rψk(r) (11)

2First principles, or ab initio, is the term in physics to describe that something is calculated purely from theory, without
relying on empirical data.
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Where ϕR(r) is the Wannier function corresponding to real location R, N is the total number of Bloch
waves, and R represents the centers of the orbitals being described. The locality of the Wannier functions
is achieved by the complex exponential function, as is common in the translation from reciprocal to real
space.

2.7. Green’s function method

The Green’s function method is a general way to solve differential equations, using Green’s functions. It
is presented here as it is used in the general procedure of finding the exchange interactions of a material.
Given a general differential equation with a source term, the Green function can be seen as the response
of the system to an impulse function, as illustrated by the following example.

d2x

dt2
+ ω2x = f(t); x(0) = 0, x′(0) = 0 (12)

Where x is the unknown function, w is the frequency of the system and f(t) is a source term. Notice,
that f(t) can also be written as an integral over δ-functions without loss of generality.

f(t) =

∫ ∞

0
f
(
t′
)
δ
(
t′ − t

)
dt′ (13)

Then, the Greens function is defined as follows:

d2G (t, t′)

dt2
+ ω2G

(
t, t′

)
= δ

(
t′ − t

)
; G

(
0, t′

)
= 0, G′ (0, t′) = 0. (14)

Where G(t, t′) is the Greens function, dependent on time (t) and a moment t′. Notice that G is defined
to satisfy the same boundary conditions as x. Given this definition for G, one can now use G to solve
for x in the following manner.

x(t) =

∫ ∞

0
G
(
t, t′

)
f
(
t′
)
dt′ (15)

Where one can easily check that the previous equation holds, applying 12 to 15. This gives:

d2x(t)

dt2
+ ω2x(t) =

∫ ∞

0

[
d2G (t, t′)

dt2
+ ω2G

(
t, t′

)]
f
(
t′
)
dt′ (16)

Which is easily worked out to be the required solution (using equation 14). Now, the problem has been
simplified into finding G, with which x can be determined. Solving G can be a lot of work on its own,
and the mathematics behind this procedure differ from problem to problem. In some cases it is easier
than finding x directly, which is why the method is utilized. [19, pp. 394–459]
A more specific version of the Greens function method is used in the field of solid state physics. This
method is called the Korringa, Kohn and Rostoker (KKR) greens function method, to its inventors,
who specifically used the Green’s function method in solving the Schrödinger equation of a lattice
system. The methodology is the same as above, as the Schrödinger equation can be rewritten in the form
described in equation (17). [

−∇2 + V (r)− E
]
ψ(r) = 0

ψ (r+ ro) = exp (ik · rs)ψ(r)
(17)

Where V (r) is a periodic potential, r is the real space location, and k is the reciprocal space location. rs
is a translation vector in real space. Then, ψ(r) can be described in the following form [20]:

ψ(r) =

∫
τ
G
(
r, r′

)
V
(
r′
)
ψ
(
r′
)
dτ ′ (18)

A detailed description of the mathematics behind finding the actual Greens function can also be in [20].
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Figure 4: Exchange interactions for Nickel, Iron and Cobalt as function of distance, in units of the lattice constant (3.53 Å).
Note that the exchange parameters for nickel are scaled by a factor of 4 by the author. [25]

2.8. Bilinear form

The bilinear form is a mapping function that maps a vector space onto a field 3, and is linear in each
component [22]. It is discussed, as the model represented in the next chapter will be of this form.
In pure mathematical terms, a bilinear form B : V × V −→ K has to obey the following conditions:

B(u+ v,w) = B(u,w) +B(v,w) and B(λu,v) = λB(u,v)

B(u,v +w) = B(u,v) +B(u,w) and B(u, λv) = λB(u,v)
(19)

Where u,v and w ∈ V . One example of a bilinear form is the dot product in Rn. The bilinear form
is a way to characterize a nonlinear optimization problem. Every bilinear form can be rewritten into
a quadratic form, which is a form for which other solving methods are available, as it requires more
symmetry from B. Oftentimes, the bilinear form can be written as a matrix product (20).

B(v,w) = vTAw (20)

To then obtain the quadratic form, one must, in the general case, extend the matrix A to make it sym-
metric, as is required for a quadratic form. This means, that it is not always clear if this method, as it
enlarges the matrix utilized, will help in the computation of the problem [23].

2.9. Materials

For this project, a number of commonly known materials were utilized to test the model. Below is some
information about the listed materials.

2.9.1. Ni

Nickel, with atomic number 28, is a common transition metal that is mostly found in the Earths outer
and inner core. In this project, we will study nickel with a face centered cubic structure with a lattice
parameter of 3.53 Å. This configuration of nickel is ferromagnetic [24], and its exchange interactions
can be seen in figure 4. It is studied in this project as it is one of the most simple cases of a ferromagnet.

2.9.2. MnO

3A field is a space where basic addition, subtraction, multiplication and division can take place as defined on Q [21, pp. 13–
21] by V × V −→ K , For the purposes of this project, the field considered is R.
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Figure 5: Exchange interactions for Fe2P. The first, second and third plots show the Fe1-Fe1, Fe2-Fe2 and Fe1-Fe2 interac-
tions, respectively [29]. The x axis shows the relative distance, divided by the lattice constant 5.813 Å. Fe1 and Fe2 are located
at the 3f and 3g site, respectively.

Table 1: The exchange parameters
JN (in K ≈ 0.0862 meV) and ex-
change energy Eex

n (in mRy) per dif-
ferent interaction. n indicates the n-
th neighbor interaction. From source
[26].

Manganese oxide is a chemical compound that is utilized for numerous
applications across different industries. It is antiferromagnetic in the
[12 ,12 ,12 ] plane [27], and has a NaCl like face centered cubic structure
[28]. Its exchange parameters are given in table 1. Note that the values
of J1 and J2 in literature do have slight variations, depending on the
source [26].

2.9.3. Fe2P

Iron phosphide is a semiconductor used in numerous fields. A lot is
known about its magnetical properties, as it has recently been dis-
covered as a potentially great material for magnetocaloric applications
[29]. It has a hexagonal structure [30], with Fe atoms at the 3f (0.257,
0, 0) and 3g (0.5915, 0, 0.5) positions (expressed in the lattice vec-
tors). Its exchange interactions according to previous work are shown
in figure 5.

2.9.4. Mn2Sb

Mn2Sb is a little less commonly used than the previously discussed
materials. It has however been studied for its interesting magnetic phase transition (from antiferromag-
netic to ferrimagnetic). Recently, it (together with Mn2Sb-based alloys) has been studied at the TU Delft
for its magnetocaloric properties [31]. It is a tetragonal type structure [32], with lattice constants 3.928
Å, 3.928 Å and 6.426 Å for a, b and c respectively. The Mn atoms are located in the (0, 0, 0) and (0, 0.5,
0.7098) positions (in reference to the lattice vectors), and the Sb atom is located in the (0, 0.5, 0.2849)
position. It is deemed a ferrimagnetic material in its ground state [33], with a magnetic propagation
vector in the c direction4. The first order exchange interactions between the two different Mn sites, is
determined to be -72.07 K experimentally [34], which was determined through the Ising model.

4A propagation vector in this sense means that in the c direction, the field is constant when traversing through the material
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3. Method

3.1. Motivation

While the magnetocaloric effect (MCE) has no direct impact on model; the whole reason the model is
put together ties into the MCE. As the research regarding the MCE is very much in the state of finding the
optimal material for the listed applications, right now, researchers are sifting through known materials
in search of a material that has a large MCE, at the right temperature, is cheap, readily available and
that have a small environmental impact [5]. This means that, to find potential materials, one has to go
through huge databases of materials and potentially calculate a gigantic amount of data. This model is
proposed to alleviate some of the work that goes into this research, as the model simplifies the routine
of finding the magnetic ordering5 of materials.

3.2. Data acquisition

For the purpose of testing the validity of the model, four different well known materials were chosen to
check the workings of the model. For these, we obtain the desired properties via a multi step process.
The most important property for the model, the exchange parameters, are acquired as follows. First, the
Vienna ab-initio simulation package (VASP) is used to approximate the density of states and bloch wave
solution of the material. Then, Wannier90 [35] is used to calculate wannier functions from the VASP
output. Then as a final step, TB2J [36] is used to calculate the exchange parameters of the material,
using the output of Wannier90. The final exchange parameters are then compared to literature.

3.2.1. Vienna ab-initio simulation package

There are multiple implementations of DFT. The one utilized in this study is the Vienna ab-initio simula-
tion package (VASP) [37, 38, 39, 40]. VASP is a well known, versatile program used to model materials
on an atomic scale. It does this via the only possible way, by using the DFT method. How VASP
functions exactly is beyond the scope of this project.

3.2.2. Wannier90

Wannier90 is a program that rewrites numerical Bloch functions into maximally localized Wannier func-
tions (see section 2.6), which span the same space as the initial Bloch functions. It does so by minimizing
a functional that represents the total spread of the Wannier functions in real space. This minimization
is carried out directly from the Bloch functions represented in reciprocal space, and itself takes place in
a space of unitary matrices6 that describe the rotation around each k point. The exact implementation
of Wannier90 goes beyond the scope of this work. Important to discuss however, is on what Wannier90
relies to obtain accurate Wannier functions from the given input. Next to inputing the Bloch functions
obtained from VASP, the user is also asked to specify which ortibals from which atoms are to be taken
into account. Next to that, the user also inputs a frozen window: i.e. a window in which all the orbitals
specified are to be found. Generally; it is better for this window to be as large as possible. Therefor, an
accurate way of presenting the density of states per atom is advised. The choice of the frozen window
impacts the accuracy of the output of Wannier90, and should hence be taken seriously.

5The magnetic ordering is of importance for the search of materials, as it can tell a lot about the size of the magnetic
response to an external field, its own magnetic moment and hence also about the size of the magnetocaloric effect, if the
different structures for different temperatures are compared.

6A unitary matrix is a square (complex) matrix A for which its conjugate transpose is also its inverse, and AA−1 = I . The
space of unitary matrices is defined by the matrix multiplication. [21, pp. 93–113]
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3.2.3. TB2J

TB2J is a relatively new library that was developed to calculate exchange interactions, given results from
a DFT calculation. It uses the green’s function method to arrive at its result [36]. While TB2J does not
directly support the output of VASP, it does support the output of Wannier90, hence TB2J is the last link
in the data acquisition part of the project. It depends largely on the quality of the Wannier90 output to
arrive at accurate results. This means that, as stated previously, the Wannier90 step is crucial for the
succes of a run.

3.3. The model

Mainly, the goal is to solve equation (3) for a given material. To do this properly, a base model is created,
to which boundary conditions and a symmetry analyzing algorithm are added to improve precision. Per
step, assumptions are made to simplify computation. Firstly, the interior point optimization method used
in this model is explained. Next, the base model is introduced, then extensions are discussed one by one.
The model was built in python 3.7.11.

3.3.1. Interior Point Optimization

The model uses the Interior Point Optimization (IPOPT) [41], as its optimization program. IPOPT is
an open source optimization routine for nonlinear problems. It compares in performance to industry
standards (for instance, KNITRO, Lancelot and LOQO) [42], and has a user friendly implementation
in python for large scale problems, called GEKKO [43]. First, the general workings of IPOPT will be
discussed, after which GEKKO and its underlying library APMonitor will be presented.

Working of IPOPT Firstly, a short word on the workings of IPOPT. IPOPT is a deterministic opti-
mization routine for nonlinear problems. It guarantees a global minimum when the problem is convex,
and if the problem is concave, it can arrive at a local minima. Given a problem (for instance the one
described in equation (21)), it first writes it into standard form7, and then introduces a barrier function
for all variables in the following manner:

min f(x)
s.t. c(x) = 0

xi ≥ 0, i = 1, . . . , n
(21)

min f(x) + µ
n∑

i=1

lnxi

c(x) = 0

(22)

To get rid of the last inequality constraints. Here, f(xi) is the objective function, xi are the variables and
µ is a positive constant that is lowered per iteration step. c(xi) are the (potentially nonlinear) constraints.
The barrier function µ lnx functions exactly as the constraint in (21) would for small values of µ, as it
runs into an asymtote at x = 0. Therefore, this is a valid simplification of the given model, and one that
is central to the functioning of IPOPT. The IPOPT method does not solve the presented problem in (22)
directly, but instead evaluates when its derivative is equal to zero, in a clever way. For further details,
we refer to [41].

GEKKO GEKKO is a python package that handles machine learning and optimization. In GEKKO
the user can build and run models using a couple of freely available solvers, for a number of different

7Standard form in optimization means that there are no inequality constraints, and all variables are ≥ 0. this is done by
introducing slack variables to an equation, for example f(x) ≤ b will become f(x)+s = b, where s ≥ 0 is the slack variable.
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problems. It utilizes the Advanced Process Monitor [44] package to actually work with the models
provided by the user. APmonitor is an online solving method, and GEKKO offers the functionality of
APmonitor for local solving also.

3.3.2. Assumptions

The overall model makes a couple of important assumptions. To make matters more clear, an overview
is shortly listed in this section.

• Magnetic moments of atoms are considered to be one dimensional.
• Magnetocristalline anisotropy is not taken into account.
• Materials are only checked for constant or alternating behaviour of moment configurations be-

tween unit cells.
• The ideal configuration is assumed to be magnetically symmetric to the same order in all three

directions.
• We assume that the unit of repetition is smaller or equal to the used supercell, for each lattice

direction.

3.3.3. The basic model

The basic model works as follows. The user inputs a supercell size (i.e. the amount of cells in each
lattice direction), the material structural information and the exchange parameters of the material. The
exchange parameters and structural information have to, as of the current version, be given in the form
of TB2J (or RSPt8) output and VASP format, respectively. The program then uses this information to
construct a minimization model that obeys the following equations (23):

min −2 ·
n∑

i=1

∑
j<i

Jijsisj

s.t. |si| ≤ |di|, i = 1, . . . , n

(23)

Where Jij is the exchange interaction between the two atoms, si and sj are the magnetic moments of
atom i and j, respectively. di is the maximum magnetic moment of atom i, obtained from the input
TB2J file. As di can be negative, the absolute value is used. The atoms, while of course present in a 3D
grid, are each given an index ∈ {1, 2, . . . , n}, to make the summation in (23) easier. This does not affect
other computations. The summation makes sure to sum over each interaction exactly once. Note that
the term Jiisisi is disregarded ∀i ∈ {1, . . . , n}, as an atom does not have an exchange interaction with
itself. Furthermore, the magnetocrystalline anisotropy is disregarded, and only spins in one direction
are considered. For our purposes, this one dimensional moment is a logical assumption, as equation
23 is minimized for vectors for which either their dot product is maximal or minimal. Therefore the
simplification to one dimension makes sense, as for vectors with the given bounds, this is the case when
si = sj or si = −sj. Magnetocrystalline anisotropy is disregarded (see 2.4).
To start the model, GEKKO requires an initialization from which to iterate from. One of three initializa-
tion methods (24, 25, 26) is used.

|si| < |di| (24)

0 < si < |di| (25)

0 < misi < |di| (26)

8RSPt is another method for calculating electronic structures of materials, and can also be used to find exchange interactions.
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Here bi is the bound for the magnetic moment of si, obtained from the TB2J file9, and mi is the sign
of bi. Note that bi depends solely on the position of atom i in its unit cell. Each position has a distinct
bound.
The major flaw of the basic model is that it does not take into account any form of boundary conditions.
This can quickly lead to errors, especially for small unit cells. This is because, for atoms that are located
near the edge of the supercell, not all exchange interactions may be taken into account (as some fall
outside of the supercell). As the main goal is to find a symmetric solution; the next step in the model is
to impose boundary conditions.

3.3.4. Boundary conditions

As stated previously, the major flaw of the basic model is that it does not take into account any form of
boundary conditions. This can quickly lead to sub optimal configurations, as not all relevant exchange
interactions are taken into account (see figure 6). The main focus of the boundary conditions is to reduce
the amount of unit cells required to get an accurate structure from the model.
The implementation of the boundary conditions is as follows.

Figure 6: 2D representation of boundary conditions for one atom in a 2×2 supercell with 2 atoms per unit cell (own work).

First a set A is created that contains all atoms at the outermost unit cells of the supercell. Then, each
atom j ∈ A is moved to its equivalent positions at the opposite side(s) (what this means exactly is
explained in the next paragraph) of the supercell, and the exchange interactions (between target atoms
and the new position of j) are used to add the missing interactions to the objective function. A graphical
representation of this procedure given in figure 7.
The choice of which equivalent positions are used for j and which exchange interactions are considered
per position is made to assure no double counting occurs. For each atom j ∈ A, the following set of
rules is used.
Atom j has three attributed vectors that correspond to those of its unit cell; c1, c2 and c3. The index of
the atom in the unit cell o is also attributed. With these four parameters, each different atom is distin-
guishable. For each of the vectors c1, c3 and c3 it is checked if belongs to the outer most unit cells in its
direction. Hereby it is determined if j belongs to an edge, face or corner of the supercell. For each of
the three cases, the added exchange interactions are given in equations 31, 32 and 33 respectively.

9If the exchange interactions were provided via RSPt, the moments of atoms have to be provided separately.
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Figure 7: Graphical representation of the boundary condition implementation for one atom in a 2×2 supercell. The circled
atom is virtually moved to its equivalent location in an other unit cell, shown by the blue arrow. Then, selected exchange
interactions are added between the original atom and the target atoms. Hereby the virtual cells shown in figure 6 are added to
the system (own work).

Let (b1, b2, b3, b4, b5, b6) be the set of lower and upper bounds of the supercell (with bl ∈ Z for l ∈
{1, . . . , 6}), with (b1, b2, b3) lower bounds and (b4, b5, b6) upper bounds for the a, b and c lattice vectors
respectively. B, M and Bl for l ∈ {1, 2, 3} are defined as follows (27).

B = {(a1, a2, a3, n) : a1 ∈ B1, a2 ∈ B2, a3 ∈ B3, n ∈M}
M = {n : n is a unique magnetic atom, per unit cell}
Bl = {bl, bl + 1, . . . , bl+3 − 1, bl+3} for l ∈ {1, 2, 3}

(27)

Given these definitions and the location of atom j, sets Cj(l), Dj(m) and Ej are defined as follows
∀j ∈ A (28, 29, 30).

Cj(l) = B \ {(a1, a2, a3, n) : [n ∈M,al ∈ Bl \ {cl}, am ∈ Bm for m ∈ {1, 2, 3} \ {l}]} (28)

Dj(m) = B \ {(a1, a2, a3, n) : [n ∈M,al ∈ Bl \ {cl}, am ∈ Bm for l ∈ {1, 2, 3} \ {m}]} (29)

Ej = B \ {(a1, a2, a3, n) : n ∈M,al ∈ Bl \ {cl} for l ∈ {1, 2, 3}} (30)

Graphically, Cj(l), Dj(m) and Ej all describe the supercell with the one, two or three faces that contain
j cut away. With these sets, given the three options for atom j (face, edge or corner), we can construct
the following boundary conditions (31, 32, 33). In all three cases; l ∈ {p : cp = bp ∨ cp = pl+3} and m
= {1, 2, 3} \ {l}. In words, l describes the lattice coordinates of j where cp is at a max or minimum, and
m describes the ones where j is not.

fF (j) = −2
∑̇

i∈Cj(l)
Jiqsisj (31)

For j at a face where γ (with lattice vectors and atom index γ1, γ2, γ3, n) is the equivalent atom at the
opposite face (for example γ1, γ2, n = c1, c2, n respectively and γ3 = b6 when j is at the minimum
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bound of the c vector in the supercell). Note that here, l is equal to the coordinate where j is at the face
and hence only has one value. Only one equivalent position of j is used.

fE(j) = −2 ·

∑
l

∑
i∈Cj(l)

Jiqsisj +
∑

i∈Dj(m)

Jirsisj

 (32)

For j at an edge. Here, q is the atom that is at the edge opposite to j. Note that here, l has two possible
values, and q has one value. Hence a total of three equivalent positions of j are used.

fC(j) = −2 ·

∑
l

∑
i∈Cj(l)

Jiqsisj +
∑
m

∑
i∈Dj(m)

Jirsisj +
∑
i∈Ej

Jitsisj

 (33)

For j at a corner. Here, t is the atom that is the equivalent atom at the corner opposite to j. In the corner
case, l and q have three possible values, and t has one. Hence, a total of 7 equivalent positions of j are
used.
The last step is to rewrite the model (23) in such a way that it includes boundary conditions. Define:

AF = {a ∈ A : a is at a face}
AE = {a ∈ A : a is at an edge}
AC = {a ∈ A : a is at an corner}

(34)

Where A is the set of atoms in the outermost unit cells. Then the model can be written in the following
form (35):

min −2 ·
n∑

i=1

∑
j<i

[Jijsisj ]+
∑
l∈AF

fF (l) +
∑
l∈AE

fE(l) +
∑
l∈AC

fC(l)

s.t. |si| ≤ |di|, i = 1, . . . , n

(35)

Where all terms are as previously defined. A visualization of the exact boundary condition method in
3D is presented in appendix B.
The imposed boundary conditions add a large number of equations to the model (thereby increasing
computation time), but also theoretically nets better results. The exact impact will be discussed in the
results section.

3.3.5. Symmetry finding algorithm

Given the model including the described boundary conditions, another addition is made to make sure that
the optimal solution is found, as the interior point optimization method can get stuck at a local minimum.
To account for this symptom, an algorithm is implemented that, after an initial cycle of IPOPT using the
model is complete, checks if the solution is properly symmetric, and if not, reruns the model with a new
initialization chosen based on the previous result. A detailed flowchart for the algorithm can be found in
appendix B. In this section the algorithm is discussed in detail. First, the previous solution is analyzed.
From there, a new initialization is set up, after which the new initialization is used to run the program
again. Lastly, the best solution is found among all the runs.

Solution analysis During the analysis of the first run, a couple of simplifications are made. Firstly, the
algorithm only considers the sign of each magnetic moment.
The spins, as all are in one dimension, are now either +1 or -1. With this knowledge, the program now
checks for a unique configurations of spins in a unit cell. With this check; the inverse of a configuration is
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Figure 8: An example 2D structure.
Different configurations are labeled in a,
b and c. As this configuration has 9 cells,
both configurations a and c are consid-
ered prominent.

Figure 9: The new starting configurations, initialized from the structure in 8.
Changed atoms are highlighted by the smaller, dotted arrows to indicate their dif-
ferent starting size due to γ. Note that the extra completely symmetric solution
step is not plotted here, though in 3D this would be considered (own work).

considered the same. See figure 8 for a 2D example. As soon as all different configurations of unit cells
are determined, the program finds the ones that occur most often in the supercell. The configurations
that constitute more than 30% of the total amount of unit cells in the supercell are saved. If there is
no configuration that meets this quota, it will run the optimization step again, from a different random
initialization, in hopes of finding a better result. With all the saved configurations, the program follows
the following procedure to produce a new initialization.

Constructing new initialization(s) Assuming a prominent configuration is given, the program now
checks certain symmetry conditions. In every lattice direction, the program makes an analysis of the
repetition of the current selected configuration, to determine in how many unit cells the configuration
repeats. Note that as per the current version, the model only checks for constant or alternating patterns.
For a 2D example, see figure 9. Then, in each direction, the material is determined to be either constant,
alternating, or neither of the two. The program then runs the following analysis to construct the next
starting iteration.
First it checks if the material is considered perfect. This distinction is given when the material only
consists of one configuration, the pattern in all three directions is the same and the material completely
obeys this pattern. If a material is perfect, no second run is executed, as the current solution is considered
good enough.
If the material is not perfect, a number of steps are executed to arrive at a new initialization (or initial-
izations).

• Firstly, if the pattern is neither constant or alternating in any direction, in the new configuration it
is set to constant in that direction.

• Next, a new configuration is built by pasting the new pattern onto the material. If a unit cell is
altered, its new moments are also multiplied by the parameter γ ∈ (0, 1), see figure 9

• If the given pattern is not the same in all three directions (so either completely constant or com-
pletely alternating), a second new configuration is built by pasting the completely constant or
completely alternating pattern onto the material (constant or alternating is chosen if the majority
of the pattern is constant or alternating respectively).

Running new initialization(s) As soon as all configurations are checked and their respective new
initializations are built, one by one, new runs are executed given these initializations.
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4. Results

4.1. Exchange interactions

For Ni and MnO, the exchange interactions were calculated. For Fe2P and Mn2Sb, the literary values for
the exchange parameters were used. In this section, the results for the exchange interactions for nickel
and manganese oxide will be reported.

4.1.1. Ni

For nickel, the calculated exchange interactions can be found in figure 4. The corresponding moment of
the atom (only one atom as the primitive cell of nickel was used) is equal to 0.5542 µB .

Figure 10: Exchange interactions found for Ni, plotted against distance divided by the lattice parameter ( = 3.53 Å).

4.1.2. MnO

The exchange interactions calculated for MnO can be seen in figure 11. The moments for the Mn atoms
located at (0,0,0), (0,12 ,12 ), (12 ,0,12 ) and (12 ,12 ,0) are equal to 2.8643, -2.8768, -2.8399 and 2.8797 µB
respectively.
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4.2. Model results

In this section, the results of the model will be discussed. First, the basic model (without the inclusion of
the boundary conditions) and its outcomes will be discussed for all used materials. This will include the
optimal structure found per material, the percentage of runs that arrived at this structure and the average
time of a run. All quantities listed, will also be reported for each different initialization method.
Next, the same discussion will be held for the model including boundary conditions. Thereafter, the
effectiveness of the symmetry finding algorithm will be discussed. Lastly, the combined results (basic
model with boundary conditions and algorithm) will be presented. For all sections, the four materials
described earlier were used (Ni, MnO, Fe2P and Mn2Sb) in the configurations of a 2×2×2 and a 3×3×3
supercell. These configurations were used, as the materials discussed all have a symmetry in each
direction that is smaller or equal to the 2×2×2 cell. The 3×3×3 cell was also studied to check the
impact of a larger supercell, as well as a cell count that is not a multiple of the materials multiplicity
(i.e. 3 is not divisible by 2). For each material in each configuration, 120 runs were performed per
initialization, unless stated differently. If initialization types are given, they are defined as follows (see
24, 25 and 26).

Initialization 1: |si| < |di|
2: 0 < si < |di|
3: 0 < misi < |di|

For all different executed tests, the general convergence of different runs (i.e. energy per iteration)
are recorded in appendix C. Secondly, appendix C also contains a note on energy differences between
different versions of the model, and some examples of suboptimal configurations found in the runs for
MnO. These suboptimal configurations will not be commented on further, but rather serve as an example
for the reader.
As a final general comment, for all computation times holds that computations were executed on a laptop
with 8 GB of DDR3 RAM, with a 4-core i5-8250U Intel CPU.

Figure 11: Exchange interactions found for MnO, plotted against distance divided by the lattice parameter ( = 3.53 Å). The
boxes turquoise specify the 2nd and 3rd quartile, the black lines the average and the turquoise lines the 1st and 4th quartile of
the data gathered per distance. The turquoise dots represent outliers from this range.
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4.2.1. Basic model

In the runs conducted for the basic model, multiple different outcomes were found. Per outcome, the
resulting exchange energies were recorded, as that is in the end the value that the model minimizes. Per
distinct energy (up to a certain numerical value which is smaller than 1% of the resultant energy), the
observed outcome has a different configuration. All recorded energies are shown in figure 13. Interest-
ingly, only a select amount of energy levels are reached, and most energies are never reached as a final
outcome. From the runs as shown in figure 13, each setup has a clear preferred ground state energy.
These configurations are given in figure 12. Note that both the 3×3×3 and 2×2×2 configurations for
all materials gave the same optimal structure, even though there is a difference in the minimal energy
recorded per unit cell. This difference in energy per configuration is due to a different maximum of order
of exchange interactions being taken into account, and is further elaborated upon in appendix C.
For the conducted runs, the number of times that the model reaches these optimal configurations is listed
in table 2. The average run times per initialization are given in table 3.

Basic model
Initialization 1 2 3 Total

Material Supercell Successful runs /120 /360
Ni 2×2×2 118 120 120 358

3×3×3 116 120 120 356
MnO 2×2×2 47 65 80 192

3×3×3 28 33 65 126
Fe2P 2×2×2 54 103 96 253

3×3×3 9 100 97 206
Mn2Sb 2×2×2 101 115 108 324

3×3×3 84 86 90 260
Total 557 742 776 2075

Out of 960 960 960 2880
Percentage 58.02 77.29 80.83 72.05

Table 2: Amount of optimal solutions for the basic model per material and per initialization. A run counts as a successful
one when it reached the optimal energy/ magnetic configuration.

Initialization 1 2 3 Total
Material Supercell Average time (s)
Ni 2×2×2 0.59 0.59 0.6 0.6

3×3×3 0.7 0.68 0.68 0.69
MnO 2×2×2 1.14 1.18 1.1 1.14

3×3×3 6 6.73 5.25 5.99
Fe2P 2×2×2 1.74 1.6 1.62 1.65

3×3×3 16.59 12.32 12.59 13.83
Mn2Sb 2×2×2 0.53 0.53 0.53 0.53

3×3×3 3.39 3.33 3.29 3.34

Table 3: Average run times of the model in seconds, per iteration.

In these results we can see that the accuracy of the basic model really depends on the material it is used
on. Where for Ni, the model performs quite well, for MnO, the model has a way lower overall success
rate. The different initializations also impact the final result, most evidently shown in MnO and Fe2P.
The run time per material and configuration varies heavily, as shown in table 3. The largest difference in
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run time between initializtations is about 30%, for Fe2P 3×3×3. From figure 13, we can see that while
MnO and Fe2P have a lot of often occurring suboptimal solutions, Mn2Sb and Ni only have one that is
really prominent.

(a) The optimal Ni structure. As all calculations
for nickel were done in its primitive unit cell; this
is the resultant ferromagnetic configuration with
moments of 0.5 µB .

(b) The optimal MnO structure; antiferromagnetic con-
figuration with ferromagnetic planes in the ( 1

2
, 1
2

,0) direc-
tion. Its moments are equal to 2.86 µB , direction is given
by the arrows in the figure.

(c) The optimal Fe2P structure according to the model.
It is ferromagnetic, with the 3f and 3g positions
having a magnetic moment of 0.81 µB and 2.1 µB ,
respectively.

(d) The optimal configuration for Mn2Sb. The (0, 0, 0)
and (0, 0.5, 0.7098) positions have a magnetic moment
of 2.1 µB and 3.1 µB , respectively.

Figure 12: In all structures, magnetic atoms are shown in red or green, nonmagnetic atoms in gray. The size of the red or
green dots indicates the size of the moments. For all materials the exact moments per atom vary by ≈ 0.05% between unique
atom positions, as they originate from a numerical input.
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Figure 13: The full convergence results for the basic model.
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4.2.2. Including boundary conditions

For the model with the inclusion of boundary conditions, the same results procedure is followed as with
the base model. Across the board, the boundary conditions add more accuracy to the model, but heavily
increase the computation time for more complex configurations. The full final energies attained can be
found in figure 14. Due to the implementation of the boundary conditions (as more exchange interac-
tions are evaluated), the energies of the model including boundary conditions are increased compared
to the base model, still the optimal solution between the two is the same. This added energy effect is
further discussed in appendix C. The accuracy and time performance of the model including boundary
conditions can be found in tables 4 and 5, respectively.

Basic model including BC’s
Initialization 1 2 3 Total

Material Supercell Successful runs /120 /360
Ni 2×2×2 105 120 120 345

3×3×3 120 120 120 360
MnO 2×2×2 80 94 96 270

3×3×3 68 68 94 230
Fe2P 2×2×2 61 108 114 283

3×3×3 25 110 112 247
Mn2Sb 2×2×2 104 116 112 332

3×3×3 94 95 109 298
Total 657 831 877 2365

Out of 960 960 960 2880
Percentage 68.44 86.56 91.35 82.12

Table 4: Results for the basic model including boundary conditions, per initialization and per material configuration.

Initialization 1 2 3 Total
Material Supercell Average time (s)
Ni 2×2×2 0.61 0.59 0.59 0.60

3×3×3 1.29 1.23 1.22 1.25
MnO 2×2×2 2.37 2.54 2.17 2.36

3×3×3 24.14 25.62 20.77 23.50
Fe2P 2×2×2 5.03 4.25 4.29 4.53

3×3×3 72.79 52.84 52.71 59.45
Mn2Sb 2×2×2 1.84 1.81 1.78 1.81

3×3×3 8.29 8.23 8.14 8.22

Table 5: Run times for the model with the addition of boundary conditions per initialization and material configuration.

Mostly, the same trends that were present as in the basic model are still present in the basic model with
boundary conditions. Most notable is that the model with boundary conditions is more accurate than the
basic model (seen by the overal percentages in table 4). Secondly, the average run time for the model
with boundary conditions is a fraction higher than the run times in the basic model. Lastly, when looking
at figure 14, we can see that the suboptimal solutions are differently distributed compared to the basic
model.

22



Figure 14: The full convergence results for the basic model with the inclusion of boundary conditions.
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4.2.3. Symmetry finding algorithm

The algorithm will be evaluated in a different fashion than the previous two versions of the model.
First and foremost, the algorithm was tested only with the model version that includes the boundary
conditions. As it only kicks in when a solution is considered not ’optimal enough’, a test set was
constructed on which the algorithm was executed. The test set contains all sub-optimal solutions from
the boundary conditions run, see figure 15. For the values of γ from 0.3 to 0.8 with increments of 0.1,
the test set was executed and the success rate and running times are reported in tables 6 and 7. These
values of γ were chosen as a logical spread of values between 0 and 1. The final attained energies of
the runs are presented in 16. The convergence of the test set of each material configuration for different
values of γ is reported in appendix C.

γ 0.3 0.4 0.5 0.6 0.7 0.8
Material Supercell Percentage of successful runs Total runs
Ni 2×2×2 100 100 100 100 100 100 15
MnO 2×2×2 97.78 98.89 98.89 100 38.89 38.89 90

3×3×3 100 95.38 96.15 98.46 100 98.46 130
Fe2P 2×2×2 100 100 94.81 93.51 61.04 100 77

3×3×3 100 100 97.35 46.9 98.23 100 113
Mn2Sb 2×2×2 100 100 100 100 100 21.43 28

3×3×3 98.39 72.58 72.58 98.39 100 98.39 62
Total successful 512 491 485 447 428 435 515
Total percentage 99.42 95.34 94.17 86.8 83.11 84.47

Table 6: Percentage of successful runs of the algorithm, per value of γ. No values for Ni 3×3×3 are present, as this
configuration executed perfectly for the model with boundary conditions in all 360 runs.

γ 0.3 0.4 0.5 0.6 0.7 0.8
Material Supercell Average total runtime (s)
Ni 2×2×2 1.1 1.09 1.1 1.14 1.15 1.17
MnO 2×2×2 6.08 6.01 5.95 5.99 5.84 6.2

3×3×3 61.42 59.78 55.85 57.01 55.05 53.22
Fe2P 2×2×2 9.46 9.33 9.28 9.34 9.26 9.12

3×3×3 171.55 157.85 165.52 166.01 160.11 165.65
Mn2Sb 2×2×2 3.58 3.72 3.98 3.84 3.65 3.82

3×3×3 16.97 17.52 17.53 16.71 16.23 15.98

Table 7: Run times per value of γ, per configuration.

We can see that which value for γ is selected, quite heavily impacts the result of the run. This effect
will be further discussed in the next section. Secondly, the average run time for the different values of γ
differ at most around 10% of the total run time. The success rate of the algorithm on the configurations
is also heavily impacted for different values of γ. Examples are Fe2P 3×3×3, where all values of γ have
a (near) 100% success rate, except for γ = 0.6 which only has one of 46.9%. The same effect seems to
occur with Mn2Sb, this time with γ = 0.8. Overall, when comparing the figure 15 and 16, we can see
that the addition of the algorithm solves a lot of the previously inaccurate cases.
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Figure 15: The full convergence results for the test set for the algorithm. This corresponds to 14, with the exclusion of the
optimal results. Note that the occurrence axis is differently scaled compared to the previous figures.
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Figure 16: The full convergence results for the algorithm on the test set presented in figure 15, for different values of γ.
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4.2.4. Versions comparison

Given the results mentioned above, as the algorithm was executed on the set of sub optimal solutions of
the model with boundary conditions, without loss of generality, we can combine the results to virtually
construct a total average run time and accuracy per value of γ on the complete set of runs from the model
including boundary conditions. This is done to more accurately represent real life situations, and to be
able to compare its results to those from sections 4.2.1 and 4.2.2. The motivation for why this is allowed
is straightforward, as each different run of IPOPT is independent and only depends on initialization,
neither data set is affected by this virtual construction. The combined results can be found in tables 8
and 9.

γ 0.3 0.4 0.5 0.6 0.7 0.8
Material Supercell Percentage of successfull runs Total runs
Ni 2×2×2 100 100 100 100 100 100 360

3×3×3 100 100 100 100 100 100 360
MnO 2×2×2 99.44 99.72 99.72 100 84.72 84.72 360

3×3×3 100 98.33 98.61 99.44 100 99.44 360
Fe2P 2×2×2 100 100 98.89 98.61 91.67 100 360

3×3×3 100 100 99.17 83.33 99.44 100 360
Mn2Sb 2×2×2 100 100 100 100 100 93.89 360

3×3×3 99.72 95.28 95.28 99.72 100 99.72 360
Total successfull 2877 2856 2850 2812 2793 2800 2880
Total percentage 99.895 99.17 98.96 97.64 96.98 97.22

Table 8: Total accuracy as projected on the model including boundary conditions data set, value of γ versus material config-
urations.

γ 0.3 0.4 0.5 0.6 0.7 0.8
Material Supercell Average total runtime (s)
Ni 2×2×2 0.62 0.62 0.62 0.62 0.62 0.62

3×3×3 1.25 1.25 1.25 1.25 1.25 1.25
MnO 2×2×2 3.29 3.27 3.26 3.27 3.23 3.32

3×3×3 37.19 36.6 35.18 35.6 34.89 34.23
Fe2P 2×2×2 5.58 5.56 5.55 5.56 5.54 5.51

3×3×3 94.64 90.34 92.74 92.9 91.05 92.79
Mn2Sb 2×2×2 1.94 1.95 1.97 1.96 1.94 1.96

3×3×3 9.73 9.82 9.82 9.68 9.6 9.56

Table 9: Average run time of performed runs in table 8. Value of γ versus material configurations.
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5. Discussion

In this section, we will discuss the obtained results, what they signify, and what further research can be
conducted concerning the model.
Firstly, we discuss the exchange interactions obtained for Ni and MnO. Both findings agree on the sign
of J , but differ from the exchange interactions in 4 and 1 by a factor of roughly 3 (smaller) and 5 (larger)
respectively. Though inaccurate, these results are in agreement enough so that they may be used for the
purposes of this study.
For the optimal structures found in figure 12, when we compare the structures to the literature structures,
we find that they agree with the expected structures for Ni, Fe2P and Mn2Sb. MnO is found to be
antiferromagnetic, but in a slightly different lattice direction than what is specified in literature. Where
in literature, MnO is AFM in the [12 ,12 ,12 ] direction, the calculated structure is antiferromagnetic in the
[12 ,12 ,0] direction. This can likely be attributed to one of the processes in the gathering of the exchange
interactions. This is assumed as firstly, the structure found by the model has a lower exchange energy
than the literature configuration when it is compared in the model. Secondly, DFT is not a perfect
representation of reality, as multiple assumptions are made, and some effects are disregarded, which
will impact the resultant exchange interactions, which might have played a role in this project.

The model For the different versions of the model, with each extension, the accuracy is increased at
the cost of also increasing run time. We will discuss the two different evaluated factors (initialization
and the value of γ), then compare the different versions of the model, and lastly discuss some limitations
of the results.

When comparing the different initializations, the initialization 0 < misi < |di| (initialization 3) (26)
performed equally good to the other two initializations (24,25) in most, and significantly better than the
others in some configurations. This is the case for both the basic model and the model with bound-
ary conditions. Especially for Fe2P in both configurations, initialization |si| < |bi| (initialization 1)
performed substantially worse than the other two. For MnO 3×3×3, initialization 3 performed remark-
ably better than the other two initializations. These two results can be explained intuitively by the final
structure of the two materials. Where Fe2P is ferromagnetic, setting initialization 1, where moments are
randomly ordered, one would expect that this is further from the optimal result. For MnO, as initializa-
tion 3 already assigns signs that would match the optimal solution, it is logical that this initialization will
have to perform ’less work’ to arrive at the optimal solution. Therefore, an explanation for this superior
performance is that initialization 3 uses more information of magnetic moments presented, which gives
it an advantage. Given this information, initialization 3 is the initialization of choice as it not only has a
higher average accuracy, but it also on average has a slightly lower run time than the other two initial-
ization methods as shown in tables 5 and 3.

When comparing the different values of γ, γ = 0.3 clearly stands out as the optimal value. While
it does have a slightly higher average run time; it more than makes up for it in accuracy, where it is
(comparing results on the test set), 4% more effective than its closest competitor, with a staggering
99.42% vs 95.34%. As IPOPT is a deterministic routine, and the initialization is also deterministic per
run (i.e. each different value of γ had the exact same input), this is an extremely accurate result. Sur-
prisingly, there is a large difference in performance for each value of γ per material. This effect is most
noticeable when comparing γ = 0.8 and γ = 0.7, as we can see that per material, the value of γ that
performs better is different. This effect would be interesting to study, especially for other materials than
the ones listed here, as there is no easy explanation for this behaviour.
Regarding the accuracy of the results, one does have to take into account that the test set did only contain
515 runs, which boils down to fairly low runs per material configuration. Next to that, only six values
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for γ were tested.

When evaluating which model type to work with (basic, with boundary conditions or with algorithm),
looking from an accuracy perspective, running the model including the boundary conditions and the
algorithm is the clear winner. Even with the higher run times, the addition of the algorithm improves
accuracy by a sufficiently large amount (99.895% vs 82.12% or 72.05% over all initializations), thus
using it is highly recommended. The only other consideration is the model with boundary conditions
using only initialization 3, which has an accuracy of 91.35%. However, to attain the same accuracy as
the combined method in one run, this method would have to be run at least twice (for an accuracy of
1 − (0.0865)2 = 99.25%), which is still lower than the accuracy of the model including the algorithm,
and, on top of that, also in a longer average run time. Therefor, the use of the algorithm is highly rec-
ommended.

It should be noted, that while individually γ = 0.3 and the initialization 0 < misi < |di| performed
best; the combination of the two factors has not been extensively tested, as the higher accuracy of ini-
tialization method also means that there were less test cases from that set that the algorithm worked on
(only 83 test cases, see table 4).
A point of concern for the model is that the computation time between small and larger configurations
is impacted greatly. It is therefor advised to examine this behaviour more thoroughly in future studies.

Recommendations For future work, there are a lot of directions to consider. In no specific order;
some of those continuations are:

• Changing the model to allow magnetic moments to independently assume any direction, instead
of all adhering to the same direction. Though most likely driving up computation time, this would
generalize the model to also work on more complex systems.

• Make the algorithm check for more than 2 cell repetitions. This would require a more sophis-
ticated approach to the implementation of the algorithm, and might be a time consuming task.
The usefulness of this extension also heavily depends on weather or not more complex magnetic
structures are of interest to the application.

• More extensive research can be done on the exact choice of the γ parameter, and the model in
general. As the ideal value of 0.3 works for all test materials presented in this study, however
more values of γ could be checked against more materials to find if a more general global optimal
value exists.

• As the results presented in this work are promising, we are exited to see how the model, that seems
quite robust for the test cases, handles a larger sample size and a larger selection of materials. As
the direction of antiferromagnetism in MnO was wrongly predicted, inputting more antiferro-
magnetic materials would be of interest to verify the accuracy of the model on antiferromagnetic
materials.

• Concerning the algorithm, an extension that smartly determines when unit cells are similar enough
that they can be considered equal may be of interest. Currently, the algorithm treats each unique
configuration of a unit cell as unique, no matter how close two configurations might be. For large
unit cells, this might not be optimal. This extension could be useful if the model turns out to
struggle with materials with large unit cells.

• Another extension that could help the algorithm, is an immediate output of the final result is
presented to either itself or the user, to check if the solution actually makes sense and is not a
rare error. This could also be fixed by running the model multiple times, to achieve a near 100%
accurate solution.
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• And lastly, one could also check how the model reacts to the slight alteration of the input condi-
tions (i.e. different lattice parameters) to check the magnetic response of the system, and if this is
also accurately predicted by the model.
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6. Conclusion

In this project, a model is presented that predicts the magnetic structures of materials using exchange
interactions. Boundary conditions and a symmetry finding algorithm are added to a basic model to dras-
tically increase its accuracy to 99,895% over 2880 runs. Two factors were tested, different initialization
methods and the algorithm mixing parameter γ ∈ (0, 1). The latter was tested to be optimal for γ = 0.3,
though only six different values for γ were tested. Interestingly, different values of γ performed rather
differently per material, no general trend between the four materials was observed. The initialization
method 0 < misi < |di| performed best out of the three initialization methods tested. This is likely due
to it using more structural information, namely the direction of the magnetic moments of the material.
The combination of using the two best performing methods was not tested. Individually however, the
two performed distinctly better than their competitors, and are therefor advised to be used when using
the model.
For three out of four materials tested, the optimal configuration aligned with the one shown in literature.
For MnO, the result is antiferromagnetic in a different lattice direction, due to some process present in
the collection of the input data.
From these findings, the model seems like a robust tool to quickly predict the magnetic structure of
materials with a not too complicated structure. More testing of the model for a wider range of materials
is recommended, to ensure that it functions as expected. There are also various ways to extend and to
improve the model (the most prominent of which is the generalization to allow the magnetic moments
to be oriented in 2 or 3 dimensions) to make it able to handle more complex systems.
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Appendix A: 3D representation of boundary conditions

Figure 17: 3D representation of the boundary conditions. The original 3×3×3 supercell is shown in red. Added areas of
types Cj(l), Dj(m) and Ej are shown in translucent yellow, green and blue, respectively. From top to bottom the images
represent the added exchange interactions for a face, edge and corner, respectively.
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Appendix B: Symmetry finding algorithm flowchart

Flowchart of the algorithm described in section 3.3.5.

* A configuration is one way to order the directions of the spins
of atoms in one unit cell. The inverse of a configuration is counted
towards the same configuration. A prominent configuration is
one that is present in at least 30% of the unit cells of the material.

** A pattern describes the symmetry in one lattice direction of
the material. In the current implementation, it only takes into ac-
count 1 and 2 cell repetition.

ˆ A configuration is considered perfect if the pattern is the same
in all three directions and the configuration is present in all unit
cells of the system. i.e. there is not a more symmetric solution to
the problem.

ˆ ˆ A pattern is considered ideal if it is the same in all three lattice
directions.
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Appendix C: Auxiliary results

In this appendix, the convergence plots, and some suboptimal configurations of the different executed
runs are presented. There are 11 main figures, all spanning a page. First, the full convergence plots of the
runs executed for the basic model, and the basic model including the boundary conditions are presented
(figures 18 and 19). Next, the iterations of the different runs of the algorithm on the test set are shown
in figures per material, as to compare the different values of γ (figures 20 - 26). Lastly, some frequently
occurring suboptimal configurations for MnO are shown in figures 27 and 28.
For the convergence plots, note that some iterations and final exchange energies may overlap, hence the
total amount of runs that end at the same energy level is not entirely evident from these plots alone. For
an overview of the amount of successful runs, we refer back to the tables shown in section 4.
For the configurations plots, these are by no means all configurations found in the runs. They are
presented here only to serve as examples.

Energy differences

Due to the construction of the model, the two figures 13 and 14 contain quite different total energies.
The first difference is that between the 2×2×2 and 3×3×3 configurations for the basic and boundary
conditions model among itself. This effect can be explained by the order of exchange interactions that
is taken into account. For a 3×3×3 cell, more exchange interactions are evaluated than in a 2×2×2
cell. Hence, a noticeable difference in total energy appears between the two configurations. The energy
difference between the model with and without boundary conditions, is due to how the boundary con-
ditions are implemented. Because the boundary conditions add equations to the total energy function,
there are more exchange interactions taken into account (those that for the basic model would fall out-
side of the supercell). This results in a significantly higher energy for both configurations. The 2×2×2
case benefits more from this effect than the 3×3×3 case, as when we look back at equations (31, 32
and 33), way more boundary conditions are added for a corner than for a side or face unit cell. As the
2×2×2 only consists of corners, and the 3×3×3 does not (its outer shell consists of 8 corners, 12 edges
and 6 faces), it so to speak ’gains’ less net equations. Hence, for the model with boundary conditions,
the 3×3×3 configurations have a consistently higher energy per unit cell, where for the base model the
differences are smaller, and the 3×3×3 case has a lower energy than the 2×2×2 case.
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Figure 18: The full iterations for all runs executed in testing the basic model. Different runs are shown in different colours.
In this plot, no distinction is made between different initializations.
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Figure 19: The full iterations for all runs executed in testing the basic model with boundary conditions. Different runs are
shown in different colours. In this plot, no distinction is made between different initializations.
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Figure 20: The full iterations for all runs executed on the test set of Ni 2×2×2.
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Figure 21: The full iterations for all runs executed on the test set of MnO 2×2×2.
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Figure 22: The full iterations for all runs executed on the test set of MnO 3×3×3.
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Figure 23: The full iterations for all runs executed on the test set of Fe2P 2×2×2.
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Figure 24: The full iterations for all runs executed on the test set of Fe3P 3×3×3.
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Figure 25: The full iterations for all runs executed on the test set of Mn2Sb 2×2×2.
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Figure 26: The full iterations for all runs executed on the test set of Mn2Sb 3×3×3.
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Figure 27: Two suboptimal configurations for the basic model, and the model with boundary conditions, for MnO 2×2×2.
The different energies corresponding to the different configurations are marked by A, B, C and D.
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Figure 28: Two suboptimal configurations for the basic model, and the model with boundary conditions, for MnO 3×3×3.
The different energies corresponding to the different configurations are marked by A, B, C and D.
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Appendix D: Python code

1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu May 19 21:09:22 2022
4

5 @author: Arthur C. Ronner
6 """
7 # -*- coding: utf-8 -*-
8

9 from pymatgen.io.vasp.inputs import Poscar
10 from pymatgen.core import lattice
11 import numpy as np
12 import re
13 import os
14 from pathlib import Path
15 from gekko import GEKKO
16 from contextlib import redirect_stdout
17 import mag_plotter as mp
18 import time
19 import shutil
20

21 #==================================#
22 # #
23 # FILE INDEX: #
24 # files & formating #
25 # READ FILE FUNCTION #
26 # FORMATTING FUNCTIONS #
27 # #
28 # One opt run #
29 # PERIODIC BC'S #
30 # VARIABLE INITIALIZATION #
31 # DEFINING OPTIMIZATION #
32 # SMALL HELP FUNCTIONS #
33 # MAIN RUNNER FUNCTIONS #
34 # #
35 # Multiple runs #
36 # MULTIPLE RUNS CODE #
37 # ITERATING FUNCTIONS #
38 # #
39 #==================================#
40

41 #====================================================================#
42 # READ FILE FUNCTIONS #
43 #====================================================================#
44 def read_file(file_name,num_hor_vals, file_type, convert_names = {}):
45 """
46 :file_type: -1 = J from jdata file; 0 = J matrix short; 1 = results from Gekko;

2 = APOPT; 3 = IPOPT; 4 = mag_moment file↪→

47 """
48 #print(file_name)
49 with open(file_name) as f:
50 lines = f.readlines()
51 #Predict filesize horizontal
52 data = np.zeros((len(lines),num_hor_vals)) #initialize data vector
53 if file_type == 0 or file_type == -1: #As each file is a little diffferent we

prepare different arrays↪→

54 names = [['', ''] for i in range(len(lines))] #here we need 2 names as it
is J interactions↪→

55 if file_type == 1:
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56 names2 = ['' for i in range(len(lines))] #here only one as its about
variables↪→

57

58 for i in range(len(lines)): #per file we format lines a little differently so
that we get the correct data↪→

59 if file_type == 0:
60 lines[i] = re.sub(',|\(|\)', '', lines[i])#remove comma's
61 if file_type == 1:
62 lines[i] = re.sub('\{|\}', "0 0 0 0", lines[i])
63 lines[i] = re.sub(',|\[|\]|:|\"', '', lines[i])
64 lines[i] = re.sub('q_', ' -', lines[i])
65 lines[i] = re.sub('q', ' ', lines[i])
66 lines[i] = lines[i].title()
67 if file_type == 4:
68 lines[i] = re.sub('\s[a-z]', '_',lines[i])
69 data_frag = lines[i].split()
70 #print(lines[i])
71

72 for j in range(num_hor_vals):
73

74 try:
75 float(data_frag[j])
76 data[i,j] = float(data_frag[j])
77 if file_type == -1:
78 if j <= 1:
79 names[i][j] = convert_names[int(data[i,j]-1)]
80 except ValueError:
81 if file_type ==0:
82 if j == 0:
83 names[i][j] = re.sub(r'(-?[0-9]+\.?[0-9]*)' , r" \1

",data_frag[j].strip())↪→

84 names[i][j] = re.sub('\s$','',names[i][j])
85 elif j == 1:
86 names[i][j] = re.sub(r'(-?[0-9]+\.?[0-9]*)' , r" \1

",data_frag[j].strip()) #capitalizes letters↪→

87 names[i][j] = re.sub('\s$','',names[i][j])
88 if file_type == 1:
89 if j == 0:
90 names2[i] = re.sub('_', ' ',data_frag[j])
91 continue
92 except IndexError:
93 continue
94 if file_type == 0:
95 return data[:,2:], np.array(names)
96 elif file_type == 1:
97 l = 2
98 for i in range(l,len(names2)):
99 if len(re.findall('^P\d',names2[i])) == 0:

100 l = i
101 break
102 return data[l:-1,1:], names2[l:-1]
103 elif file_type == 2:
104 return data[1:-2,:]
105 elif file_type == 3:
106 return data[1:-3,:]
107 elif file_type == -1:
108 return data[:,[2,3,4,5]], names
109 else:
110 return data
111
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112 def read_moments(file_name, TB2J = True, N = 100):
113

114 if TB2J:
115 data = [[] for i in range(N)]
116 with open(file_name, "r") as file: # the r opens it in read mode
117 count = 0
118 for i in file:
119 count += 1
120 N = min(count-3,N)
121 with open(file_name, "r") as file:
122 print(N)
123 for i in range(N):
124 line = next(file).strip()
125 if len(re.findall('Atoms', line)) > 0:
126 start = i +3
127 if len(re.findall('^Total',line)) > 0:
128 stop = i
129 data[i] = line
130 interest = [[] for i in range(stop-start)]
131 for i in range(start,stop):
132 interest[i-start] = data[i].split()
133 moments = {}
134 for i in range(stop-start):
135 moments[re.sub(r'(-?[0-9]+\.?[0-9]*)' , r" \1",interest[i][0].strip())]

= float(interest[i][-1])↪→

136 return moments
137 else:
138 moments = {}
139 names = []
140 with open(file_name, "r") as f:
141 lines = f.readlines()
142 for i in range(len(lines)):
143 temp = lines[i].split()
144 if len(temp) != 2:
145 print('ERROR!')
146 moments[re.sub(r'(-?[0-9]+\.?[0-9]*)' , r" \1",temp[0].strip())] =

float(temp[1])↪→

147 names.append(re.sub(r'(-?[0-9]+\.?[0-9]*)' , r"
\1",temp[0].strip()))↪→

148 return moments, names
149 #====================================================================#
150 # FORMATTING FUNCTIONS #
151 #====================================================================#
152

153 def J_short(file, new_file, ftype = 0):
154 with open(file) as f:
155 lines = f.readlines()
156 g = open(new_file, "w")
157 start = True
158 stop = False
159 if ftype == 0:
160 for i in lines:
161 x = re.findall("^\-\-\-|J_iso|Orbital| \[", i)
162 if x == ['---']:
163 start = False
164 if not x and start == False:
165 g.write(i)
166 elif ftype == 1: #APOPT
167 for i in lines:
168 x = re.findall('Iter|Success',i)
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169

170 if x == ['Iter']:
171 start = False
172 if x == ['Success']:
173 stop = True
174 if not x and start == False and stop == False and len(i)>10:
175 g.write(i)
176 elif ftype == 3: #IPOPT
177 for i in lines:
178 x = re.findall('^iter|^Number of I',i)
179 if x == ['iter']:
180 start = False
181 if x == ['Number of I']:
182 stop = True
183 if not x and start == False and stop == False:
184 g.write(i)
185 g.close()
186 return
187

188

189

190 def J_as_dict(J_mat,nam_mat,latt, index):
191 J_dict_lvec = {}
192 name_dict = {}
193 #names = np.unique(nam_mat)
194 old_s = str(latt.sites[0].specie)
195 j = 1
196 for i in range(len(latt.sites)):
197 new_s = str(latt.sites[i].specie)
198 if new_s != old_s:
199 j = 1
200 name_dict[str(latt.sites[0].specie) + ' '+ str(j)] =

latt.sites[i].coords.dot(latt.lattice.inv_matrix)↪→

201 j += 1
202 old_s = str(latt.sites[i].specie)
203 for i in range(len(J_mat)):
204 nam = ['','']
205 for j in range(2):
206 nam[j] = nam_mat[i][j]
207 nam[j] = re.sub('\s$','',nam[j])
208 J_dict_lvec[nam[0]+' '+nam[1]+' '+str(int(J_mat[i,0]))+'

'+str(int(J_mat[i,1]))+' '+str(int(J_mat[i,2]))] = J_mat[i,index]↪→

209 #print('Done with saving Js as a dictionary')
210 return J_dict_lvec, name_dict
211

212

213

214 #====================================================================#
215 # PERIODIC BC'S #
216 #====================================================================#
217 def periodic_bc_2(m,J_mat, uni_at, var_vec,ind,ranges, J_reach):
218 tot = len(var_vec)
219 edge_num = len(var_vec) - (len(uni_at)*(ranges[1]-ranges[0] -

1)*(ranges[3]-ranges[2] - 1)*(ranges[5]-ranges[4] -1))↪→

220 print('number of atoms at edge: ' + str(edge_num))
221 bc_fct = [None for j in range(tot)]
222 cell =

np.array([ranges[1]-ranges[0]+1,ranges[3]-ranges[2]+1,ranges[5]-ranges[4]+1])↪→

223 k = 1
224 for i in range(len(var_vec)):
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225 if var_vec[i] is None:
226 continue
227 s_p = np.full(3,None) #s_p = saved points
228 for j in range(3):
229 if ind[i][j] == ranges[2*j] or ind[i][j] == ranges[2*j+1]:
230 temp = ind[i].copy()
231 if temp[j] == ranges[2*j]:
232 temp[j] = ranges[2*j+1]
233 else:
234 temp[j] = ranges[2*j]
235 orient = np.ones(4)
236 orient[3] = 0 #setting mode
237 orient[j] = 0 #setting axis to slice away
238 k = ind.index([temp[0],temp[1],temp[2],temp[3]])
239 bc_fct[i] = cut_equation(m,J_mat,uni_at,var_vec,ind,J_reach,

cell,0,tot,i,typ = 1, j = k, ori = orient)↪→

240 s_p[j] = temp[j]
241 u_c = np.where(s_p == None)[0] #u_c = unaltered coords
242 if len(u_c) == 1: #we're at an edge:
243 s_p[int(u_c)] = ind[i][int(u_c)]
244 orient = np.zeros(4)
245 orient[3] = 1
246 orient[int(u_c)] = 1
247 k = ind.index([s_p[0],s_p[1],s_p[2],ind[i][3]])
248 bc_fct[i] =

cut_equation(m,J_mat,uni_at,var_vec,ind,J_reach,cell,0,tot,i,typ =
1, j = k, ori = orient)

↪→

↪→

249 elif len(u_c) == 0: #we're at a corner, so need 4 other configs
250 for l in range(3): #first three
251 temp = np.zeros(3)
252 orient = np.ones(4)
253 orient[l-1] = 0
254 orient[l-2] = 0 # ori will have 0's at axis that need 'slicing' and

1 at unaltered axes.↪→

255 temp[l-1] = s_p[l-1]
256 temp[l-2] = s_p[l-2]
257 temp[l] = ind[i][l]
258 k = ind.index([temp[0],temp[1],temp[2],ind[i][3]])
259 bc_fct[i] =

cut_equation(m,J_mat,uni_at,var_vec,ind,J_reach,cell,0,tot,i,typ
= 1, j = k, ori = orient)

↪→

↪→

260

261 k = ind.index([s_p[0],s_p[1],s_p[2],ind[i][3]]) #fourth
262 orient = [0,0,0,2]
263 bc_fct[i] = cut_equation(m,J_mat,uni_at,var_vec,ind,J_reach,cell,

0,tot,i,typ = 1, j = k, ori = orient)↪→

264

265

266 return [g for g in bc_fct if g is not None]
267

268 def J_sum_cond(coords,ori): #avoids double counting in periodic bc's
269 #ori = [x,y,z,mode] if x,y,z = 0 then these axis are to be cut away, 1 means

they need to be retained.↪→

270 if ori[3] == 0: #case of a face
271 axis = np.where(ori == 0)[0]
272 return coords[axis[0]] != 0 #we remove one plane
273 if ori[3] == 1: #case of an edge
274 axis = np.where(ori == 0)[0]
275 #print(axis)
276 return (coords[axis[0]] != 0 and coords[axis[1]] != 0) #remove two planes
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277 if ori[3] == 2: #case of a corner
278 return (coords[0] != 0 and coords[1] != 0 and coords[2] != 0) #remove 3

planes↪→

279 return
280

281

282

283 #====================================================================#
284 # VARIABLE INITIALIZATION #
285 #====================================================================#
286

287 def initial_vals(ranges,unique_ats,moments,itype, at_index = []):
288

289 a, b, c, d, r = len(unique_ats), len(ranges[0]), len(ranges[1]),
len(ranges[2]), range(len(unique_ats))↪→

290 ms = np.zeros(a)
291 for i in r:
292 ms[i] = moments.get(unique_ats[i]) #To shorten notations
293

294 if itype >= 0: #These are the random seeds
295 vals = np.random.rand(a,b,c,d)
296 if itype == 0: #Totally random within bounds (for antiferromagnetic?)
297 for i in r:
298 vals[i] = vals[i]*(2*abs(ms[i]))-abs(ms[i])
299 print("Initializing any random value within bounds")
300 if itype == 1: #Random positive values
301 for i in r:
302 vals[i] = vals[i]*(abs(ms[i]))
303 print("Initializing any positive random value within bounds")
304 if itype == 2: #Random pos or neg depending on moment
305 for i in r:
306 vals[i] = vals[i]*(ms[i])
307 print("Initializing value between 0 and the value in exchange.out (pos

or neg)")↪→

308 else: #These are the predetermined initialization cases
309 vals = np.zeros((a,b,c,d))
310 if itype == -1: #Initial guess is the moments obtained from the poscar file
311 for i in r:
312 vals[i] = ms[i]
313 print("Initializing the exact value given in exchange.out")
314 if itype == -2: #try the literature orientation ONLY WORKS FOR CELLS OF 0

and bigger↪→

315 for i in r:
316 for j in range(b):
317 for k in range(c):
318 for l in range(d):
319 if (j + k + l)%2 == 0:
320 if i < 3:
321 vals[i,j,k,l] = abs(ms[i])
322 else:
323 vals[i,j,k,l] = -abs(ms[i])
324 else:
325 if i < 3:
326 vals[i,j,k,l] = -abs(ms[i])
327 else:
328 vals[i,j,k,l] = abs(ms[i])
329 print("Initializing the literature configuration")
330 return vals
331

332 def initialize_vars_2(ranges,m,unique_ats,la, moments, init = 0, boost = False,
starts = {}):↪→
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333 #ranges include the cells that we want to sum over, already including the 0 if
necessary↪→

334 #m is the model
335 #unique ats is the unique atoms in the unit cell
336 #la is the structure object
337 s = ' '
338 if boost == False:
339 vals = initial_vals(ranges,unique_ats,moments,init)
340 else:
341 print("Using previous ending")
342 at = [[] for i in range(len(unique_ats))]
343 x_names = [[] for i in range(len(unique_ats))]
344 for e in range(len(unique_ats)):
345 at[e] = list_3D(len(ranges[0]), len(ranges[1]), len(ranges[2]), None)
346 x_names[e] = list_3D(len(ranges[0]), len(ranges[1]), len(ranges[2]), '')
347 for h in range(len(unique_ats)):
348 for i in ranges[0]:
349 for j in ranges[1]:
350 for k in ranges[2]: #so these all walk from negative to positive

values potentially. OUT OF RANGE ERROR -> wrap↪→

351 try:
352 x_names[h][i][j][k] = f'{unique_ats[h]}q{i}q{j}q{k}'
353 bound = abs(moments.get(unique_ats[h]))
354 if boost == False:
355 val = vals[h,i,j,k]
356 else:
357 if len(starts) == 0:
358 print("ERROR: No data found for second run")
359 #print(str(unique_ats[h])+s+str(i)+s+str(j)+s+str(k))
360 val =

starts.get(str(unique_ats[h])+s+str(i)+s+str(j)+s+str(k))↪→

361 at[h][i][j][k] = m.Var(lb = -bound, ub = bound, value =
val, name = x_names[h][i][j][k])↪→

362 except IndexError:
363 print("ERROR: 0 has to be part of all the ranges!!!")
364 #print("Done with initializing vars")

↪→

365 return at, x_names
366

367 #====================================================================#
368 # DEFINING OPTIMIZATION #
369 #====================================================================#
370

371 def J_sum_2(m,J_d,q,var,star,stop,i, typ = 0, k = 0, lim = 0, ori = [1,1,1,0]):
#main function for the objective function↪→

372

373 s = ' '
374 # for j in range(stop-star):
375 # if J_d.get(q[i][3] +s+ q[j][3] +s+ str(int(q[i][0]-q[j][0])) +s+

str(int(q[i][1]-q[j][1])) +s+ str(int(q[i][2]-q[j][2]))) == None:↪→

376 # print(q[i][3] +s+ q[j][3] +s+ str(int(q[i][0]-q[j][0])) +s+
str(int(q[i][1]-q[j][1])) +s+ str(int(q[i][2]-q[j][2])))↪→

377 # J indices
378 #print(J_d.get(temp[0]))
379 #print(type(J_d.get(temp[0])))
380 if typ == 1:
381 temp = [(q[k][3] +s+ q[j][3] +s+ str(int(q[k][0]-q[j][0])) +s+

str(int(q[k][1]-q[j][1])) +s+ str(int(q[k][2]-q[j][2]))) for j in
range(star,stop)]

↪→

↪→

382 #print(temp)
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383 length = 0
384 l = star
385 # print('max: ' +str(stop))
386 while length < lim:
387 #print('iteration: '+str(l))
388 if type(J_d.get(temp[l-star])) != None and (int(q[k][0]-q[l][0]) != 0

or int(q[k][1]-q[l][1]) != 0 or int(q[k][2]-q[l][2]) != 0):↪→

389 length += 1
390 #if J_d.get(temp[l-star]) != None:
391 #print(type(J_d.get(temp[l-star])))
392 l += 1
393 if l == stop:
394 break
395 return m.Minimize(-2*sum(J_d.get(temp[j-star])*var[i]*var[j] for j in

range(star,l) if J_d.get(temp[j-star]) is not None and
(J_sum_cond([int(q[k][0]-q[j][0]),
int(q[k][1]-q[j][1]),int(q[k][2]-q[j][2])],ori = ori)))), l

↪→

↪→

↪→

396 if typ == 0:
397 temp = [(q[i][3] +s+ q[j][3] +s+ str(int(q[i][0]-q[j][0])) +s+

str(int(q[i][1]-q[j][1])) +s+ str(int(q[i][2]-q[j][2]))) for j in
range(star,stop)]

↪→

↪→

398 return m.Minimize(-2*sum(J_d.get(temp[j-star])*var[i]*var[j] for j in
range(star,stop) if J_d.get(temp[j-star]) is not None))↪→

399

400

401

402 def optimize(J_matrix,ranges, path, atom_names, latt, moments, J_reach, solver = 1,
m_name = "test", info = 1, init_ = 0, sens = False, boost = False, starts =
{}):

↪→

↪→

403 m = GEKKO(name = m_name, remote = False)
404 ran = [None, None, None]
405 inc = 0
406

407 for i in range(3): #Check if we need another value due to including 0.
408 if np.sign(ranges[2*i+1]) != np.sign(ranges[2*i]):
409 inc = 1
410 ran[i] = range(int(ranges[2*i]),int(ranges[2*i+1] + inc)) #makes ranges to

sum over↪→

411

412 unique_atoms = np.unique(atom_names)
413 atom_range = range(len(unique_atoms))
414 if boost == False:
415 atoms, names = initialize_vars_2(ran, m, unique_atoms,latt,moments,init =

init_)↪→

416 else:
417 atoms, names = initialize_vars_2(ran, m, unique_atoms,latt,moments,init =

init_, boost = boost, starts = starts)↪→

418 atoms_flat, at_index = flatten_matrix(atoms,ran, atom_range, unique_atoms)
419 cons = periodic_bc_2(m, J_matrix, unique_atoms, atoms_flat, at_index, ranges,

J_reach)↪→

420 #J_par = initialize_pars(m, J_matrix)
421 test = obj_fct_3(J_matrix,atoms_flat,at_index, m)
422 p = os.path.join(os.getcwd(),path)
423 m._path = p
424 m.options.WEB = 0
425 m.options.solver = solver
426 if sens == True:
427 m.options.SENSITIVITY = 1
428 #m.options.CSV_WRITE = info
429 print("Starting optimization")
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430 #m.solve(disp=True)
431 with open(path/'iterations', 'w') as f:
432 with redirect_stdout(f):
433 m.solve(disp=True)
434 print("Finished optimization")
435

436

437

438 def obj_fct_3(J_mat, var_vec, q, m): # makes the main objective function of the
system↪→

439 cutoff = 200
440 eq_num = count(len(var_vec),cutoff)
441 obj_fct = [None for j in range(int(eq_num))]
442 k = 1
443 for i in range(1,len(var_vec)):
444 if var_vec[i] is None:
445 continue
446 if i > cutoff:
447 eqs = int(np.floor(i/cutoff)+1)
448 length_eq = int(i - cutoff*(eqs-1))
449 obj_fct[i] = J_sum_2(m,J_mat,q,var_vec,0,cutoff,i)
450 for l in range(1,eqs):
451 if l == eqs-1:
452 obj_fct[-k] = J_sum_2(m,J_mat,q,var_vec,l*cutoff,l*cutoff +

length_eq,i)↪→

453 else:
454 obj_fct[-k] =

J_sum_2(m,J_mat,q,var_vec,l*cutoff,(l+1)*cutoff,i)↪→

455 k += 1
456 else:
457 obj_fct[i] = J_sum_2(m,J_mat,q,var_vec,0,i,i)
458 print("Done with making obj function")
459 return obj_fct[obj_fct != 0]
460

461 #====================================================================#
462 # SMALL HELP FUNCTIONS #
463 #====================================================================#
464

465 def check_non_mag_atoms(at_dict):
466 lst = [[],[]]
467 threshhold = 0.1
468 for i in at_dict:
469 g = re.sub(' \d','',i)
470 if abs(at_dict[i]) < threshhold:
471 lst[1].append(g)
472 else:
473 lst[0].append(g)
474

475 return [list(set(lst[0])),list(set(lst[1]))]
476

477 def cut_equation(m, J_mat, uni_at, var_vec, ind, J_reach, cell,star, stop, i, typ =
0, j = 0, ori = [1,1,1,0]): #go here when we've decided upon an equation↪→

478 # GEKKO has a max line length of 15000 characters; we prevent going over that
amount here.↪→

479 # i is the var of interest
480 #j is its equivalent brother
481 #how many equations do we reall want? We want to start summing over everything
482 cutoff = 200
483 size =

len(uni_at)*min(J_reach[0],cell[0])*min(J_reach[1],cell[1])*min(J_reach[2],cell[2])
#approximate num of atoms in equations

↪→

↪→
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484 eqs = int(np.floor(size/cutoff)+1)
485 fct = [None for k in range(eqs)]
486 for k in range(eqs):
487 if k == eqs -1:
488 fct[k], star = J_sum_2(m, J_mat, ind, var_vec, star, stop, i,typ = 1, k

= j, lim = size/eqs, ori = ori)↪→

489 else:
490 fct[k], star = J_sum_2(m, J_mat, ind, var_vec, star, stop, i,typ = 1, k

= j, lim = size/eqs, ori = ori)↪→

491 return fct
492

493 def list_3D(len_x,len_y,len_z,ty):
494 lst = [[ [ty for i in range(len_x)] for j in range(len_y)] for k in

range(len_z)]↪→

495 return lst
496

497 def check_line_length(filename): #To check if we go over the maximum length of one
line in the optimization file.↪→

498 filename = Path(str(filename) +".apm")
499 with open(filename) as f:
500 lines = f.readlines()
501 lengths = np.zeros(len(lines))
502 for i in range(len(lines)):
503 lengths[i] = len(lines[i])
504 return max(lengths)
505

506 def initialize_pars(m,J_matrix): #giving each parameter a name; might only be semi
usefull.↪→

507 J_pars = {}
508 for i in J_matrix:
509 if J_pars.get(i) != None: #checking if we have extra names or not
510 print(i)
511 J_pars[i] = m.Param(value = J_matrix.get(i))
512 return J_pars
513

514 def count(var,cutoff): #function that also works in the line cut function to make
sure we don't run out of space↪→

515 tot_eq = 0
516 for i in range(int(np.floor(var/cutoff)+1)):
517 if i < np.floor(var/cutoff):
518 tot_eq += cutoff*(i+1)
519 else:
520 tot_eq += (var - cutoff*i)*(i+1)
521 return int(tot_eq)
522

523 def find_lattice_pars(im,lat): #adds the actuals lattice paramters to the J matrix.
524 J_ext = np.copy(im)
525 J_ = np.concatenate((J_ext,np.zeros((len(J_ext[:,0]),3))),axis = 1)
526 x, y, z = range(4,7)
527 c, b, a = range(-3,0)
528 for i in range(len(J_[:,0])):
529 J_[i,c:] = lat.lattice.inv_matrix.dot(J_[i,x:(z+1)])
530 return J_
531

532 #Second try; flattens the matrix and accounts for double counting
533 def flatten_matrix(mat, ra,at_ra,nam):
534 #mat is the matrix, ra are the ranges, at_ra is the atom range and nam are the

unique atom names↪→

535 lst = []
536
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537 indices = [[] for i in
range(len(mat[0][0][0])*len(at_ra)*len(mat[0])*len(mat[0][0]))]↪→

538 for w in at_ra:
539 for t in ra[0]:
540 for u in ra[1]:
541 for v in ra[2]:
542 lst.append(mat[w][t][u][v])
543 ind = len(lst) -1
544 indices[ind] = [t, u, v, nam[w]]
545 #print(len(lst))
546 #print(indices[0:10])
547 #print("Done with flattening variable matrix")
548 return lst, indices
549

550 def find_unit_cell(coords, new_names, struct_obj, which = 0, bounds =
np.array([0,0,0,1,1,1])): #selects a smaller subset to print↪→

551 '''
552 We assume here that coords are in the shape of lattice vectors (!!)
553 '''
554 needed_co = []
555 if which == 0:
556 #print(coords[0,0:3])
557 for i in range(len(coords[:,0])):
558 if np.all(coords[i,0:3] < bounds[[1,3,5]]) and np.all(coords[i,0:3] >=

bounds[[0,2,4]]):↪→

559 needed_co.append(i)
560 coords = coords[needed_co,:]
561 names = np.array(new_names)
562 names = names[needed_co]
563 return coords, names
564

565 def calculate_tot_mom(spins,out_fol,c,modn): #as mentioned; sums over all magnetic
moments to find the moment per unit cell↪→

566 tot_mom = sum(spins[:,-1])
567 off = np.zeros(3)
568 for i in range(3):
569 if np.sign(c[2*i+1]) != np.sign(c[2*i]):#WE actually always know this as we

require 0 to be part of the range!↪→

570 off[i] = 1 #Still, just to make sure though.
571 av_mom = tot_mom/((c[1]-c[0]+off[0])*(c[3]-c[2]+off[1])*(c[5]-c[4]+off[2]))
572 with open(out_fol/'mag_moment', 'w') as f:
573 with redirect_stdout(f):
574 print('Total magnetic moment: ' + str(tot_mom))
575 print('Magnetic moment per unit cell: ' + str(av_mom))
576 print('Max line length in model file: ' + str(check_line_length(out_fol

/ modn)))↪→

577 print('Total magnetic moment: ' + str(tot_mom))
578 print('Magnetic moment per unit cell:' + str(av_mom))
579 print()
580 return
581

582 #====================================================================#
583 # MAIN RUNNER FUNCTIONS #
584 #====================================================================#
585

586 def used_data(in_fol,out_fol,call_type = 0): #functions that ties all the others
together↪→

587 dir_path = os.path.dirname(os.path.realpath(__file__))
588 os.chdir(dir_path)
589 file = in_fol / "POSCAR"
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590 TB2J = True
591 if os.path.exists(in_fol / "exchange.out"):
592 J_file = in_fol / "exchange_short.out"
593 J_old = in_fol / "exchange.out"
594 mode = 0
595 hor_vals = 10
596 else:
597 TB2J = False
598 J_file = in_fol / "jdata"
599 mode = -1 #to read the data from jdata
600 hor_vals = 6
601 if call_type == 0:
602 try:
603 os.mkdir(out_fol)
604 except OSError:
605 print("Warning!! Out folder already exists")
606 # cont = input('Continue anyway? [y/n]')
607 # if cont == 'n':
608 # return None
609 if os.path.exists(J_file) == False and TB2J == True:
610 J_short(J_old,J_file)
611 if TB2J:
612 at_mom = read_moments(J_old)
613 at_conv_names = None
614

615 else:
616 at_mom, at_conv_names = read_moments(in_fol / "moments_in", TB2J = TB2J)
617

618 mag_ats = check_non_mag_atoms(at_mom)
619

620 lat = Poscar.from_file(file).structure
621 lat.remove_species(mag_ats[1])
622

623 sec_lat = Poscar.from_file(file).structure
624 sec_lat.remove_species(mag_ats[0])
625 Js, at_names = read_file(J_file,hor_vals, mode, convert_names=at_conv_names)
626

627 biggest_dist = np.zeros(3)
628 if TB2J:
629 J_better = find_lattice_pars(Js, lat)
630 for i in range(3):
631 biggest_dist[i] = max(J_better[:,-3+i])
632 else:
633 J_better = Js
634 for i in range(3):
635 biggest_dist[i] = max(J_better[:,i])
636 J_dlvec, sites_dic = J_as_dict(J_better, at_names,lat, 3)
637 #print(type(J_dlvec.get("Mn 1 Mn 4 2 1 1")))
638 return lat, sec_lat, at_names, at_mom, J_dlvec, sites_dic, dir_path,

biggest_dist↪→

639

640 def full_opt(in_fol,out_fol,calc_range, modn = 'mod',title_ = "First run", initi =
0, sensitivity = False,plot = True, plot_range = np.array([0,1,0,1,0,1]), boost
= False, starts = {}):

↪→

↪→

641 '''
642 Parameters
643 ----------
644 in_fol : Path
645 Folder that contains the input (POSCAR and exchange.out) files of material
646 out_fol : Path()
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647 Folder to print output files to
648 calc_range : list
649 1D list that contains the unit cells to concider in the calculation in the

form [a_min,a_max,b_min,b_max,c_min,c_max]↪→

650 plot_range : numpy array
651 1D array that contains the unit cells to plot in the form

[a_min,a_max,b_min,b_max,c_min,c_max]↪→

652 modn : str, optional
653 The name for the model. The default is 'mod'.
654 title_ : str, optional
655 Title for the plot. The default is "First run".
656 initi : int
657 Type of initialization.
658 0 = any val within bounds
659 1 = only positive values
660 2 = sign equal to sign in poscar
661

662 Returns
663 -------
664 None.
665

666 '''
667 # for i in np.unique(at_names):
668 # J_dlvec[i + ' '+i+' 0 0 0'] = 0
669 lat, sec_lat, at_names, at_mom, J_dlvec, sites_dic, dir_path, J_range =

used_data(in_fol,out_fol)↪→

670 #print(J_dlvec)
671 if lat == None:
672 print('Stopping run: wrong folder')
673 return
674 if len(re.findall('I',str(out_fol))) > len(re.findall('I',str(in_fol))):

#selecting which solver to use based on the folder name (should contain a I
for IPOPT and A for APOPT)

↪→

↪→

675 solve = 3
676 print("Using the IPOPT Solver") #Both A and I present defaults to IPOPT
677 elif len(re.findall('A',str(out_fol))) > len(re.findall('A', str(in_fol))):
678 solve = 1
679 print("Using the APOPT Solver")
680 else:
681 solve = 3
682 optimize(J_dlvec,calc_range,dir_path / out_fol,at_names,lat,at_mom, J_range,

solver = solve, m_name = modn, init_ = initi, sens = sensitivity, boost =
boost, starts = starts)

↪→

↪→

683

684 spin_states, spin_names = read_file(out_fol / 'results.json',5,1)
685 calculate_tot_mom(spin_states,out_fol,calc_range,modn)
686 if plot == True:
687 plotgrid,plot_names = find_unit_cell(spin_states, spin_names, lat, bounds =

plot_range)↪→

688 cols = ['gray','mediumaquamarine','lightcoral']
689 # plot_non_mag(plotgrid[:,0:3],sec_lat, show = False)
690 mp.plot_scatter(plotgrid[:,0:3],plotgrid[:,3],plot_names,sites_dic, cols,

title_, latt = 1, struct_obj = lat, obj2 = sec_lat, print_lat = True,
spins= True,point_scale=100)

↪→

↪→

691

692 #====================================================================#
693 # MULTIPLE RUNS CODE #
694 #====================================================================#
695

696 def run_times(in_fol,start_range,runs,inits, sensi = False, title = 'First run'):
#simple loop to run the code a said number of times↪→
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697 s = '_' #also automatically makes a foldername
698 k = 0
699 for i in runs:
700 for j in inits:
701 out_fol = in_fol

/('rI'+str(start_range[1]-start_range[0]+1)+s+str(i)+s+str(j))↪→

702 full_opt(in_fol,out_fol, start_range, initi= j,plot = False,
plot_range=np.array([-1,3,-1,3,-1,3]), sensitivity=sensi)↪→

703 k += 1
704 print('Done with run number ' + str(k))
705

706 def run_thermo(in_fol,start_range,runs,inits,title = 'First run concatenated',
plt_range = np.array([0,2,0,2,0,2]), mod = [0], key_1 = 'r', key_2 = '\d',
change = 0.6):

↪→

↪→

707 s = '_'
708 t = ' '
709 k = 0
710 for i in runs:
711 for j in inits:
712 start_time = time.time()
713 new_start = {}
714 out_fol = in_fol

/('rI'+str(start_range[1]-start_range[0]+1)+s+str(i)+s+str(j))↪→

715 full_opt(in_fol,out_fol, start_range, initi= j,plot = False,
plot_range=np.array([-1,3,-1,3,-1,3]))↪→

716 spins, names = read_file(out_fol / 'results.json', 5, 1)
717 if mod[i] >= 0:
718 spins[:,3] = boost_rand(spins[:,3], mode = mod[k])
719 print("First run done; giving progam a kick")
720 #print(np.unique(names))
721 for l in range(len(names)):
722 new_start[names[l]+t+ str(int(spins[l,0]))+t+str(int(spins[l,1]))

+t+str(int(spins[l,2]))] = spins[l,3]↪→

723 if mod[i] >= 0:
724 out_fol_2 = in_fol

/('rI'+str(start_range[1]-start_range[0]+1)+s+str(i)+s+str(j)+s)↪→

725 full_opt(in_fol,out_fol_2, start_range, initi= j,plot = False,
plot_range=np.array([-1,3,-1,3,-1,3]),boost = True, starts =
new_start)

↪→

↪→

726 #print(new_start)
727 if mod[i] < 0:
728 new_starts = boost_sym(new_start, spins, names, change = change)
729 while new_starts[0].get('rerun') == True: #this does mean that you

can get really unlucky and be trapped in a loop.↪→

730 print('Starting solution is concidered too poor; running
program again')↪→

731 full_opt(in_fol,out_fol, start_range, initi= j,plot = False,
plot_range=np.array([-1,3,-1,3,-1,3]))↪→

732 spins, names = read_file(out_fol / 'results.json', 5, 1)
733 new_start = {}
734 for l in range(len(names)):
735 new_start[names[l]+t+

str(int(spins[l,0]))+t+str(int(spins[l,1]))
+t+str(int(spins[l,2]))] = spins[l,3]

↪→

↪→

736 new_starts = boost_sym(new_start, spins, names, change =
change)↪→

737

738 if len(new_starts[0]) > 0:
739 print(f'Running {len(new_starts)} symmetric version(s) of

previous outcome')↪→
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740 n = ['a','b','c','d','e','f']
741 for m in range(len(new_starts)):
742 out_fol_3 = out_fol_2 = in_fol

/('rI'+str(start_range[1]-start_range[0]+1)+s+str(i)+s+str(j)+n[m])↪→

743 full_opt(in_fol,out_fol_3, start_range, initi= j,plot =
False,boost = True, starts = new_starts[m])↪→

744 else:
745 print('current solution is considered good enough symmetry

wise')↪→

746 k += 1
747 run_time = time.time() - start_time
748 minutes = int(run_time/60)
749 seconds = np.round((run_time/60 - minutes)*60,2)
750 with open(in_fol/'runtimes','a') as f:
751 with redirect_stdout(f):
752

print('rI'+str(start_range[1]-start_range[0]+1)+s+str(i)+s+str(j)+'
'+str(run_time))

↪→

↪→

753 print('rI'+str(start_range[1]-start_range[0]+1)+s+str(i)+s+str(j)+'
done with a runtime of '+str(minutes)+':'+str(seconds)+' minutes')↪→

754 opt_sol_finder(in_fol, key_1, key_2)
755

756 def opt_sol_finder(in_fol, key_1, key_2, cubic = True, copy = True, prnt = True,
mode = 1):↪→

757 finals = []
758 names = []
759 in_fol = Path(in_fol)
760 for fn in sorted(os.listdir(in_fol)):
761 if os.path.isdir(in_fol/fn) and len(re.findall(key_1,str(fn))) > 0 and

len(re.findall(key_2,str(fn))) > 0:↪→

762 temp_fol = in_fol / fn
763 if str(fn)[-1].isnumeric():
764 first_run = True
765 else:
766 first_run = False
767 if len(re.findall('A', fn)) > 0: #Old colors for other method (APOPT

instead of IPOPT)↪→

768 ft = [1,2] #selects which mode to use of the read function
769 else:
770 ft = [3,3]
771 J_short(temp_fol/'iterations',temp_fol/'iter',ftype=ft[0])
772 ite = read_file(temp_fol/'iter',10,ft[1])
773 if cubic == True:
774 ite[:,1] = ite[:,1]/(int(re.findall('\d',str(fn))[0])**3) #this is

not accurate probably because of extra 'ghost' interactions↪→

775 moments = read_file(temp_fol/'mag_moment',2,4)
776 finals.append([str(fn),ite[-1,1], ite[-1,0], moments[1,1]])
777 if mode == 1:
778 if not first_run:
779 if str(fn)[-5].isnumeric(): #check if run index has 2 numbers

or one↪→

780 names.append(str(fn)[-5:-1])
781 else:
782 names.append(str(fn)[-4:-1])
783 else:
784 if str(fn)[-4].isnumeric():
785 names.append(str(fn)[-4:])
786 else:
787 names.append(str(fn)[-3:])
788 if mode == 2:
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789 if str(fn)[-1].isnumeric() == False:
790 names.append(str(fn)[:-1])
791

792 with open(in_fol / "results.txt", 'w') as f:
793 for i in range(len(finals)):
794 f.write(finals[i][0] + ' ' + str(finals[i][1]) +' '+

str(finals[i][2])+' '+str(finals[i][3])+' '+str(names[i])+'\n')↪→

795 nam_arr = np.array(names)
796 #print(nam_arr)
797 fin_arr = np.array(finals)
798 runs = np.unique(nam_arr, return_inverse = True, return_counts = True)
799 #print(runs[1])
800 #print(runs[0])
801 #print(nam_arr)
802 if copy:
803 for i in range(len(runs[0])):
804 temp_arr = fin_arr[(runs[1]==i),:]
805 #print(temp_arr[:,1])
806 temp_win = np.argmin(temp_arr[:,1].astype(float))
807 n_t = temp_arr[temp_win,0]
808 #print(n_t)
809 if prnt:
810 print(str(n_t)+' is the optimal result; copying to f folder')
811

812 shutil.copytree(in_fol/str(n_t), in_fol/f'f{str(n_t)[1:-1]}')
813

814 #====================================================================#
815 # ITERATING FUNCTIONS #
816 #====================================================================#
817

818 def boost_sym(d, s, n, change = 0.6): #d = dictionary, s = spins, n = names
819 #we again assume that 0 is within each range.
820 un = np.unique(n)
821 minmax = np.zeros(6)
822 ranges = [None,None,None]
823 for i in range(3):
824 minmax[2*i] = min(s[:,i])
825 minmax[2*i+1] = max(s[:,i])
826

827 ranges[i] = range(int(minmax[2*i]),int(minmax[2*i+1]+1))
828 sym_array = np.zeros((len(ranges[0])*len(ranges[1])*len(ranges[2]),len(un)+3))
829 m = 0
830 for i in ranges[0]:
831 for j in ranges[1]:
832 for k in ranges[2]: #we sum over each unit cell and evaluate signs
833 temp = np.zeros(len(un)+3)
834 for l in range(len(un)):
835 temp[l] = np.sign(d.get(un[l]+' '+str(i)+' '+str(j)+' '+str(k)))
836 #temp = [1,-1,1,-1] each place corresponding to the sign of the

spin of an atom.↪→

837 temp[-3] = i
838 temp[-2] = j
839 temp[-1] = k
840 sym_array[m] = temp
841 m+= 1
842 tot_length = len(sym_array[:,0]) #amount atoms
843 #print(tot_length) #should be equal to 32 for a 2x2x2 MnO cell
844 #print(sym_array)
845 abs_sym = sym_array.copy()
846 for i in range(len(abs_sym[:,0])):
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847 abs_sym[i,:-3] = abs_sym[i,:-3]*abs_sym[i,0]
848 configs = np.unique(abs_sym[:,:-3], return_inverse = True, return_counts=True,

axis = 0)↪→

849 ind = []
850 # print('first: '+ str(configs[0]))
851 # print(configs[1])
852 # print(configs[2])
853 for i in range(len(configs[2])):
854 if configs[2][i] > tot_length/3: #we see this configuration as significant

as its at least 30% of the material↪→

855 ind.append(i)
856 if len(ind) > 0:
857 ret_dicts = [{} for i in range(len(ind))]
858 else:
859 ret_dicts = [{'rerun': True}] #we have a very antisymmetric solution. We

try to run the program again with a random initialization↪→

860 return ret_dicts
861

862 p = 0
863 for i in ind: #sum over all the prominent configurations
864 perfect = 0
865 old_ind = np.where(configs[1] == i)[0] #indices in array where its brothers

are present↪→

866 cell_sym = np.zeros((len(ranges[0]),len(ranges[1]),len(ranges[2])))
867 for a in old_ind: #what does this do exactly?
868 if np.all(abs_sym[a] == sym_array[a]):
869 cell_sym[int(sym_array[a,-3]), int(sym_array[a,-2]),

int(sym_array[a,-1])] = 1↪→

870 else:
871 cell_sym[int(sym_array[a,-3]), int(sym_array[a,-2]),

int(sym_array[a,-1])] = -1↪→

872 #now the matrix is set up so we can start looking for symmetries
873 # we'll look in each direction and check each column for its dominant

pattern↪→

874 # print(abs_sym)
875 # print(sym_array)
876 #print(cell_sym)
877 if len(np.where(cell_sym == 0)[0]) == 0:
878 perfect += 1 #we only have one type of unit cell -> bonus points :)
879 cs = np.zeros(3).astype(int)
880 pattern = np.zeros(3).astype(int)
881 for coord in range(3):
882 ferro = 0
883 ant_ferro = 0 #these names are misleading its more like 1 - cell

symmetric and 2 - cell symmetric.↪→

884 for cs[coord-1] in ranges[coord-1]:
885 for cs[coord-2] in ranges[coord-2]:
886 for cs[coord] in range(int(minmax[2*coord]),int(minmax[2*coord

+ 1])):↪→

887 ad = np.zeros(3).astype(int)
888 ad[coord] = 1
889 if cell_sym[cs[0],cs[1],cs[2]] ==

cell_sym[cs[0]+ad[0],cs[1]+ad[1],cs[2]+ad[2]] and
cell_sym[cs[0],cs[1],cs[2]] != 0:

↪→

↪→

890 ferro += 1
891 elif cell_sym[cs[0],cs[1],cs[2]] ==

-cell_sym[cs[0]+ad[0],cs[1]+ad[1],cs[2]+ad[2]] and
cell_sym[cs[0],cs[1],cs[2]] != 0:

↪→

↪→

892 ant_ferro += 1
893
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894 pattern[coord] = np.sign(ferro-ant_ferro) #-1: switching, 0 equal and 1
is ferro↪→

895 # print(pattern)
896 unaltered = True
897 if perfect == 1 and sum(pattern) == 1 and np.all(pattern != 0):
898 print('Solution looks good; trying other symmetric configuration to

check optimallity')↪→

899 pattern = [1,1,1] #try special different solution as
900 unaltered = False
901

902 if perfect == 1 and sum(pattern) == -1 and np.all(pattern != 0):
903 pattern = [-1,-1,-1]
904 print('Solution looks good; trying other symmetric configuration to

check optimallity')↪→

905 unaltered = False #we do this now for very neat solutions that would
otherwise be considered↪→

906 #we now have a list with the prominent patterns per direction.
907 #we only take the most likely one otherwise the amount of runs grows

exponentially as we're also checking different very likely layouts↪→

908 #so [1 1 0] -> [1 1 1] and [1 -1 0] -> [1 -1 1] as we will guess that 1
cell symmetry is more likely↪→

909 # only when [-1 -1 1]
910 # When are we satisfied??? [1 1 1], [-1 -1 -1]?
911

912 if np.all(pattern == pattern[0]) and unaltered:
913 check = True
914 for j in ranges[0]:
915 for k in ranges[1]:
916 for l in ranges[2]:
917 if pattern[0]**(j+k+l)*cell_sym[0,0,0] != cell_sym[j,k,l]

and cell_sym[0,0,0] != 0:↪→

918 check = False
919 #This works for our purposes, however, for larger materials this can

still return a false positive.↪→

920 #Hence should be altered to check each unit cell for the pattern maybe,
or a condition should be built in↪→

921 #that checks for irregularities
922 if check:
923 perfect += 1
924

925 if perfect == 2: #we are satisfied with the current result and return the
926 #print(pattern)
927 #print(sym_array)
928 return ret_dicts #we don't really do anything here as we assume the

solution to be optimal↪→

929 for j in range(3):
930 if pattern[j] == 0:
931 pattern[j] = 1
932

933 if cell_sym[0,0,0] == -1:
934 cell_sym = cell_sym*(-1) #to make sure that we dont switch/alter too

many atoms; as -1 and 1 are similar solutions↪→

935 new_cells = np.zeros((len(ranges[0]),len(ranges[1]),len(ranges[2])))
936

937 for j in ranges[0]:
938 for k in ranges[1]:
939 for l in ranges[2]:
940 val = pattern[0]**j*pattern[1]**k*pattern[2]**l
941 c = 1
942 if cell_sym[j,k,l] != val:
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943 c = change
944 new_cells[j,k,l] = c*val
945 #print(new_cells)
946 for m in range(len(un)):
947 ret_dicts[p][un[m]+' '+str(j)+' '+str(k)+' '+str(l)] =

c*val*abs(d.get(un[m]+' '+str(j)+' '+str(k)+'
'+str(l)))

↪→

↪→

948 #now we have a first run; if our symmetry is not 'perfect' in each
direction; we also try a second run to check if our solution is really
optimal

↪→

↪→

949 if abs(sum(pattern)) != 3:
950 if sum(pattern) > 0:
951 new_pat = [1,1,1] #meaning that if we have -1, 1, 1; we also try 1

1 1↪→

952 else:
953 new_pat = [-1,-1,-1] #if we have -1 -1 1, also try -1, -1, -1.
954 #NOTE that we disregard the other configurations (if we have -1 1 1

we don't try 1 -1 1 and 1 1 -1)↪→

955

956 new_cells_2 = np.zeros((len(ranges[0]),len(ranges[1]),len(ranges[2])))
957 ret_dicts.append({})
958 for j in ranges[0]:
959 for k in ranges[1]:
960 for l in ranges[2]:
961 val = new_pat[0]**j*new_pat[1]**k*new_pat[2]**l
962 c = 1
963 if cell_sym[j,k,l] != val:
964 c = change
965 new_cells_2[j,k,l] = c*val
966 #print(new_cells)
967 for m in range(len(un)):
968 ret_dicts[-1][un[m]+' '+str(j)+' '+str(k)+' '+str(l)] =

c*val*abs(d.get(un[m]+' '+str(j)+' '+str(k)+'
'+str(l)))

↪→

↪→

969 p += 1
970 #print(ret_dicts[0])
971 #print(new_cells)
972 return ret_dicts
973

974 def boost_rand(vec, mode): #previous implementation of rerun method
975 if mode == 0: #randomly select a couple of atoms to give a kick
976 rng = np.random.default_rng()
977 ind = rng.choice(len(vec),int(len(vec)/3),replace = False)
978 for i in ind:
979 vec[i] = vec[i] - vec[i]*0.6
980 if mode == 1:
981 add = np.random.rand(len(vec))
982 vec = vec - add*vec*0.2
983 if mode == 2:
984 vec = vec - vec*0.05
985 rng = np.random.default_rng()
986 ind = rng.choice(len(vec),int(len(vec)/8),replace = False)
987 for i in ind:
988 vec[i] = -vec[i]
989 if mode == 3:
990 rng = np.random.default_rng()
991 ind = rng.choice(len(vec),int(len(vec)/3),replace = False)
992 for i in ind:
993 vec[i] = vec[i] - vec[i]*1.5
994 return vec
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995

996 def test_boosts(in_fol, start_fol, start_range,title = 'First test', mod = -1,
change = 0.6): #testing our change function on an existing suboptimal solution↪→

997 start_time = time.time()
998 t = ' '
999 spins, names = read_file(in_fol / start_fol / 'results.json', 5, 1)

1000 new_start = {}
1001 for l in range(len(names)):
1002 new_start[names[l]+t+ str(int(spins[l,0]))+t+str(int(spins[l,1]))

+t+str(int(spins[l,2]))] = spins[l,3]↪→

1003 if mod < 0:
1004 new_starts = boost_sym(new_start, spins, names, change = change)
1005 if new_starts[0].get('rerun') == True: #this does mean that you can get

really unlucky and be trapped in a loop.↪→

1006 print('Starting solution is concidered too poor; we skip this run as it
is not interesting')↪→

1007 return
1008

1009 if len(new_starts[0]) > 0:
1010 print(f'Running {len(new_starts)} symmetric version(s) of previous

outcome')↪→

1011 n = ['a','b','c','d','e','f']
1012 for m in range(len(new_starts)):
1013 out_fol_3 = in_fol /(re.sub('I',str(change)[-1], str(start_fol))

+n[m])↪→

1014 full_opt(in_fol,out_fol_3, start_range, initi= 0,plot = False,boost
= True, starts = new_starts[m])↪→

1015 else:
1016 print('current solution is considered good enough symmetry wise')
1017 run_time = time.time() - start_time
1018 minutes = int(run_time/60)
1019 seconds = np.round((run_time/60 - minutes)*60,2)
1020 with open(in_fol/'runtimes','a') as f:
1021 with redirect_stdout(f):
1022 print(re.sub('I',str(change)[-1], str(start_fol))+' '+str(run_time))
1023 print(re.sub('I',str(change)[-1], str(start_fol))+' done with a runtime of

'+str(minutes)+':'+str(seconds)+' minutes')↪→

1024

1025

1026 def main():
1027 return
1028

1029 if __name__ == '__main__':
1030 main()
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