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Abstract 

Introduction 

Spatio-temporal parameters (STP), calculated from 3D gait analysis, are frequently used for treatment 

planning and evaluation in Cerebral Palsy (CP). To calculate these parameters, accurate determination 

of gait events (i. e. initial contact (IC) and foot off (FO)) is essential. Previous research on the 

performance of kinematic gait event detection algorithms on different walking patterns led to 

recommendations, which have not been verified on clinical populations.   

 

Research questions 

1) Which current kinematic approach is best capable of determining IC and FO for diverse gait 

patterns? 

2) Does the use of automated kinematic algorithms affect clinical interpretation of STP compared 

to current clinical event detection (force-plate, visual identification)? 

 

Methods 

3D kinematic and kinetic data was retrospectively collected from 90 children with CP. Participants were 

classified in 3 categories – groups A (fore-foot IC), B (flat foot IC) and C (heel IC). Five kinematic 

algorithms (one modified) were implemented for two different foot marker configurations for both IC 

and FO and compared with clinical (visual and force-plate) identification using Bland-Altman analysis. 

The best-performing algorithm-marker configuration was used to compute STP, which were compared 

with those obtained clinically. 

 

Results 

In agreement with previous studies, sagittal velocity of the heel (Group C) or toe markers (Group A and 

B) was the most reliable indicator of IC, and the speed-dependent sagittal velocity coupled with the 

hallux marker worked best for FO across the entire dataset. A comparison of kinematic and clinical   

showed >1.78% differences in spatial parameters, and >6.3% differences in temporal parameters. 

 

Significance 

Outcomes showed that the choice of the best-performing algorithm was dependent on a combination of 

algorithm and marker choice. However, observing the high differences between clinical and 

kinematically calculated spatio-temporal parameters, clinicians need to be aware  that the differences 

could likely affect clinical interpretation of gait analysis results. Hence, further research is needed to 

establish the efficacy of implementing automatic gait event detection algorithms in a clinical setting. 

 

Keywords Cerebral Palsy, clinical gait analysis, kinematic detection, gait events, spatio-temporal 

parameters 
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1. Introduction 

Cerebral Palsy (CP) is the most common and severe motor disorder in children. It has an estimated 

prevalence of 1.5 to 4 live births per 1,000 children, and it is associated with lifelong disability [1-3].  

CP consists of a heterogeneous group of clinical syndromes which describe permanent disorders like 

muscle weakness, kinematic joint abnormalities, and reduced motor control [4, 5]. It typically occurs 

around birth and results from a non-progressive neurological disturbance in the developing fetal or 

infant brain [5]. Due to these neuromotor injuries, children with CP may develop a variety of 

musculoskeletal problems, which evolve throughout life and are related to physical growth, muscle 

spasticity, aging and other factors [4, 5]. These neuromuscular deficits of CP can lead to gait 

abnormalities and thereby decrease the quality of life (QoL) and reduce participation in activities of 

daily living [6]. 

With walking considered to be an important indicator of QoL, analysing gait deviations and optimizing 

gait towards that of their typically developing (TD) counterparts is an important aim in the treatment 

and rehabilitation of CP children [7].  

In young children with CP, multiple treatment options are available, ranging from invasive i.e 

orthopaedic surgery to correct bony deformities and muscular contracture; and selective dorsal 

rhizotomy to address muscle spasticity, to minimally invasive (botulinum toxin (BTX)) to reduce 

muscle spasticity and, further to non-invasive techniques (orthotics, physical therapy) to address 

problems in everyday walking [8]. The progress of gait deterioration during growth, and the effect of 

various interventions are observed through tools such as clinical gait analysis (CGA) [9]. 

CGA is comprehensive analysis that quantifies how an individual’s brain injury affects their walking 

patterns. Using CGA, spatio-temporal gait parameters (STP) such as step length and gait velocity are 

calculated, which in combination with other information such as joint kinematics and EMG activity of 

individual muscles collected during gait measurements, as well as physical examinations that determine 

muscle strength, spasticity and range of motion aid clinicians in assessing the causes of abnormal gait 

and selecting the right intervention for a patient. Post-intervention, CGA is used in monitoring and 

quantifying improvement in gait kinematics and motor control [7, 9-11]. 

In order to compute STP, it is necessary to estimate the exact moment the foot leaves or touches the 

ground. Therefore, accurate identification of gait events (Initial contact (IC) and Foot off (FO)), which 

discriminate between the two main phases of a gait cycle (stance v/s swing) is essential [12]. The timing 

of the IC often serves as the reference point to which all other gait data is correlated [13]. Hence, the 

timing information of the gait events allows not only for the extraction of comparable STP, but also 

allows for the temporal normalization of gait signals obtained during a clinical gait measurement, which 

is used for ensemble-averaging of kinematic and kinetic gait information. This, again, allows to quantify 

variabilities in gait parameters within-and between-subjects [14]. Since incorrect identification of gait 

events leads to errors in normalization of kinematic and kinetic data and ensemble-averaging of STP, 

their accurate identification is imperative for the comparison of gait patterns between subjects, as well 

as deficits in pathological conditions. Moreover, identification of accurate gait events has also 

investigated for use in triggering functional electrical stimulation (FES), wherein the peripheral nervous 

system is triggered to stimulate muscle contractions in muscles such as the tibialis anterior and 

gastrocnemius to assist walking and to correct foot drop in children with CP as well as subjects with 

stroke [15]. 

1.1 Problem Definition 

Currently, gait events are identified in clinics through two main approaches (collectively referred to 

hereafter as clinical identification). The first approach, widely treated as the ‘clinical gold standard’, 
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involves entails using pressure-sensitive force platforms or force sensing resistors (FSR). IC  and FO 

are determined when the value of the vertical ground reaction force (vGRF) measured by the force 

plates crosses or falls below a certain threshold respectively [16]. FSRs produce a voltage relative to 

the amount of force on the sensor. When placed on the plantar surface of the foot, a proportional change 

in plantar pressure allows for the detection of gait events [17]. 

However, at least two force plates are required to determine one stride, and thus the number of steps 

that can be captured is also generally constrained to the number of force platforms available in the gait 

laboratory. A large number of walking trials are thus sometimes necessary in order to achieve a clean, 

isolated force plate hits. Obtaining clean force plate hits is also often limited due to the use of assistive 

devices, short step lengths, or partial contact with the plate [18]. Furthermore, the acceptable force 

threshold to identify IC and FO events has not been standardized across clinics, especially for paediatric 

populations, and could lead to delays in event detection ranging upto 10 ms, when this threshold is 

changed from 10 N to 20 N [19]. FSRs, on the other hand, could impede the natural gait of the child,  

find difficulties in adhering to the subject’s foot and could be prone to breakage [20]. Furthermore, a 

study also reported difficulty in choosing the right placement of FSRs on the foot surface, due to atypical 

plantar pressure patterns while walking in children with CP [21]. 

When force plate data is unavailable, gait events are detected through visual determination of gait events 

from video data by trained experts [22]. Trained experienced personnel observe video data and manually 

select the timing of gait events by observing segment kinematics. However, this approach is time-

consuming and is often not feasible when dealing with a large dataset. Furthermore, while it is expected 

that the personnel are trained, the reliability of these measurements are dependent on the skills and 

experience of the rater, and is hence subjective. This subjectiveness can therefore lead to discrepancies 

in the reporting of event timings. Furthermore, accurate gait event detection is also limited by the frame 

rate of video cameras, which is low compared to force and pressure-based systems. 

 

Due to the limitations of aforementioned clinical identification methods, researchers have attempted to 

find alternate methods by which gait events can be estimated using data from optoelectronic systems. 

Optoelectronic systems consist of multiple synchronized high-frequency infra-red cameras which 

capture the reflections of target points (markers) placed on bony landmarks that cover required body 

segments. Kinematic algorithms utilize information from markers and attempt to draw relations 

between the trajectories, velocities or algorithms of markers and the occurrence of gait events. Figure 

1 below describes the general workflow of kinematic gait event detection. With the first kinematic 

algorithm developed in 1990 [23], many methods have been developed to estimate gait events in both 

TD and pathological gait [24-35]. However, these methods have not been tested on diverse gait patterns, 

nor have they been validated for use in a clinical setting. 

 

 
Figure 1: General Workflow of kinematic algorithms. 
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1.2 Research Goal 

 

With CP causing severe movement deficits, and many existent studies attempting to correlate gait 

deviations with causes of underlying pathologies and muscle spasticity [36, 37], acquisition and 

interpretation of STP in children with CP remains an important research direction. In order to facilitate 

accurate acquisition of gait parameters, accurate identification of gait event events is essential. While 

many novel kinematic algorithms have been developed for both pathological and TD gait, validation 

and standardization of these methods for use in a diverse gait patterns is lacking. Since many children 

with CP do not demonstrate a fore-foot IC or a mid-foot IC - as opposed to a traditional heel IC as in 

TD children - traditional kinematic algorithms might thus provide lackluster results. Recommendations 

to improve performance for pathological gait patterns (regarding modification of existent algorithms, 

and the usage of the hallux markers to increase accuracy in FO detection [38]) have been introduced, 

but remain unverified. Furthermore, the influence of automatic identification on the estimation of STP 

has not been investigated, nor validated against clinical approaches. 

 

Therefore, it is the primary goal of this study to incorporate the modifications suggested by previous 

publications into existent kinematic algorithms to determine if it causes improvements in gait event 

detection for different pathological walking patterns. Our second goal is to compare resulting spatio-

temporal parameters obtained kinematically and clinically, to determine the feasibility of incorporating 

kinematic algorithms in a clinical setting. 
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2. Methods 

2.1 Participants 

This study utilized a retrospective database consisting of 3-D kinematic and kinetic data of 90 

participants, aged 3-18 at the time of measurement, who underwent 3-D CGA at University Children’s 

Hospital Basel (UKBB), Switzerland from 2015-2017. Participants were included in the study if they 

were classified as levels I, II or III of the Gross Motor Function Classification System (GMFCS) [39] 

and were able to complete a barefoot walking trial without the assistance of orthotic devices, crutches 

or walkers. A participant trial was included in the study in case of at least one clean force plate hit on 

either leg. Only one limb per participant was included in the study.  

The participants fulfilling the inclusion criteria were classified into 3 groups of 30 individuals each, 

according to the region of the foot which initially contacted the ground. Informed consent was obtained 

from all children or their guardians, in accordance with the approval from the local ethical committee 

(EKNZ Nr. 2018-01640). All measurements were conducted according to the Declaration of Helsinki. 

Participant characteristics per sub-group are described below in Table 1. 

Table 1: Participant Description 

 Group A Group B Group C 

Group definition The forefoot is in contact 

with the ground during 

FS. 

The entire sole or the 

side of the foot is in 

contact with the 

ground during FS. 

The heel is in contact 

with the ground 

during FS. 

 

GMFCS level 

[I/II/III] 

 

17/12/1 
 

25/5/0 
 

29/1/0 

Sagittal Foot-floor 

angle [Mean (SD)] 

−20.7 (14.0) −0.7 (2.5) 7.5 (6.7) 

 Sagittal Ankle-

dorsiflexion angle 

[Mean (SD)] 

−17.0 (11.8) −2.6 (7.8) −1.1 (5.7) 

Age in years [Mean 

(SD, range)] 

 

11.2 (3.2, 5.9−17.3) 11.6 (3.4, 5.6−17.3) 12.6 (2.6, 7.7−17.6) 

Sex (M/F) 

 

15/15 18/12 18/12 

GMFCS level 

[I/II/III] 
17/12/1 25/5/0 29/1/0 
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2.2 Measurement Procedure  

All participants walked barefoot on an equipped walkway at a self-selected walking speed for at least 6 

trials. Kinematic data was collected at a sampling frequency of either 150 (for data collected after 2016) 

or 300 Hz (for data collected until 2016). A total of 64 markers were attached to the subjects according 

to a modified Plug-in Gait (PiG) model (9.5-mm diameter, see Appendix 2.1). 3D ground reaction forces 

(GRFs) were collected through force platforms embedded in the walkway (Kistler, Switzerland, 

sampling frequency 1500 Hz). Walking trials were only included for data processing when at least one 

step with clean force plate contact was achieved. Trials with occluded or missing marker data from the 

heel, toe, hallux or posterior superior iliac markers were excluded. In total, 90 trials were included for 

analysis. 

2.3. Data processing 

Kinematic data was pre-processed in Vicon Nexus software (v2.8.2., VICON, Oxford, UK) following 

the standard PiG procedure. 3-D trajectories of the posterior superior iliac (PSI), calcaneous (HEE), 

second metatarsal head (TOE) and hallux (HLX) were extracted and filtered through a 2nd order 

Butterworth filter with a cut off-frequency of 10 Hz in MATLAB (v. 2019a, Mathworks Inc.). Initially, 

five algorithms recommended by previous studies [40] [38] (Zeni [35], Desailly [24] , Ghoussayni [26], 

Hrejac and Marshall [27 ], Hsue [28]), and the algorithm by O’Connor et al. (due to its reported accuracy 

in typically developing gait) [32] were incorporated on the dataset. Of these, two algorithms [27, 28] 

were excluded from the study due to difficulty in identifying true events automatically (see Appendix 

2.2). The algorithm by Ghoussayni et. al. ([26] was further modified to tune event detection as a function 

of the walking speed, according to the recommendations of [38].  The algorithms were implemented 

using the toe (1) and the hallux marker (2) for FO detection. For IC detection, markers positioned at the 

heel (1) and toe (2) were used for all 3 groups.  

A visual description of the kinematic signals used in the selected algorithms is detailed in Figure 2. 

More information on the exclusion of algorithms can be found in supplementary information S2. The 

algorithm description and marker choices are summarized in Table 2. 

Table 2: Definition of gait events (IC, FO) according to included algorithms. For convenience, the 

algorithms have been listed according to the primary author’s last names. 

Author Description of IC Markers used 

for IC 

determination 

Description of FO Markers used 

for FO 

determination 

Zeni 

(2008) 

Maximum horizontal 

heel position relative to 

sacrum 

HEE, TOE Minimum horizontal toe 

position relative to sacrum 

TOE, HLX 

Desailly 

(2009) 

High pass filtered 

maximum heel position 

(Cut-off frequency set 

at 0.5* cadence) 

HEE, TOE High pass filtered minimum 

toe position (Cut-off frequency 

set at 0.5* cadence) 

TOE, HLX 

O’ 

Connor 

(2004) 

Minimum vertical 

velocity of virtual foot 

centre. 

Virtual foot 

centre 

calculated 

between HEE 

and TOE 

Minimum vertical velocity of 

virtual foot centre. 

Virtual foot 

centre 

calculated 

between TOE 

and HLX  
Ghoussay

ni (2007) 

IC occurs when the 

sagittal velocity of the 

heel marker falls below 

a threshold of 500 m/s. 

HEE, TOE FO occurs when the sagittal 

velocity of the toe marker 

crosses a threshold of 500 m/s. 

TOE, HLX 

Modified 

Ghoussay

ni 

IC occurs when the 

sagittal velocity of the 

heel marker falls below 

HEE, TOE FO occurs when the sagittal 

velocity of the heel marker 

TOE, HLX 
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a threshold of 0.78* 

walking speed 

reaches a threshold of 0.66* 

walking speed. 

Hrejac 

and 

Marshall 

(2000) 

IC occurs at the local 

maxima in the vertical 

acceleration of the 

marker and the point of 

zero-crossing of the 

jerk (as it decreases) 

HEE, TOE FO occurs at the local maxima 

in the horizontal acceleration 

of the marker and the point of 

zero-crossing of the jerk (as it 

increases) 

TOE, HLX 

Hsue 

(2007) 

Minima in the 

horizontal acceleration 

of the marker 

HEE, TOE Maxima in the horizontal 

acceleration of the marker 

TOE, HLX 
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Figure 2: Signals used in the selected methods for gait event detection. GRF: ground reaction force; 

IC: initial contact; FO: foot off. Velocity and acceleration are in mm/s and mm/s2. Sampling rate, 

150 Hz; 1 frame is equivalent to 7 ms. 

Algorithms using the above described marker configurations were compared against event detection by 

force plates (vGRF), set at a threshold of 20 N, with the difference between the two values was 

expressed as an event detection error. The best-performing algorithm for each group was determined 
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on the basis of sensitivity and accuracy, explained below under statistical analysis. To examine efficacy 

for use in clinical settings, spatio-temporal parameters (step length (mm), stride length (mm), stride 

width (mm), step time (ms), stride time (ms), single limb support time (ms), double support time (ms) 

and walking speed (m/s)) were calculated using the best-performing algorithm for each group. Event 

detection by force plates was also compared against 3 different thresholds – 10 N, 15 N, 20 N and 2% 

of the maximum vGRF to determine whether a change in threshold yields significant offset values.  

All data processing was performed in MATLAB (v. 2019a, Mathworks Inc.). Codes related to this 

report are attached in the appendix (see Appendix 2.3). 

2.4 Statistical Analysis  

The error values obtained for each algorithm and group were analyzed for normal distribution with a 

Kolmogorov-Smirnov test. Bland-Altman analyses [41, 42] were performed to compare a) the timing 

of gait events obtained using the implemented algorithms against the ‘gold standard’, and b) the STP 

obtained automatically and clinically, with the coefficient of determination (R2 value) used to evaluate 

the linear association between the clinically and kinematically identified STP per subgroup. 

Specifically, we looked for R2 values greater than 0.95. The best performing algorithm was chosen on 

the basis of  a) sensitivity i.e. the number of subjects for which the algorithm was able to detect a gait 

event within +- 33 ms of the force plate-detected event;  and b) accuracy, determined by the median 

event detection error. 
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3. Results 

3.1 Identification of the best-performing algorithm 

 

The Kolmogorov Smirnov test accepted the normalcy hypothesis for the error values in almost all groups 

except groups A and B when using the O’Connor algorithm.  

For FO detection, a combination of the speed-dependent sagittal velocity approach and the hallux marker 

yielded the best results with median errors of 0 ms for all 3 groups. With regards to sensitivity, for groups 

A and C, all error values were within the accepted 33 ms threshold, whereas for group B, 96.67% of the 

errors were within the threshold. 

 In the case of IC estimation, the sagittal velocity approach (threshold: 500 mm/s) combined with the toe 

marker yielded the best results for Groups A (100% sensitivity, median error 0 ms) and B (96.67% 

sensitivity, median error 0 ms) while the heel marker provided the lowest median values for group C 

(96.67% sensitivity, median error 3.33 ms). Overall, all algorithms had a higher sensitivity when 

detecting FO than IC. 

The results of the Bland Altman analysis revealed high agreement (R2 >0.95) for every algorithm and 

marker combination for both IC and FO, except for the combination of the toe marker with the algorithm 

by O’Connor et al. The R2 values were 0.4221 for IC estimation for group C, and 0.4590 for FO 

estimation in group A. 

The median errors, sensitivity values for all groups studied are summarized in Figure 3 below. Further 

details on the comparison of the implemented algorithms can be found in supplementary information 

(see Appendix 3.1) 
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Figure 3:Box-plots representing the error distribution for the algorithms. Positive values indicate a 

delay in the detection of gait events, compared to force plate event detection, whereas negative values 

indicate that the algorithm detected events before the force plate. The sensitivity values are listed above 

the box plots. 
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3.2 Comparison of clinically and kinematically determined spatio-temporal parameters 

 

The Δ values describing the difference between the clinically and kinematically calculated spatio-

temporal parameter were not normally distributed for any parameter or participant group. The median Δ 

values between the two methods ranged between -0.0300 to -0.312 mm for stride length, 0.021 to -0.899 

mm for step length, -0.0236 to -1.541 mm for stride width, -1.667 to -6.667 ms for stride time, 0 to -

3.333 ms for step time, 0 to 6.667 ms for single limb support time, 0 to -13.33 ms for double limb support 

time and 0.0021 to 0.0034 m/s for walking speed. Positive/negative values indicate over/underestimation 

of kinematically determined STP. The median and range of Δ values per participant group are listed in 

supplementary information S4. 

The maximum percentage differences for each computed spatio-temporal parameter were as follows: 

stride length, 3.13%; stride time, 6.3%; step length, 9.03% ; step time, 9.66%; stride width, 1.68%; single 

limb support time, 20.45%; double limb support time, 36.62% and 3.97% for walking speed. 

Results of the Bland Altman analysis showed high agreement (R2>0.95) for most STP except step time 

for group C (R2 = 0.923), single limb support time for which the R2 values were 0.722 for group A, 0.875 

for group B and 0.879 for group C) and double limb support time, wherein the R2 values were 0.632 for 

group A, 0.921 for group B and 0.769 for group C. 

The histogram distribution and R2 values is shown in Figure 4 below. 
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Figure 4: Histogram of the differences in STP between kinematic and clinical identification. 

Participants were grouped according to the region of foot that initially contacted the ground – Group 

A (fore-foot), Group B (flat foot or side of foot) and Group C (heel strike). Red line indicates normal 

distribution. 

3.3 Comparison of force plate event detection at different thresholds 

Comparing the IC events identified at a 20 N threshold against 10 N, 15 N, and 2% of the maximum 

vGRF, the mean absolute differences were 3.11 ms, 1.20 ms and 2.82 ms respectively. The maximum 

absolute differences observed were 20 ms, 6.66 ms and 26.67 ms respectively. 

The mean absolute differences were higher in FO, with the observed values being 9.96 ms, 4.28 ms and 

12.50 ms respectively. The maximum absolute differences were also higher, with values 26.67 ms, 33.33 

ms and 60 ms respectively. The Bland Altman analysis revealed a high agreement between the different 

thresholds, with the R2 values greater that 0.99 for ever case. 
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4. Discussion  

The purpose of this study was to compare existent kinematic gait event detection algorithms for accuracy 

and sensitivity for different walking patterns (groups A (fore-foot IC), B (flat foot IC) and C (heel-strike 

IC)) and to determine if differences between kinematically and clinically identified (force plate or 

visually determined) gait events could influence clinical interpretation. Outcomes showed that accuracy 

and sensitivity of kinematic algorithms was dependent on a combination of algorithm and marker choice. 

For IC, the best-performing algorithm was the sagittal velocity approach across all 3 groups, with the 

toe as the preferred marker for Groups A and B, and the heel for Group C. For FO, sagittal velocity with 

a walking speed-dependent threshold with the hallux marker worked best across all groups. When 

comparing kinematically and clinically determined STP, differences of >1.7% were observed in spatial 

parameters despite high R2 values (>0.95). For temporal parameters, observed R2 values were relatively 

lower (>0.63), and the percentage differences in temporal parameters were especially high in the case of 

single and double limb support times (>20%). 

4.1 Evaluation of outcomes  

For IC, the accuracy and sensitivity values for the sagittal velocity approach are consistent with those 

reported previously. This is possibly because it was the only algorithm that considered movement in the 

sagittal plane, while other algorithms considered movement only in one direction. However, contrary to 

Bruening and Ridge’s reported sensitivities of 96%+ for the two algorithms utilizing horizontal position 

(for equinus, steppage and slide/drag walking patterns), our observed values of sensitivity were lower. 

This could be attributed to the differences in sampling frequencies for kinematic data (150 or 300 Hz) 

used in this study to that of the publication (120 Hz), since a lot of absolute errors computed for our 

dataset were at 33.3 ms and hence discarded. The inclusion of the toe marker also did not improve the 

accuracy of IC detection for group A for any other algorithms, barring the sagittal velocity approaches, 

possibly because the other algorithms relied on local maxima in horizontal position or vertical velocity 

and hence marker choice would not severely affect event detection. It is also noteworthy that for group 

B, both heel and toe markers yielded similar results for the sagittal velocity approach. A possible reason 

for the same is that in many participants from the group, the side of the foot initially contacted the ground. 

Hence, we propose the investigation of markers at the proximal and distal ends of the fifth metatarsal 

(PMT5 and DMT5 [43]) for IC detection, as it may improve the robustness of the sagittal velocity 

approach. 

For FO detection, inclusion of the speed-dependent threshold and the hallux marker improved 

identification for the sagittal velocity approach, as recommended by Bruening and Ridge [38]. However, 

inclusion of the hallux marker was ineffective for other algorithms. These results are not in agreement 

with recommendations of the publication, which expected FO detection to improve across all algorithms. 

This could again be explained by the reliance on local maxima/minima of the other algorithms. For group 

C, all algorithms had a high sensitivity value of 86%+ which could be explained by most participants 

having a distinct toe-off enabling FO detection from all 3 planes.  

4.2 Limitations 

The methodology used for the identification of the best-performing algorithm did not account for errors 

occurring due to marker misplacement and marker trajectories. Marker misplacement occurs due to 

anatomical deformations or difficulties in identifying underlying anatomical landmarks. Marker 

trajectory errors are influenced by the number of cameras, calibration volume and calibration procedures, 

and could lead to errors upto 1.7 mm [44]. A combination of both could exacerbate the differences in 

kinematic and kinetic event detection, and hence influence identification of the best-performing 
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algorithm. We tried to minimize the effect of marker displacement by only including data measured by 

trained experts from the gait laboratory. 

Furthermore, the reference clinical method for gait event detection (force plate identification) is 

threshold dependent. Despite the high R2 value (>0.99), absolute mean differences in the thresholds were 

greater than 1.2 ms for IC, and 4.2 ms for FO. Since the choice of threshold can influence event detection 

and hence calculation of STP, this suggest the need for further research in identifying the most suitable 

threshold for pediatric pathological populations. 

4.3 Clinical relevance 

To evaluate whether differences in clinically and kinematically identified STP influence clinical 

interpretation, the obtained differences were compared to previously reported values of clinically 

meaningful differences. Clinically meaningful changes for step width (3- 8 mm), step length (2.4- 6.1 

mm), stance time (5-14 ms) and swing time (3- 9 ms) were reported in ambulatory adults over the age 

of 70 [45]. Comparing and extrapolating these values to the maximum differences reported in this study, 

clinical interpretation is likely to be affected if kinematic algorithms are implemented in a clinical 

setting, especially in the case of temporal parameters. However, further research is needed to establish 

values of clinically meaningful differences for STP for CP gait.  

It is also important to consider that, while in this study, results were computed for one gait cycle, these 

differences could increase over multiple consecutive gait cycles. Therefore, evaluating the intra-subject 

reliability in the computation of STP using the two methods for multiple gait cycles is recommended for 

evaluating kinematic algorithms for clinical use. Furthermore, determining the influence of these 

differences on the determination and interpretation of the Movement Analysis Profile is also 

recommended. 

4.4 Conclusion 

Current findings suggest that overall, the sagittal velocity approach for gait event detection is most robust 

to a wide variety of walking patterns, and while the speed-dependent threshold improved FO detection, 

further research is needed to establish a better threshold for IC estimation. Evaluation of the resultant 

STP showed that kinematic gait event algorithms cannot yet be implemented in a clinical setting due to 

the differences possibly crossing clinically meaningful differences and hence influencing clinical 

interpretation. Furthermore, it also seems that the 33 ms threshold defined by previous studies as an 

acceptable error for kinematic algorithms is too high, considering the high differences observed between 

kinematic and clinical STP. Therefore, we recommend investigating the resultant spatio-temporal values 

obtained from gait events determined from machine learning algorithms utilizing kinematic data, as they 

have been reported to detect gait events within a 10.7 ms window and could be robust to a variety of 

pathological gait patterns [46]. Overall, our findings suggest that correct selection of the marker-

algorithm choice for automatic gait event detection could ensure that misinterpretation of STPs is 

avoided. 
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Appendix  

1. Background Theory 

1.1 Gait Cycle 

Walking can be described as a “a cyclic pattern of body movements which advances an individual’s 

position”. A gait cycle is usually described in context of one leg, termed as the ipsilateral leg.  It begins 

at the initial contact or initial contact of the ipsilateral leg and continues until the initial contact of the 

same leg in preparation for the next step to occur [47]. 

Typically, a gait cycle can be divided into two main phases-the stance phase i.e. the period the ipsilateral 

leg is in contact with the ground and bears the body weight which comprises of approximately 60% of 

the entire cycle, and the swing phase wherein the period the limb is not in contact with the ground, 

comprising of 40% of the cycle. Two events occur during the gait cycle – Initial Contact (which defines 

the start and end of a gait cycle) and Foot Off (occurring at the end of the stance phase), which 

determine the length and time of the gait phases.  

Therefore, the gait cycle can be divided into the following phases, as described in figure 1 below. 

 

         

Figure 4: Phases of the gait cycle. Adapted from [48]. 

Typically, the timing of one gait cycle is normalized as a percentage (100%), and gait events and phases 

are described as occurring at a percentage of the gait cycle. The phases and events of a gait cycle are 

described as follows: 

Ipsilateral Initial contact (0% and 100% of the gait cycle): The point in time in stance phase when the 

ipsilateral foot comes in contact with the ground. 

Loading Response (0-10%): The first period of double support (i.e. the period both legs are in contact 

with the ground) wherein the body weight is transferred from one lower limb to another. 
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Contralateral Foot-Off (10%): The point in time in the stance phase when the contralateral foot leaves 

the ground. 

Single Support phase (10-50%): Consists of the mid-stance phase (10%-30%), which is described as 

a period where the ipsilateral limb moves from a shock-absorption to a stability function, and the 

terminal stance (30-50%) which starts with the heel rise of the ipsilateral leg, and is defined as a period 

where the body weight progresses beyond the ipsilateral foot. 

Contralateral Initial contact (50%): The point in time in the stance phase when the contralateral leg 

touches the ground. 

Pre-Swing (50-60%): The second period of double support wherein the ipsilateral limb is prepared 

for swing. 

Ipsilateral Foot-Off (60%): The point in time wherein the ipsilateral leg leaves the ground. This event 

also marks the beginning of the swing phase. 

Initial Swing (60-73%): This phase is defined as the period of limb advancement and foot clearance. 

Mid-Swing (73% to 87%): The point in time when the swinging limb is forward. The functional 

objectives in this phase are again foot clearance and limb advancement. 

 

Terminal Swing (87-100%): The last phase of a gait cycle which is defined by a period of deceleration 

of the ipsilateral leg and preparation for its next initial contact. 

1.2 Spatio-temporal gait parameters 

Further characterisation of human walking can be done with distance or spatial measurements such as 

step length and stride length.  When these are combined with temporal parameters, additional 

descriptors of gait characteristics such as walking velocity and cadence can be defined. Below is a short 

description of the most common spatio-temporal gait parameters that help provide an objective analysis 

of gait [12]. 

Step length (m) is defined as the longitudinal distance between the two feet generally. It is the distance 

from a point of initial contact of one foot with the ground to the following occurrence of the same point 

of contact of the other foot with the ground (Figure 2).  

In normal walking, the right step length is defined as the distance measured from 

heel strike of the left foot to heel strike of the right foot. Consequently, the left step length is defined 

as the distance measured from heel strike of the right foot to heel strike of the left foot. 

 

Step time (s) is the time taken for one step and is measured as the period of time from an event of the 

ipsilateral foot to the following same event of the contralateral foot. 

 

Stride length (m) is the distance covered during a complete gait cycle, and extends from the initial 

contact of the ipsilateral foot to the following initial contact of the same foot. It is a summation of the 

right and left step lengths (Figure 2). 

 

Stride time (s) is the time taken to complete one stride. 

 

Step width (mm) is defined as the mediolateral distance between the feet which is typically measured 

from the ankle joint centre. 

 

Single limb support time (ms) is the amount of time that passes during the period when only one limb 

is in contact with the ground during a gait cycle. 
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Double limb support time (ms) is the time in the gait cycle when both feet are in contact with the 

ground. 

 

Cadence (steps/min) is the number of steps taken during a given amount of time. 

 

Walking velocity (m/s) is the rate of change of linear displacement along the direction of progression 

measured over one or more strides. 

 

 

 
Figure 5: Depiction of stride and step lengths 

1.3 The role of gait parameters in the treatment and management of CP 

While STP serve as indicators of walking behaviour, they do not consider the motion of individual 

joints. For example, it is possible for children exhibiting mild equinus gait to walk with a comparative 

walking speed as that of a TD child [49]. Therefore, diagnostic tools such as the Gait Deviation index 

and the Gilette Gait index make use of joint kinematics in combination with STP order to quantify the 

degree of deviation from TD gait [50]. 

As an example of how gait parameters are used in the diagnosis and management of cerebral palsy, 

below is an example report retrieved from a clinical gait report of child diagnosed with cerebral palsy, 

who had undergone clinical gait analysis at the University of Basel Children’s Hospital, Switzerland in 

2018 (Figure 3). As seen in the figure, both spatio-temporal and kinematic parameters were extracted, 

ensemble-averaged and compared to controls in order to quantify gait abnormalities. Similarly, such 

figures are also generated when the patient is fitted with an orthoses, after the injection of BTX, and 

post-surgeries that target muscle and bony abnormalities. STP are also used to gauge stride-to-stride 

variability occurring in a subject. Therefore, while not absolute, STP nevertheless assist clinicians in 

assessing and characterising functional gait performance. 
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Figure 6: Example of data in a clinical gait analysis report for bilateral spastic cerebral palsy: a) 

Spatio-temporal parameters; b) Joint kinematics 
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2. Supplementary information - Methods 

 

2.1 Marker List 

 

2.2  

 

 

 

 

 

 
Plug-In Gait Model: 

• LFHD/RFHD: Left/Right front head 

• LBHD/RBHD: Left/Right Back Head 

• LSHO/RSHO: Left/Right Shoulder (acromio-navicular joint) 

• CLAV: Where the clavicle meets the sternum 

• C7: 7th Cervical Vertebra 

• LBAK: Left Back 

• T10: 10th Thoracic Vertebra 

• STRN: Xiphoid process of the Sternum 

• LELB/RELB: Left/Right Elbow (lateral epicondyle) 

• LWRA/RWRA: Left/Right Wrist thumb side 

• LWRB/RWRB: Left/Right Wrist pinkie side 

• LFIN/RFIN: Left/Right Dorsum of the hand 

Figure 7: Marker list 
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• LASI/RASI: Left/Right Anterior Superior Iliac 

• LPSI/RPSI: Left/Right Posterior Superior Iliac 

• SACR: Sacrum (middle of the LPSI/RPSI) 

• LTHI/RTHI: Left/Right lateral Thigh 

• LKNE/RKNE: Left/Right Knee 

• LTIB/RTIB: Left/Right lateral Tibia 

• LANKM/RANKM: Left/Right Medial Malleoli 

• LANK/RANK: Left/Right lateral Malleoli 

• LHEE/RHEE: Left/Right Heel (same level as the TOE marker) 

• LTOE/RTOE: Left/Right Metatarsal II head 

 

Additional Markers: 

• LTRO/RTRO: Left/Right Trochanter Major 

• LDTHI/RDTHI: Left/Right Distal posterior Thigh 

• LPTHI/RPTHI: Left/Right Proximal anterior Thigh 

• LTUB/RTUB: Left/Right Tibial Tuberosity 

• LDTIB/RDTIB: Left/Right Medial Tibial Edge 

• LSITA/RSITA: Left/Right Sinus Tarsi 

• LPTR/RPTR: Placed under ankle, lateral on the calcaneus 

• LPMT5/RPMT5: Left/Right Metatarsal V base 

• LPTM1/RPTM1: Left/Right Metatarsal I base 

• LCUN/RCUN: Placed between Metatarsal I and V basis 

• LDMT5/RDMT5: Left/Right Metatarsal V head 

• LDMT1/RDMT1: Left/Right Metatarsal I head 

• LHLX/RHLX: Left/Right Hallux 

 

2.2 Explanation for exclusion of acceleration-based kinematic algorithms 

Two algorithms, recommended by previous comparison studies, were excluded from the study due to 

low sensitivity. The two algorithms and the reason for their exclusion have been detailed below: 

1. Hreljac and Marshall (2000) developed an algorithm that uses local maxima in the vertical 

acceleration and the point of zero-crossing of the jerk (as it decreases) of the heel marker to 

determine the location of IC. TO is computed as the local maxima in the horizontal acceleration 

and the point of zero-crossing of the jerk (as it increases) of the toe marker.  The below example 

illustrates the difficulty in automatic isolation of these peaks. 

3-D kinematic data was taken from a participant belonging to group C (participants with a 

defined heel strike). The below figure plots the vertical acceleration and the jerk of the heel 

marker against frame number. Please note that the units of acceleration have been scaled by a 

factor of 10 for visual clarity.  
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Figure 8: Detection of false positives for IC. 

 

As is evident from the figure, the algorithm detects 3 possible instances of local maxima and 

zero-crossing of jerk, despite the true IC occurring only at frame 356 (dashed red vertical line). 

Similarly, the algorithm detected multiple false instances of TO, especially in participants from 

Group A and B. Therefore, the algorithm was excluded due to high false positives, and hence, 

difficulty in automation. 

 

2. Hsue et al. (2007) recommended the minima and the maxima of the horizontal acceleration of 

the toe marker for IC and TO detection respectively. While the algorithm was able to detect 

distinct peaks for some individuals, for other individuals, there were often 2 peaks occurring 

close to the true event. While shorter peaks could be eliminated by setting appropriate 

thresholds for peak height per individual, due to the high range of differences in the heights of 

the maximum horizontal acceleration peaks across individuals, this process could not be 

automated. Hence, the algorithm was excluded due to feasibility of incorporating in a clinical 

setting. 
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2.3 Codes for data analysis 

All codes used in the thesis are available at the following link: 

https://github.com/Roosje95/AGED_gait-event-detection 

2.3.1 Generation of result matrices for all algorithms 

Main_Algorithms 

 

% Needed to run: 

% 1. btk installed [http://biomechanical-toolkit.github.io/] 

% 2. Matlab functions 

 

% Outcomes: after running the code table1 reports the frame on which 

event 

% is detected per method, if you want ms instead of frame 

 

 

 

close all; 

clc; 

Initial set-up 

% TestDIR=uigetdir([], ?Select the folder with the test data?); test 

out to 

% automatic select the folder 

btkFolder     = 

'P:\Projects\NCM_CP\read_only\Codes\Codes_Basics\Codes_UKBB\btk';%ad

d location were btk folder from biomechanical toolkit is saved 

addpath(btkFolder); 

addpath('P:\Projects\NCM_CP\project_only\NCM_CP_GaitEventDetection\M

anuscript\G&P_v1\GitLab_Codes'); %add path to where zyou saved our 

matlab functions 

addpath('P:\Projects\NCM_CP\project_only\NCM_CP_GaitEventDetection\M

anuscript\G&P_v1\GitLab_Codes\example_c3d'); %add path towards c3d 

files 

 

table1=readtable('Trails_info.xlsx');% replace Trails_Info. 

cd 

P:\Projects\NCM_CP\project_only\NCM_CP_GaitEventDetection\Manuscript

https://github.com/Roosje95/AGED_gait-event-detection
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\G&P_v1\GitLab_Codes\example_c3d %go to folder in which c3d files 

are saved 

Initialize variables 

c3dlist=table1{:,1}; % names of c3d files which you would like to 

evaluate 

FP = table1{:,2}; % numbers refering to which force platform was hit 

during each trail (c3d file) 

Side = table1{:,3}; % indicates is this trail is with force plate 

hit on left or right side 

 

% for-loop to perform calculations for all c3d files 

for i=1:length(c3dlist) 

    c3dfile = c3dlist(i); 

    btkData=btkReadAcquisition(c3dfile{1,1}); 

    btkClearEvents(btkData); 

    metadata=btkGetMetaData(btkData); 

    ff=btkGetFirstFrame(btkData); 

    Markers = btkGetMarkers(btkData); 

    angles=btkGetAngles(btkData); 

    f = btkGetPointFrequency(btkData); 

    freq(i,1)=f; 

 

    n = btkGetPointFrameNumber(btkData); 

    FPnumber=FP(i); 

Determine Force Plate events 

    temp = btkGetGroundReactionWrenches(btkData); 

    for t = 1:length(temp(FPnumber).F(:,3)) 

        if temp(FPnumber).F(t,3) < 20 % 15 N threshold on Z axis 

(vertical) 

            temp(FPnumber).F(t,:) = 0; 

        end 

    end 

    Forces = interpft(temp(FPnumber).F(:,3),n); % Z axis (vertical) 

    mFS = NaN; 

    if min(find(Forces>1e-4)) 

        mFS = min(find(Forces>1e-4)); 

    end 

    if ~isnan(mFS) 
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        mFO = min(find(Forces(mFS+20:end)<1e-4)+mFS+20-1); 

    else 

        mFO = NaN; 

    end 

    mFO_ms=(mFO/f)*1000    ; 

    mFS_ms=(mFS/f)*1000    ; 

Define Markers 

    if (strcmp(Side{i,1},'Left') ||strcmp(Side{i,1},'left')) 

        heelMarkerName = 'LHEE'; 

        toeMarkerName = 'LHLX'; 

    else 

        heelMarkerName = 'RHEE'; 

        toeMarkerName = 'RHLX'; 

    end 

 

    % Zeni Markers 

    sacralMarkerName='SACR'; 

    LPSI='LPSI'; 

    RPSI='RPSI'; 

    LASI='LASI'; 

    RASI='RASI'; 

Correct for Walking Direction 

    SACR = Markers.SACR; 

 

    % delete zeros at the beginning or end of an trial 

 

    dir_i = abs(SACR(end, 1) - SACR(1, 1)); 

    dir_j = abs(SACR(end, 2) - SACR(1, 2)); 

 

    walkdir = 1;  % x is walkdir 

 

    if (dir_i < dir_j) 

        walkdir = 2;  % y is walkdir 

    end 

 

    % pos. or neg. direktion on axis 

    sgn = sign(SACR(end, walkdir) - SACR(1, walkdir)); 

    walkdir = walkdir * sgn; 
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    [Markers_Corrected]=f_rotCoordinateSystem(Markers, walkdir, 1); 

    gaitAxis=1; 

    verticalAxis=3; 

Filtering Markers and preprocessing 

    [B,A] = butter(4,6/(f/2),'low'); 

    velfootcentre=[]; 

    Hvelocity_sagittal= []; 

    Fvelocity_sagittal= []; 

    Hvelocity_horizontal=[]; 

    Fvelocity_horizontal=[]; 

    Hvelocity_vertical=[]; 

    Fvelocity_vertical=[]; 

    filtheelmarker = []; 

    Hacc_sag=[]; 

    Hacc_hor=[]; 

    Hacc_ver=[]; 

    Facc_sag=[]; 

    Facc_hor=[]; 

    Facc_ver=[]; 

    filttoemarker = []; 

    filtsacrmarker=[]; 

    filtRPSI=[]; 

    filtLPSI=[]; 

    filtRASI=[]; 

    filtLASI=[]; 

    filtheelmarker(:,:,1) = filtfilt(B, A, 

Markers_Corrected.(heelMarkerName)); 

    filttoemarker(:,:,1) = filtfilt(B, A, 

Markers_Corrected.(toeMarkerName)); 

    filtsacrmarker(:,:,1) = filtfilt(B, A, 

Markers_Corrected.(sacralMarkerName)); 

    filtLPSI(:,:,1) = filtfilt(B, A, Markers_Corrected.(LPSI)); 

    filtRPSI(:,:,1) = filtfilt(B, A, Markers_Corrected.(RPSI)); 

    filtLASI(:,:,1) = filtfilt(B, A, Markers_Corrected.(LASI)); 

    filtRASI(:,:,1) = filtfilt(B, A, Markers_Corrected.(RASI)); 

 

    ysacr=filtsacrmarker(:,gaitAxis,:); 

    zsacr=filtsacrmarker(:,verticalAxis,:); 

    yheel=filtheelmarker(:,gaitAxis,:); 

    ytoe=filttoemarker(:,gaitAxis,:); 
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    %Determine approximate walking speed 

    [vel,time]=f_approxVelocity(ysacr,zsacr,f); 

    vel2=vel/100; 

Kinematics 

    %Calculate velocity of markers 

    for t = 1:n-1 

        Hvelocity_sagittal(t) = sqrt((filtheelmarker(t+1,gaitAxis)- 

filtheelmarker(t,gaitAxis))^2+(filtheelmarker(t+1,verticalAxis)- 

filtheelmarker(t,verticalAxis))^2)/(1/f); 

        Fvelocity_sagittal(t) = sqrt((filttoemarker(t+1,gaitAxis)- 

filttoemarker(t,gaitAxis)).^2+(filttoemarker(t+1,verticalAxis)- 

filttoemarker(t,verticalAxis)).^2)/(1/f); % mm/s 

        Hvelocity_horizontal(t)=(filtheelmarker(t+1,gaitAxis)-

filtheelmarker(t,gaitAxis))/(1/f); 

        Fvelocity_horizontal(t)=(filttoemarker(t+1,gaitAxis)-

filttoemarker(t,gaitAxis))/(1/f); 

        Hvelocity_vertical(t)=(filtheelmarker(t+1,verticalAxis)-

filtheelmarker(t,verticalAxis))/(1/f); 

        Fvelocity_vertical(t)=(filttoemarker(t+1,verticalAxis)-

filttoemarker(t,verticalAxis))/(1/f); 

    end 

 

    %Calculate accelerations 

    % 

    for j = 1:size(Hvelocity_sagittal,2)-1 

        Hacc_sag(j)=(Hvelocity_sagittal(j+1)- 

Hvelocity_sagittal(j))/(1/f); 

        Hacc_hor(j)=(Hvelocity_horizontal(j+1)- 

Hvelocity_horizontal(j))/(1/f); 

        Hacc_ver(j)=(Hvelocity_vertical(j+1)- 

Hvelocity_vertical(j))/(1/f); 

    end 

    for j = 1:size(Fvelocity_sagittal,2)-1 

        Facc_sag(j)=(Fvelocity_sagittal(j+1)- 

Fvelocity_sagittal(j))/(1/f); 

        Facc_hor(j)=(Fvelocity_horizontal(j+1)- 

Fvelocity_horizontal(j))/(1/f); 

        Facc_ver(j)=(Fvelocity_vertical(j+1)- 
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Fvelocity_vertical(j))/(1/f); 

    end 

Kinematic Algorithm_Zeni 

    

[eFO_zeni_frame,eFS_zeni_frame,eFO_zeni_ms,eFS_zeni_ms]=f_zeni_event

(f,yheel,ytoe,ysacr,mFO,mFS); 

 

Kinematic Algorithm_Ghoussayni 

    vThreshold=500; 

    FS=[]; 

    FO=[]; 

    [FS_G,FO_G] = 

f_Ghoussayni_500(filtheelmarker,filttoemarker,gaitAxis,verticalAxis,

n,f); 

    [eFO_G_frame,eFS_G_frame,eFO_G_ms,eFS_G_ms]=f_mG_event(FO_G, 

FS_G,mFO,mFS,f); 

Kinematic Algorithm_ModifiedGhoussayni 

    

[FS_mG,FO_mG]=f_Ghoussayni_variablethreshold(filtheelmarker,filttoem

arker,gaitAxis,verticalAxis,n,f,vel2); 

    

[eFO_mG_frame,eFS_mG_frame,eFO_mG_ms,eFS_mG_ms]=f_mG_event(FO_mG, 

FS_mG,mFO,mFS,f); 

Kinematic algorithm_Desailly 

    [B,A] = butter(4,(7/(f/2))); 

    filttoemarker_d = filtfilt(B, A, 

Markers_Corrected.(toeMarkerName)); 

    filtheelmarker_d = filtfilt(B, A, 

Markers_Corrected.(heelMarkerName)); 

    fhm2 = filttoemarker_d(1:end,gaitAxis); 

    fhm=filtheelmarker_d(1:end,gaitAxis); 

    [z,p,k] = butter(4,0.5/(f/2),'high'); 

    [sos,g] = zp2sos(z,p,k); 

    L_toe_high  = filtfilt(sos,g,fhm2); 

    L_heel_high=filtfilt(sos,g,fhm); 



38 
 

 

    [location_d_TO,index_d_TO]=findpeaks(-L_toe_high); 

    [location_d_FS,index_d_FS]=findpeaks(L_heel_high); 

 

    [eFS_D_frame,eFS_D_ms]= 

f_desailly_event(L_heel_high,mFS,f,location_d_FS,index_d_FS ); 

    [eFO_D_frame,eFO_D_ms]= 

f_desailly_event(L_heel_high,mFO,f,location_d_TO,index_d_TO ); 

Kinematic algorithm_O’Connor 

    zheel= filtheelmarker_d(:,verticalAxis); 

    ztoe=filttoemarker_d(:,verticalAxis); 

    zCoordfootcentre = 1/2 * (zheel + ztoe); 

    for j=1:length(zheel) 

        footcentre(j)=(zheel(j)+ztoe(j))/2; 

    end 

    p=1; 

    for j=1:length(ztoe)-1 

        velfootcentre(p)=(footcentre(j+1)-footcentre(j))/(1/f); 

        p=p+1; 

    end 

 

    [eFO_oconnor_frame,eFS_oconnor_frame,eFO_oconnor_ms, 

eFS_oconnor_ms]=f_oConnor_event(f,zheel,velfootcentre,mFS,mFO); 

 

%     %% Kinematic algorithm_Hreljac 

%     threshold=0.3 * max(Facc_hor); 

%     [vFS_hreljac,FSindex_hreljac]=findpeaks(Hacc_ver); 

%     [vFO_hreljac,FOindex_hreljac]=findpeaks(Facc_hor); 

% 

%     

[eFO_hreljac_frame,eFS_hreljac_frame,eFO_hreljac_ms,eFS_hreljac_ms]=

f_hreljac_event(Hacc_hor, Facc_hor,Hacc_ver, Facc_ver,mFO,mFS,f); 

% 

Collect outcomes in table 

    table1.FP_FS(i)= mFS; 

    table1.Zeni_FS(i)= eFS_zeni_frame; 

    table1.Ghoussayni_FS(i)= eFS_G_frame; 

    table1.mGhoussayni_FS(i)= eFS_mG_frame; 

    table1.Desailly_FS(i)= eFS_D_frame; 
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    table1.Oconnor_FS(i)= eFS_oconnor_frame; 

    table1.FP_FO(i)= mFO; 

    table1.Zeni_FO(i)= eFO_zeni_frame; 

    table1.Ghoussayni_FO(i)= eFO_G_frame; 

    table1.mGhoussayni_FO(i)= eFO_mG_frame; 

    table1.Desailly_FO(i)= eFO_D_frame; 

    table1.Oconnor_FO(i)= eFO_oconnor_frame; 

end %FOR-loop c3d files 

 

disp(table1)% show results in command Window 

 

2.3.2 Rotating coordinate systems for standardizing the walking direction across all subjects to 

be analysed 

 

%Change coordinate system from vicon xyz to x'y'z' 

 

 

function [xyz] = f_rotCoordinateSystem(xyz, walkdir, i) 

 

    walksgn = 1;  % case x+ 

    saggdir = 2; 

    saggsgn = 1; 

 

    if (walkdir < -1) 

 

        walkdir = 2;  % case y- 

        walksgn = -1; 

        saggdir = 1; 

        saggsgn = 1; 

 

 

    elseif (walkdir < 0) 

 

        walkdir = 1;  %case x- 

        walksgn = -1; 

        saggdir = 2; 

        saggsgn = -1; 

 

    elseif (walkdir > 1) 
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        walkdir = 2;  % case y+ 

        walksgn = 1; 

        saggdir = 1; 

        saggsgn = -1; 

 

 

    end %IF (walkdir < -1) 

 

    tm = fieldnames(xyz); 

    nm = length(tm); 

 

    for j = 1 : nm 

        xyz(i).(tm{j}) = [walksgn * xyz(i).(tm{j})(:, walkdir) ... 

                          saggsgn * xyz(i).(tm{j})(:, saggdir) ... 

                                    xyz(i).(tm{j})(:, 3)]; 

    end %FOR j = 1 : nm 

 

end  %FUNCTION f_rotCoordinateSystem 

 

2.3.3 Approximating the walking velocity of the subject. 

 

function [vel,time]=f_approxVelocity(Xmid, Ymid, SF) 

%Calculates velocity per track 

 

%Xmid=X_coord from SACR marker 

%Ymid=Y_coord from SACR marker 

 

start=(1); 

stop=length(Xmid); 

 

%make sure there are no NaN 

%start and stop are the same for X and Y 

Xstop=Xmid(stop); 

while isnan(Xstop) ; 

    stop=stop-1; 

    Xstop=Xmid(stop); 

end 

 

Xstart=Xmid(start); 
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while isnan(Xstart); 

    start=start+1; 

    Xstart=Xmid(start); 

end 

 

%calculate the spatial difference 

Xdiff=abs(Xstop-Xstart); 

Ydiff=abs(Ymid(stop)-Ymid(start)); 

diff_mm=sqrt(Xdiff^2+Ydiff^2); 

diff_mm=diff_mm*100; 

time=(abs(stop-start))/SF; 

 

%velocity [mm/s] 

vel=diff_mm/time; 

2.3.4 Ghoussayni Algorithm 

 

function [FS,FO] = 

f_Ghoussayni_500(Hmarkers,Fmarkers,gaitAxis,verticalAxis,n,f) 

 

% ------------------------------------------------------------------

------- 

% Initialisation 

% ------------------------------------------------------------------

------- 

FS = []; 

FO = []; 

 

% ------------------------------------------------------------------

------- 

% Calculate the 2D velocity of the markers in the plane containing 

% gait (V1) and vertical (V2) axes 

% ------------------------------------------------------------------

------- 

for t = 1:n-1 

    % Hindfoot markers velocity 

    for i = 1:size(Hmarkers,3) 

        Hvelocity(t,i) = sqrt((Hmarkers(t+1,gaitAxis,i)- ... 

            Hmarkers(t,gaitAxis,i))^2+ ... 

            (Hmarkers(t+1,verticalAxis,i)- ... 

            Hmarkers(t,verticalAxis,i))^2)/ ... 
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            (1/f); 

    end 

    % Forefoot markers velocity 

    for i = 1:size(Fmarkers,3) 

        Fvelocity(t,i) = sqrt((Fmarkers(t+1,gaitAxis,i)- ... 

            Fmarkers(t,gaitAxis,i)).^2+ ... 

            (Fmarkers(t+1,verticalAxis,i)- ... 

            Fmarkers(t,verticalAxis,i)).^2)/ ... 

            (1/f); 

    end 

end 

 

% ------------------------------------------------------------------

------- 

% Calculate the 2D velocity of the markers barycenter in the plane 

% containing gait (V1) and vertical (V2) axes (ONLY FOR CASE 3) 

% ------------------------------------------------------------------

------- 

for t = 1:n 

    % Hindfoot markers barycenter 

    Hbarycenter(t,1) = sum(Hmarkers(t,1,:))/size(Hmarkers,3); 

    Hbarycenter(t,2) = sum(Hmarkers(t,2,:))/size(Hmarkers,3); 

    Hbarycenter(t,3) = sum(Hmarkers(t,3,:))/size(Hmarkers,3); 

    % Forefoot markers barycenter 

    Fbarycenter(t,1) = sum(Fmarkers(t,1,:))/size(Fmarkers,3); 

    Fbarycenter(t,2) = sum(Fmarkers(t,2,:))/size(Fmarkers,3); 

    Fbarycenter(t,3) = sum(Fmarkers(t,3,:))/size(Fmarkers,3); 

end 

for t = 1:n-1 

    % Hindfoot barycenter velocity 

    HBvelocity(t) = sqrt((Hbarycenter(t+1,gaitAxis)- ... 

        Hbarycenter(t,gaitAxis))^2+ ... 

        (Hbarycenter(t+1,verticalAxis)- ... 

        Hbarycenter(t,verticalAxis))^2)/ ... 

        (1/f); 

    % Forefoot barycenter velocity 

    FBvelocity(t) = sqrt((Fbarycenter(t+1,gaitAxis)- ... 

        Fbarycenter(t,gaitAxis))^2+ ... 

        (Fbarycenter(t+1,verticalAxis)- ... 

        Fbarycenter(t,verticalAxis))^2)/ ... 

        (1/f); 
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end 

 

% ------------------------------------------------------------------

------- 

% Velocity threshold (empirically set) 

% 50 mm/s in the original article for barefoot gait 

% 500 mm/s in Bruening et al., 2014 

% ------------------------------------------------------------------

------- 

vThreshold = 500; 

% ------------------------------------------------------------------

------- 

% Detect events using the velocity threshold 

% CASE #1: The event is defined when a first marker has a velocity 

under 

%          threshold for FS, the last marker over threshold for FO 

% ------------------------------------------------------------------

------- 

twindow = fix(30/150*f); % two consecutive events must be at least 

distant of 30 frame (at 150 Hz) 

for t = 1:n-1 

    % Foot strike defined using heel marker 

    if isempty(FS) && isempty(FO) 

        temp = []; 

        for i = 1:size(Hvelocity,2) 

            if Hvelocity(t,i) <= vThreshold 

                temp = t; 

            end 

        end 

        if ~isempty(temp) 

            FS = [FS temp]; 

        end 

    elseif ~isempty(FS) && isempty(FO) 

        % Do nothing: wait for a first FO (assume that we detect 

first a FS) 

    elseif ~isempty(FS) && ~isempty(FO) && ... 

            length(FS) > length(FO) 

        % Do nothing: wait for the next FO (assume that we detect 

first a FS) 

    elseif ~isempty(FS) && ~isempty(FO) && ... 

            length(FS) == length(FO) 
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        temp = []; 

        for i = 1:size(Hvelocity,2) 

            if Hvelocity(t,i) <= vThreshold && ... 

               t >= FO(end)+twindow 

                temp = t; 

            end 

        end 

        if ~isempty(temp) 

            FS = [FS temp]; 

        end 

    end 

    % Foot off defined using forefoot marker 

    if isempty(FS) && isempty(FO) 

        % Do nothing: wait for a first FS (assume that we detect 

first a FS) 

    elseif ~isempty(FS) && isempty(FO) 

        temp = []; 

        for i = 1:size(Fvelocity,2) 

            if Fvelocity(t,i) >= vThreshold && ... 

               t >= FS(end)+twindow 

                temp = t; 

            end 

        end 

        if ~isempty(temp) 

            FO = [FO temp]; 

        end 

    elseif ~isempty(FS) && ~isempty(FO) && ... 

            length(FO) < length(FS) 

        temp = []; 

        for i = 1:size(Fvelocity,2) 

            if Fvelocity(t,i) >= vThreshold && ... 

               t >= FS(end)+twindow 

                temp = t; 

            end 

        end 

        if ~isempty(temp) 

            FO = [FO temp]; 

        end 

    elseif ~isempty(FS) && ~isempty(FO) && ... 

            length(FO) == length(FS) 

        % Do nothing: wait for the nest FS (assume that we detect 
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first a FS) 

    end 

end 

 

2.3.5 Modified Ghoussayni Algorithm 

function [FS,FO] = 

f_Ghoussayni_variablethreshold(Hmarkers,Fmarkers,gaitAxis,verticalAx

is,n,f,vel2) 

 

% ------------------------------------------------------------------

------- 

% Initialisation 

% ------------------------------------------------------------------

------- 

FS = []; 

FO = []; 

 

% ------------------------------------------------------------------

------- 

% Calculate the 2D velocity of the markers in the plane containing 

% gait (V1) and vertical (V2) axes 

% ------------------------------------------------------------------

------- 

for t = 1:n-1 

    % Hindfoot markers velocity 

    for i = 1:size(Hmarkers,3) 

        Hvelocity(t,i) = sqrt((Hmarkers(t+1,gaitAxis,i)- ... 

            Hmarkers(t,gaitAxis,i))^2+ ... 

            (Hmarkers(t+1,verticalAxis,i)- ... 

            Hmarkers(t,verticalAxis,i))^2)/ ... 

            (1/f); 

    end 

    % Forefoot markers velocity 

    for i = 1:size(Fmarkers,3) 

        Fvelocity(t,i) = sqrt((Fmarkers(t+1,gaitAxis,i)- ... 

            Fmarkers(t,gaitAxis,i)).^2+ ... 

            (Fmarkers(t+1,verticalAxis,i)- ... 

            Fmarkers(t,verticalAxis,i)).^2)/ ... 

            (1/f); 

    end 
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end 

 

 

 vThreshold_FS = 0.78*vel2; 

 vThreshold_FO=0.66*vel2; 

%Calculate threshold, which is dependent on walking speed 

% ------------------------------------------------------------------

------- 

% Detect events using the velocity threshold 

% CASE #1: The event is defined when a first marker has a velocity 

under 

%          threshold for FS, the last marker over threshold for FO 

% ------------------------------------------------------------------

------- 

twindow = 15; % two consecutive events must be at least distant of 

30 frame (at 150 Hz) 

for t = 1:n-1 

    % Foot strike defined using heel marker 

    if isempty(FS) && isempty(FO) 

        temp = []; 

        for i = 1:size(Hvelocity,2) 

            if Hvelocity(t,i) <= vThreshold_FS 

                temp = t; 

            end 

        end 

        if ~isempty(temp) 

            FS = [FS temp]; 

        end 

    elseif ~isempty(FS) && isempty(FO) 

        % Do nothing: wait for a first FO (assume that we detect 

first a FS) 

    elseif ~isempty(FS) && ~isempty(FO) && ... 

            length(FS) > length(FO) 

        % Do nothing: wait for the next FO (assume that we detect 

first a FS) 

    elseif ~isempty(FS) && ~isempty(FO) && ... 

            length(FS) == length(FO) 

        temp = []; 

        for i = 1:size(Hvelocity,2) 

            if Hvelocity(t,i) <= vThreshold_FS && ... 

               t >= FO(end)+twindow 
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                temp = t; 

            end 

        end 

        if ~isempty(temp) 

            FS = [FS temp]; 

        end 

    end 

    % Foot off defined using forefoot marker 

    if isempty(FS) && isempty(FO) 

        % Do nothing: wait for a first FS_ghoussayni (assume that we 

detect first a FS_ghoussayni) 

    elseif ~isempty(FS) && isempty(FO) 

        temp = []; 

        for i = 1:size(Fvelocity,2) 

            if Fvelocity(t,i) >= vThreshold_FO && ... 

               t >= FS(end)+twindow 

                temp = t; 

            end 

        end 

        if ~isempty(temp) 

            FO = [FO temp]; 

        end 

    elseif ~isempty(FS) && ~isempty(FO) && ... 

            length(FO) < length(FS) 

        temp = []; 

        for i = 1:size(Fvelocity,2) 

            if Fvelocity(t,i) >= vThreshold_FO && ... 

               t >= FS(end)+twindow 

                temp = t; 

            end 

        end 

        if ~isempty(temp) 

            FO = [FO temp]; 

        end 

    elseif ~isempty(FS) && ~isempty(FO) && ... 

            length(FO) == length(FS) 

        % Do nothing: wait for the nest FS_ghoussayni (assume that 

we detect first a FS_ghoussayni) 

    end 

end 
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3. Supplementary information – Results 

 

3.1 Comparison of kinematic algorithms 
 

Table 3: Comparison of the implemented algorithms and marker configurations for IC and FO, 

Median error [ms] (Sensitivity [%]). For convenience, the algorithms are listed with the primary 

author’s last name. The best-performing algorithms for each group are highlighted in red.  

 

INITIAL CONTACT 

GROUP A – FOREFOOT IC 

Algorithm Median Error- 

Heel 

R2 value Median Error- 

Toe 

R2 value 

Zeni 16.67 (36.67%) 0.9983 20 (43.33%) 0.9981 

Desailly 13.33 (43.33%) 0.9978 13.33 (43.33%) 0.9977 

O’Connor 18.33 (60%) 0.9727 10 (26.67%) 0.9766 

Ghoussayni -6.67 (90%) 0.9989 0 (100%) 0.9997 

Modified 

Ghoussayni 

8.33 (86.67%) 0.9988 10 (93.33%) 0.9991 

     

 

GROUP B – MIDFOOT IC 

Algorithm Median Error- 

Heel 

R2 value Median Error- 

Toe 

R2 value 

Zeni 26.67 (33.33%) 0.9968 26.67 (36.67%) 0.9967 

Desailly 21.67 (40%) 0.9971 21.67 (40%) 0.9971 

O’Connor 13.33 (66.67%) 0.9282 13.33 (36.67%) 0.9610 

Ghoussayni 5.00 (96.67%) 0.9986 0 (96.67%) 0.9991 

Modified 

Ghoussayni 

13.33 (70%) 0.9987 13.33 (73.33%) 0.9987 

     

 

GROUP C – HEEL IC 

Algorithm Median Error- 

Heel 

R2 value Median Error- 

Toe 

R2 value 

Zeni 20 (23.33%) 0.9979 16.67 (30%) 0.9976 

Desailly 13.33 (23.33%) 0.9971 13.33 (23.33%) 0.9972 
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O’Connor 1.67 (93.33%) 0.9981 23.33 (3.33%) 0.4221 

Ghoussayni 3.33 (96.67%) 0.9989 -16.67 (20%) 0.9956 

Modified 

Ghoussayni 

20 (83.33%) 0.9983 -13.33 (86.67%) 0.9947 

     

FOOT OFF 

GROUP A – FORE-FOOT IC 

Algorithm Median Error- 

Heel 

R2 value Median Error- 

Toe 

R2 value 

Zeni -13.33 (76.67%) 0.9993 -25 (60%) 0.9993 

Desailly -16.67 (73.33%) 0.9992 -26.67 (63.33%) 0.9993 

O’Connor -13.33 (60%) 0.4590 -20 (30%) 0.9841 

Ghoussayni 5 (86.67%) 0.9993 0 (96.67%) 0.9995 

Modified 

Ghoussayni 

-13.33 (83.33%) 0.9994 0 (100%) 0.9995 

     

     

GROUP B – MID-FOOT IC 

Algorithm Median Error- 

Heel 

R2 value Median Error- 

Toe 

R2 value 

Zeni -16.67 (90%) 0.9993 -20 (66.67%) 0.9987 

Desailly -13.33 (86.67%) 0.9991 -20 (73.33%) 0.9987 

O’Connor -6.67 (80%) 0.9549 -6.67 (66.67%) 0.9840 

Ghoussayni 13.33 (90%) 0.9991 0 (93.33%) 0.9993 

Modified 

Ghoussayni 

-6.67 (86.67%) 0.9986 0 (96.67%) 0.9995 

     

     

GROUP C – HEEL IC 

Zeni -10 (100%) 0.9994 -13.33 (86.67%) 0.9992 

Desailly -6.67 (100%) 0.9991 -13.33 (90%) 0.9990 

O’Connor 0 (90%) 0.9980 6.67 (86.67%) 0.9954 

Ghoussayni 20 (90%) 0.9986 6.67 (100%) 0.9992 

Modified 

Ghoussayni 

6.67 (100%) 0.9991 0 (100%) 0.9996 
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3.2 Comparison of clinically and kinematically identified Spatio-temporal parameters 

 

Table 4:Median and range of Δ values between clinically and kinematically identified gait events. 

Positive/negative values indicate over/underestimation of kinematically determined spatio-temporal 

parameters. 

 

STP Group A  Group B Group C  

 Median Δ values 

(range) 

R2 

value 

Median Δ values 

(range) 

R2 

value 

Median Δ values 

(range) 

R2 

value 

Stride Length 

(mm) 

-0.0334 (27.974) 0.999 -0.0300 (59.361) 0.996 -0.312 (26.247) 0.998 

Step Length 

(mm) 

-0.5387(56.592) 0.994 -0.899 (41.2901) 0.989 0.021 (25.711) 0.992 

Stride Width 

(mm) 

-0.0236 (44.045) 0.984 -1.541 (35.6810) 0.969 -1.152 (9.9573) 0.996 

Stride Time 

(ms) 

-3.333 (46.667) 0.991 -6.667 (86.6667) 0.988 -1.667 (60.000) 0.981 

Step Time 

(ms) 

-3.333 (60.000) 0.953 0 (80.000) 0.959 -1.667 (46.667) 0.923 

Single Limb 

Support Time 

(ms) 

-3.333 (93.333) 0.722 0 (60.000) 0.875 6.667 (56.667) 0.879 

Double Limb 

Support Time 

(ms) 

0 (133.333) 0.632 -6.667 (120.000) 0.921 -13.333(106.667) 0.769 

Walking 

Speed (m/s) 

0.0021 (0.0342) 0.999  0.0034 (0.0738) 0.994 0.0027 (0.0549) 0.996 
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