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A B ST R A C T

A railway turnout, which is a combination of a switch and a crossing is an important component in the
railway network to divert trains. Due to the change in contact between the wheels and the rails as the
train negotiates a turnout, severe impact loading occurs in two-directions: vertically and laterally. These
cause negative environmental impacts in terms of ground vibrations. Therefore, understanding the
ground response due to a railway turnout qualitatively and quantitatively is essential for soil surface in
vicinity.

This thesis focuses on qualitatively and quantitatively describing the ground response through a
dual load model setup through semi-analytical approach. A two-dimensional load on a Euler Bernoulli
beam which is placed on a three-dimensional half-space is considered to describe the ground response.
Followed by which, a load spectrum defining the interaction between the wheels and the rails is
considered and the ground response is analysed. Measurements from the vicinity of a turnout is also
analysed in order to compare the performance of the model to that of the real-life scenario.

It is further concluded that qualitatively the ground response caused due to impact like loading
that occurs at a crossing, and the presence of lateral loading is able to be explained by the model.
Quantitatively, to analyse the response recommendations are to be followed to acquire the accurate load
spectrum along with considering the complex track geometry for the lateral loading.

Chapter 1 introduces the background of the thesis along with the research objectives and methodology
followed.

Chapter 2 studies through literature the cause of impact like loading in a turnout and multiple ways
to model them and consequently influencing the modelling choices considered in the following chapters.

Chapter 3 and Chapter 4 proceeds to model an impulse point load on a euler bernoulli beam which is
on the surface of a half-space. On modelling, the ground response at points of interest are analysed.

Chapter 5 models a moving load spectrum from the models derived in previous chapters through
convolution of responses from moving impulses. The total ground response is then calculated as a
super position of responses from the two models derived.

Chapter 6 explains the measurement setup and the ground response from measurements obtained.
Further which, the model is updated to meet the standards of the measurements and a comparison is
drawn between them.

Chapter 7 lastly concludes the thesis along with suggesting few recommendations and discussing
major points of interest.
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1 I N T R O D U C T I O N

1.1 background
Railway switches and crossings are essential in diverting the direction of the train or to cross other
tracks. As the railway is a guided way; switches crossings are vital in the working of the railway
network. In [Fig.1.1] a standard turnout is depicted which is one of the most commonly used types of
switch and crossing combination. It consists of a switch, closure and a crossing panel.

Figure 1.1: Composition of a railway turnout as expressed by Torstensson et al. [2019]

With the increasing population in urban nodes, space constraints lead to densely populated railway-
track turnout systems and construction of buildings near them. This poses a problem with regards
to ground borne vibrations because railway turnouts are a form of defect-wheel interface Kouroussis
et al. [2015a] which causes large impact forces that can propagate to the buildings near-by and cause
disturbances Connolly et al. [2016]. Large disturbances occur when the wheels move from stock rail
to switch rail in the switch panel and in the crossing panel when the wheels pass the discontinuity
between wing and nose rail. These are the source of large dynamic forces, which cause significant
ground vibrations in the vicinity of the turnout.
Kouroussis et al. [2015b] highlights in [Fig.1.2] the case of significant difference in levels of vibrations
observed between the two cases (standard railway track and in the presence of a defect-switch, crossing
etc.), thus showing the significant contribution of local irregularities to vibration levels.

Figure 1.2: Peak particle velocity as a function of the distance from the track related to the passage of an AM96

trainset (2 x 3 carriages) at a speed of 120 km/h as expressed by Kouroussis et al. [2015b]

1



1.2 problem definition 2

The lateral vibrations generated in a switch is an important phenomenon to not ignore. In analyzing
the effect a turnout has on ground-borne vibrations, lateral source of excitation thus an important aspect
as also cited by Burgelman and Bahn [2015]

1.2 problem definition
The problem definition encompasses in finding the ground vibrations induced by train-like loading
force encountering a railway turnout. The problem is perceived as a three step issue: the vehicle, the
track and the soil. The scope of the problem statement revolves around the track system of a turnout
and the soil and in particular its effect on the surface vibrations. The vehicle dynamics is out of scope of
the problem although the interaction between the vehicle and the tracks is viewed as an application of
load.

1.3 objectives
The main objective of the thesis is:

”Modelling and analysing the ground vibrations induced by a railway turnout”

The sub-objectives of the thesis are as follows:

1. Modelling and analysing the semi-analytical problem for an impulse point load on a beam
interacting with a three dimensional half-space.

2. Modelling and analysing the semi-analytical problem of a moving varying load that represents a
turnout force spectrum on a beam interacting with a three dimensional half-space.

3. Validating the model derived ground vibrations to measurements from points near a railway
turnout.

1.4 research questions
The main research question involves :

”Qualitatively and Quantitatively, what are the ground vibrations at points of interest when a train
negotiates a railway turnout?”

The sub-research questions are:

1. How to model a semi-analytical model when an impulse point load acts on a beam interacting
with a three dimensional half-space and what the conclusions are for the analysis of ground
vibrations?

2. How to model a turnout like force spectrum on a 3 dimensional half-space and analyse the ground
vibrations caused by it?

3. What conclusions are drawn on comparing the measurements derived ground vibrations to the
model considered?

1.5 approach
The approach of the problem statement is a 3 step process as expressed in [Fig.1.3] : Vehicle-Turnout-Soil
system.
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Figure 1.3: 3 system approach highlighting the focused parts

The following explains the 3 system approach:

• Vehicle : The vehicle is considered as a combination of point loads on the model. The dynamics
and detailing of it is out of scope.

• Vehicle-Turnout Interaction : The interaction is in terms of the force spectrum that is input-ed as
a load on the turnout. There exists a vertical loading as well as a lateral loading in a turnout. This
is considered as two independent problems, which are superimposed.

• Turnout : The track system is considered as a Euler-Bernoulli beam.

• Turnout-Soil Interaction : The interaction is observed through the concept of equivalent stiffness
of the soil provided to the beam when a load is applied on it, as detailed in Dieterman and
Metrikine [1996].

• Soil : The soil is a three dimensional homogeneous elastic half-space. It is modelled differently
for the case of a vertical loading and a lateral loading depending on the decomposition of wave
scalar potentials instigated by the loading.

1.5.1 Methodology

The methodology of approach to the problem statement is done in the following steps:

1. Finding the ground response to an impulse point loading in the vertical and lateral direction
individually, applied on a beam interacting with a three dimensional half-space.

2. Super-imposing the impulses to form a moving load vertically and laterally that represents a
turnout and analysing the ground response.

3. Comparing the built-up model with measurements and analysing the the ground vibrations
derived from the two.



2 L I T E R AT U R E ST U DY

The literature study for the problem statement is approached in the following steps:

1. Turnout: Understanding what a turnout is and how & why it is a source of negative effect on
ground borne vibrations.

2. Ground vibration modelling: Understanding how to model the problem and approach it, there-
fore defining the consequences of model choices made.

3. Soil Modelling: On studying the models, an analytical approach to soil modelling is preferred.
Therefore, understanding the soil dynamics is part of the literature study.

4. Modelling choices: Certain aspects of the modelling choices made, like the interaction force
between the track and soil and the approach to the loading mechanism analogous to vehicle
loading is studied.

2.1 turnout
A railway turnout is an important structure in the railway network that let the trains to divert direction
[Fig.2.1].As explained by Liu and Markine [2020], a railway turnout has three panels of interest: switch,
closure and the crossing panel. The train can move through the direct/main line or towards the branch/
divergent line or route. The switch panel has the switch blades that initiates the diverging direction
in the wheels of the trains. In the crossing, which is the point of intersection between the wing rails
and the crossing nose (also known as a frog), is a point of gap/ discontinuity that exists when the train
finally diverts its direction to the new track line. This discontinuity is a source of high wheel-rail impact
Xin et al. [2016], where the wheel forces are two to four times higher than normal track Pletz et al.
[2012]. Due to the small curve radii present in the closure panel, lateral wheel forces arise as explained
by Burgelman and Bahn [2015] and in the presence of trains consisting of a number of bogies that is
pushed through a turnout, the couplers transfer lateral forces rises between them. Due to the complex
structure of the turnout system along with impact loading that occurs, they are a source of ground
vibrations causing disturbance in neighbouring environment situated near the turnout.

Figure 2.1: Standard railway turnout Liu and Markine [2020]

2.1.1 Source of loading

A railway turnout’s complex structure and the change in contact forces is the source of impact loading
that occurs in the railway lines. In Alfi and Bruni [2009] a detailed structure of the process of a train
moving in a turnout and sequence of contact shifts is explained by [Fig.2.2] and [Fig.2.3] when the
wheels negotiate the branch line. In [Fig.2.2] a standard railway turnout is depicted along with notations

4
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on the type of contact between the left wheels and rails in the branch line. By referring to [Fig.2.3], depict
the geometry of the wheel-rail contact: the wheel is the flange like structure and the rails are the bottom
structure. The contact movement is explained by the grey arrows which denotes contact 1 existing
when the train moves on the rails normally, thus generating vertical contact forces. On encountering the
switch, the train wheels move gradually to the stock rails, thus generating normal forces at an angle:
vertical and lateral forces. The gap or discontinuity in rails at the crossing is represented in the contact
3bl and 4. On passing the turnout, the contact goes back to vertical forces in contact 5.

Figure 2.2: Turnout Contact scheme Alfi and Bruni [2009]

Figure 2.3: Contact scheme Alfi and Bruni [2009]
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2.1.2 Loads in a turnout

In Alfi and Bruni [2009] the forces generated in a turnout is mathematically modelled through non
hertzian contact modelling and validated against measurements. The model based loads derived when
a wheel moves through the branch line at 20 kmph is depicted in [Fig.2.4].The vertical forces generated
are almost a constant value of axle loading , and a singular impact like loading at the frog is encountered
due to the discontinuity in contact. The lateral forces are generated in the closure panel followed by a
singular impact at the crossing.

Figure 2.4: Forces in a turnout when the wheels negotiate a branch line at 20 kmph Alfi and Bruni [2009]

2.1.3 Turnout modelling

In Kouroussis et al. [2015b] the environmental effects of ground-borne vibrations due to localised railway
defects is analysed. A turnout is modelled as points of singular impact due to the type of loading that
occurs [Fig.2.5].In [Fig.2.6] , a crossing is modelled as a sequence of step-up and step-down stepwise
contact model where the forces are modelled through non-hertzian contact modelling.

Figure 2.5: Singular impact modelling in Kouroussis et al. [2015b]
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Figure 2.6: Step-up and Step-down model Kouroussis et al. [2015b]

2.2 ground vibrations modelling
The approach to the modelling of a ground vibration induced by railway track has been tackled by
Kouroussis et al. [2015a] in a three-step approach, which is also applied to the present turnout problem
in the following chapters. In [Fig.2.7], the vehicle, track and soil are handled as independent domain
problems which are then linked through an interaction model.

Figure 2.7: Three-step approach model layout by Kouroussis et al. [2015a]

In Connolly et al. [2019], the multiple types of modelling: the vehicle-track and implementation on
soil models has been analysed as summarised by [Fig.2.8].

Figure 2.8: Classification of recent railway-induced ground vibration models Connolly et al. [2019]

With reference to the models studied above, the model approached in this thesis is a analytical model
of a half-space for the soil with a Euler Bernoulli beam on the surface which has a moving axle load
whose magnitude changes with respect to space.
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2.3 soil modelling

2.3.1 Equation of motion

The Caushy-Navier equation or wave equation is one of the basic equations of elastodynamics with
reference to J. D. ACHENBACH [2003] expressed as:

(λ + µ)∇(∇ · ~u) + µ∇2~u +~b = ρ~̈u (2.1)

Where the ~u is the displacement vector and~b is the body force. µ and λ are Lame constants and can be
expressed in terms of Young’s modulus of the soil (E) and Poisson’s ration (ν) as:

λ =
νE

(1 + ν)(1− 2ν)
(2.2)

µ =
E

2(1 + ν)
(2.3)

As any vector can be decomposed into a dot product of a scalar superimposed with a cross product of a
vector, the equation of motion of half-space too can be categorised into two types of motion described
by Helmholtz wave potentials as:

~u = ∇φ +∇× ~ψ (2.4)

Where φ and ψ refer to two wave scalar potentials which correspond to P and S waves, that is,
compression and transverse waves respectively. Therefore, the wave potentials can be decomposed into
two equations as:

φ̈ = α2∇2φ (2.5)

~̈ψ = β2∇2~ψ (2.6)

Where α, β = cl,t which refer to the speed of compression and transverse waves as described as:

cl =

√
λ + 2µ

rho
(2.7)

ct =

√
µ

ρ
(2.8)

2.3.2 Lamb’s wave potentials

From Aki and G.Richards [2002], for a medium where material discontinuities exist horizontally like a
half-space, P and SV plane waves are coupled whereas SH waves propagate independently. Therefore,
from Lame’s theorem, the wave potentials can be described as:[Eq.2.9-2.10], where α, β = cl,t and cl,t
refers to the speed of longitudinal and transverse waves in the medium.

φ̈ = α2∇2φ (2.9)

~̈ψ = β2∇2~ψ (2.10)

There the displacement vector can be expressed in terms of wave potential as[Eq.2.11]:

~u = ∇φ +∇× ~ψ (2.11)

Where the following conditions are met [Eq.2.12-2.13]:

∇.~ψ = 0 (2.12)

∇.φ = 0 (2.13)
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In the absence of any body forces, the displacement is a decomposed into three scalar equations as
[Eq.2.14-2.16]:

φ̈ = α2φ (2.14)

∂2

∂t2 (∇× ~ψ)z = β2∇2[(∇× ~ψ)z] (2.15)

ψ̈z = β2∇2ψz (2.16)

When no body forces exist, any motion can be decomposed into three kinds of motion as when two out
of three functions vanish everywhere: φ, (∇× ~ψ)z, ψz:

• Firstly, when (∇× ~ψ)z, ψz are zero everywhere. This is when there are P-waves. They are defined
by nonzero ∇.~u, but ∇× ~u = 0

• Secondly, when φ = 0 and ψz = 0. As by definition ∇.ψ = 0, it is derived that ∂ψx
∂x +

∂ψy
∂y = 0.

This concludes that there exists there exists a function M such that ψx = ∂M
∂y , ψy = − ∂M

∂x , that is
~ψ = ∇× (0, 0, M), On rewriting M as a scalar function called ψ, ~u is re-written as [Eq.2.17]:

~u = ∇×∇× (0, 0, ψ) = (
∂2ψ

∂z∂x
,

∂2ψ

∂z∂y
,−

∂2ψ

∂x2 −−
∂2ψ

∂y2 ) (2.17)

SV waves fall into this kind of motion as ∇.~u = 0 and (∇× ~u)z = 0.

• Thirdly, when φ = 0 and (∇×~u)z = 0, then ∇.~u = 0 and uz = 0. Therefore there exists a function
ψ such that ~u = ∇× (0, 0, χ). This is the SH wave motion.

Therefore, as ~u can be split into three kinds of motion: P, SV and SH waves and can be expressed
as[Eq.2.18]:

~u = ∇φ +∇×∇× (0, 0, ψ) +∇× (0, 0, χ) (2.18)

Where the three wave scalar potentials are expressed by [Eq.2.19-2.21]

φ̈ = α2∇2φ (2.19)

ψ̈ = β2∇2ψ (2.20)

χ̈ = β2∇2χ (2.21)

2.4 modelling choices

2.4.1 Interaction: Equivalent Stiffness

In Dieterman and Metrikine [1996] a half-space is considered where a Euler Bernoulli beam of width
2a is present on the surface [Fig. 2.9]. The beam and soil are decoupled domains in which the soil
is perceived as frequency dependent springs for the beam domain and the beam is perceived as an
external load in the soil domain. The concept of equivalent stiffness and the process of solving it in the
wavenumber-frequency domain is followed in the coming chapters.

Figure 2.9: Model Dieterman and Metrikine [1996]
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2.4.2 Loading method

In Sheng [1999], dynamic response of a half-space to a harmonic load moving along the rails has been
discussed. The dynamic loads, moving constant axle loads and moving dynamic loads can be used in
the model proposed in the paper. The concept of application of a moving impulse load in Chapter 5 has
been derived from the mentioned paper. Perceiving the load from a frequency domain point of view,
the the harmonic load considered in Sheng [1999] has a magnitude of Po at only a single frequency (ωo),
whereas in Chapter 5, the load is considered to be an impulse which is moving, it has a magnitude of Po
at all frequencies.



3 V E RT I C A L I M P U L S E

The chapter comprises the analytical solution of ground vibrations due to a vertical point impulse load
acting on the beam that is supported by an elastic half-space. The interacting forces between beam and
half-space are obtained by making use of the equivalent stiffness of the soil. The first system that is
solved is an infinite Euler-Bernoulli beam in interaction with frequency-dependent springs, representing
the soil. Hereafter the spring forces are taken as excitation force on the soil, spread over the width of the
beam. The problem is solved in the frequency domain and the results are analysed in the time domain.

3.1 model
The model consists of 2 linear subdomains: Ωb and Ωs which refers to the beam and the half-space
respectively.[Fig.3.1]

• Beam(Ωb) : A Euler Bernoulli beam of width 2a (y-direction) and of infinite length (x-direction) is
present on a 3 dimensional half-space(x, y, z). The beam’s flexural rigidity (EI) and mass per unit
length (m) are assumed to be longitudinally invariant.

• Half-space(Ωs): The half-space is an elastic, homogeneous and isotropic medium defined by
Lamb’s equations. (Lamb [1904])

• Force: An impulse at t=0 is applied at the origin (0,0) ,on the beam along the z-direction (referred
to as vertical)

• Interaction: The interaction between the two domains (Ωb, Ωs) is achieved through enforcing
displacement continuity about the mid-line of the beam and stress continuity over the width of
the beam (2a). The linear approach leads to the concept of equivalent stiffness which is the key
interaction factor as derived in Dieterman and Metrikine [1996]. It is dependent on the frequency,
spatial coordinate along length (x-direction) and displacement of the beam at the coordinate. The
interaction force that is caused due to the loading on the beam which is resisted by the soil through
this force, is in turn the loading force on the soil. Therefore, this is the direct cause of excitation of
ground vibrations in the soil.

Figure 3.1: Representation of Model-1

11
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3.2 governing equations: space-time

Half-space

The equation of motion of half-space (Ωs) is [Eq.3.1]:

µ∇2~u + (λ + µ)∇∇ · ~u = ρ
∂2~u
∂t2 (3.1)

~u is the displacement vector of half-space in x, y and z respectively [Eq. 3.2.], µ is the shear modulus
and λ is Lame’s constant.

~u(x, y, z, t) = {U(x, y, z, t), V(x, y, z, t), W(x, y, z, t)} (3.2)

In coordination with scalar potentials derived in Lamb [1904] the displacements are expressed as [Eq.
3.3-3.5]:

U =
∂φ

∂x
+

∂2ψ

∂x∂z
(3.3)

V =
∂φ

∂y
+

∂2ψ

∂y∂z
(3.4)

W =
∂φ

∂z
+

∂2ψ

∂z2 −
1

ct2

∂2ψ

∂t2 (3.5)

The equation of motion of half-space [Eq.3.1] in terms of scalar potential is [Eq.3.6-3.7].

∇2φ =
1
c2

l

∂2φ

∂t2 (3.6)

∇2ψ =
1
c2

t

∂2ψ

∂t2 (3.7)

cl and ct are the speed of the longitudinal and transverse waves in the half-space, respectively.

Beam

The equation of motion of the beam is [Eq. 3.8]:

m
∂2Wo

∂t2 + EI
∂4Wo

∂x4 = Fs(x, t, Wo(x, t)) + Fb(x, t) (3.8)

Wo is the displacement of the beam in the z direction, Fs is the interacting force between the beam and
the soil and Fb is the force exerted on the beam by an external source. An important property to note is
the nature of these forces; Fb and Fs acts on an Euler Bernoulli beam, due to its spatial one dimensional
nature, it is a force that is only dependent on x-direction (along length of the beam) and time.

Boundary Conditions

The boundary conditions of the half-space are [Eq. 3.9-3.11]:

2aσzz(x, y, 0, t) = Fs(x, t, Wo(x, t)(H(y + a)− H(y− a)) (3.9)

τxz(x, y, 0, t) = 0 (3.10)

τyz(x, y, 0, t) = 0 (3.11)

Interface condition between the domains Ωb and Ωs:

W(x, 0, 0, t) = Wo(x, t) (3.12)

An interesting perspective is in exertion of the interaction force, Fs. It is lumped to one dimension
on the beam but when exerted on the half-space it is evenly spread over the width 2a of the beam



3.3 governing equations - wavenumber-frequency domain 13

Space-Time Wavenumber-Frequency
φ(x, y, z, t) f(k1, k2, z, ω)
ψ(x, y, z, t) g(k1, k2, z, ω)

Wo(x, t) h(k1, ω)
Fb(x, t) f̃b(k1, ω)

Fs(x, t, W0(x, t)) f̃s(k1, ω,h(k1, ω))

Table 3.1: Fourier Transform notation

(2-dimensional). Consequently, the robustness of this assumption is acceptable under the clause that the
waves in beams have a wavelength much higher than the width of the beam. The simplistic duality in
the application of Fs, is referred from Dieterman and Metrikine [1996] aids in further sections. For low
frequency content, the above boundary condition suffices as concluded in Steenbergen and Metrikine
[2007].
The stresses in terms of wave potential are expressed as [Eq.3.13-3.15]:

σzz =
λ

c2
l

∂2φ

∂t2 + 2µ(
∂2φ

∂z2 +
∂3ψ

∂z3 )− 2ρ
∂3ψ

∂z∂t2 (3.13)

τxz = 2µ(
∂2φ

∂x∂z
+

∂3ψ

∂x∂z2 )− ρ
∂3ψ

∂x∂t2 (3.14)

τyz = 2µ(
∂2φ

∂y∂z
+

∂3ψ

∂y∂z2 )− ρ
∂3ψ

∂y∂t2 (3.15)

3.3 governing equations - wavenumber-frequency domain

3.3.1 Forward Fourier Transform

The governing equations of motion described in section 3.2 is transformed to wavenumber-frequency
domain as [Eq.3.16], where F is any function in wavenumber-frequency domain and f is the fourier
image of F in the space-time domain :

F(k1, k2, z, ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x, y, z, t)ei(ωt−k1x−k2y)dtdxdy (3.16)

On fourier transforming the governing equations, the notations of relevant terms are expressed in
Table:3.1.

3.3.2 Governing equations

The equations of motion of the half-space are [Eq.3.17-3.18], where f and g are the wavenumber-frequency
domain Fourier images of the wave scalar potentials φ, ψ:

∂2 f (k1, k2, z, ω)

∂z2 + (
ω2

c2
l
− k2

1 − k2
2) f (k1, k2, z, ω) = 0 (3.17)

∂2g(k1, k2, z, ω)

∂z2 + (
ω2

c2
t
− k2

1 − k2
2)g(k1, k2, z, ω) = 0 (3.18)

The equation of motion of the beam is:

h(ω, k1)D(ω, k2) = f̃s(ω, k1, h(ω, k1)) + f̃b(ω, k1) (3.19)
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Where the dispersion equation of the beam, D(ω, k1) = −mω2 + EIk4
1

The boundary conditions of half-space is [Eq.3.20-3.21]:

−ω2λ

c2
l

f + 2µ(
∂2 f
∂z2 +

∂3g
∂z3 ) + 2ρω2 ∂g

∂z
= f̃s

sin(ak2)

ak2
(3.20)

2µ(
∂2 f
∂z2 +

∂2g
∂z2 ) + ρω2g = 0 (3.21)

The interface condition is [Eq.3.22]:

h(ω, k1) =
1

2π

∫ ∞

−∞
w(k1, k2, 0, ω)dk2 (3.22)

Where w(k1, k2, z, ω) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞ W(x, y, z, t)ei(ωt−k1x−k2y)dtdxdy which is the fourier transform of

the half-space displacement W. On convolution along k2, the interface condition of the condition of
equal displacements about the mid-line of the beam is linked to that of the half-space.

3.4 solution to governing equations
Owing to the characteristics of a half-space the equation of motion corroborating with Sommerfield’s
radiation condition is [Eq. 3.23-3.24]:

f (k1, k2, z, ω) = A(k1, k2, ω)e−zRl (3.23)

g(k1, k2, z, ω) = B(k1, k2, ω)e−zRt (3.24)

Where A,B are viewed as horizontal wave functions as described by Aki and G.Richards [2002] as they
hold the information of the wave potential along k1, k2 and does not depend on z direction.The exponent
term is the function that prescribes the wave potential’s value along z, therefore Rl,t is [Eq.3.25] :

Rl,t =


√
(k2

1 + k2
2)−

ω2

c2
l,t

if ω2

c2
l,t
< k2

1 + k2
2

i
√

ω2

c2
l,t
− (k2

1 + k2
2) if ω2

c2
l,t
> k2

1 + k2
2

(3.25)

On substituting the equation of motion of half-space [Eq.3.23-3.24] in the boundary conditions, linear
equations obtained are:

(
−ω2λ

c2
l

+ 2µR2
l )A− 2Rt(µR2

t + ρω2)B = f̃s(ω, k1, h(ω, k1))
sin(ak2)

ak2
(3.26)

(−2µRl)A + (2µR2
t + ρω2)B = 0 (3.27)

Solving for A and B leads to:

A = f̃s

2R2
t +

ω2

c2
t

µ∆(k1, k2, ω)

sin(ak2)

ak2
(3.28)

B = f̃s
2Rl

µ∆(k1, k2, ω)

sin(ak2)

ak2
(3.29)

Where, ∆(k1, k2, ω) = (2(k2
1 + k2

2)−
ω2

c2
t
)2 − 4Rl Rt(k2

1 + k2
2)

3.4.1 Equivalent Stiffness

In order to find the interaction force Fs, it is essential to solve for equivalent stiffness of the interaction.
Let us assume that no external load acts and proceed by solving the interface condition [Eq.3.22].The
fourier image of the half-space displacement along z is [Eq.3.30]

w(k1, k2, z, ω) =
∂ f
∂z

+
∂2g
∂z2 +

ω2

c2
t

g (3.30)
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The beam’s equation of motion is now:

f̃s(ω, k1, h(ω, k1)) = h(ω, k1)D(ω, k1) (3.31)

On substituting [Eq. 3.23-3.24] in [Eq.3.30] with the derived expressions of A,B, at z=0, and keeping in
mind that the interaction force is expressed as [Eq.3.31], the interface condition can then be re-phrased
as [Eq.3.32]

w(k1, k2, 0, ω) =
ω2Rl

µc2
t

h(ω, k1)D(ω, k1)

∆(ω, k1, k2)

sin(ak2

ak2
(3.32)

Substituting [Eq.3.32] in [Eq.3.22] :

h(ω, k1)

{
1−

ω2D(ω, k1)

2πµc2
t

∫ ∞

−∞

Rl

∆
sin(ak2)

ak2
dk2

}
(3.33)

[Eq.3.33] can also be viewed as: h(ω, k1)D(ω, k1) + χ(ω, k1) = 0 and with reference to Dieterman and
Metrikine [1996] the equivalent stiffness of the half-space is χ from the mentioned form of equation.
Therefore:

χ(ω, k1) =
− 2πµc2

t
ω2

(∫ ∞

−∞

Rl

∆
sin(ak2)

ak2
dk2

)−1

(3.34)

Where ∆(k1, k2, ω) = (2(k2
1 + k2

2)−
ω2

c2
t
)2 − 4Rl Rt(k2

1 + k2
2) and Rl,t follows the condition in [Eq.3.25].

3.4.2 Interaction force

From the equivalent stiffness derived in [Eq.3.34] for no external loading:

f̃s = h(ω, k1)D(ω, k1)

Also : h(ω, k1)(D(ω, k1) + χ(ω, k1)) = 0

Therefore : f̃s = −h(ω, k1)χ(ω, k1) (3.35)

Similarly, for the case of external loading, the equations can be re-phrased as:

h(ω, k1)(D(ω, k1) + χ(ω, k1)) = f̃b(ω, k1)

Therefore : f̃s = −
f̃b(ω, k1)χ(ω, k1)

D(ω, k1) + χ(ω, k1)
(3.36)

3.5 surface displacement
The displacements of the half-space in the wave-number frequency domain are [Eq.3.37]:

ũ = −ik1( f +
∂g
∂z

)

ṽ = −ik2( f +
∂g
∂z

)

w̃ =
∂ f
∂z

+
∂2g
∂z2 +

ω2

c2
t

g

(3.37)

At z=0 ,the displacements are [Eq.3.38]:

ũ = ik1(2R2
t +

ω2

c2
t
− 2RtRl)

f̃s(k1, ω)

µ∆(k1, k2, ω)

sin(ak2)

ak2

ṽ = ik2(2R2
t +

ω2

c2
t
− 2RtRl)

f̃s(k1, ω)

µ∆(k1, k2, ω)

sin(ak2)

ak2

w̃ = −ω2

c2
t

Rl
f̃s(k1, ω)

µ∆(k1, k2, ω)

sin(ak2)

ak2

(3.38)
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Domain (Ω) Name Value Unit

Half-space

Shear Modulus of half-space (µ) 3.27× 107 N/m2

Poisson’s Ratio (ν) 0.3
Material Damping 2.5 %

Density of half-space (ρ) 1960 kg/m3

Longitudinal wave speed (cl) 242.34 + 6.05i m/s
Transverse wave speed (ct) 119.97 + 2.99i m/s
Rayleigh wave speed (cr) 129.54 + 3.23i m/s

Beam
Mass of beam (m) 760 kg/m

Flexural Rigidity (EI) 1.29× 107 Nm2

Width of beam (2a) 2× 2.6 m
Force Axle load on beam (Fb) 225δ(x)δ(t) kN

Table 3.2: Numerical Model Details

3.5.1 Inverse Fourier Transform

Inverse fourier transform of surface displacements [Eq.3.38] to the frequency domain are [Eq. 3.39]:

Ũ(x, y, 0, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
ik1(2R2

t +
ω2

c2
t
− 2RtRl)

f̃s(k1, ω)

µ∆(k1, k2, ω)

sin(ak2)

ak2
eik1x+ik2ydk1dk2

Ṽ(x, y, 0, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
ik2(2R2

t +
ω2

c2
t
− 2RtRl)

f̃s(k1, ω)

µ∆(k1, k2, ω)

sin(ak2)

ak2
eik1x+ik2ydk1dk2

W̃(x, y, 0, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
−ω2

c2
t

Rl
f̃s(k1, ω)

µ∆(k1, k2, ω)

sin(ak2)

ak2
eik1x+ik2ydk1dk2

(3.39)

In order to obtain the time domain displacements, the functions are inverse fourier transformed again
[Eq. 3.40]

U(x, y, 0, t) =
1

2π

∫ ∞

−∞
Ũ(x, y, 0, ω)e−iωtdω

V(x, y, 0, t) =
1

2π

∫ ∞

−∞
Ṽ(x, y, 0, ω)e−iωtdω

W(x, y, 0, t) =
1

2π

∫ ∞

−∞
W̃(x, y, 0, ω)e−iωtdω

(3.40)

3.5.2 Numerical Solution-MATLAB

The surface displacements are calculated and inverse fourier transformed numerically using MATLAB.
Table-3.2 are the model details considered as input with reference to Dieterman and Metrikine [1996].
Damping of 5% is included in the frequency domain and provided via a complex shear modulus of the
half-space

3.6 result
For a point load acting as an impulse at the origin on the beam, the points of discussion that is vital for
understanding the problem and the solution are:

• The interacting force (Fs) : For an impulse that is applied, Fs is analysed for multiple frequencies,
to notice how it behaves in the space domain. This is the loading problem on the half-space. The
spatial as well as time smearing nature of the interacting force, is essential in a railway schematic
problem.
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• The surface displacements (U, V, W) : The displacements in the frequency domain as well as time
domain is essential notice as this is the solution.

Figure 3.2: Model and Point of interest

3.6.1 Interacting force

The interacting force, [Eq.3.36] is a function of the applied load ( f̃b), the equivalent stiffness between the
domains (χ) and the dispersion equation of the beam (D). Therefore, it is essentially observed in the
ω-k1 domain. For Fb(x, t) being a 225kNδ(x)δ(t), the Fourier transform of it is f̃b(ω, k1) = 225× 103.
Therefore,

f̃s(ω, k1) = −
225× 103χ(ω, k1)

D(ω, k1) + χ(ω, k1)

χ(ω, k1) =
− 2πµc2

t
ω2

(∫ ∞

−∞

Rl

∆
sin(ak2)

ak2
dk2

)−1

D(ω, k1) = −mω2 + EIk4
1

(3.41)

In Fig.3.3 the interaction force as a function of distance is expressed for 5, 25 and 50Hz.

Figure 3.3: Interaction force at 5, 25 and 50 Hz of Loading frequency
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3.6.2 Surface displacements

The displacements at z = 0 m, is found from the Eq.3.39 on numerically integrating them. Fig.3.4
contains the displacements along y=0, i.e. right under the mid line of the beam. The displacements along
y (V) is zero, due to symmetry of the half-space problem. The displacement along x (U) is anti-symmetric
in nature at y=0 due to the symmetry of the infinitely long beam.At the point of application of load U=0,
due to loading condition being constrained only to z. The displacement along z (W) is comparatively
the highest and this is due to the half-space(z > 0 system) and loading nature. With respect to loading
frequencies, it can also be noticed that the wave-numbers increase with higher frequency of loading.

In Fig.3.5 the displacements along y=10, i.e. 10 m away from the beam is derived. The important
observation is that U,V and W are present in almost comparative range. U is anti-symmetric about x=0

whereas V and W are symmetric in nature.This is essentially due to the symmetric nature of the system
and loading again.

Figure 3.4: Surface displacements at y=0 when loading frequency is 5, 25 and 50 Hz
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Figure 3.5: Surface displacements at y=10 when loading frequency is 5, 25 and 50 Hz

3.6.3 Point of Interest

For a point of interest, example [0,20] as notated in Fig.3.2 the frequency domain result of the three-
dimensional velocities can be found.[Fig.3.6] refers to this, and as expected that U=0 due to symmetry
and V, W are in comparison range, with W> V on an average. The disturbance noticed at time t = 0 is
due to numerical truncation in the frequency domain at f = 250 Hz.

Figure 3.6: Surface velocity [0,20] when an impulse of 225 KN acts at the origin on the beam
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3.6.4 Multiple points of interest

Diagonally from the point of loading, four points of interest are considered with radial distances of 10,
20, 30, 40 m on the surface [Fig.3.7]. The displacements at these points are plotted for an impulse point
load at the origin on the beam [Fig.3.8]. The arrival of waves is calculated from the speeds in Table:3.3.
The points to notice are:

• The attenuation in waves along the distance is observed from the magnitude of displacements,
due to geometrical damping.

• U, V are almost equal for higher distances, which can be inferred that at higher distances the
beam’s influence is reduced. Whereas, at r = 10 m, the values of U, V are different.

• The P-wave arrival is significant in U, V when compared to W as they are significant in along the
surface direction.

• The time difference between the arrival of P-wave and surface waves is higher for higher distances.

Figure 3.7: Multiple points of interest

Wave Speed [m/s] r=10 m r=20 m r=30 m r=40 m
Longitudinal (P) 242.41 m/s 0.041 s 0.082 s 0.124 s 0.165 s

Transverse (S) 129.57 m/s 0.073 s 0.154 s 0.232 s 0.308 s
Surface/Rayleigh (R) 120.01 m/s 0.083 s 0.167 s 0.250 s 0.334 s

Table 3.3: Arrival of waves at Points of interest
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Figure 3.8: Surface displacements at r = 10, 20, 30, 40 m



4 L AT E R A L I M P U L S E

This chapter comprises the semi-analytical solution for the displacements and velocities of a half-space
when a lateral impulse point force acts on a beam. The interacting forces between beam and half-space
are obtained by making use of the equivalent stiffness of the soil. The first system that is solved is an
infinite Euler-Bernoulli beam in interaction with frequency-dependent springs, representing the soil.
Hereafter the spring forces are taken as excitation force on the soil, spread over the width of the beam.
The problem is solved in the frequency domain and the results are analysed in the time domain.
The significant difference between Chapter:3 and Chapter:4 is in the formulation of Lamb scalar wave
potentials explained in the following sections.

4.1 model
The model consists of 2 linear sub-domains: Ωb and Ωs which refers to the beam and the half-space
respectively. [Fig.4.1]

• Beam(Ωb) : A Euler Bernoulli beam of width 2a (y-direction) and of infinite length (x-direction) is
present on a 3 dimensional half-space(x, y, z). The beam’s flexural rigidity (EI) and mass per unit
length (m) are assumed to be longitudinally invariant.

• Half-space(Ωs): The half-space is an elastic, homogeneous and isotropic medium defined by
Lamb’s equations. (Lamb [1904])

• Force (Fb): An impulse point force of value P is exerted at t = 0 on the origin (0, 0) of the beam
along y-direction (referred to as lateral) [Eq.4.1]

Fb = Pδ(x)δ(t) (4.1)

• Interaction: The interaction between the two domains (Ωb, Ωs) is achieved through enforcing
displacement continuity about the mid-line of the beam and stress continuity over the width of
the beam (2a). The linear approach leads to the concept of equivalent stiffness which is the key
interaction factor as derived in Dieterman and Metrikine [1996].

Figure 4.1: Representation of Model -2

22
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4.2 governing equations: space-time

Half-space

The equation of motion of the half-space domain (Ωs) is [Eq.4.2] as expressed by Aki and G.Richards
[2002] . The displacement vector is composed of three scalar wave potentials (φ, ψ, χ) which co relates
to P wave, SV wave and SH wave respectively.

~u = ∇φ +∇×∇× (0, 0, ψ) +∇× (0, 0, χ) (4.2)

Where ~u is the displacement vector of the half-space comprising the displacements in (x, y, z) direction
respectively as U, V, W. [Eq.4.3]

~u(x, y, z, t) = {U(x, y, z, t), V(x, y, z, t), W(x, y, z, t)} (4.3)

The equation of motion of the half-space in terms of scalar wave potentials (φ, ψ & χ) that represent
the three types of waves, P, SV & SH waves respectively are [Eq.4.4-4.6]; where cl and ct are the speed of
the longitudinal and transverse waves in the half-space respectively.

∇2φ =
1
c2

l

∂2φ

∂t2 (4.4)

∇2ψ =
1
c2

t

∂2ψ

∂t2 (4.5)

∇2χ =
1
c2

t

∂2χ

∂t2 (4.6)

The displacements (U, V, W) which comprises the vector ~u are notated through scalar wave potentials
as [Eq.4.7-4.9]. On an obvious observation, the SH scalar wave potential, χ does not influence the
displacement in z-direction, W, which is reasoned through the definition of SH waves as explained in
Chapter 2.

U =
∂φ

∂x
+

∂2ψ

∂x∂z
+

∂χ

∂y
(4.7)

V =
∂φ

∂y
+

∂2ψ

∂y∂z
− ∂χ

∂x
(4.8)

W =
∂φ

∂z
+

∂2ψ

∂z2 −
1

ct2

∂2ψ

∂t2 (4.9)

Beam

The equation of motion of the beam is [Eq.4.10], where Vo is the displacement of the beam in the
y-direction, Fs is the interacting force per unit length between the beam and the soil in y-direction
and Fb is the force per unit length exerted on the beam by an external source and both the forces are
exerted along the y-direction. The characteristics of the beam, m and EI are the mass per unit length
and bending stiffness of the beam respectively which are considered to be a constant along it’s length
and in time.

m
∂2Vo

∂t2 + EI
∂4Vo

∂x4 = Fs(x, t, Vo(x, t)) + Fb(x, t) (4.10)

The beam is assumed to be of Euler Bernoulli in nature, due to its assumption Fb and Fs are forces per
unit length that depends only on x and time.Fs also is interconnected to the displacement of the beam
(Vo).
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Boundary conditions

The boundary conditions of the half-space at the surface are [Eq.4.11-4.14]. The interacting force, Fs,
which in this case is exerted by the beam on the half-space is always in equilibrium with the shear stress
on the surface (τyz) [Eq.4.11]. An important characteristic of the interacting force (Fs) is in its application:

• When exerted by the half-space (Ωs) on the beam (Ωb): As explained in sub-section 4.2, it is acting
per unit length on the E-B beam incorporated in equation of motion of the beam.

• Whereas when Fs is exerted by the beam (Ωb) on the half-space (Ωs): It is smeared uniformly along
the width of the beam (2a), therefore the Heaviside-function is applicable in linking it against the
shear stress(τyz) in the boundary condition of the half-space[Eq.4.11]. Consequently, the robustness
of uniform distribution of stress across 2a is acceptable under the clause that the waves in beams
have a wavelength much higher than the width of the beam.

The application of Fs, is referred from Dieterman and Metrikine [1996] is for low frequency content. The
assumed boundary condition suffices as concluded in Steenbergen and Metrikine [2007].

2aτyz(x, y, 0, t) = Fs(x, t, Vo(x, t)(H(y + a)− H(y− a)) (4.11)

As the surface of the half-space does not experience any form of loading apart from that of the beam
and it is assumed that the stresses are independent, it can be evaluated that the normal stress on the
surface σzz is zero at all times [Eq.4.12] and similarly, the shear stress along x-direction on the surface
τxz is also zero.[Eq.4.13]

σzz(x, y, 0, t) = 0 (4.12)

τxz(x, y, 0, t) = 0 (4.13)

The interface condition between the beam Ωb and the half-space Ωs is further linked through the
displacement continuity as a linear system is assumed [Eq.4.14]. Therefore the displacements of the
beam along y-direction, Vo is equal to the surface displacement of the half-space along y-direction, V at
the mid-line of the beam at all times:

V(x, 0, 0, t) = Vo(x, t) (4.14)

The stresses expressed in terms of scalar wave potentials which would aid in further simplifications is
expressed in [Eq.4.15-4.17]

τyz = µ(2
∂2φ

∂y∂z
+ 2

∂3ψ

∂y∂z2 −
∂3ψ

c2
t ∂y∂t2

− ∂2χ

∂x∂z
) (4.15)

σzz =
λ

c2
l

∂2φ

∂t2 + 2µ(
∂2φ

∂z2 +
∂3ψ

∂z3 )− 2ρ
∂3ψ

∂z∂t2 (4.16)

τxz = µ(2
∂2φ

∂x∂z
+ 2

∂3ψ

∂x∂z2 −
∂3ψ

c2
t ∂x∂t2

+
∂2χ

∂y∂z
) (4.17)

4.3 governing equations - wavenumber-frequency domain

4.3.1 Forward Fourier Transform

The governing equations of motion described in section 4.2 is transformed to wavenumber-frequency
domain as [Eq.4.18], where k1, k2 are the wavenumbers and ω is the angular frequency:

F(k1, k2, z, ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x, y, z, t)ei(ωt−k1x−k2y)dtdxdy (4.18)

On fourier transforming the governing equations, the notations of relevant terms are expressed in
Table:4.1.
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Name Space-Time Wavenumber-Frequency
P-wave scalar potential φ(x, y, z, t) f(k1, k2, z, ω)

SV-wave scalar potential ψ(x, y, z, t) g(k1, k2, z, ω)
SH-wave scalar potential χ(x, y, z, t) h(k1, k2, z, ω)

Displacement of beam Vo(x, t) p(k1, ω)
Force on beam Fb(x, t) f̃b(k1, ω)

Interacting force Fs(x, t, V0(x, t)) f̃s(k1, ω,p(k1, ω))

Table 4.1: Fourier Transform notation

4.3.2 Governing Equations

The equations of motion of the half-space in terms of scalar wave potentials derived from [Eq.4.4-4.6]
are [Eq.4.27-4.29] in the wavenumber-frequency domain, where cl and ct are the speeds of longitudinal
and transverse waves respectively:

∂2 f
∂z2 + (

ω2

c2
l
− k2

1 − k2
2) f = 0 (4.19)

∂2g
∂z2 + (

ω2

c2
t
− k2

1 − k2
2)g = 0 (4.20)

∂2h
∂z2 + (

ω2

c2
t
− k2

1 − k2
2)h = 0 (4.21)

The equation of motion of the beam following from [Eq.4.10] is derived as [Eq.4.22] in wavenumber-
frequency domain:

p(ω, k1)D(ω, k1) = f̃s(ω, k1, p(ω, k1)) + f̃b(ω, k1) (4.22)

Where D(ω, k1) = −mω2 + EIk4
1 is the dispersion equation of the beam.

The boundary conditions of the half-space [Eq.4.11-4.14] on transforming to the wavenumber-frequency
domain are respectively:

iµ(−2k2
∂ f
∂z
− 2k2

∂2g
∂z2 − k2

ω2

c2
t

g + k1
∂h
∂z

) = f̃s(ω, k1, p(ω, k1))
sin(ak2)

ak2
(4.23)

− λ

c2
l

ω2 + 2µ(
∂2 f
∂z2 +

∂3g
∂z3 ) + 2ρω2 ∂ψ

∂z
= 0 (4.24)

iµ(−2k1
∂ f
∂z
− 2k1

∂2g
∂z2 − k1

ω2

c2
t

g− k2
∂h
∂z

) = 0 (4.25)

The interface condition [Eq.4.14] is fourier transformed as [Eq.4.26]. :

p(ω, k1) =
1

2π

∫ ∞

−∞
v(k1, k2, 0, ω)dk2 (4.26)

Where v(k1, k2, z, ω) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞ V(x, y, z, t)ei(ωt−k1x−k2y)dtdxdy where V is the displacement in

y-direction of the half-space [Eq.4.8]. The wavenumber-frequency domain expression of V is convoluted
across k2 domain in order to interconnect the midline displacement of the beam to the half-space in
[Eq.4.26]

4.4 solution to governing equations
Owing to the characteristics of a half-space, the equations of motion corroborating with Sommerfield’s
radiation condition is [Eq. 4.27-4.29]:

f = A(k1, k2, ω)e−zRl (4.27)
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g = B(k1, k2, ω)e−zRt (4.28)

h = C(k1, k2, ω)e−zRt (4.29)

Where A, B and C are viewed as horizontal wave functions as described by Aki and G.Richards [2002]
as they hold the information of the wave potential along k1, k2 and do not depend on z-direction. A, B
and C also correspond to P, SV and SH wave potentials respectively on the surface z = 0. The exponent
is the function that prescribes the wave potential’s value along z-direction, therefore Rl,t is [Eq.4.30] :

Rl,t =


√
(k2

1 + k2
2)−

ω2

c2
l,t

if ω2

c2
l,t
< k2

1 + k2
2

i
√

ω2

c2
l,t
− (k2

1 + k2
2) if ω2

c2
l,t
> k2

1 + k2
2

(4.30)

On substituting the equation of motion of half-space [Eq.4.27-4.29] in the boundary conditions
[Eq.4.23-4.26], linear equations obtained are which are then solved for A, B and C as [Eq.4.31-4.33] :

A = 2i f̃sRt
sin(ak2)

aµ∆
(4.31)

B = i f̃s

(2R2
t +

ω2

c2
t
)

(k2
1 + k2

2)

sin(ak2)

aµ∆
(4.32)

C = i f̃s
k1

(Rt(k2
1 + k2

2))

sin(ak2)

aµk2
(4.33)

Where,

∆ = (2(k2
1 + k2

2)−
ω2

c2
t
)2 − 4Rl Rt(k2

1 + k2
2) (4.34)

4.4.1 Equivalent Stiffness

In order to find the interaction force Fs, it is essential to solve for equivalent stiffness of the interaction
between the beam and the half-space.Therefore, it is assumed that no external load acts and proceed by
solving the interface condition [Eq.4.26].The wavenumber-frequency domain expression of the half-space
displacement along y-direction is [Eq.4.35]

v(k1, k2, z, ω) = −i[k2( f +
∂g
∂z

)− k1h] (4.35)

The beam’s equation of motion when Fb = 0 is [Eq.4.36] :

f̃s(ω, k1, p(ω, k1)) = p(ω, k1)D(ω, k1) (4.36)

On substituting the expressions of f , g and h from [Eq.4.31-4.33] at z = 0 in [Eq.4.35], leads to the value
of v as expressed in [Eq.4.37].

v(k1, k2, 0, ω) =
p(ω, k1)D(ω, k1)

µRt

(k2
2R2

t
ω2

c2
t
− k2

1∆)

(k2
1 + k2

2)∆
sin(ak2)

ak2
(4.37)

Substituting [Eq.4.37] in [Eq.4.26] :

p(ω, k1)

1−
D(ω, k1)

2πµ

∫ ∞

−∞

(k2
2R2

t
ω2

c2
t
− k2

1∆)

Rt(k2
1 + k2

2)∆
sin(ak2)

ak2
dk2

 = 0 (4.38)
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The equation above, [Eq.4.38] can also be viewed as: p(ω, k1)D(ω, k1) + χ(ω, k1) = 0 and with reference
to Dieterman and Metrikine [1996] the equivalent stiffness of the half-space is χ from the mentioned
form of equation.Therefore, the equivalent stiffness χ can be derived as [Eq.4.39].

χ(ω, k1) = −2πµ


∫ ∞

−∞

(k2
2R2

t
ω2

c2
t
− k2

1∆)

Rt(k2
1 + k2

2)∆
sin(ak2)

ak2
dk2


−1

(4.39)

Where ∆(k1, k2, ω) = (2(k2
1 + k2

2)−
ω2

c2
t
)2 − 4Rl Rt(k2

1 + k2
2) and Rl,t follows the condition in [Eq.4.30].

4.4.2 Interaction force

From the equivalent stiffness derived in [Eq.4.39] for a case of no external loading, the interaction force
is rephrased as expressed in [Eq.4.40]:

f̃s = h(ω, k1)D(ω, k1)

Also : h(ω, k1)(D(ω, k1) + χ(ω, k1)) = 0

Therefore : f̃s = −h(ω, k1)χ(ω, k1) (4.40)

Similarly, for the case of an external loading existing, the equations can be re-phrased, to find the
interaction force as [Eq.4.41]:

h(ω, k1)(D(ω, k1) + χ(ω, k1)) = f̃b(ω, k1)

Therefore : f̃s = −
f̃b(ω, k1)χ(ω, k1)

D(ω, k1) + χ(ω, k1)
(4.41)

4.5 surface displacement
The displacements of the half-space in the wave-number frequency domain are [Eq.4.42]:

ũ = −ik1( f +
∂g
∂z

)− ik2h

ṽ = −ik2( f +
∂g
∂z

) + ik1h

w̃ =
∂ f
∂z

+
∂2g
∂z2 +

ω2

c2
t

g

(4.42)

At the surface, z = 0, the displacements are [Eq.4.43]:

ũ =
f̃s

µRt∆

k1k2(R2
t

ω2

c2
t
− ∆)

(k2
1 + k2

2)

sin(ak2)

ak2

ṽ =
f̃s

µRt∆

(k2
2R2

t
ω2

c2
t
− k2

1∆)

(k2
1 + k2

2)

sin(ak2)

ak2

w̃ = −ω2

c2
t

Rl
f̃s

µ∆
sin(ak2)

ak2

(4.43)

Where ∆(k1, k2, ω) = (2(k2
1 + k2

2)−
ω2

c2
t
)2 − 4Rl Rt(k2

1 + k2
2) and Rl,t follows the condition in [Eq.4.30],

and f̃s is given by [Eq.4.41].
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4.5.1 Inverse Fourier Transform

Inverse fourier transform of surface displacements [Eq.4.43] from the wavenumber-frequency domain
to the frequency domain are [Eq. 4.44]. By transforming the expressions to the frequency domain, it
can then be further transformed to the time domain in order to view the ground displacements as a
function of space and time.

Ũ(x, y, 0, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

f̃s

µRt∆

k1k2(R2
t

ω2

c2
t
− ∆)

(k2
1 + k2

2)

sin(ak2)

ak2
eik1x+ik2ydk1dk2

Ṽ(x, y, 0, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

f̃s

µRt∆

(k2
2R2

t
ω2

c2
t
− k2

1∆)

(k2
1 + k2

2)

sin(ak2)

ak2
eik1x+ik2ydk1dk2

W̃(x, y, 0, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
−ω2

c2
t

Rl
f̃s
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The last step is to obtain the time domain displacements, and [Eq.4.44] are inverse fourier transformed
again as [Eq. 4.45] to the time domain.

U(x, y, 0, t) =
1

2π

∫ ∞

−∞
Ũ(x, y, 0, ω)e−iωtdω

V(x, y, 0, t) =
1

2π

∫ ∞

−∞
Ṽ(x, y, 0, ω)e−iωtdω

W(x, y, 0, t) =
1

2π

∫ ∞

−∞
W̃(x, y, 0, ω)e−iωtdω

(4.45)

4.5.2 Numerical Solution-MATLAB

The surface displacements are calculated and inverse fourier transformed numerically using MATLAB.
Table-4.2 are the model details considered as input with reference to Dieterman and Metrikine [1996]. A
damping of 5% is provided in the shear modulus of the half-space.

Domain Name Value Unit

Half-space

Shear Modulus of half-space (µ) 3.27× 107 N/m2

Poisson’s Ratio (ν) 0.3
Material Damping 2.5%

Density of half-space (ρ) 1960 kg/m3

Longitudinal wave speed (cl) 242.34 + 6.05i m/s
Transverse wave speed (ct) 119.97 + 2.99i m/s
Rayleigh wave speed (cr) 129.54 + 3.23i m/s

Beam
Mass of beam (m) 760 kg/m

Flexural Rigidity (EI) 1.29× 107 Nm2

Width of beam (a) 2.6 m
Force Axle load on beam (Fb) 225δ(x)δ(t) kN

Table 4.2: Numerical Model Details

4.6 result
For the given problem statement of an impulse point load, the points of discussion that is vital for
understanding the problem and the solution are:
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Figure 4.2: Model and Point of interest

• The interacting force (Fs): For an impulse that is applied, Fs is analysed for multiple frequencies,
to notice how it behaves in the space domain. This is the loading problem on the half-space. The
spatial as well as time smearing nature of the interacting force, is essential in a railway schematic
problem.

• The surface displacements (U, V, W): The displacements in the frequency domain as well as time
domain is essential to notice as this is the solution and key in analysing the ground vibrations.

The ground vibrations are also analysed in particular to the point of interest as depicted in [Fig.4.2].

4.6.1 Interacting force

The interacting force, [Eq.4.41] is a function of the applied load ( f̃b), the equivalent stiffness between the
domains (χ) and the dispersion equation of the beam (D) in the wavenumber-frequency domain. For
a loading force of Fb = 225kNδ(x)δ(t), the interacting force is derived in the frequency-wavenumber
domain and fourier transformed to the frequency-space domain to analyse the spread of the force across
the beam and in the half-space (2a). It is to be noted that since the applied load is an impulse, in the
frequency domain it is a constant ( f̃b = 225), thus activating all frequencies of loads.

The interaction force (Fs) is analysed in [Fig.4.3] as a ratio to the magnitude of the loading force
(225KN) and its spread along x axis. The force(Fs) is analysed at three different loading force frequency:
5, 25, 50 Hz applied at the origin (0, 0). The points to observe from the [Fig.4.3] are:

• At 5Hz, the magnitude of the force is maximum and reduces at 25Hz and further at 50 Hz. This is
because the interaction force is a form of response by the half-space to the loading on the beam,
therefore, when the loading frequency is high, the response does not acquire sufficient time to
absorb the entirety of the loading energy to respond. This conclusively means, when the loading
frequency is 0, that is when a stationary load is applied, then the response, (Fs) will be of equal
and opposite value.

• At 5Hz the force dampens out quickly, whereas at increasing frequencies, the spread of the force
across the beam increases.It can be viewed at a perspective that for a given load energy, at multiple
frequencies the spread of the resisting force is accordingly, that the total energy is equal.
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Figure 4.3: Interaction force at 5, 25 and 50 Hz of Loading force (Fb) frequency

4.6.2 Surface displacements

The displacements at z=0, is found from the Eq.4.44 on numerically integrating them. Fig.4.4 contains
the displacements(U, V, W) along y=0, i.e. right under the mid-line of the beam, for three different
loading force frequencies (5, 25, 50Hz).The points to observe from the figure are:

• U, W are almost 0 across the x-axis, and V is symmetric across the x-axis with the maximum value
under the point of loading. Theoretically, the value of V under the point of loading is infinite
because it is a singular load on a half-space, right under the nose of the loading.

• For a loading frequency of 5Hz, magnitude of V is higher than in 25Hz and 50Hz, this is because
the response does not acquire sufficient time to absorb the loading force at higher frequencies.
However, the total energy imparted and responded would be equal for all frequencies.

In Fig.4.5 the displacements along y=10, i.e. 10 m away from the beam are derived. The points to
observe from the figure are:

• U has an anti-symmetric mode of vibration and this is due to the symmetry of the half-space and
the load. V, W have symmetric mode of vibration across the y-axis.

• U is 0 along the y-axis, where as V, W reach the maximum value along the y-axis, the direction of
load. This is also due to symmetry that the value of x-direction displacement is 0 along the y-axis.
Whereas, V, W have higher displacements as the load is along the y-direction and on the surface
of the half-space.

• The values of displacements are higher at a lower loading frequency of 5Hz when compared to
higher frequencies. The reason to this is mentioned previously.
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Figure 4.4: Surface displacements at y=0 when loading frequency is 5,25 and 50 Hz

Figure 4.5: Surface displacements at y=10 when loading frequency is 5,25 and 50 Hz

Point of Interest

For the POI [0, 20] the surface displacements are derived in wavenumber-frequency domain and
consequently fourier transformed to space-time domain. For the provided model details, analytically
the speeds of the longitudinal,transverse and rayleigh waves are calculated and the arrival time of these
waves is thus estimated for the distance between the load and POI (20m). [4.4]
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Name Speed [m/s] Arrival time [s]
P-wave 242.41m/s 0.082s
S-wave 129.57m/s 0.154s
R-wave 120.08m/s 0.166s

Table 4.3: Estimated Arrival time of waves at [0,20]

The numerical model derived ground vibration at POI is expressed in the frequency and time domain in
[Fig.4.6]. It can be observed that the model is in co-ordination with the estimated arrival time of waves.
The P-waves arrive first, followed by the S-waves and the surface waves (R-waves) arrive at the end. The
disturbance at time t = 0 is due to numerical truncation limit in the frequency domain.

Figure 4.6: Surface velocity at [0,20] in frequency and time domain

4.6.3 Multiple points of interest

Diagonally from the point of loading, four points of interest are considered with radial distances of 10,
20, 30, 40 m on the surface [Fig.4.7]. The displacements at these points are plotted for an impulse point
load at the origin on the beam [Fig.4.8]. The arrival of waves is calculated from the speeds in Table:4.4.
The points to notice are:

• The attenuation in waves along the distance is observed from the magnitude of displacements

• U, V are almost equal for higher distances, which can be inferred that at higher distances the
beam’s influence is reduced. Whereas, at r = 10 m, the values of U, V are different.

• The P-wave arrival is significant in U, V when compared to W as they are significant in along the
surface direction.

• The time difference between the arrival of P-wave and surface waves is higher for higher distances.
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Wave Speed [m/s] r=10 m r=20 m r=30 m r=40 m
Longitudinal (P) 242.41 m/s 0.041 s 0.082 s 0.124 s 0.165 s

Transverse (S) 129.57 m/s 0.073 s 0.154 s 0.232 s 0.308 s
Surface/Rayleigh (R) 120.01 m/s 0.083 s 0.167 s 0.250 s 0.334 s

Table 4.4: Arrival of waves at Points of interest

Figure 4.7: Multiple points of interest

Figure 4.8: Surface displacements at r = 10, 20, 30, 40 m



5 T U R N O U T

5.1 numerical - model
A standard railway turnout [Fig.5.1] consists of three sections: the switch panel, closure panel and
crossing panel. These three sections produce a different type of loading on the soil when a train
encounters it. The factors that influence the magnitude of the loading are varied from speed of the train,
wheel-set of the train, dip angle in the railway track, change in stiffness of the tracks through the three
sections, soil properties, effect of sleepers and ballast, wear and tear level of the tracks and wheels, main
or branch line encounter of the train, left or right wheel etc.

Figure 5.1: A standard turnout

The numerical model depicting a railway turnout setup is simplified through the following assump-
tions:

• The magnitude of the loading function on the railway tracks depends only on the longitudinal
position of the train’s wheel-set. The vertical and lateral forces occurring in a turnout are
considered whereas the longitudinal forces occurring are out of scope. Although multiple factors
affect the magnitude of the loads, the overall behaviour of the loading function is similar as
described in Chapter:2.

• The turnout track system is considered as a two-dimensional Euler-Bernoulli beam. Therefore,
irrespective of the train encountering the main or branch line of the turnout, the track system is
modelled similarly.

The numerical model of a train going through a railway turnout is therefore built up from the building
blocks which are Model-1 derived in Chapter:3 for a point impulse load applied vertically and Model-
2 derived in Chapter:4 for a point impulse load applied laterally. The following modifications are
performed to build the turnout model [Fig.5.2]:

1. The Euler-Bernoulli beam which represents the tracks of the turnout system, are discretised along
the length of the beam.

2. The loading is executed as a series of impulses applied at points of discretisation along the beam
at different time instances with different magnitudes, thus representing a moving varying load.

3. From Eq.[3.39-3.40] & Eq.[4.44-4.45] the green’s function of the displacements at any point is
derived when the magnitude of the impulse P is set to unit value, P = 1 N. By superposition of
the green’s function the total displacement at a point can be found. This is further explained in
Section.5.2

34
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Figure 5.2: Numerical Model for a moving load

5.2 surface vibration
Let the point of interest at which the surface displacements/velocities are to be found be [0, 20] [Fig.5.3
for a turnout like loading function on the beam along x-axis. Let the turnout be of length 20 m spanning
from [−10, 0] to [10, 0] and let the loading function exists only within this span of the infinitely long
beam. In order to derive the surface vibration the following process is important to understand which is
described in the following sections:

• Applying the loading function in the model

• Finding the surface vibrations

5.2.1 Loading Function

The moving load is analytically represented by [Eq.5.1], where c is the speed of the moving load:

Fb(x, t) = P(x)δ(x− ct) (5.1)

For a numerical model, the above equation is discretized as [Eq.5.2] where the load moves a length of L
which is discretised into N points. The point of application of load is referred to by xj which is applied
at time tj and are related by the speed of the moving load, c [Eq.5.3] :

Fb(x, t) =
j=N

∑
j=1

Pjδ(x− xj) (5.2)

Where,
xj = ctj (5.3)

In [Eq.5.2], the impulse is applied at x = xj with respect to space, where as with regards to time it is
applied at t = tj.This is because the load acts at xj at an instant of time tj which are inter connected
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Figure 5.3: Moving load model for the Point of interest [0,20]

through the speed c. This forms a series of impulses acting in space with a delay in time according to
the speed considered.
For the given numerical model, the span is of 20 m in length with 201 points in between and the speed
is arbitrarily considered as c. There are two load combinations considered:

• Load 1: A constant magnitude of 1 N moving load across the turnout length.[Fig.5.4]

• Load 2: A constant magnitude of 1 N moving load but for the origin, where the load spikes to
2 N. This loading setup is similar to what happens near a crossing, and observing this leads to
an insight of response when a sudden defect like encounter occurs between the wheel and the
rails.[Fig.5.4]

The loading functions described above are assumed for the case of a vertical force as well as lateral force.

Figure 5.4: Load 1: Constant value load moving along X

Figure 5.5: Load 2: Varying load moving along X
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5.2.2 Surface vibration

• From Eq.[3.39] & Eq.[4.44] the green’s function of displacements at any point of interest can be
found by evaluating the functions at impulse magnitude, P = 1. Let the green’s function of
displacement be referred by ~̃ugV,L(x, y, 0, ω) the case of a vertical and lateral impulse point load
respectively.

• The time-domain response of the green’s function is therefore fourier transformed as [Eq.5.4]

~ugV,L(xo, yo, t) =
1

2π

∫ ∞

−∞
~̃ugV,L(x, y, 0, ω)e−iωtdω (5.4)

• The load on the beam, as described above is a moving impulse load with varying magnitude, P(x)
moving at speed c [m/s] [Eq.5.5]

FbV,L(x, t) = PV,L(x)δ(x− ct) (5.5)

• The surface displacement caused by the moving impulse is perceived as a convolution of the
responses from the impulses from moving coordinates and time as described in [Eq.5.6] if the
time domain green’s function is considered. The convolution, is a form of superposition of
the responses from sources of loading at varying coordinates through space and time. This is
considered so because, a load that is moving creates a source of excitation as it moves at every
coordinate and with speed based time signature and as the system is linear, a superposition of all
the responses would lead to the final and total response at any time(t):

~uV,L(xo, yo, t) =
∫ t

0

∫ ∞

−∞
PV,L(x)δ(x− cτ)~ugV,L(xo − x, yo, t− τ)dxdτ (5.6)

The integration along time (τ) is simplified when the dirac delta function takes the value of 1

which is achieved at:
x = cτ (5.7)

Therefore, the displacements can be thus be simplified as [Eq.5.8]:

~uV,L(xo, yo, t) =
∫ ct

0

1
c

P(x)~ugV,L(xo − x, yo, t−
x
c
)dx (5.8)

• Alternatively, if the approach is achieved through frequency domain based green’s function, the
convolution to achieve the total response is [Eq.5.9]:

~uV,L(xo, yo, t) =
1

2π

∫ t

0

∫ ∞

−∞
PV,L(cτ)~̃ugV,L(xo − cτ, yo, ω)e−iω(t−τ)dωdτ (5.9)

• Approaching the convolution numerically from [Eq.5.6], the source of loading is constricted to
a domain which starts at x = x1 and progresses to x = xN , the loading beyond this domain is
neglected. Therefore, the numerical integration is performed through rectangular integration as
expressed in [Eq.5.10]:

~uV,L(xo, yo, t) =
N

∑
j=1

1
c

P(xj)~ugV,L(xo − xj, yo, t− tj)∆x (5.10)

Where the relation between the space time array is interlinked through speed of load as:

(xj − x1) = ctj (5.11)

It is also assumed that the loading starts at time, t1 = 0 when the load is at x1.

• The total displacement is the superposition of the displacements caused by vertical and lateral
loading [Eq.5.12].

~u(xo, yo, t) = ~uV(xo, yo, 0, t) + ~uL(xo, yo, 0, t) (5.12)
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5.3 result

5.3.1 Load combinations

The load combinations are based on magnitude of the impulse and it’s direction. From section 5.2.1
two load combinations based on magnitude are considered: load 1, where a constant magnitude of 1 N
impulse moves along the length of the beam and load 2, where a constant magnitude of 1 N impulse
moves except at the origin the magnitude spikes to 2 N. Based on direction of the load, two types are
considered which are vertical (z-direction) and lateral (y-direction) load.

These load combinations move at a speed of 10 m/s along the beam length and the velocities generated
at a point of interest ([0, 20]) is plotted for the combination of load magnitude 1 & 2 and load direction
vertical and lateral.

In [Fig.5.6] the arrival of the waves (calculated from the speeds of the waves in soil) to the point of
interest is plotted with the P-wave arriving the earliest at 0.092s and the surface wave (Rayleigh/R-wave)
arriving at the last at 2.18s. The arrival time of the wave is irrespective of the magnitude and direction
of the loads.

Figure 5.6: Arrival time of waves at [0,20] for a load moving at 10 m/s

From the numerical model, the velocities along x, y, z-directions (Velocity-u, v, w) are calculated for the
magnitude of load 1 in combination with the load directions of vertical and lateral, which are plotted
against time at the POI [0, 20] in [Fig.5.7] . The first row consists the velocities along x, y, z when a
vertical load moves and the second row considers the same when a lateral load moves.

In [Fig.5.8], the velocities generated at the POI for the load combination 2 is represented for the case
of vertical and lateral direction load.

The points to observe are:

• For the case of lateral loading, velocity along v rises as the load nears the origin and reduces as it
moves away, and a similar envelope of the vibrations is noticed in w for lateral loading. This is
due to the fact that points along y-axis have significant velocities when the load is directly along
the axis. The reverse is noticed for velocities along u due to symmetry.

• It is noticed that for the load magnitude combination of Load 2, a rise in velocity is noticed at w, v
due to the vibrations caused by the spike in load at the origin. This is not noticed in u because the
load at origin does not cause a velocity along u for points along y−axis due to symmetry. This
represents a defect like encounter by the wheels of the train at the track, when a sudden change in
loading occurs similar to a crossing.

• In vertical and lateral loading, there is a spike when first and last wave arrives and this is because
in the numerical model, the load suddenly starts at [−10, 0] and ends at [10, 0] like an impulse.
This can be overcome by increasing the loading domain’s boundary or by smoothing out the load
magnitude in the increasing and the decreasing end.
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To obtain the total vibration caused, a superposition of velocities for lateral and vertical loading is
done and plotted in [Fig.5.9]

Figure 5.7: Velocities at [0,20] for a moving vertical and lateral moving Load 1 at 10m/s

Figure 5.8: Velocities at [0,20] for a moving vertical and lateral moving Load 2 at 10m/s
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Figure 5.9: Total Velocities at [0,20] for moving load combinations of Load 1 & Load 2, moving at 10m/s

5.3.2 Multiple Speeds

For a load magnitude combination of Load 1, for when the direction is vertical and lateral, moving
at multiple speeds of 10, 15, 20 & 25 m/s the velocities caused at POI [0, 20] is plotted against time
[Fig.5.10]. In row one, for the load-1 magnitude and a vertical direction moving load, the velocities
along x, y, z directions are plotted. In row two, for the lateral direction of load moving is plotted. It is
noticed that:

• The higher the speed of the load, smaller the time span of the vibrations at POI.

• The arrival of waves is at the same time for all the speeds, however, the departure time of waves
differs between multiple speeds.

• The spike in arrival and departure of waves is due to the numerical boundary of the loading
scheme and can be overcome by extending the boundary or by gradually increasing the load
magnitude over the span of loading.

Figure 5.10: Velocities at [0,20] for moving load combinations of Load 1, moving at 10, 15, 20 & 25 m/s
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The total velocity at POI is calculated as a superposition summation of velocities due to lateral and
vertical load moving is in expressed in [Fig.5.11]

Figure 5.11: Total Velocities at [0,20] for moving load combinations of Load 1, moving at 10, 15, 20 & 25 m/s



6 M E A S U R E M E N T S B A S E D C O M PA R I S O N

6.1 measurement setup

6.1.1 Location

On the 9th of September 2020, near the Lochem railway station [Fig.6.1] in the Netherlands, ground
vibrations generated by Blauwnet trains going through a standard turnout were measured at four points
of interest. The google satellite image of the location of the standard turnout is depicted in [Fig.6.2]
where a branch line path of passage is encountered by trains arriving from Oldenzaal halting at Lochem
station and the main line passage is encountered by trains departing from Lochem station to Oldenzaal.
The turnout consists of a single switch and a crossing 34.5 m apart where a single lane railway whose
width is 2.6 m spans out to two lane railway towards the Lochem station to aid the trains to arrive and
depart from two platforms available at the station. The location of interest near the railway track where
the measurement sensors were placed is vegetated with wild plants which were cleared partially at the
points where the sensors were placed. The soil is almost homogeneous in the top layer and has a shear
wave velocity of 150− 200 m/s derived from CPT test as referred to via DinoLocket.

Figure 6.1: Lochem Railway track

Figure 6.2: Google Satellite image of the location

6.1.2 Sensors Setup

The SYSCOM sensors [Fig.6.3] were setup as depicted in [Fig.6.4].It measured the vertical, transversal
and longitudinal velocity responses in the free field simultaneously. The three available sensors were

42
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placed in phases of time in order to acquire measurements from four points of interests in combinations
of : (A, B and C) and (A, B and D).

Figure 6.3: Sensor Setup

Point A is closer to the switch at a distance of 8.3 m and it is a point of interest as the ground
vibrations from near the starting point of the turnout can be measured. Point B is near the crossing, as
it is the point where there exists a discontinuity in the contact between the rails and the wheel, therefore
measurements from near the crossing is of interest. Point C is perpendicularly 25 m away from point
B and insights on geometrical damping can be inferred from C and B. Point D is 40 m away from the
crossing, therefore it is the measurement standard for when a train passes through a railway track,
ideally without any influence of the turnout components, however in this circumstance due to the length
of the train being slightly higher than the distance between point B and D, the influence exists.

Figure 6.4: Schematic diagram of the sensors setup

6.1.3 Train

The Blauwnet trains [Fig.6.5] passes through the turnout at Lochem. With a length of 41.8 m they have
an axle load of 18 tonnes with three sets of double axle bogies spaced at 16.5 m. The trains encounter
the turnout at an accelerating or decelerating speed of approximately 16.5 m/s (derived from videos
taken on site) when arriving or departing from Lochem station.
Four trains pass through the turnout per hour, two in each direction:

XX:10 hr, XX:40 hr : Oldenzaal −→ Lochem
XX:20 hr, XX:50 hr : Lochem −→ Oldenzaal
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Figure 6.5: Train passing through the turnout

6.2 model setup
The turnout model explained in Chapter 5 is considered to match the measurement setup. The points
of interest are now points A, B, C and D. Similar to the previous model, two cases are considered: a
vertical and a lateral moving load, whose result of vibrations are superimposed in the point of interest.
In order to compare the numerical model to the measurements the assumptions considered are:

• Numerical model assumptions

• Points of interest

• Loading assumption

Numerical model

The numerical model assumptions are listed in Table 6.1.

Domain (Ω) Name Value Unit

Half-space

Shear Modulus of half-space (µ) 5.97× 107 N/m2

Poisson’s Ratio (ν) 0.3
Material Damping 2.5%

Density of half-space (ρ) 1950 kg/m3

Longitudinal wave speed (cl) 327.50 + 8.18i m/s
Transverse wave speed (ct) 175.05 + 4.37 m/s
Rayleigh wave speed (cr) 162.13 + 4.05i m/s

Beam
Mass of beam (m) 760 kg/m

Flexural Rigidity (EI) 1.29× 107 Nm2

Width of beam (2a) 2.6 m

Table 6.1: Numerical Model Details

Points of Interest

The points of interests are A, B, C and D. Their coordinates with respect to y-direction is derived from
[Fig.6.4]. The coordinates along x-direction is always zero, as the model’s origin changes with respect to
the point of interest.
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Load assumption

The train is considered as a moving point load (vertical and lateral), as described in Chapter 5. However,
it has three sets of double axle wheel sets, each of which is considered as a moving load. Thus, there are
three moving loads as detailed in [Eq.6.1]:

Fb(x, t) =
N−1

∑
j=0

P(x)δ(x− v(t + Tj)) (6.1)

Where N is the number of wheel-sets (3), P(x) is the load magnitude which changes with respect to
position and v is the velocity of the train. Tj is the lag in time for the wheel-set j with reference to the
first wheel-set as expressed in [Eq.6.2]:

Tj = j
Lw

/
v (6.2)

Lw is the length of the carriage, i.e the spacing between the wheel-sets.
Numerically, an assumption of three wheel-sets is assumed which are spaced at 16.5 m away from each
other moving at 16.5 m/s and the magnitude of the load with respect to space is expressed in [Fig.6.6].
The figure considers the origin as the switch, whereas when the load is applied on the model, the values
of magnitude is viewed with respect to the new origin which is relative to the point of interest. For
example, if the POI is (35, 9.6), then the value of the graph (P(x)) is transformed to (P(x− 35)).

Figure 6.6: Force across the turnout

The lateral forces exist only in the section of the turnout with a spike noticed at the crossing, and
vertical load which is equivalent to the axle load (18 t) is a constant moving load except at the switch
and the crossing where a singular impact like loading occurs. This assumption is in consideration of the
Literature study in Chapter 2.

6.3 comparison of model and measurements

6.3.1 Measurement: Turnout

A Blauwnet train that arrived at Lochem station at 15:40 hrs crossed through the turnout taking the
branch line, whose ground vibrations at A, B and C are recorded along x, y and z directions are
expressed in [Fig.6.7].
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Figure 6.7: Measurements analysed at sensors A, B and C for a train moving along the branch line

With the effective maximum velocity ve f f ,max calculated as per SBR-B Guideline, as explained in
Chapter 2. The following are the points of observation from the measurements in [Fig.6.7] :

• A: The ve f f ,max is 0.38 mm/s along y-direction with time span of the vibration being almost 6
seconds. There exists three sharp peaks in the vibrations co-relating to the three wheel-sets. The
tail in the vibration can be attributed to the vibrations received from the passing of the train
towards the crossing. The first wheel-set causes higher vibration than the trailing wheel-sets. The
three peaks are distinctly visible along y and z and not along x.

• B: The ve f f ,max is 0.52 mm/s which is the maximum of measured velocities by the sensors,
therefore it can be observed that the crossing causes the maximum vibration in correspondence to
the literature study in Chapter 2. The three sharp peaks in the measurements relates to singular
impact like loading by the wheel-sets when it encounters the crossing.

• C: The ve f f ,max is 0.07 mm/s where the vibrations have damped almost 86.5% from point B within
a distance of 25 m. The singular impact is not as prominent as at point B. However the time span
of vibration is larger in comparison to A,B as point C is farther away, therefore for all the source
induced ground response to reach C takes larger time span.

Standard railway

When the train passes through the railway track away from the influence of the turnout zone, the
vibrations are recorded at point D. For a train that passed through at 19:40 hrs the vibrations were
recorded at points A, B and D which are points close to the switch, crossing and a normal railway track
respectively and depicted in [Fig.6.8].
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Figure 6.8: Measurements analysed at sensors A, B and D for a train moving along the branch line

The notable observations from the measurements at D are:

• A: The ve f f ,max is 0.26 mm/s, similar to [Fig.6.7] there exists three distinct peaks caused due to
three wheelsets along with a tail of vibration. The response along x, y and z are of similar range
in magnitude with the peaks being distinct along y and z.

• B: The ve f f ,max is 0.51 mm/s, similar to [Fig.6.7]. The response along B is the maximum, confirming
that the response near the crossing is of maximum disturbance. The arrival of P waves is clearly
visible at around 5 seconds. The response along y is the highest followed by z.

• D: The ve f f ,max is 0.32 mm/s which is lower than point B which is close to the crossing, but higher
than point A [Point D is closer to the railway track than point A]. It is also noted that the three
sharp peaks as observable in point A and B is not noted in D therefore confirming that impact like
loading does not occur for a simple passing of the train like it occurs in a crossing or a switch. The
train is also decelerating when it nears the station, thus the speed of the train is lower at point D.

6.3.2 Model:Turnout

On co-relating the model to the best to match the measurement setup, the results obtained for vibrations
obtained at A, B, C and D based on the model are depicted in [Fig.6.9].
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Figure 6.9: Ground velocity derived from model for a train moving along branch line at 16.5 m/s

The points to observe from the model based results are:

• A:The peak particle velocity (PPV) is 0.98 mm/s with three distinct envelopes in the ground
vibrations. This is related to the three wheel-sets. The time span of vibration is almost 6 seconds,
which relates to the speed of the load. The three envelopes of vibrations that increase initially and
then decrease,corresponds to the wheel coming closer to the point and moving away respectively.
Apart from the envelope, three steeper spikes are visible on top of the envelope, which is due to
the sudden increase in lateral loading at the start of the turnout.

• B:The peak particle velocity (PPV) is 1.567 mm/s with three distinct envelopes in the ground
vibrations. The peaks are higher than in point A, as it is near the crossing with higher impact
loading. The steeper peak on top of the envelope is the cause of PPV as the load at the crossing is
higher vertically as well as laterally.

• C:With point C being farther away, the PPV is 0.208 mm/s. This is 86.7 % reduction in PPV over a
distance of 25 m.

• D: The PPV is 0.795 mm/s which is 19.3 % decrease when compared to point A and 49.26 %
decrease when compared to point B. Although the distance from the beam is the same, the drop
in magnitude occurs due to the loading scheme. There exists no lateral loading near point D,
however vertical axle loading is present and that is the source of difference between D and B & A.
This scenario correlates to the normal moving of a train, therefore the envelopes of vibrations are
more smoother in nature than the spike-y vibrations noticed in A and B.
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The overall shape of the loading is similar over point A, B and D as they are at the same distance
from the beam and point C is farther away but the type of wave (three-peaks visible nature) is similar.
Although, the magnitude of the PPV is the source of difference between the points. Vibrations along
z-direction is the highest for all.

Discussion on Comparison

The model based ground response is compared qualitatively and quantitatively to measurements
obtained and the similarities and differences between them are drawn up to discuss the performance of
the model.
The similarity between the measurements and the model is visible in the envelope of the ground
vibrations vs time, along with the time span of the result. The difference between the measurement
and model is primarily seen in the direction of vibration and the magnitude of it. In the following
section the attribute and cause of similarity and differences between the measurements and the model
are discussed.

Differences

The following are the attributes of difference between the model and measurement scenario and the
possible causes of the choices made:

1. Loading spectrum : The vehicle dynamics is crucial in a turnout scenario due to the accuracy
required in the loading spectrum. The magnitude of the load, which leads to the derivation of
PPV at a point on surface can be calculated with accuracy if the force spectrum is accurate. In the
model above, a simple loading model is chosen from literature study.Alfi and Bruni [2009]

2. Deceleration and acceleration: The changing speed of the train is not considered, as these cause
drag forces in the rails which in turn causes longitudinal loading. Only two types of loading:
vertical and lateral are considered in the model which are then super-imposed to obtain the result.
Therefore, on inclusion of longitudinal loading complex cases of varying speed can be fit into the
model.

3. Bending stiffness of beam: In the model, the bending stiffness of the beam is assumed the same
for vertical loading and lateral loading. Although vertically this is almost accurate, laterally this
is bound to be different. The presence of ballast and sleepers affect the bending stiffness of the
system in the lateral direction which is not accounted for. The effect of the beam is visible for a
distance of almost 25 m for the model (Chapter3), therefore for points of interest within this radii,
the bending stiffness accuracy will be important.

4. Railway components: The presence of sleepers, ballast affect the magnitude of the force being
transferred to the soil. Although the interaction is smeared over the width of the structure, the
magnitude of this force is a playing factor in finding accurate ground vibration.

5. Curvature of rails: The curvature of rails is not considered. Although the effect of this is assumed
to be captured by the lateral forces assumed in the closure panel, the beam’s interface condition
with the half-space surface is not complex enough to handle a curved condition.

6. Wheel-sets: From Burgelman and Bahn [2015] the lateral forces generated is a function of the
wheel-set that negotiates the turnout, that is, each wheel set exerts a different force. This is not
included in the model.

7. Interaction Force: The railway guiding system is assumed as a beam which exerts a constant force
along the beam width (2a) in the model. However in reality, this is not the case. The complex
components of the railway system, exerts a distributed force across the width of the system.
This can be handled by approaching the interface condition more complexly, as explained in
Steenbergen and Metrikine [2007].
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8. Change in stiffness of tracks: Due to the presence of stock, guiding rails at the switch and a nose
in the crossing , change in track stiffness is expected, along with the presence of a two way lane as
a comparison of a single way lane near the switch. Change in track stiffness affects the vibration
magnitude in closer range points of interest. Andersson and Dahlberg [1999]

Similarities

The model and the measurements are on a comparitive bases of similarity along the following lines:

1. Moving load: A moving load causes the envelope of ground vibrations to be of increasing in
nature as the load nears the point with time and a decrease as the load moves away. This is on
similar lines between the model and measurements with the P-waves arriving first and the surface
waves arriving after back to back for the three-wheelsets. This confirms the logical working check
of the model.

2. Time span of vibration: With almost equal (6 seconds) of time span of the vibration from the
model and measurement, the speed of the train in reality and the moving load in the model, is
almost equal. Therefore, the effect of change in speed between the switch and the crossing is
negligible.

3. Double loading model: The concept of having two models, one with a moving vertical load and
another with a moving lateral load, has aided in more accurate modelling of the turnout scenario,
as the total displacement is the superposition of the two. This leads

4. Points of interest: Although this is a self-made choice, it is a crucial factor in analysing the
consequences of a turnout. Points near a crossing are more impacting in analysing this from the
effective velocities of the measurements and the PPV of the model. Therefore, point B experiences
higher ground vibrations as it is near the crossing.



7 C O N C LU S I O N , R E C O M M E N DAT I O N S &
D I S C U S S I O N

7.1 conclusions
The conclusions are approached in three phases:(a) The modelling method ;(b) Comparison with
measurements and (c)Addressing the research objective

7.1.1 Modelling method

The objective of the thesis is to qualitatively and quantitatively be able to describe the ground vibrations
caused due to a railway turnout. To achieve so, a semi-analytical impulse model was approached in
Chapter 3 and 2. Based on the impulse model, a moving load spectrum model was built based on it, to
depict a turnout like system. The following are the conclusions drawn from the modelling approach:

a. Impulse Model

Qualitatively:

• Qualitatively, the superposition of two models: the vertical and lateral direction of loading a
semi-analytical model, achieves the result of producing sound results in ground response checked
through the arrival of waves.

• The interaction force which is the primary source of excitation on the soil from the beam dampens
quickly for the case of lateral impulse when compared to vertical impulse, for the given numerical
model.

• The model and procedure approached can be used to find vibrations at any depth and not just at
the surface. This is so because, the solution at z = 0, is the final step to the process.

Quantitatively:

• For the case of lateral model, the equivalent stiffness of the soil provided to the beam is a function
of the bending stiffness and the behaviour of the beam. Therefore, detailed modelling of it, through
inclusion of sleepers and ballast is necessary in achieving quantitatively accurate ground response.

• On numerically approaching the solution of ground displacements, the truncating limit of the
frequency domain while Fourier transforming it to time domain has led to disturbances existing
at t = 0 and this can be tackled by using a low pass filter, or applying an applicable load.

b.Moving Load Model

Post building the impulse model, a moving load is achieved as a convolution of the impulse responses.
On doing so, the following are the conclusions:

Qualitatively:

• Qualitatively the moving load model can be used to visualise and analyse a single-bogie moving
induced response on the ground achieved through convolution of the responses from a series
of impulses. Therefore, the step size of the loading domain along the beam is important in the
accuracy of the result (and also expensive).

• In the moving load model, the model of vertical and lateral load is solved individually and
superimposed. Therefore, the beam behaves independently to both the loading and the response,
and thus the responses are not interlinked.

51
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• With the current model, any defect like scenario (vertically and laterally) in the tracks can be
modelled along with correct load spectrum to obtain the ground response.

Quantitatively:

• The numerical boundary of the loading domain plays a role in the accuracy of the response in the
arrival and departure of waves. This can be improved by increasing the domain of loading, or
by smoothing out the loading and unloading process. Increasing the loading domain would be
computationally heavy.

• The response along z-direction is the highest for the case of lateral or vertical loading. This is
because z-direction response is highest for surface waves.

• For the case of lateral loading, although y-direction response is expected to be highest, it is not so
because: during the arrival of P-wave there is a strong y-component when a lateral load is applied,
however the surface waves which are higher in magnitude bring in higher z component.

• Quantitatively, the presence of the beam is essential in modelling a moving load when the point of
interest is in a close range of 25-30 m for the given numerical model.

• The curvature of the beam can be neglected as radius of curvature of tracks are sufficiently large
to assume an infinitely long Euler Bernoulli beam.

7.1.2 Comparison with measurements

The model is compared against measurements obtained in Chapter 6. Detailed conclusions has been
discussed in the previous chapter on the differences and similarity between the model and measurements,
however the following are the vital conclusions derived:

• Measurements: To observe a turnout’s impact the crucial points are near the crossing and the
switch and the sensor points were placed accordingly. From the measurements, the crossing is
the source of maximum ground vibration. Also, since it was a simple train that passed through a
standard turnout, the ground vibrations were more visibly logical to understand.

• Model: The model used to validate the measurement has been altered to match the magnitude
of the properties of soil. Qualitatively, the model behaves similarly to the turnout system in the
case of crossing and switch. However, quantitatively, the current assumptions are insufficient. A
detailed vehicle-dynamics induced load spectrum along with field study of the interaction force is
necessary.

• From the measurement and the model, a crossing behaves like a singular impact. Therefore, if
only PPV is considered then a singular loading is sufficient to analyse the ground vibrations.

7.1.3 Research Objective

Qualitatively and Quantitatively, what are the ground vibrations at points of interest when a train
negotiates a railway turnout?

The current model approaches a turnout as a loading scheme in the vertical and lateral direction on
a semi analytical system. By doing so, qualitatively, from literature study and from measurements it
is able to achieve the phenomena behind a turnout, that is impulse like loading at crossings in both
the directions. The response near a railway turnout can therefore be described by a dual load model.
However, to achieve quantitative accuracy, the lateral model has to be upgraded to handle complex
track geometry of ballast and sleepers in order to achieve accurate equivalent stiffness provided by the
soil. This can also be achieved through field study of the interaction force.
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7.2 recommendations
The recommendations are made, keeping in mind the goal of understanding the ground vibration
caused by a railway turnout. Therefore:

• Model : A detailed sleeper-ballast model can be used instead of a single euler bernoulli beam.

• Load spectrum : A measurement based load spectrum can be used by obtaining the impact
loading on wheels in a crossing.

• Response: Apart from ground response z = 0, at any depth z, the vibrations can be derived from
the model.

• Analysis: The effect of speed and other railway defects can also be analysed with the current
model.

• Measurements: Further measurements from near track response to analyse interaction force will
be useful to update the model. The measurements from impact of rail-wheel would also lead to
accurate load spectrum input.

7.3 discussion
The modelling choices made is analytical which is essential in understanding the vertical and lateral
load that occur in the problem. By approaching it as two independent problems has and super imposing
the response has led to a easier compartmentalisation of the results to view each load’s response.

Apart from separating the loading factor, separating the domains also helps in simplifying the problem.
Therefore now there is a domain for load input on beam and another for load input on the soil. By
doing so, at any point if the complexity is not sufficient, then the loading spectrum can be obtained from
measurements or other methods and then input-ed into the model for the final ground vibration result.
The method of finding an interaction force which is a function of frequency and wavenumber, leads to a
more complex and realistic way of approaching the force distribution. This not only helps in ground
vibration problem, but can also be used for analysing the beam’s behaviour. Therefore, for a crossing or
switch’s maintenance and repair apart from impact loading from the vehicle, resistance from the soil
also exists which is calculated from the interaction force.

The physical system’s numerical values can be improved in many ways as described in above sections,
from including a complex track geometry to back tracing to an accurate load spectrum. Numerically,
the model can be improved by expanding the domain of integration. Conceptually, curvature of tracks
can be neglected along with longitudinal induced vibrations. This is derived so from the measurements.

Lastly, the given model is step two solution of a bigger problem. Step one can be anything from
a turnout or a railway defect to any dynamic load moving. This is so because, the load input has to be
fit into the model and the resultant ground vibration can be calculated from it. The model can also be
used to calculate vibration at a different depth by substituting the appropriate depth in the final step of
the solution.
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