
Exploring the automatic
Level of Detail inference for the
validation of buildings in
3D city models
Balázs Dukai

2018

MSc thesis in Geomatics for the Built Environment

E X P LO R I N G T H E A U TO M AT I C L E V E L O F D E TA I L I N F E R E N C E F O R
T H E VA L I DAT I O N O F B U I L D I N G S I N 3 D C I T Y M O D E L S

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Balázs Dukai

January 2018

Balázs Dukai: Exploring the automatic Level of Detail inference for the validation of build-
ings in 3D city models (2018)
cb This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was made in the:

3D geoinformation group
Department of Urbanism
Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Dr. Filip Biljecki
Dr. Hugo Ledoux
Anna Labetski

Co-reader: Dr. Jorge Lopes Gil

http://creativecommons.org/licenses/by/4.0/

A B S T R A C T

There are several 3D city models available openly, worldwide. These models are
used in various applications, from which many expects a homogeneous Level of
Detail (LoD). Validating the accuracy of the LoD of a model requires the inference
its LoD class and its conformance to the real-world object. This process quickly
becomes infeasible for large models when done manually. Yet there is no automatic
method for LoD inference and validation. Therefore the thesis proposes a method
to automatically infer the geometric LoD (LoD0-2.3) in 3D city models.

A central aspect of this work is the use of machine-learning to classify building
models based on their LoD. It follows the assumption that a process is possible
where a classifier trained in a synthetic 3D city model containing all LoD classes,
and applied in real city model. Therefore ten geometry measures (features) are
computed from the objects and tested with six classification algorithms. The six
experiments the transferability of a classifier from the synthetic city model to the
real one, multi-class (LoD0-2.3) and binary (LoD2 or not) classification, and the
effect of LoD class imbalance by introducing various amounts of LoD1 objects into
the LoD2 model. Furthermore, by using a point cloud as ground truth, this explored
the possibility of validating the inferred LoD classes.

The results indicate that the classifier is not transferable to the real data set when
trained on the synthetic city model, which is probably due to the significant differ-
ence in object shapes between the two models. Binary classification outperforms
the multi-class case and it is favourable for LoD validation where the main question
is whether the model conforms the stated LoD or not. Finally, class-imbalance can
reduce the classification with as much as 20%.

v

A C K N O W L E D G E M E N T S

Thanks to everyone directly or indirectly involved throughout the research. Particu-
larly to my supervisors Dr. Filip Biljecki, Anna Labetski, Dr. Hugo Ledoux for their
patience, ideas and support all along the process. A thorough review takes time and
expertise and for these I’m grateful for Dr. Jorge Lopez Gil. My gratitude extends to
virtualcitySystems for providing the Amsterdam data set that I extensively used for
this research. Finally, I would like to thank my family and friends for supporting
me in starting and finishing the Geomatics programme.

vii

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Problem statement . 3

1.3 Research questions and method . 5

2 theoretical background 7

2.1 The Level of Detail of 3D City Models 7

2.2 The validity and LoD of a 3D city model 9

2.3 A brief overview on Machine Learning 10

2.4 Shape descriptors in computer graphics 15

2.5 Shape descriptors and classification in geographic information 17

2.5.1 Geometric complexity of 2D objects in geographic information 17

2.5.2 Geometric complexity of 3D objects in geographic information 18

2.5.3 Geometry-based classification of building types 18

3 research method 21

3.1 Step 1 – LoD inference without reference data 21

3.1.1 Building surface extraction . 23

3.1.2 Describing building geometry 24

3.1.3 Building classification . 31

3.1.4 Classification accuracy and generalization performace 32

3.2 Step 2 – LoD inference with reference data 32

4 implementation and results 35

4.1 Data preparation . 35

4.1.1 Validating the LoD of the Amsterdam data set 37

4.2 Generating features . 37

4.2.1 Step 1 . 39

4.2.2 Step 2 . 44

4.3 Classifying the LoD with Machine-Learning 50

4.3.1 Experiment 1 – Raw features . 51

4.3.2 Experiment 2 – Standardized features 52

4.3.3 Experiment 3 – Prediction in the Amsterdam data 52

4.3.4 Experiment 4 – Predict LoD2 or not 55

4.3.5 Experiment 5 – Prediction in the Amsterdam data with mixed
LoD1 and LoD2 . 55

4.3.6 Experiment 6 – Training in the synthetic, predicting in the
Amsterdam data . 56

5 conclusions and recommendations 59

Appendices 60

a additional tables and figures 61

b reflection 69

Bibliography 70

ix

L I S T O F F I G U R E S

Figure 1.1 The refined LoD specification by ’Biljecki et al. [2016b]’ . . . 2

Figure 1.2 Examples of LoD0-4 models [Gröger et al., 2012] 2

Figure 1.3 Zürich old town in LoD2, with dormers and roof overhangs.
Source: reference Zürich data 3

Figure 1.4 Building model in Amsterdam city center in LoD2, without
dormers and with simplified roof geometry. Source: Google
Earth for the aerial image; VirtualCitySystems for the 3D model 4

Figure 1.5 Landmarks are modelled in a higher LoD than the rest of the
buildings in Berlin. Source: https://osmbuildings.org/ . . 4

Figure 1.6 Research method of this thesis 6

Figure 2.1 The LoD requirements by CityGML 2.0 [Gröger et al., 2012] . 8

Figure 2.2 The refined LoD requirements by Biljecki et al. [2016b] 8

Figure 2.3 LoD1 model of a church and an image of the real building.
Source: Google Earth for the aerial image; CityGML data set
of Bonn Bad Godesberg, Germany 10

Figure 2.4 LoD2 model of a house and an image of the real building.
Source: Google Earth for the aerial image; CityGML data set
of Amsterdam, The Netherlands, by VirtualCitySystems . . . 11

Figure 2.5 LoD2 model of a house (on the corner) and an image of the
real building. Source: Google Earth for the aerial image;
Google StreetView of the image from the street; CityGML
data set of Amsterdam, The Netherlands, by VirtualCitySys-
tems . 12

Figure 2.6 LoD2 model of a house on the corner where the roof recon-
struction failed. It would be a valid LoD1 model. And an im-
age of the real building. Source: Google Earth for the aerial
image; CityGML data set of Amsterdam, The Netherlands,
by VirtualCitySystems . 13

Figure 2.7 A generalised overview of the machine learning process. Af-
ter Theodoridis and Koutroumbas [2009] and Müller [2016] . 13

Figure 2.8 Vertices along the curve do not count as SCP, thus (A) has 3

SCPs. The rectangle (B) has 4 SCPs (B) 17

Figure 3.1 A building with the same geometry in LoD1 and LoD2 (garage
in the center). 21

Figure 3.2 The process of LoD inference 22

Figure 3.3 Roof (purple) and wall (green) triangles of models 23

Figure 3.4 The footprint triangles (bright green) of models 23

Figure 3.5 Shape Characterising Points (red circle), Shape Characteris-
ing Lengths (red dashed line) and non-characteristic points
(white circle). 25

Figure 3.6 An example of main building part (grey) and attached build-
ing part (red) with a separate roof structure. 26

Figure 3.7 Footprint polygon (blue outline), roof polygon (black out-
line). Each part of the building has an overhanging roof. . . . 26

Figure 3.8 Footprint polygon (brown) and the projection of the roof
(green). If a part of the building does not have overhang-
ing roof, the minimum distance between the two polygons is
zero . 27

xi

https://osmbuildings.org/

xii List of Figures

Figure 3.9 Five roof structure types, with equal amount of triangles in
footprint and roof (both are red), and with more triangles in
the roof (green triangles in roof) 28

Figure 3.10 The value of the mean of the Z coordinates depends on the
orientation of the triangle . 28

Figure 3.11 Density estimate of roof triangles mean z coordinate. Object
BID 363100012169940 . 29

Figure 3.12 Density estimate of roof triangles mean z coordinate. Object
BID 363100012168777 . 29

Figure 3.13 Density estimate of roof triangles mean z coordinate. Object
BID 363100012130645 . 30

Figure 3.14 Density estimate of roof triangles mean z coordinate, band-
width 0.5 std. Object BID 363100012169940 30

Figure 3.15 Density estimate of roof triangles mean z coordinate, band-
width 0.5 std. Object BID 363100012168777 31

Figure 3.16 Signed distance evaluation; distance is positive in p1 and
negative in p2 (S1 is the sampled curve). [Cignoni et al.,
1998] . 32

Figure 3.17 Building model (black) and its point cloud (red). A small
part of the building is not modelled, but it is represented
by the point cloud, causing larger than point cloud - mesh
distances. 33

Figure 4.1 The generated synthetic data set of 1000 buildings, 10 LoD
classes . 36

Figure 4.2 LoD1 version of the Amsterdam data set 36

Figure 4.3 LoD2 version of the Amsterdam data set 36

Figure 4.4 Googe Earth mesh . 38

Figure 4.5 LoD2 model . 38

Figure 4.6 Combined buildings into one footprint and model (blue) . . . 38

Figure 4.7 Distribution of NSCP in the Synthetic data 39

Figure 4.8 Distribution of NSCP in the Amsterdam data 39

Figure 4.9 Shape Characterising Lengths in the Synthetic data 40

Figure 4.10 Shape Characterising Lengths in the Amsterdam data 40

Figure 4.11 Minimal Shape Characterising Lengths in the Synthetic data . 41

Figure 4.12 Minimal Shape Characterising Lengths in the Amsterdam data 41

Figure 4.13 Footprint area in the Synthetic data 42

Figure 4.14 Footprint area in the Amsterdam data 42

Figure 4.15 Minimal building part area in the Synthetic data 43

Figure 4.16 Minimal building part area in the Amsterdam data 43

Figure 4.17 Footprint-roof triangle ratio in the Synthetic data 44

Figure 4.18 Footprint-roof triangle ratio in the Amsterdam data 44

Figure 4.19 Point cloud to model distances in the LoD1 model 45

Figure 4.20 Point cloud to model distances in the LoD2 model 45

Figure 4.21 RMSE of point cloud to model distances in relation to the
other features. Amsterdam data set, 50% LoD1 (red circle),
50% LoD2 (blue triangle). 46

Figure 4.22 Selection . 47

Figure 4.23 Point cloud - model distances of the five selected buildings
(those in blue in Figure 4.22) 47

Figure 4.24 Outliers in the computed distances 47

Figure 4.25 Outliers . 48

Figure 4.26 BID 363100012169926 . 48

Figure 4.27 BID 363100012174587 . 49

Figure 4.28 BID 363100012169051 . 49

Figure 4.29 BID 363100012169471 . 49

Figure 4.30 BID 363100012242951 . 50

List of Figures xiii

Figure 4.31 BID 363100012174769 . 50

Figure 4.32 Confusion matrix of the LoD prediction in the synthetic data,
raw features. Correct classes are in the rows, predicted classes
in columns. 52

Figure 4.33 Confusion matrix of the LoD prediction in the Amsterdam
data, raw features. Correct classes are in the rows, predicted
classes in columns. 52

Figure 4.34 Classification accuracy and standard deviation on the syn-
thetic data, raw features. 53

Figure 4.35 Classification accuracy and standard deviation on the Ams-
terdam data, raw features . 53

Figure 4.36 Confusion matrix of the LoD prediction in the synthetic data,
standardized features. Correct classes are in the rows, pre-
dicted classes in columns. 53

Figure 4.37 Confusion matrix of the LoD prediction in the Amsterdam
data, standardized features. Correct classes are in the rows,
predicted classes in columns. 54

Figure 4.38 Classification accuracy and standard deviation on the syn-
thetic data, standardized features 54

Figure 4.39 Classification accuracy and standard deviation on the Ams-
terdam data, standardized features 54

Figure 4.40 Binary classification accuracy and standard deviation on the
Amsterdam data, standardized features 55

Figure 4.41 Multi-label classification accuracy, combined values. 56

Figure 4.42 Binary classification accuracy, combined values. 57

Figure 4.43 Cross-validation accuracy of classifiers in synthetic data. . . . 58

Figure A.1 Examples of building-type prediction in five exemplary dis-
tricts of Bonn, Germany; source of left column: Microsoft
Bing, of the aerial image in right column: Google Earth.
Henn et al. [2012] . 63

Figure A.2 Building types as viewed from aerial imagery (left; Google
Earth) and as they are represented in the building model
(right) from top to bottom: perimeter block development;
block development; terraced houses/row houses; detached/semide-
tached; halls. Wurm et al. [2016] 64

Figure A.3 Building model in Amsterdam city center in LoD2, where
the terrace was reconstructed with the wrong roof type (red
circle). Source: Google Earth for the aerial image; VirtualCi-
tySystems for the 3D model . 65

Figure A.4 Building model in Amsterdam city center in LoD2, where
the corner of the roof was reconstructed with the wrong roof
type (red circle). Source: Google Earth for the aerial image;
VirtualCitySystems for the 3D model 65

Figure A.5 Building model BID 363100012130645 65

Figure A.6 Building model BID 363100012168777 66

Figure A.7 Building model BID 363100012169940 66

Figure A.8 A close-up of the synthetic data set generated with Ran-
dom3DCity . 67

L I S T O F TA B L E S

Table 2.1 Overview of selected classifiers in scikit-learn [Pedregosa et al.,
2011] . 14

Table 2.2 Categorisation shape descriptors by Kazmi et al. [2013] 16

Table 3.1 Summary of the computed features and their relation to the
LoD requirements . 24

Table 4.1 Data set statistics . 37

Table 4.2 Overview of experiments . 51

Table 4.3 Confusion matrix . 55

Table 4.4 Prediction accuracy of the kNN classifier with various amounts
of LoD1 models . 56

Table 4.5 Classification accuracy of the Logistic Regression classifier . . 57

Table A.1 Classification accuracy on the synthetic data, raw features . . 61

Table A.2 Classification accuracy on the Amsterdam data, raw features 62

Table A.3 Classification accuracy on the synthetic data, standardized
features . 62

Table A.4 Classification accuracy on the Amsterdam data, standardized
features . 62

Table A.5 Binary classification accuracy on the Amsterdam data, stan-
dardized features. 62

xv

1 I N T R O D U C T I O N

1.1 motivation

3D city models of several cites are openly available in different detail and quality
[Cit, nd]. All of the twenty-six listed data sets are less than ten years old, and more
than half of them are less than five years old. The tender for Rotterdam 3D 2.0
(2016) [Rot, 2016] asked for offers for the generation of a 3D city model consisting
of 205.000 buildings. The model will also be openly available, and is meant to be
used in the design processes for urban and regional development, communication
and public participation in construction projects, management of built assets and
optimization of energy management [GIM, 2016], [rot, nd]. This shows the current
interest in 3D city models and will from some cities to invest in their acquisition
and open dissemination in order to facilitate well informed decisions about the built
environment.

Biljecki et al. [2015] lists twenty-nine use cases where 3D city models are applied,
among them are visibility analysis, routing and change detection in urban inven-
tory. Many of these applications analyse a phenomenon in relation to the shape of
the buildings (e.g.wind flow analysis) [Biljecki et al., 2015]. However, the accuracy
of many analysis relies on the assumption that the level of geometric abstraction in
the city model is consistent in each and every building. In other words, the Level
of Detail (LoD) is homogeneous in the city model. For example if the roof structure
of the buildings in the city model are assumed to be fully reconstructed, then a
building model with a flat top surface has a flat roof in reality as well. For exam-
ple, in case the roof reconstruction failed for some buildings, usually the model is
reconstructed with a flat top surface (e.g.Figure 2.5). Then these incorrect models
are considered by the analysis as buildings with flat roofs. Such discrepancy in the
abstraction from reality can cause inaccurate analysis results as it was shown by
Biljecki et al. [2016c].

The concept of Level of Detail (LoD) for 3D city models was borrowed from
computer graphics, where it was pioneered by Clark [1976] and it describes the
complexity of the representation of a geographic object [Biljecki et al., 2013]. The
City Geography Mark-up Language (CityGML) standard prescribes how to model
various parts of a city (e.g.buildings, furnitures, vegetation, terrain), and it also
categorises objects in the city model based on their level of geometric and semantic
abstraction [Kolbe, 2009]. CityGML describes five LoD categories (0-4), ranging
from a 2D building footprint (LoD0) to a complete building model, including its
interior (LoD4), see Figure 1.2 [Gröger et al., 2012]. Biljecki et al. [2016b] removed
ambiguity from the LoD categories by providing more well defined requirements
for each. This improvement resulted in an increase from five to sixteen classes
(Figure 1.1).

The LoD plays an important role in data maintenance and conversion. Change
detection methods for CityGML use the LoD of the building and its features in
order to prevent the matching of surfaces of different LoDs and thereby creating
objects with inconsistent detail [Redweik and Becker, 2015]. In case of solar ir-
radiation studies Wieland et al. [2015] states that buildings modelled without the
roof structure introduce a bias to the results due to incorrect solar incidence angles.
Also Wieland et al. [2015] underline that building models without roof structure
are questionable for estimating solar irradiation potential. In case of noise pollution

1

2 introduction

Figure 1.1: The refined LoD specification by ’Biljecki et al. [2016b]’

Figure 1.2: Examples of LoD0-4 models [Gröger et al., 2012]

1.2 problem statement 3

Figure 1.3: Zürich old town in LoD2, with dormers and roof overhangs. Source: reference
Zürich data

modelling, Van Renterghem and Botteldooren [2010] show that the roof shape is
a very important aspect. For example gabled roofs reflect the sound waves in a
significantly different pattern than flat roofs.

1.2 problem statement
Considering building models, the current LoD requirements as they are prescribed
by Gröger et al. [2012] leave room for personal interpretation [Biljecki, 2017], in
aspects that are relevant in evaluating the suitability of a data set. These aspects
include the presence of roof overhangs (in LoD2), the size and presence of roof
super-structures, or in LoD1 models the height of the top surface in relation to the
real hight of the roof. The improved LoD specification by Biljecki et al. [2016b]
clarifies many of the ambiguous cases, however it is a recent study and not part of
the standard, thus its widespread adoption is still expected. Ambiguity in the LoD
specification leads to 3D city models that are considered equal in their LoD class,
but differ in their actual level of approximation, see Figures 1.3, 1.4.

For reconstructing building models in LoD2, common approaches are based on
on parametric modelling, segmentation or Digital Surface Model simplification
[Haala and Kada, 2010]. In parametric modelling, the most suitable roof form is
picked from a set of roof types and fitted to the building model [OSM, 2017], [vir,
nd]. However, usually there are a limited number of available roof types and a
vast diversity of buildings. Thus the roof fitting process fails occasionally, resulting
in either a model with a flat top (LoD1 instead of LoD2, e.g.Figure 2.5), or model
which roof significantly differs from its real-world counterpart e.g.Figures 2.4, A.3,
A.4. In either case, the failure is not reflected in the meta-data.

In some data sets a few characteristic buildings, landmarks are intentionally mod-
elled in higher detail than the rest, see Figure 1.5. It is usually the case with data
sets that are intended for navigation, or that were generated by volunteers, such as
OpenStreetMap.

For these reasons 3D city models are often heterogeneous in their LoD and con-
tain invalid models. There are building models which validity cannot be imme-
diately determined, but requires manual work. Thus it can be seen that manual
validation is not feasible for large city models, such as Rotterdam 3D 2.0.

Although there are existing solutions for the geometric validation of 3D city mod-
els such as val3dity [Ledoux, 2013], and citydoctor [cit, nd], there are no existing
solutions or research about the LoD validation of 3D city models. In the first com-

4 introduction

Figure 1.4: Building model in Amsterdam city center in LoD2, without dormers and with
simplified roof geometry. Source: Google Earth for the aerial image; VirtualCi-
tySystems for the 3D model

Figure 1.5: Landmarks are modelled in a higher LoD than the rest of the buildings in Berlin.
Source: https://osmbuildings.org/

https://osmbuildings.org/

1.3 research questions and method 5

prehensive study on the LoD in 3D city models Biljecki [2017] argues for the impor-
tance of LoD in the context of data quality. While Biljecki [2017] sets the foundations
for further research, there was no work carried out about inferring the LoD in 3D
city models. Wong and Ellul [2016] researched the use of geometry-based metrics
for evaluating the fitness-for-purpose of a 3D city model, but they did not relate the
metrics to the LoD classes.

1.3 research questions and method
As stated in the previous sections, the central problem in validating the LoD is
determining the LoD class of the building model at hand. Once the actual LoD class
of the model is known, it can be compared to the stated LoD. Therefore the primary
focus of the current work is answering the question of How can the geometric Level-
of-Detail be inferred automatically in 3D city models?. In order to answer the research
question, there are several sub-questions to be answered as well:

• To what extent is it possible to automatically validate the LoD of a 3D city
model?

– Without using reference data?

– With the help of reference data?

• What is a suitable method to classify 3D building models in terms of their
LoD?

– Which building geometry measures can be used to uniquely describe
each LoD class?

This work focuses on the automatic inference of the LoD in 3D city models, while
considering only buildings of LoD0-LoD2 Furthermore, emphasis is given to data
sets with heterogeneous LoD, as these data sets are challenging to validate man-
ually. The thesis strives to provide a generic method of geometric LoD validation,
therefore semantic information is not considered by the method. The thesis does not
provide an extensive evaluation of learning algorithms for LoD inference, however
it will test a set of algorithms which are selected based on theoretical considerations.

The main contribution of this work is the theoretical development and testing of
an automatic LoD inference and validation method. To the extent of my knowledge
this is the first study that applies machine learning techniques on 3D city models
in order to infer and validate their LoD. In this process the concept of LoD and its
validity is explored (Section 2.2), the LoD requirements [Gröger et al., 2012], [Biljecki
et al., 2016b] are translated into features suitable for machine learning (Section 3.1.1,
3.1.2), and their performance is tested in several experiments (Section 4).

Therefore the thesis follows the research process illustrated in Figure 1.6. After
introducing and defining the problem (Section 1.1, 1.2), the goals of the research are
formulated (Section 1.3). In Section 2, the key aspects of the required background
knowledge are reviewed, together with the work that has been done in, or closely
related to the topic under analysis. Following, Section 3 develops the method for
automatic LoD inference, while Section 4 implements and tests the theory. Finally
the thesis is concluded by reviewing the outcomes and lessons of the experiments
(Section 5).

6 introduction

Figure 1.6: Research method of this thesis

2 T H E O R E T I C A L B A C KG R O U N D

To my knowledge there is no research published or tool developed that allows the
classification of city models according to the CityGML LoD categories. There is
however work done on determining the scale of 2D objects in geographical data
and also on measuring the geometric complexity of 3D objects in geographical data.
Both are relevant for my work.

2.1 the level of detail of 3d city models
The Open Geospatial Consortium (OGC) developed the City Geography Mark-up
Language (CityGML) standard to formalise city modelling and facilitate the sharing
and widespread use of these models across many domains. The standard prescribes
how to model cities in terms of the required object and their geometric and semantic
qualities.

In order to facilitate multi-scale modelling, CityGML introduced the concept of
Level of Detail (LoD) for digital city models. The LoD categorises the level of geo-
metric and semantic abstraction of objects in the city model [Kolbe, 2009]. However,
the level of detail in digital models in not a new concept, it is widely used in com-
puter graphics to measure the efficiency of the representation. Biljecki [2017] points
out that the same measures are not suitable to refer to the detail of city models.
While computer graphics use an ordinal scale to refer to more or less efficient mod-
els, the LoD classes are categorical, the higher LoD does not necessarily mean a
“better” model.

According to Gröger and Plümer [2012] the coarsest level (LoD0) is a two and a
half dimensional Digital Terrain Model with the buildings represented by their foot-
print polygons. The level LoD1 is probably the most commonly seen in city models,
where buildings are represented by their prismatic approximations, with flat top
surfaces. The level LoD2 adds generalised roof structures to the LoD1 and in addi-
tion, boundary surfaces can be represented as thematic features (e.g.GroundSurface,
WallSurface, RoofSurface). The class LoD3 extends LoD2 by openings (windows,
doors), detailed roof structures (dormers, chimneys) and detailed façade structures,
while the class LoD4 extends LoD3 with interior structures. However, LoD3 and
LOD4 are not explored by the present study. The positional and height accuracy is
increasing with the LoD class. Figure 1.2 illustrates the five LoD classes, and Figure
2.1 summarises the LoD requirements by CityGML.

According to Biljecki et al. [2016b] there are a few issues with the LoD specifica-
tion as they are described by CityGML:

• In the geo-domain, the LoD concept is already used prior 3D model acquisi-
tion to define the desired quality, while the LoD was invented for computer
graphics to describe geometry abstractions;

• The number of primitives cannot be considered as an unambiguous differen-
tiator (as in computer graphics);

• The LoD cannot be ordered in importance or fit-for-purpose, eg. LOD(i+1) >
LODi is not true;

7

8 theoretical background

Figure 2.1: The LoD requirements by CityGML 2.0 [Gröger et al., 2012]

Figure 2.2: The refined LoD requirements by Biljecki et al. [2016b]

• There is no strict specification in CityGML 2.0 on how detailed each LoD
should be;

• Lack of tools and methods for LoD validation, similarly for example to geom-
etry or schema validation (e.g.Wagner and Ledoux [2016]);

• Often 3D city models are created by combining data from different sources
[Biljecki et al., 2016b] . CityGML 2.0 LoD specification does not consider the
LoD of the combined data, where some parts of the building might be ac-
quired in finer or coarser detail than others. For example an LoD1 building
model that has a very detailed footprint, or a data set that was generated by
combining multiple data sets, such as the 3D city model of Berlin1.

Therefore Biljecki et al. [2016b] refined the CityGML 2.0 LoD specification, adding
three subcategories to each category from LoD0-LoD3, see Figure 2.2, Figure 1.1.
The refined specification does not prescribe the semantic and texture requirements,
but only addresses the amount of geometric detail that has to be acquired.

While the CityGML standard [Gröger et al., 2012] is considered to be the authori-
tative reference on the LoD definition, it leaves room for interpretation which often
lead to 3D city models with heterogeneous LoD. The refined LoD specification by

1 http://www.businesslocationcenter.de/berlin3d-downloadportal/?lang=en

http://www.businesslocationcenter.de/berlin3d-downloadportal/?lang=en

2.2 the validity and lod of a 3d city model 9

Biljecki et al. [2016b] provides a clear distinction between each sixteen class, there-
fore it is a key reference used in this thesis.

Löwner et al. [2016] discuss the proposed improvements of the LoD concept for
the upcoming third version of the CityGML standard. They highlight the need that
the LoD concept complies with the requirements of certain application. For example
that the combination of a rough LoD1 or LoD2 model of the exterior shell with a
detailed interior model would be beneficial and notably cost-effective, because some
applications require it (eg. fire fighting, emergency operation, indoor navigation
[Boeters et al., 2015]).

2.2 the validity and lod of a 3d city model
Wagner and Ledoux [2016] conducted an extensive experiment on the validity of 3D
city models, and among others, it developed guidelines for the definition of data
quality and quality checking process of CityGML data. They defined five different
themes for validation:

• XML-Schema validation;

• Conformance based on formal and non-formal requirements in the CityGML
standard document;

• Referential integrity (within a CityGML document as well as to external data
sources);

• Geometry; and

• Semantics / attribute constraints such as deviation of attribute ”measured
height” and the height of the LoD2 geometry.

Even though the LoD is one of the most important aspects of 3D city models
[Biljecki et al., 2016b], it was not part of the study. It is important to mention
that the validation of geometry and validation of geometrical LoD are two distinct
processes. The former is described by Wagner and Ledoux [2016], while the latter
is one of the subjects of this thesis.

Accuracy measures the difference between reality and a representation of reality.
Biljecki et al. [2018] argues that the accuracy and the LoD of a 3D city model should
be clearly distinguished. However, it is not immediately clear how to separate the
accuracy from LoD of a city model. This is, because 3D city models are primarily
intended for representing real-world scenarios, therefore the CityGML data model
is driven by the characteristics of real-world objects. Consequently many of the
LoD requirements relate to the true size of objects. Note that the present work
studies only the geometric aspects of 3D city models, therefore other aspects, such
as temporal or thematic, are ignored.

In order to validate the geometric LoD of a city model, two distinct questions
need to be answered, related to accuracy and LoD:

1. What is the amount of geometric detail in the building model, expressed in
LoD?

2. At the given LoD, does the geometry of the building model correspond to
that of its real-world counterpart (considering the accuracy requirements)?
For example, does the roof shape of the LoD2 model follow the geometry
of the real roof? More specifically, an LoD2 model with a flat top surface,
representing a building with a gabled roof is invalid.

It is relatively simple to establish the validity of a model in the simplified case
above, but there are several ambiguous cases in data sets. Although, the CityGML

10 theoretical background

Figure 2.3: LoD1 model of a church and an image of the real building. Source: Google Earth
for the aerial image; CityGML data set of Bonn Bad Godesberg, Germany

standard proposes certain absolute 3D point accuracy requirements (e.g.5/5m posi-
tion/height in LoD1), examples can be found where this falls short in determining
the validity of the LoD.

In case of Figure 2.3, the LoD1 model does not require the representation of the
roof structure, and the model was probably obtained by extruding the footprint to
the height of the eves. Even though the height accuracy of the model is probably
less than 5m (as proposed by CityGML) due to the distance between the top of the
tower and the top surface of the model, the model can be still considered valid.

In case of Figure 2.4, the 3D point accuracy of the roof might be under 2m (as
proposed by CityGML), but the roof shape is not correct, therefore the model is
invalid.

The case of Figure 2.5 is more ambiguous. Due to the dormers, it is not immedi-
ately clear where does the wall stop and the roof begin. Only a closer inspection of
the Google Streetview reveals the true height of the walls and the angle of the roofs.
In this case the validity of the model depends on the interpretation of the building
and model’s roof structure.

The three cases above illustrate that the validity of the LoD (or accuracy) can
be only determined with respect to the LoD class in question (also see Figure 2.6).
Although the accuracy and LoD of a model is assessed in separate processes, both
are required to assess whether a model conforms to the stated LoD.

2.3 a brief overview on machine learning
Machine learning is a complex process with many variables and combinations. As
there are no hard rules or recipes for solving a given problem, the machine learning
process is iterative and relies on data exploration, modeling and experimentation.
A generalised overview of the process is provided by 2.7.

The present section is an excerpt from Bishop [2006], Theodoridis and Koutroum-
bas [2009], Han and Kamber [2011], Pedregosa et al. [2011], Duin and Pekalska
[2015], Müller [2016].

data preprocessing in case of spatial data usually consists of format conver-
sion, geometry validation and reparation (e.g.closing rings and shells, harmonis-

2.3 a brief overview on machine learning 11

Figure 2.4: LoD2 model of a house and an image of the real building. Source: Google Earth
for the aerial image; CityGML data set of Amsterdam, The Netherlands, by Vir-
tualCitySystems

ing face orientation), extraction of geometry parts (e.g.vertices, edges or faces) and
transforming the data into a structure that is easy to process in the following steps.

feature generation or representation is the process of making real world ob-
jects numerically comparable. In GIS features represent real-world entities of interest
for geographic information (e.g.buildings, windows) [Kresse and Danko, 2012] and
feature, object are often used interchangeably. In the field of machine learning a
feature is any measured property of an object and a collection of features (feature
vector) is used to uniquely identify an object Theodoridis and Koutroumbas [2009].
To resolve this conflict in this work the digital representation of real-world entities
are referred to as objects, while their measured properties as features. In the present
work, the feature generation step deals with computing several numerical descrip-
tors of the shape of a 3D building model (e.g.the number of shape characterizing
points).

Duin and Pekalska [2015] describes that in a machine learning system the first
source of knowledge is the expertise of the analyst or application expert, the second
source of knowledge is the design set. The design set is a set of objects drawn from
the same source as the future objects to be classified. In case of the present work,
this means a 3D city model that is representative of the city models in which the
LoD inference method will be applied. All of the objects in the design set should
have a correct class label assigned. Thus in the city model, each building needs a
valid and accurate LoD label. Then the design set is split into at least the training
set and test set. Where the training set is used for training the classifier, the test set
is used for evaluating it.

feature exploration is the step responsible for getting familiar with the statis-
tical properties of the generated features, as the performance of a classifier heavily
depends on them. Common techniques include scatter and box plots, first order
statistics [Duin and Pekalska, 2015], [Han and Kamber, 2011]. It is important to
identify and correct null, or other abnormal values that might bias the classification
[Müller, 2016].

feature preprocessing is the step of scaling and/or encoding the features
so that a classifier can use them. Some classifiers are more sensitive to the scale
of features than others. For example many elements used in a learning algorithm
(e.g.Support Vector Machines) assume that all features have a mean around 0 and

12 theoretical background

Figure 2.5: LoD2 model of a house (on the corner) and an image of the real building. Source:
Google Earth for the aerial image; Google StreetView of the image from the street;
CityGML data set of Amsterdam, The Netherlands, by VirtualCitySystems

2.3 a brief overview on machine learning 13

Figure 2.6: LoD2 model of a house on the corner where the roof reconstruction failed. It
would be a valid LoD1 model. And an image of the real building. Source: Google
Earth for the aerial image; CityGML data set of Amsterdam, The Netherlands, by
VirtualCitySystems

Figure 2.7: A generalised overview of the machine learning process. After Theodoridis and
Koutroumbas [2009] and Müller [2016]

14 theoretical background

Table 2.1: Overview of selected classifiers in scikit-learn [Pedregosa et al., 2011]

Classifier Multiclass Standardizing necessary Linear

LR OneVsRest(solver=liblinear) No Yes
LDA Yes Yes Yes
kNN Yes Yes No
DTree needs balanced classes No No
GaussianNB Yes No No
SVM OneVsRest(kernel=linear) Yes Yes

have variance in the same order [Theodoridis and Koutroumbas, 2009]. If a feature
has a variance that is orders of magnitude larger than others, it might dominate the
objective function and make the estimator unable to learn from other features cor-
rectly as expected [Pedregosa et al., 2011]. Centring a feature to 0 mean and scaling
to unit variance is called standardisation. Many classifiers (e.g.Logistic Regression)
can only process numerical data, therefore categorical variables need to be encoded.
One of the most common ways to represent categorical variables is one-hot-encoding
[Müller, 2016]. This method replaces a categorical variable with one or more new
binary features.

If the training set is small in relation to the number of features, the classifier might
adapt more to the local noise than to the global class differences (overtraining). To
avoid this, dimension reduction procedures are used, such as feature selection or
feature extraction [Duin and Pekalska, 2015]. However in case of the LoD inference,
each LoD requirement may need at least one feature in order to unambiguously
distinguish between the classes and removing a feature might result in a higher
accuracy in the training data, but decrease the reliability in a city model where
additional LoD classes are present.

model training is the step when a classifier algorithm learns from the training
set and results into a trained classifier, which is a function of the features [Duin and
Pekalska, 2015]. Usually more than one classifier is trained in order to find the ones
that perform the best for the given problem. Theodoridis and Koutroumbas [2009]
groups classification algorithms into three groups, classifiers based on Bayes decision
theory, linear classifiers and non-linear classifiers. Where linear and non-linear refers
to the decision boundary that is used for separating the classes. Table 2.1 gives an
overview of some of the most common classifiers described below.

Classifiers that are based on Bayes decision theory exploit the statistical nature
of the generated features. They classify unknown objects or patterns in the most
probable of the classes. In order to do so, they estimate the underlying distribution
that describes the data. Classifiers such as the Gaussian Naive Bayes (GaussianNB)
and Linear Discriminant Analysis (LDA) belong to this group and assume that the
data follows a Gaussian distribution. The GaussianNB classifier is relatively fast
to train, because it learns parameters by looking at each feature individually and
collect per-class statistics from each feature. Therefore it is often used in very high-
dimensional data. To make a prediction, a data point is compared to the statistics
for each of the classes, and the best matching class is predicted [Müller, 2016]. The
LDA classifier has a linear decision boundary and besides the Gaussian distribution,
it assumes that each class share the same covariance matrix. The LDA can also be
used for dimensionality reduction, e.g.[Wurm et al., 2016].

Linear classifiers assume that the classes can be separated by planes that are de-
scribed by linear functions, regardless of the distribution of the data. The advantage
of linear classifiers lies in their simplicity and that they are fast to train and predict,
and work well on large, sparse data sets. Classifiers such as Logistic Regression (LR)
and linear Support Vector Machines (SVM) belong to this group. Their main parame-
ter is the regularization parameter, called C [Pedregosa et al., 2011]. In case of LR

2.4 shape descriptors in computer graphics 15

and SVM, a low value for the parameter C will cause the algorithm to try to fit the
majority of data points, while a higher value of C will cause the algorithm to try to
correctly classify each data point but therefore might not capture the overall layout
of the classes well [Müller, 2016].

Non-linear classifiers are fit for problems when the classes are not linearly sepa-
rable in the feature space. Classifiers such as Decision Tree and k-Nearest Neighbours
(kNN) belong to this group. The Decision Tree (DTree) classifier essentially learns a
hierarchy of if/else questions that lead to a decision, and they can be unstable as
small variations in the data can result in a completely different tree. They are also
sensitive to class imbalance. However, they are flexible in accepting data, as they
do not require normalization or encoding, and can handle multiple classes [Müller,
2016], [Pedregosa et al., 2011]. The kNN algorithm can be used for clustering as well
as classification. When used for classification, the data point in question is assigned
the majority label among its k nearest neighbours. Where the nearest neighbours
are determined by some distance metric, such as Euclidean or Minkowski distance.
Both the kNN and DTree classifiers are non-parametric, thus the model estimation
is based on a non-parametric function of all observation (and not on optimizing a
parametric model e.g.normal distribution), therefore they are generally well suited
for problems where the decision boundary is very irregular [Duin and Pekalska,
2015], [Pedregosa et al., 2011], [Theodoridis and Koutroumbas, 2009].

Classifiers such as LDA and SVM are binary classifiers, but can be extended to a
multinomial classifier using a one-versus-the-rest strategy [Pedregosa et al., 2011]. In
this way, elements of one group are separated from all other elements belonging to
the other groups.

model evaluation is the process of selecting the best performing classifiers
which will be used in the final classification system. A common method for obtain-
ing reliable classifier accuracy estimates is cross-validation. In k-fold cross-validation
the initial data are randomly partitioned into k mutually exclusive subsets or ”folds”,
each of them approximately equal size. Then training and testing is performed k
times. In each iteration, one (different) partition serves as a test set, while the all
other partitions are used for training. The accuracy estimate is the overall number
of correct classifications from k iterations, divided by the total number of objects
in the initial data. Common values for k are 5 or 10 [Duin and Pekalska, 2015].
An alternative method is the leave-one-out cross-validation, which is similar to k-
fold cross-validation but each fold consist only of a single object. The leave-one-out
method often provides more reliable estimates on small data sets [Müller, 2016].

The accuracy of a classifier in a test data set is the percentage of objects that are
correctly classified. Precision is a measure of exactness, or what percentage of objects
labelled as positive are actually such. While recall is a measure of completeness, or
what percentage of positive objects are labelled as such. The F measure (or F1 score) is
the harmonic mean of precision and recall, thus is gives equal weight to each [Han
and Kamber, 2011].

2.4 shape descriptors in computer graphics
Shape descriptors are extensively studied in field of computer graphics, as it is il-
lustrated by Zhang and Lu [2004], Yang et al. [2008], Costa et al. [2009] and Kazmi
et al. [2013]. The current section is a very brief outlook this field. Shape descriptors
are measures of a shape, comprising its geometry or topology into set of numerical
values or graph like structure [Kazmi et al., 2013]. Thus in machine learning ter-
minology, these shape measures serve as features in shape classification, and good
features are essential for a good classification outcome.

According to Yang et al. [2008] and Kazmi et al. [2013], effective shape descriptors
have the following properties:

16 theoretical background

Table 2.2: Categorisation shape descriptors by Kazmi et al. [2013]

Dimension Category Name

2D

Contour Based

Fourier Descriptors (FD)
Wavelet Descriptors (WD)
Curvature Scale Space (CSS)
Shape Context (SCD)

Region Based
Zernike Moment Descriptors (ZMD)
Scale Invariant Feature Transform (SIFT)
Angular Radial Transform (ART)

Hybrid
FD + ART
FD + ZMD

3D

View Based
Adaptive Views Clustering
Compact Multi-View Descriptor
LightField Descriptor (LFD)

Histogram Based
Shape Spectrum
Generalized shape distributions
Bag-of-Features (BoF)

Transform Based
Spherical Harmonics Descriptor
PCA Spherical Harmonics Transform
Spherical Trace Transform

Graph Based
Skeletal Graph Based
Reeb Graph Based

Hybrid 3D Descriptors

CMVD + STT
Depth-Buffer + Silhouette + REXT
SIFT + Bag of Features
Depth-Buffer + Spherical Harmonics

• Discriminative accuracy and completeness: To represent the information con-
tent of in the shape and accurately distinguish one shape from another based
on subtle differences;

• Transformation (translation, scaling, and rotation) invariance: Also known as
pose normalization;

• Robustness against model degeneracies / roughness;

• Uniqueness: Each shape descriptor must be uniquely coupled with a unique
shape;

• Performance and memory efficient, thus the computation of distance between
descriptors should be simple;

• Partial matching: robust against incomplete shapes;

• Insensitive to noise: Small changes in the shape to lead to small changes in
the shape descriptor;

For the purpose of describing building models, the categorisation of shape de-
scriptors by Kazmi et al. [2013] is fitting, see Table 2.2. But Zhang and Lu [2004],
Yang et al. [2008] provide different categories, while Costa et al. [2009] also describes
several general descriptors such as diameter, major and minor axes, mean distance to
boundary.

The approach of describing 3D shapes by the sampled distribution of simple
shape functions (e.g.distance between two random points on a surface) [Osada et al.,
2001], or by means of 3D shape histograms [Ankerst et al., 1999], seems particularly
fitting for setups where the city model is stored in a database (e.g.by 3DCityDB

2.5 shape descriptors and classification in geographic information 17

Figure 2.8: Vertices along the curve do not count as SCP, thus (A) has 3 SCPs. The rectangle
(B) has 4 SCPs (B)

2). A similar setup could make it possible to efficiently retrieve and/or analyse the
geometry of individual buildings.

2.5 shape descriptors and classification in geo-
graphic information

In section 2.4 provided a brief overview on shape measures in the field of computer
graphics. Researchers of geographic information developed their own, application
specific shape measures for analysing and classifying geographic objects. Sections
2.5.1 and 2.5.2 review those 2D and 3D measures that to the extent of my knowledge
relevant for describing building models. While Section 2.5.3 describes two cases
such measures were applied for building shape classification.

2.5.1 Geometric complexity of 2D objects in geographic information

Moser et al. [2002] give an overview of the various polygon shape descriptors. They
describe the Number of shape characterising points (NSCP). It is obtained by checking
which vertices in a polygon boundary have a turning angle less than 160 degrees.
Vertices with an angle above 160 and until 180 degrees are not considered as shape
characterising points (SCP). Consequently, the higher the NSCP, the more complex
the polygon boundary. However, one weakness of the method is that the angle
threshold need to be set manually. When curved objects are modelled with straight
line segments, the segments along the curve can have a low turning angle. These
point would not be considered as SCP, see 2.8.

Touya and Brando-Escobar [2013] describes a method for assessing the LoD of
geographical features. Their method includes a set of criteria from which some are
relevant for my work:

• Vertex density (resolution): number of vertices compared to feature length
described with vertex density value = (1 − vertexDensity)

• Median edge length (resolution)

• Shortest edge (granularity): the length of the shortest edge

• Size (granularity): area of the feature

They also analyse the spatial relations between features (e.g. road crossing a lake)
to fine tune and filter the results. This idea can be easily applied to buildings as
well, for example a window must be part of a wall or roof but cannot be part of a
floor, or roofs must be above floors.

Touya and Reimer [2015] compares and combines the methods of Touya and
Brando-Escobar [2013] and Reimer et al. [2014] for inferring the scale or LoD of

2 https://www.3dcitydb.org

https://www.3dcitydb.org

18 theoretical background

OpenStreetMap objects, with the conclusion that in case of buildings the combi-
nation of methods does not result in significant increase in classification accuracy.
The empirical method of Reimer et al. [2014] requires a manual determination of a
constant, furthermore Touya and Reimer [2015] could not detect significant numer-
ical difference in vertex frequency in polygons where curvy rivers were part of the
polygons and when not. In case of buildings, the higher number of vertex per ob-
ject is likely to indicate a higher LoD, due to the additional feature parts (chimney,
window etc.).

2.5.2 Geometric complexity of 3D objects in geographic information

Wong and Ellul [2016] evaluates simple geometry metrics that are designed to give
an indication of the geometric detail of the data set as a whole and not each indi-
vidual building. To the extent of my knowledge, this is the only work in this topic.
These metrics are influenced by the architecture of the buildings. Their findings are
that:

• The mean number of vertices / edges / faces per building reveal the same
pattern in the data sets.

• The mean number of vertices per face measures the efficiency and detail of
the model, where the lower the ratio the less efficient the model.

• In case of the minimum footprint area and minimum feature length often
very small values are found eg. < 0.001m or NULL therefore these measures
cannot be used directly but their frequency distribution is more suitable. The
authors recommend using the minimum dimensions of the buildings if the
data is relatively clean, and the frequency distribution of the minimum areas
if the data is noisy. The frequency distribution could also provide insight into
inconsistencies or errors in the data set.

2.5.3 Geometry-based classification of building types

When using shape-based features, building type classification is similar to LoD
inference if we consider the various building types as LoD subclasses. Both Henn
et al. [2012] and Wurm et al. [2016] worked out a method to classify building types
in LoD1 3D city models.

Henn et al. [2012] uses machine learning to classify seven building types in 3D
city models, see Figure A.1. Their approach is similar to that of the present work, as
in they use statistical learning methods to categorise 3D building models based on
their geometry. Henn et al. [2012] found out that incorporating the spatial context
of the building improves the classification accuracy greatly. Therefore they compute
the distance between neighbouring buildings, distance from infrastructures. How-
ever, such metrics are only possible when infrastructural buildings are also included
in the city model, which might no be the case when only parts of a city is analysed.

Henn et al. [2012] uses a training data set of 1227 building and also tests a Deci-
sion Tree and Naive Bayes classifier, however they achieve the best overall accuracy
of 90.79% with an SVM with linear kernel. The accuracy was determined with 10-
fold cross-validation. In case of a building type (villas) that is highly similar in LoD1

to another building type (detached buildings) they achieved only 54.84% recall.
Additionally, Henn et al. [2012] developed an efficient, semi-automatic method to

collect training data for the Support Vector Machine classifier that they used. In this
method they used outlier detection and clustering to reliable differentiate between
building types. Their method is based on the cluster assumption of semi-supervised
learning which states that, if objects are in the same cluster, they will likely be of the
same class [Chapelle et al., 2006]. The Local Outlier Factor (LOF) compares local
densities and it rates how isolated a point in relation to its nearest neighbours. This

2.5 shape descriptors and classification in geographic information 19

is an advantageous property as the underlying distribution of the clusters is often
not known.

Similarly, Wurm et al. [2016] used Linear Discriminant Analysis to distinguish
between five different building types in LoD1 (see Figure A.2) and evaluate the
discriminatory power of the computed features. They focused solely on shape-
based features and computed 26 1D, 2D and 3D features, while ignoring the spatial-
relational features that for instance Henn et al. [2012] used. Using a total of 9557

building from in two cities (Berlin, Munich), they discovered that training sample
sizes above 10% do not significantly improve the classification accuracy. Further-
more, they tested the generalizability of trained classification functions for transfer
between geographical regions by training the classifier in one city and applying it
in the other, and vice versa. They achieved a kappa index between 0.91-0.94 in their
classification.

3 R E S E A R C H M E T H O D

The goal of this thesis is to research a method for automatic LoD inference in non-
semantic 3D city models, and use the inferred LoD classes to evaluate whether a
3D city model conforms the stated LoD. In order to determine the LoD, the shape-
complexity of the model need to be measured and assigned to an LoD classes,
according to the LoD requirements. However, a simple simple shape does not nec-
essarily mean coarse LoD. Buildings, building attachments that have a simple shape
(e.g.garages, tower blocks) can be modelled with the same geometry in LoD1 and
LoD2, see 3.2. Therefore in case of a detailed city model (e.g.LoD2) if an object
has coarse shape that would indicate LoD1, it is necessary to compare the object to
ground truth in order to evaluate whether the model is indeed LoD1 or the building
has a simple shape.

Consequently, the method comprise of two steps. In the first step, the shape
complexity of each object is measured and the object’s LoD class is inferred from
the measured values. In the second step, the objects are compared to a reference
data set, and the comparison results are included in the LoD classification, in order
to distinguish between simple buildings in LoD2 and complex buildings in LoD1.
Figure ?? gives an overview of the process.

3.1 step 1 – lod inference without reference
data

In its core, the framework utilizes statistical learning methods to distinguish be-
tween buildings of shape complexity and infer the LoD of the city model. Therefore
the proposed framework follows that of common with machine learning. Broadly
this is an iteration of feature generation, application of learning methods, model
evaluation.

Figure 3.1: A building with the same geometry in LoD1 and LoD2 (garage in the center).

21

22 research method

Figure 3.2: The process of LoD inference

3.1 step 1 – lod inference without reference data 23

Figure 3.3: Roof (purple) and wall (green) triangles of models

Figure 3.4: The footprint triangles (bright green) of models

3.1.1 Building surface extraction

The data sets used are converted from CityGML to OBJ format, which does not store
semantic information. In this format each object is represented by its boundary
surface, a closed mesh of triangles. This type of representation is referred to as
Boundary Representation (BRep) [Mäntylä, 1987]. There is no distinction in which
triangles represent which surface in the building. Therefore the triangles that make
up the roof, walls and footprint need to be extracted from the model, see 3.3, 3.4.

Roof, wall and footprint triangles are identified according to the rules below.
Given that horizontal triangle has a slope of 0◦, a vertical triangle has a slope of 90◦.
In order to account for irregularities in the surfaces, a threshold of 5◦ is used when
differentiating between horizontal, vertical and sloped triangles, and a threshold of
10 cm is used when differentiating between footprint and non-footprint triangles.
The presented method assumes that the surface normals are pointing outwards
from the model.

slope = slope of a triangle

z_mean = mean z coordinate of a triangle

for each object:

z_mean_min <- min(mean z coordinate of each triangle)

for each triangle:

if slope < 5 and (z_mean < z_mean_min + 10cm):

footprint_triangles <- triangle

else if slope < 85 and (z_mean > z_mean_min + 10cm):

roof_triangles <- triangle

else:

wall_triangles <- triangle

24 research method

Table 3.1: Summary of the computed features and their relation to the LoD requirements

Geometry Feature
Related LoD
requirement

Rele-
vant
LoD

2D footprint
Number of Shape Characterising
Points (NSCP)

none all

Shape Characterising Lengths
(SCL)

Size of building parts ≥ 0.1

Footprint Area Size of building parts ≥ 0.1
Building Part Footprint Area Size of building parts ≥ 0.1

3D solid Building Volume none all
3D surface Roof Type Roof representation ≥ 1

Median Roof Gap
Top surface (Single /
Multi)

0.2-1.3

Roof Overhangs
Explicit roof overhangs
(if 0.2m)

≥ 2.3

Footprint-Roof Triangle Ratio Roof superstructures ≥ 2.2
Walls Presence of walls 0

3D solid, Point
Cloud

RMSE of PC-Model distance (LoD validity) all

3.1.2 Describing building geometry

Sections 2.4, 2.5 illustrate that there are numerous possible measures to describe the
geometry of an object and that the appropriate descriptor depends on their applica-
tion. Although some of the geometry descriptors in this section were influenced by
Moser et al. [2002], Wong and Ellul [2016], Henn et al. [2012] and Wurm et al. [2016],
one of the primary considerations was to closely relate the descriptors to the LoD
requirements by Gröger et al. [2012], Biljecki et al. [2016b]. Table 3.1 summarises
the descriptors and their relation to the LoD.

number of shape characterising points Moser et al. [2002] describes the
Number of Shape Characterizing Points (NSCP). The NSCP is obtained by checking
which vertices in a polygon boundary have an inner-angle less than 160 degrees.
Vertices with an angle above 160 and until 180 degrees are not considered character-
istic for the shape. The higher the NSCP, the more complex the polygon boundary,
see ??. Theodoridis and Koutroumbas [2009] also report this measure as so-called
key points. However, in round object or object with curved parts this measure can
fall short. Arcs are often discretised by a number of straight line segments, and
depending on the amount of segments representing the arc, the vertices can have
a large inner angle. In this case none of the vertices along the arc would count as
Shape Characterizing Points, see Figure 2.8. The NSCP is determined from the total
footprint of the object, thus including extensions, attachments.

shape characterising lengths The Shape Characterising Lengths (SCL) are
the distances between the Shape Characterising Points, see Figure 3.5. Therefore
the SCL exclude collinear vertices and vertices with a low turning angle. As both
Gröger et al. [2012] and Biljecki et al. [2016b] define the object generalisation re-
quirements in terms of minimal object length and/or area, SCL is interpreted in a
sense that no edge in the footprint can be shorter than 4m or 2m respectively.

However, as Biljecki et al. [2016b] states, “The minimum size can be expressed as the
minimum length and/or width of an object, and/or the minimum footprint area.”. Thus
there is no guarantee that an object adheres to the minimum length requirement in
its level of detail. Possibly, an edge is shorter than the stated minimal length, but
the area of the building part is larger than the required minimal area.

3.1 step 1 – lod inference without reference data 25

Figure 3.5: Shape Characterising Points (red circle), Shape Characterising Lengths (red
dashed line) and non-characteristic points (white circle).

As Wong and Ellul [2016] recommend for edge lengths, the SCL are not used
directly for classification due to potential outliers (very short edges) that would
skew the values. Instead, the frequency distribution of the SCL is computed, with
bins according to the LoD requirements. As an additional feature, the minimal SCL
is used.

The SCL are grouped into six bins and the frequency of the bin is computed. It
is necessary to use the frequency distribution instead of simple counts, because the
the counts change according to the total number of edges in the footprint.

The bins are:

>6m

6-4m

4-2m

2-1m

1-0.2m

0.2m>

Frequency of elements in each bin is computed as:

f requency o f bin =
count edges in the bin

count total edges

footprint area Similarly to the SCL, the footprint area relates directly to the
generalisation requirements of the LoD specifications. Gröger et al. [2012] prescribes
the minimal size of the object that should be considered in each LoD. For example
in LoD1, only those objects should be represented that are larger than 6 ∗ 6m in the
footprint and 3m in the height. The footprint area values are not used directly, but
they are categorised in four categories according to Gröger et al. [2012]:

1. <- area > 36m^2

2. <- area > 16m^2

3. <- area > 4m^2

4. <- area <= 4m^2

building part footprint area Biljecki et al. [2016b] defines building parts as
objects that are part of the building, but their geometry is perceptually distinguish-
able. Thus this work interprets building parts as objects that have their own, or
separate roof structure, see Figure 3.6. Following, a building always consists of at
least one building part (the main part). As a building can have arbitrary many parts,
it is only necessary to measure the footprint area of the smallest part, because the
extent of the minimal area is prescribed by the LoD requirements.

26 research method

Figure 3.6: An example of main building part (grey) and attached building part (red) with a
separate roof structure.

Figure 3.7: Footprint polygon (blue outline), roof polygon (black outline). Each part of the
building has an overhanging roof.

Building part footprint area is computed as the area of the roof’s projection on
the ground. Therefore in case the model has explicit roof overhangs, the computed
building part area is slightly larger than the actual building part footprint area.

building volume The volume of the BRep is computed to give an indication
of the size of the object. The volume is computed using FME’s VolumeCalculator
transformer. This measure does not relate directly to any LoD requirement.

roof overhangs According to Biljecki et al. [2016b], models in LoD2.3, 3.1 and
above can have explicit roof overhangs. This feature indicates the presence of roof
overhangs.

The shortest distance between the projected polygon of the roof and the footprint
polygon is measured. It works in situations where each part of the building has
an overhanging roof (see Figure 3.7). But if a part of the building does not have
overhanging roof, the minimum distance between the two polygons is zero (see
Figure 3.8).

Therefore an area-based comparison is more robust. In order to make it invariant
to the size of the object, the footprint area is divided by the roof area. If the ratio is
lower than 1 (or lower than 0.999 exactly, to account for floating point errors), there
is an overhanging roof.

Then the feature is encoded as:

0 - no overhang

1 - overhang

3.1 step 1 – lod inference without reference data 27

Figure 3.8: Footprint polygon (brown) and the projection of the roof (green). If a part of the
building does not have overhanging roof, the minimum distance between the two
polygons is zero

footprint-roof triangle ratio Models of LoD0.2, 1.0-1.2 will typically have
the same amount of triangles in their roof surface as in their footprint. If the roof has
multiple levels or has extensions, the amount of triangles in the roof will be higher
than in the footprint. Therefore the footprint-roof triangle ratio, combined with the
roof type, can indicate complex roof structures, see Figure 3.9.

The footprint-roof triangle ratio is computed as below, and therefore a ratio lower
than 1 indicates a complex roof structure.

f ootprint roo f ratio = number o f triangles in f ootprint
number o f triangles in roo f

median roof gap Include pictures of the referenced building models
According to Biljecki et al. [2016b], models of LoD0.3, LoD1.3, LoD2.0 and above,

can represent multiple levels in their roof structure. Therefore the median roof gap
indicates whether the roof has multiple levels.

The mean z coordinate cannot be used to reliably identify the roof levels, be-
cause in case of non-planar roofs, the triangle’s mean z varies, depending on the
orientation of the triangle. This is illustrated in 3.10.

Also, see that there is some variation in the mean z coordinates of the non-planar
roof part of the building “BID 363100012169940” (also see Figure A.7):

7.219487 7.236606 7.289978 7.302748 7.310786 7.956606 7.956907

7.958656 8.024201 8.024612 9.379174 9.379585

However, it is clear from looking at the shape of the roof that the these triangles
belong one roof level, even though the variation. The building “BID 363100012168777”
(see Figure A.6) has four distinct roof levels, including the top level. The mean z
coordinates support this observation, in the values we can identify these clusters
centred around 4.8, 13.6, 15.9, 18.5.

4.81000 4.81000 4.81000 4.81000 4.81000 13.62514 13.62514

13.63000 13.63000 15.96000 15.96000 15.96000 15.96000 15.97527

15.97527 18.53000 18.53000 18.53000

A method is needed that clusters the first case in a single cluster, and the second
case in four clusters. As clustering is mainly used in multi-dimensional data, a
better term for this is to identify breaks in the data. Two of the common methods
to identify breaks in 1D data are:

1. natural breaks estimation (e.g.. Jenks natural breaks optimization),

2. finding local minima in kernel density estimates.

Natural breaks estimation requires a fixed number of breaks (clusters) to set,
similarly to k-means clustering. Because buildings can have various roof levels, this
is not a suitable method. Furthermore, the optimization process for finding the

28 research method

Z

Z

A)

C)

E)

B)

D)

Figure 3.9: Five roof structure types, with equal amount of triangles in footprint and roof
(both are red), and with more triangles in the roof (green triangles in roof)

Z

X

Mean Z
coordinate

Figure 3.10: The value of the mean of the Z coordinates depends on the orientation of the
triangle

3.1 step 1 – lod inference without reference data 29

Figure 3.11: Density estimate of roof triangles mean z coordinate. Object
BID 363100012169940

Figure 3.12: Density estimate of roof triangles mean z coordinate. Object
BID 363100012168777

“natural number of breaks” with this method would put an unnecessary cost on the
process.

Kernel density estimation does not require specifying the number of breaks in
the data, thus it seems more suitable. Density estimation with a Gaussian ker-
nel on the previous roofs reveals the modality in the mean z values. Then the
local minima of the density estimate indicates the breaks in the mean values (blue
lines), thus the presence of multiple roof levels. The single roof level is clearly illus-
trated by the uni modal density of the mean z values of the non-planar roof part of
BID 363100012169940 (see Figure 3.11). Also, the multiple roof levels are displayed
by the multiple modes of the density estimates of BID 363100012168777 (see Figure
3.12) and BID 363100012130645 (see Figure 3.13, A.5).

Although there is no local minimum in case of BID 363100012169940, which
is correct, based on its roof shape, four local minimum points are expected for
BID 363100012168777. But the density estimate only reaches a local minimum at
a single location. A solution for this problem would be to adjust the smoothing
bandwidth of the kernel.

In the plots above it is set to one standard deviation. In order to get a bet-
ter fit of the density estimate, the smoothing bandwidth need to be reduced, for
example from 1 standard deviation to half. But although this yields a more ac-

30 research method

Figure 3.13: Density estimate of roof triangles mean z coordinate. Object
BID 363100012130645

Figure 3.14: Density estimate of roof triangles mean z coordinate, bandwidth 0.5 std. Object
BID 363100012169940

curate estimate for BID 363100012168777 (see Figure 3.14), it clearly over-fits for
BID 363100012169940 (see Figure 3.15).

A third approach of finding breaks in mean z values is more simplistic, but di-
rectly related to the LoD specification. This is a desirable property, because it makes
it easy to reason about the results. The LoD specification defines that the minimal
vertical “jumps” that need to be identifiable are >2m or >1m.

Then it suffice to identify the presence of gaps of >2m or >1m in the sorted mean
values. This method might work well in case of planar roofs because mean z values
close to each other in one level. However, in non-planar roofs kernel density estima-
tion might yield better results due to the variation in the mean values. For example
in case of a high, gabled roof. The gaps are computed as:

gap <- 2 meters

y <- sort(mean z values)

if length(y) < 2:

gaps <- 0

else:

for each in y:

if abs(y[i] - y[i+1]) > gap:

3.1 step 1 – lod inference without reference data 31

Figure 3.15: Density estimate of roof triangles mean z coordinate, bandwidth 0.5 std. Object
BID 363100012168777

gaps <- c(gaps, y[i])

The median distance between the roof levels gives an indication of whether the
building has a single top surface, or its top surface has multiple levels. Multiple
roof levels are allowed in LoD0.3, LoD1.3 and >LoD2.0. In case there is a single
roof level, the median distance is 0.

roof type According to Biljecki et al. [2016b] LoD0.0, LoD0.1 models have no
roof surface. LoD0.2-LoD1.3 models have horizontal roof surface. Models of LoD2.0
and above have more detailed roof structure. Therefore the roof type feature can
have the following values:

• 0 - no roof surface

• 1 - horizontal roof surface

• 2 - non-horizontal roof surface

• 3 - a mix of horizontal and non-horizontal roof surfaces

presence of walls The LoD0 family (0.0-0.3) does not allow representing walls,
while models of LoD1.0 or higher can represent walls. Therefore this binary feature
indicates the presence of walls in the model.

3.1.3 Building classification

The central problem of this thesis is to match buildings from the input data set to
specific LoD classes. Using machine learning terminology, it is called supervised
classification. Supervised, because the class labels (LoD classes) are provided for
the classification algorithm and it needs to assign each building to an LoD class,
based on some distance metric or probability. The choice of the appropriate algo-
rithm depends on the statistical distribution of the features and there are no hard
rules on algorithm selection, thus to certain extent the algorithm selection relies on
experimentation.

32 research method

Figure 3.16: Signed distance evaluation; distance is positive in p1 and negative in p2 (S1 is
the sampled curve). [Cignoni et al., 1998]

3.1.4 Classification accuracy and generalization performace

In order to evaluate the accuracy of the classification, the data needs to be labelled
correctly. After classification, the inferred classes are compared to the correct labels,
and the fraction of correctly classified objects is computed.

Furthermore, it is necessary to get an estimate on how a given algorithm performs
on unseen data. In other terms, how well does the algorithm generalize what it
learned from the training data to a different data set (e.g.different city model). To
evaluate the generalization performance, the method k-fold cross-validation is used.
In this method the data is split repeatedly in k parts, holding out one part as a test
set and training the classifier on the rest. For each part, the classification accuracy
is computed and the average accuracy is reported at the end Müller [2016].

3.2 step 2 – lod inference with reference data
The goal of the second step is to use a reference data set to inform the LoD classi-
fication, particularly in cases where an object’s geometry does not change between
level of details (e.g.a simple detached garage). Therefore the object is compared to
the reference and the similarity is used as an additional feature in the classification.

As reference this work uses the same point cloud that was used for generating
the city model. Using the same data set for validation that was used for generating
the data set can introduce the same errors in the validation as they are in the data,
making the validation unreliable. However, to my knowledge there is no other
open, 3D data set available in the same resolution for the area as the mentioned
point cloud. After visually comparing both the AHN2 and AHN3 to the city model,
it was identified that the AHN2 was used for generating the city model.

The Metro algorithm [Cignoni et al., 1998] which evaluates the difference between
two meshes, by computing the signed, shortest (orthogonal) Euclidean distance
between a point sample and the mesh. In case of a point cloud - mesh comparison,
the algorithm computes the distance from a point to the nearest triangle plane
in case the if the orthogonal projection of the point on this plane falls inside the
triangle, otherwise it’s the distance to the nearest edge that is taken. Therefore if
the extent of the point cloud is larger than that of the mesh, the computed distances
will be positive (see Figure 3.16).

The Root Mean Square Error (RMSE) is sensitive to outliers as it is proportional to
the size of the squared errors, therefore it is potentially a more appropriate choice
to detect if a part of a building is not modelled, but the point cloud contains it. The
median distance would hide these cases if the missing part is small related to the

3.2 step 2 – lod inference with reference data 33

Figure 3.17: Building model (black) and its point cloud (red). A small part of the building is
not modelled, but it is represented by the point cloud, causing larger than point
cloud - mesh distances.

size of the building, thus only a small amount of distances are considered outliers,
see Figure 3.17.

4 I M P L E M E N TAT I O N A N D R E S U LT S

4.1 data preparation
The thesis uses two 3D city models to test the developed method. One is randomly
generated by procedural modelling, the other was created by combining building
footprints and point cloud, and represents a part of Amsterdam city centre. A valid
synthetic 3D city model can be generated in any of the sixteen LoD classes, with
any amount of buildings [Biljecki et al., 2016a], therefore it was used for to test the
method with the LoD classes that are not present in the Amsterdam data. One of
the central concepts of the developed method is to train a LoD classifier on a 3D city
model (design set) and apply it on a new model (target). Therefore the design set
needs to contain all the possible LoD classes, thus it can recognise them in the target
data. Among the city models that I explored, all of them contain models in LoD1

or LoD2 family, in various amounts from each class, and varying validity. Only
Random3Dcity [Biljecki et al., 2016a] could provide an arbitrary amount of valid
building models in each class. The Amsterdam data set is then used for testing the
generalisation performance and transferability of the classifier. Both data sets are
originally stored in (City)GML format.

OBJ is a file format that represents 3D geometry without semantics [OBJ, 2018]
and is adopted by the GIS community to store 3D city models (e.g.Biljecki and
Arroyo Ohori [2015]). Being a simple format, it is relatively easy to parse and write
(as opposed to GML), which enables rapid development. As this thesis is concerned
with the geometric LoD only, there is no need to use CityGML as input. Therefore
all analysed data sets are translated from CityGML to OBJ by the CityGML2OBJs
tool developed by Biljecki and Arroyo Ohori [2015].

synthetic city model was generated with Random3DCity, in LoD 0.1-2.3 (ex-
cept 1.0) and it contains 1000 buildings, hundred buildings per class (see Figure 4.1).
The model is converted to OBJ format with CityGML2OBJs.

the amsterdam city model was created in LoD1 and LoD2. The LoD2 model
was provided by the company VirtualCitySystems1 (see Figure 4.3). The LoD1

model was generated with 3dfier (see Figure 4.2). For the generation of both LoD1

and LoD2 models, the building footprints of the Dutch Basisregistraties Adressen
en Gebouwen (BAG)2 are used in combination with the point cloud of the Actueel
Hoogtebestand Nederland (AHN)3. To the extent of my knowledge, the LoD data set
was created with the second version of AHN (AHN2), therefore this was used for
the creation of the LoD1 model as well. However, a disadvantage of AHN2 com-
pared to AHN3 is that in the former, the vegetation points are included in the same
class as the building points.

The data set contains 656 building footprints, but due to removing invalid geom-
etry, 482 remained.

The data set was prepared with FME Desktop4 and converted into OBJ with the
CityGML2OBJs tool. The OBJ writer of FME dumps all buildings into one group,

1 http://www.virtualcitysystems.de

2 https://www.kadaster.nl/bag

3 http://www.ahn.nl

4 https://www.safe.com/fme/fme-desktop/

35

http://www.virtualcitysystems.de
https://www.kadaster.nl/bag
http://www.ahn.nl
https://www.safe.com/fme/fme-desktop/

36 implementation and results

Figure 4.1: The generated synthetic data set of 1000 buildings, 10 LoD classes

Figure 4.2: LoD1 version of the Amsterdam data set

Figure 4.3: LoD2 version of the Amsterdam data set

4.2 generating features 37

Table 4.1: Data set statistics
Data set Property Mean Standard deviation
Synthetic LoD2 NSCP 4,26 0,99

Nr. vertices 60 23,34

Nr. triangles 15 5,83

Amsterdam LoD2 NSCP 6,37 4,28

Nr. vertices 212,83 228,74

Nr. triangles 53,21 57,19

which makes it tedious to split them for the point cloud comparison. Therefore
CityGML2OBJs is more suitable as it can write one object per building.

The original LoD2 model contains semantic surfaces which are not required for
the analysis. Therefore the semantic surfaces are removed and the buildings are
modelled in LoD2 with one gml:Solid. Furthermore, geometric errors such as in-
valid surface orientation, non-planar surfaces, degenerate or corrupt geometries,
self-intersection in 2D are repaired in the conversion process, using FME’s Geome-
tryValidator transformer.

Table4.1 shows that the average number and standard deviation of NCSP, vertices
and triangles are lower in the synthetic data (LoD2) than in the Amsterdam data set
which is due to the simpler shapes in the former.

4.1.1 Validating the LoD of the Amsterdam data set

Finally, the Level of Detail was manually validated against the digital surface model
provided by Google Earth. This is aimed to identify models with invalid LoD,
for example where the roof reconstruction failed and an LoD1 model is generated
instead of an LoD2 model. The Google Earth mesh was the only available ground
truth that I could use to compare the 3D city model against.

However, there are a few problems with using Google Earth as a 3D ground truth:

• The positional and temporal accuracy of the model is unknown.

• It is not possible to take 3D measurements on the surface model, thus compar-
ison is only possible by the eye.

Therefore the LoD validation itself is an ambiguous process (see Section 2.2).
Also, considering that there are certain roof shapes that are in between of the classic
gabled and flat shapes and include dormers. These roofs could be modelled par-
tially flat or totally flat. In these cases the decision whether a model is valid or not
might be subjective.

Several models are in fact composed of a group of buildings. Further investi-
gation revealed that this is due the geometry of BAG footprint and the the 3D
modelling process, thus these cases are considered valid if the roof was valid.

The outcome of data preparation is 621 remaining LoD2 building models, from
which 55 are with invalid LoD.

4.2 generating features

Features are generated in an FME workflow that takes a triangulated city model in
OBJ format as an input and outputs a CSV file with the features per object. The
building models must be stored as named objects in the OBJ file, and have a unique
identifier in order to match the computed features to the objects.

38 implementation and results

Figure 4.4: Googe Earth mesh

Figure 4.5: LoD2 model

Figure 4.6: Combined buildings into one footprint and model (blue)

4.2 generating features 39

Figure 4.7: Distribution of NSCP in the Synthetic data

Figure 4.8: Distribution of NSCP in the Amsterdam data

4.2.1 Step 1

The distributions of the generated features might reveal how similar are the LoD
classes in the features space. Comparing the Gaussian kernel density estimates
of NSCP (Figure 4.7, 4.8), the SCL distributions (Figure 4.9, 4.10, 4.11, 4.11), the
distributions of footprint and building part area (Figure 4.13, 4.14, 4.15, 4.16) and the
distributions of the footprint-roof triangle ratio (Figure 4.17, 4.18) reveal that in case of
the synthetic data the distribution of features are very similar across all LoD classes,
while in case of the Amsterdam data there are considerable differences.

In case of SCL the plot 4.9 show the presence of edges that are shorter than 4m in
the LoD classes 0.1, 2.0, which should not be the case according to the interpretation.
Thus the SCL alone is insufficient to reason about the size of the building parts.

In case of footprint area he synthetic data set does not seem to respect the LoD
requirements, as objects of all 1,2,3 categories are present in similar quantities across
all LoD classes (Figure 4.13, 4.14).

The utility of the footprint-roof triangles ratio measure it highly dependent on the
local architecture. While in case of Amsterdam old town, were most of the buildings

40 implementation and results

Figure 4.9: Shape Characterising Lengths in the Synthetic data

Figure 4.10: Shape Characterising Lengths in the Amsterdam data

4.2 generating features 41

Figure 4.11: Minimal Shape Characterising Lengths in the Synthetic data

Figure 4.12: Minimal Shape Characterising Lengths in the Amsterdam data

42 implementation and results

Figure 4.13: Footprint area in the Synthetic data

Figure 4.14: Footprint area in the Amsterdam data

4.2 generating features 43

Figure 4.15: Minimal building part area in the Synthetic data

Figure 4.16: Minimal building part area in the Amsterdam data

44 implementation and results

Figure 4.17: Footprint-roof triangle ratio in the Synthetic data

Figure 4.18: Footprint-roof triangle ratio in the Amsterdam data

have a complex, gabled roof a ratio close to 1 could indicate a failed roof reconstruc-
tion (Figure 4.18). In case of the synthetic data that mainly contains buildings with
simple geometry across all LoD, the utility of this measure is questionable as the
majority of the buildings have a ratio close to 1 in all LoDs. The exception is LoD0.1
which does not have roof surface at all, thus has a ratio of 0 (Figure 4.17).

4.2.2 Step 2

The distance between the point cloud and the model is computed in the following
procedure:

0. The OBJ file and the point cloud need to be in the same coordinate reference
system.

1. In the OBJ file, each building need to be a separate object. This allows to split
the file into a separate file per building.

4.2 generating features 45

Figure 4.19: Point cloud to model distances in the LoD1 model

Figure 4.20: Point cloud to model distances in the LoD2 model

2. The building footprint polygons are precomputed in order to speed up the
comparison process.

3. If the point cloud is stored with offset coordinates in order to reduce the size
of the coordinates, store the offset coordinates.

For each building:

1. Crop the point cloud with the footprint polygon.

2. Match the centers of the point cloud and the buildings.

3. Compute the signed point cloud - mesh distances.

4. Export the result to a table.

The figures 4.19 and 4.20 do not indicate significant difference between the point
cloud – mesh distances of LoD1 and LoD2 models. The median distance of the

46 implementation and results

Figure 4.21: RMSE of point cloud to model distances in relation to the other features. Ams-
terdam data set, 50% LoD1 (red circle), 50% LoD2 (blue triangle).

whole city model is −0.52m for the LoD1 model, and −0.42m for the LoD2 model,
which is very little difference. The box plots suggest that the variation of the dis-
tances (length of the black boxes) in LoD1 models are generally larger than those of
LoD2 models, but there are more distances that are considered outliers (green dots)
at the LoD2 models than at LoD1 models. This indicates that the LoD2 models are
indeed closer to their point cloud then the LoD1, but there is a very high amount of
noise in the measurements.

The scatter plot matrix (Figure 4.21) shows the Root Mean Square Error (RMSE)
computed from the point cloud distances in relation to other features. The RMSE is
in the leftmost column, and each row shows a scatter plot of RMSE and another fea-
ture. The diagonal of the plot shows the distribution of a feature. The distribution
of RMSE in LoD1 (red) and LoD2 (blue) models overlap almost entirely. The long
tail of both distributions is accountable for the noise (mainly vegetation, see below)
in the measurements. Apart from the overlapping distributions, a closer look on the
plots reveals that the RMSE does not separate the two classes in any of the feature
combinations. The clearest separation is provided by the RMSE - Min. bulding part
area combination, but even in this case the largest part of the two classes overlap.

In order to analyse the distances more in detail, five buildings were selected (see
4.22). By visual evaluation, each building but . . . 68821 approximate their point
cloud very closely. The building . . . 68821 is included as a reference for an LoD2

model that is relatively distant from its point cloud.

The spikes in the positive range are probably caused by under-extrusion, over-
reaching vegetation or roof superstructures (Figure 4.31). This is the case for build-
ings 68818, 69703 (see 4.23).

In 4.24 and in 4.25, the buildings with unusually high standard deviation of dis-
tances are marked red. The buildings with unusually high median distance are
marked green. The buildings that have both usually high median distance and
standard deviation, are marked blue.

4.2 generating features 47

Figure 4.22: Selection

Figure 4.23: Point cloud - model distances of the five selected buildings (those in blue in
Figure 4.22)

Figure 4.24: Outliers in the computed distances

48 implementation and results

Figure 4.25: Outliers

Figure 4.26: BID 363100012169926

outliers of standard deviation These buildings have a normal median dis-
tance but the distances have an unusually high standard deviation. These outliers
are usually due to a missing building part. See 4.26, 4.27.

outliers of median distance These buildings have a normal standard devi-
ation of distances but unusually high median distance. These outliers are usually
due to tall vegetation (trees) that reach above the building, thus their points are
included when the point cloud is clipped with the footprint. This is the case with
the building BID 363100012169051 (see 4.28).

The other cause for these outliers is large, missing structures from the model.
Opposed to the SD outliers, in this case a substantial part of the building or the
roof is missing, thus most of the points have large distances within the building
footprint. This is the case with the building BID 363100012169471 (see 4.29).

outliers of both median distance and standard deviation These build-
ings have unusually high standard deviation of distances and median distance.
These outliers are usually due to buildings that failed to reconstruct in LoD2, such

4.2 generating features 49

Figure 4.27: BID 363100012174587

Figure 4.28: BID 363100012169051

Figure 4.29: BID 363100012169471

50 implementation and results

Figure 4.30: BID 363100012242951

Figure 4.31: BID 363100012174769

as BID 363100012242951 (see 4.30). Or they are largely covered by a tall tree, such
as BID 363100012174769 (see 4.31).

4.3 classifying the lod with machine-learning
Six experiments were conducted in order to test the method in various scenarios
(see 4.2). The features used for the classification are:

• Number of Shape Characterising Points,

• Minimal SCL,

• Footprint area,

• Minimal Building Part area,

• Roof overhang,

• Footprint-roof triangle ratio,

• Median roof level,

• Roof type,

• Walls,

• RMSE of point cloud-model distances.

The roof type is a categorical variable. It is encoded as integer values but such
representation is not directly usable with scikit-learn estimators, because these ex-
pect continuous values. Simply using the integers in learning, scikit-learn would
interpret the values as they are ordered [Pedregosa et al., 2011]. Therefore the roof
type is encoded into binary variables, one variable per class, with one-hot encoding.

The features walls and roof overhang are binary, they do not need to be standard-
ized.

The generalization performance of the learning methods is estimated with k-fold
cross-validation. Both the synthetic and Amsterdam data is split into 80% training

4.3 classifying the lod with machine-learning 51

Table 4.2: Overview of experiments
Goal Features and Classes Data

1.
Test classification
performance on raw features

Not standardised;
Multi-label

Synthetic, Amsterdam
LoD2

2.
Test classification
performance on
standardised features

Standardised;
Multi-label

Synthetic, Amsterdam
LoD2

3.
Test geographical transfer of
classifiers

Standardised;
Multi-label

Train on synthetic, test
on Amsterdam LoD2

4.
Test binary classification
when incl. Point cloud
distances

Standardised, incl.
RMSE; Binary

Amsterdam LoD2

5.
Test the effect of LoD class
imbalance

Standardised, incl.
RMSE; Binary and
Multi-label

Amsterdam LoD2

6.
Test the effect of LoD class
imbalance and geographical
transfer

Standardised;
Multi-label

Train on synthetic, test
on Amsterdam LoD2

and 20% test data set, and using 10-fold cross-validation. The random number seed
of the cross-validation is reset before each run to ensure that the evaluation of each
algorithm is performed using exactly the same data splits. It ensures the results are
directly comparable.

For evaluating the performance of the classifiers, both the mean accuracy and
its standard deviation are considered. A classifier that achieves a certain accuracy
with a low standard deviation is considered more reliable than one with the same
accuracy but higher standard deviation.

The synthetic data set poses a balanced classification problem, as each of the 10

classes contain 100 objects, thus contains 1000 objects in total. The Amsterdam
data set poses an imbalanced classification problem [Han and Kamber, 2011] as the
number of objects in each class differ largely, with LoD2.0 being the dominant class,
and contains 482 objects in total.

1.0 1.1 1.2 1.3 2.0 2.1 2.2

20 14 4 15 425 1 3

4.3.1 Experiment 1 – Raw features

All features but roof type are left as they are, without standardization. Table A.1
and figure 4.34 summarises the classification results on the synthetic data set. Table
A.2 and figure 4.35 summarises the classification results on the Amsterdam data set.
In the synthetic data the Logistic Regression (LR) achieves the best cross-validation
score, due to its relatively high average accuracy and relatively low standard devia-
tion. In the Amsterdam data the Decision Tree (DTree) performs the best.

Predicting LoD classes in the synthetic data with LR achieves an accuracy of
40.5%. The confusion matrix 4.32 show that most the 0.3 class is predicted as 0.2,
none of the 1.1 or higher classes are predicted as an LoD0 family. However, in
general objects are classified into a lower class than they belong to.

Prediction with Decision Tree in the Amsterdam data achieves an accuracy of
89.6%. The confusion matrix 4.32 show that the 2.1 and 2.2 classes are missing from
the objects, and this is due to the low amount of objects in the test set. Most of
the LoD2.0 classes are predicted correctly, however none of 1.2 or 1.3 are predicted
correctly. There is a clear confusion between the LoD1.3 and 2.0 classes.

Prediction accuracy in the synthetic data is order of magnitudes lower than in the
Amsterdam data. This is likely due to very similar distribution of many features

52 implementation and results

Figure 4.32: Confusion matrix of the LoD prediction in the synthetic data, raw features. Cor-
rect classes are in the rows, predicted classes in columns.

Figure 4.33: Confusion matrix of the LoD prediction in the Amsterdam data, raw features.
Correct classes are in the rows, predicted classes in columns.

(4.7, 4.11, 4.15, 4.17) across all the LoDs in the synthetic data, thus the classifiers
cannot distinguish between the classes. Features in the Amsterdam data have clear
distinction between most of the LoD classes, however 4.33 shows that the LoD1.3
and LoD2.0 are confused in all cases.

4.3.2 Experiment 2 – Standardized features

Features Number of Shape Characterising Points, Minimal SCL, Footprint area, Minimal
Building Part area, Footprint-roof triangle ratio, Median roof level are standardized. Table
A.3 and figure 4.38 summarises the classification results on the synthetic data set.
Table A.4 and figure 4.39 summarises the classification results on the Amsterdam
data set. The results show a slight increase in classification accuracy and decrease
in its standard deviation, in case of the Logistic Regression, k-NN, Decision Tree
and SVM classifiers. Naive Bayes and Linear Discriminant Analysis are seemingly
unaffected by standardization. Still the LR is the best performing classifier in case
of the synthetic data, and DTree in case of the Amsterdam data.

Predicting LoD classes in the standardized synthetic data with LR achieves an
accuracy of 42.5%. Predicting LoD classes in the standardized Amsterdam data
with DTree achieves an accuracy of 88.6%. The confusion matrix of the synthetic
data 4.36 and the Amsterdam data 4.37 show the same type of misclassification as
in case of raw features.

4.3.3 Experiment 3 – Prediction in the Amsterdam data

In this case the best performing classifier (LR) in 4.3.2 is trained on the synthetic data
and the LoD classes are predicted in the Amsterdam data. Standardized features
were used. This experiment is meant to simulate a classifier that is trained on a
generic and valid data set with all the LoD classes, and used for predicting the LoD
classes in a novel data set.

4.3 classifying the lod with machine-learning 53

Figure 4.34: Classification accuracy and standard deviation on the synthetic data, raw fea-
tures.

Figure 4.35: Classification accuracy and standard deviation on the Amsterdam data, raw
features

Figure 4.36: Confusion matrix of the LoD prediction in the synthetic data, standardized fea-
tures. Correct classes are in the rows, predicted classes in columns.

54 implementation and results

Figure 4.37: Confusion matrix of the LoD prediction in the Amsterdam data, standardized
features. Correct classes are in the rows, predicted classes in columns.

Figure 4.38: Classification accuracy and standard deviation on the synthetic data, standard-
ized features

Figure 4.39: Classification accuracy and standard deviation on the Amsterdam data, stan-
dardized features

4.3 classifying the lod with machine-learning 55

Table 4.3: Confusion matrix
not LoD2 LoD2

not LoD2 7 5

LoD2 2 83

Figure 4.40: Binary classification accuracy and standard deviation on the Amsterdam data,
standardized features

Logistic Regression achieves an accuracy of 7.4%, Decision Tree 3.7%, Naive Bayes
0.0%. There scores are extremely low and indicate the the current set up is com-
pletely unsuitable to predict LoD classes.

4.3.4 Experiment 4 – Predict LoD2 or not

In this case it is tested how accurately can the classifier distinguish between LoD2

and non-Lod2 objects in the Amsterdam data, with including the point cloud - mesh
distances. The features are standardized in the same manner as in 4.3.2, including
the root mean square error of the distances. The LoD classes are reduced to binary,
LoD2 and not LoD2. Due to the imbalanced classes (89% LoD2), the class weights
are adjusted inversely proportional to class frequencies in the input data, in the
classifiers LR, DTree and LinearSVM. Then the classifiers are trained and tested in
the same setup as in 4.3.2.

Figure 4.40 and table A.5 summarises the cross-validation results. The Decision
Tree classifier provides the best performance in terms of average accuracy and stan-
dard deviation. Predicting the LoD classes in the test set is achieved with 92.7%
accuracy. This accounts for a 4% increase in classification accuracy compared to
4.3.2. However, the confusion matrix 4.3 shows that almost half of the LoD1 objects
are classified as LoD2, while only 2 LoD2 objects are classified as LoD1.

4.3.5 Experiment 5 – Prediction in the Amsterdam data with mixed LoD1 and
LoD2

The aim of this experiment is to observe how the classifiers behave when various
amounts of LoD1 models are mixed into an LoD2 model. The Amsterdam data set
is used. Therefore 10%, 25% and 50% of LoD2 objects were replaced by their LoD1.2
variant. The LoD1 models were created with 3dfier, using the same footprints as the
LoD2, the same point cloud (AHN2), and the top surface of the LoD1.2 models is

56 implementation and results

Table 4.4: Prediction accuracy of the kNN classifier with various amounts of LoD1 models

% of LoD1 Multi-label Accuracy (%)

10 Yes 65.9
10 No 70.1
25 Yes 84.5
25 No 91.7
50 Yes 85.5
50 No 91.7

Figure 4.41: Multi-label classification accuracy, combined values.

set to the 90th percentile of the total height of the building. The cross-validation
setup and feature transformation is identical to 4.3.4.

The classification was tested both in a multi-label and binary case. Figures 4.41

and 4.42 show combined cross-validation accuracies from the data sets with 10%,
25%, 50% of LoD1.2 models. In both cases the kNN classifers performs the best in
terms of median accuracy and standard deviation.

The prediction performance 4.4 clearly show that the binary classification (LoD2

or not) outperform the multi-label classification.

4.3.6 Experiment 6 – Training in the synthetic, predicting in the Amsterdam data

This experiment combines 4.3.3 and 4.3.5, with the aim of observing the classi-
fier performance when it is trained on the synthetic data (LoD1.1-2.3) and predicts
classes in the Amsterdam data containing various amounts of LoD1.2 models. How-
ever, opposed to 4.3.3, in this case the LoD0 family was removed from the synthetic
data set.

Figure 4.43 shows that the classifiers perform considerably better than in 4.3.3,
with Logistic Regression providing the highest median accuracy and lowest stan-
dard deviation. Table shows the prediction accuracy of Logistic Regression in the
Amsterdam data set with various amounts of LoD1.2 models. Similarly as observed
in 4.3.5, accuracy increases with the amount of LoD1.2 models.

The classification accuracy is higher than it is observed in 4.3.3 and it is due to
the removed LoD0 family. Interestingly, the prediction accuracy of the Logistic Re-
gression in the 50% LoD1 Amsterdam data set (38.3%) is higher than the highest
measured cross-validation accuracy in the synthetic data (33%). This shows the op-
posite behaviour as in 4.3.3, where the prediction accuracy in the Amsterdam data
was orders of magnitudes lower than the cross-validation accuracy in the synthetic

4.3 classifying the lod with machine-learning 57

Figure 4.42: Binary classification accuracy, combined values.

Table 4.5: Classification accuracy of the Logistic Regression classifier

% of LoD1 Accuracy (%)

10 26.1
25 31.7
50 38.3

data in 4.3.2. However, even the highest measured accuracy, 38.3% is considered
very low and shows that the current set up cannot be used to reliably classify the
LoD.

58 implementation and results

Figure 4.43: Cross-validation accuracy of classifiers in synthetic data.

5 C O N C L U S I O N S A N D
R E C O M M E N DAT I O N S

This thesis developed a method for automatically inferring the LoD in 3D city mod-
els. Testing shows that there are four main parameters that influence the LoD
inference, data set quality, feature quality, definition of the LoD classes and the classifiers.

One of the main assumptions of the developed method is that a classifier is
trained in a data set containing all LoD classes and then applied for the classifi-
cation of arbitrary data sets. However, the differences in the classification perfor-
mance in the synthetic and Amsterdam data, particularly as in Sections 4.3.3, 4.3.6,
show that training a classifier on a data set with simple object shapes (Figure A.8) is
not suitable to infer the LoD in a data set with geometrically more complex objects
(Figure 4.22). Therefore the composition of the design set is a main limiting factor
in the developed method, because the design set must be composed from objects
that are comparable in their shape to those that are to be classified. For example
a design set could be compiled from building models from various geographical
locations and architectural styles in order to mitigate the bias towards a particular
style or shape complexity.

This work explored 9 geometry measures (see Section 4.2) to infer the LoD, ex-
tended with the RMSE of the point cloud - mesh distances. In case of the synthetic
city model, Figures 4.7, 4.11, 4.15, 4.17, provide an insight into the similarity in the
shape of the objects. This data set contains models that share the same geometry
across several LoD. As there is no reference data available, these models cannot be
differentiated in their LoD, purely based on their shape.

The experiments did not provide conclusive evidence that the current LoD classi-
fication [Gröger et al., 2012], [Biljecki et al., 2016b] would hinder the automatic LoD
inference. The detailed requirements by Biljecki et al. [2016b] are relatively straight-
forward to translate to features (see Table 3.1). However, as illustrated in Figure 2.3,
2.4 and 2.5, the proposed absolute 3D point accuracy requirement is not sufficient for
determining the validity of the LoD class.

The synthetic data set simulates the scenario when many buildings have a simple
shape and thus their models have the same geometry in multiple LoD. Sections
4.3.1, 4.3.2 and 4.3.6 show that the classifiers missed the correct label in more than
half of the cases. The highest reported accuracy is 42.5%. Comparing Section 4.3.3
to 4.3.6 shows that removing the LoD0 family, that is not present in the Amsterdam
data, improves the classification accuracy significantly.

The class frequencies in the Amsterdam data set suggest that real-world data sets
can be highly imbalanced in their LoD, where the majority of the models having a
valid LoD. Class imbalance proved to be one of the main reasons for low accuracy.
Even though 4.3.4 achieves a relatively high accuracy in binary classification, it due
to the low number of non-LoD2 objects in the data, as it is hinted by 4.3. 4.3.5 and
4.3.6 proves that the amount of class imbalance in the target data set decreases the
prediction accuracy by orders of magnitudes.

Using a learning algorithm for LoD validation poses the challenge of uncertainty.
In the binary classification cases (in 4.3.4, 4.3.5) it was tested that how well can a
classifier distinguish between valid LoD models (LoD2) and invalid LoD models
(not LoD2) in an LoD2 real-world data set. Even if an algorithm can accurately
distinguish between valid and invalid in > 92% of the models in unseen data, it is
not known which objects are those that belong to the 8% misclassified. Therefore the
question of uncertainty in LoD validation requires further exploration. Reducing

59

60 conclusions and recommendations

the classification into a binary case improves the accuracy, which is favourable in
applications that seek to validate whether the data set conforms the stated LoD.

However, as described in Section 2.2, LoD inference in itself is not sufficient to
determine the validity of the LoD and LoD validation is required to assess the qual-
ity of the city model. This thesis made an attempt to determine the validity of the
LoD by using a point cloud as a reference data set, but it did not provide reliable
results. The computed point cloud - mesh distances contain a large amount of noise,
outliers, in many occasions due to overhanging vegetation (see 4.2.2). While work-
ing on the thesis, I did not find a reliable method to remove the vegetation from
the AHN2 point cloud. However, using a point cloud with accurately classified
vegetation (e.g.AHN3) would resolve this issue. Secondly, the presented method
for comparing a building model to its point cloud might be overly simplistic, and
the difference comprised into a single value (RMSE) is too coarse for differentiat-
ing between multiple LoD, even when related to other measures (see Figure 4.21).
Therefore 4.2.2 and the explored distance computation method cannot be consid-
ered a reliable method for supporting the LoD inference.

Although this focused on the LoD in 3D city models, the explored method could
be applicable for inferring the scale in 2D objects. Similarly Touya and Brando-
Escobar [2013] and Reimer et al. [2014], the 2D features in this thesis can be used
to determine the shape complexity of building footprints. Such method could be
used for example to identify areas that are mapped in a coarse level of detail in
OpenStreetMap.

For future work it is advisable to break down the problem into at least two
groups, as LoD inference and validation are two distinct problems. Firstly, a mainly
machine-learning based approach that could follow the outline of what is presented
in Section 3.1. It requires the preparation of the appropriate amount and quality of
3D city models, in which all LoD classes are present, the models are sampled from
various geographical locations and city types, and labelling and validating the mod-
els. In the feature generation and evaluation step also those geometry descriptors
could be tested that are not directly related to the LoD requirements (see 2.4). Eval-
uating the features along with the classifiers (e.g.Wurm et al. [2016]) could help in
pinpointing potential sources of errors and also the best performing features and
classifiers. Secondly, the LoD validation in relation to the LoD classes requires a
more thorough attention. In this work a point cloud was used as reference data
set, but others could also work, for example a Digital Surface Model, or a combi-
nation of several data sets (e.g.high resolution footprints plus other attributes). As
described in Section 2.2, LoD validation relates a city model to its real-world coun-
terpart, therefore it should be integral in any complete LoD quality assessment.
However, determining the validity of the LoD can be ambiguous, for example in
case of Figure 2.5. It is for future research to assess whether such cases should
be simply regarded in/valid, or provide a range a of accuracy? Also, following the
idea of Biljecki et al. [2018], it is an open question whether it is worth the investment
to accurately model the roof borderline cases (e.g.for 2.5), or the required effort does
not justify the costs.

A A D D I T I O N A L TA B L E S A N D F I G U R E S

Table A.1: Classification accuracy on the synthetic data, raw features

Classifier Mean accuracy Standard deviation

LR: 0.370000 0.031225

LDA: 0.245000 0.039211

kNN: 0.318750 0.054558

DTree: 0.350000 0.042573

GaussianNB: 0.397500 0.058843

LinearSVM: 0.340000 0.039449

61

62 additional tables and figures

Table A.2: Classification accuracy on the Amsterdam data, raw features

Classification Mean accuracy Standard deviation

LR: 0.877868 0.048930

LDA: 0.870175 0.040110

kNN: 0.896221 0.052898

DTree: 0.896289 0.036141

GaussianNB: 0.340486 0.111045

LinearSVM: 0.849325 0.047294

Table A.3: Classification accuracy on the synthetic data, standardized features

Classifier Mean accuracy Standard deviation

LR: 0.377500 0.042500

LDA: 0.245000 0.039211

kNN: 0.346250 0.049069

DTree: 0.356250 0.027528

GaussianNB: 0.398750 0.058750

LinearSVM: 0.377500 0.041382

Table A.4: Classification accuracy on the Amsterdam data, standardized features

Classifier Mean accuracy Standard deviation

LR: 0.872605 0.053614

LDA: 0.870175 0.040110

kNN: 0.901484 0.054115

DTree: 0.901552 0.035527

GaussianNB: 0.228475 0.106108

LinearSVM: 0.864777 0.050395

Table A.5: Binary classification accuracy on the Amsterdam data, standardized features.

Classifier Mean accuracy Standard deviation

LR: 0.890823 0.040365

LDA: 0.893455 0.043021

kNN: 0.922132 0.042030

DTree: 0.932591 0.038677

GaussianNB: 0.882996 0.041367

LinearSVM: 0.893387 0.038203

additional tables and figures 63

Figure A.1: Examples of building-type prediction in five exemplary districts of Bonn, Ger-
many; source of left column: Microsoft Bing, of the aerial image in right column:
Google Earth. Henn et al. [2012]

64 additional tables and figures

Figure A.2: Building types as viewed from aerial imagery (left; Google Earth) and as they are
represented in the building model (right) from top to bottom: perimeter block de-
velopment; block development; terraced houses/row houses; detached/semide-
tached; halls. Wurm et al. [2016]

additional tables and figures 65

Figure A.3: Building model in Amsterdam city center in LoD2, where the terrace was recon-
structed with the wrong roof type (red circle). Source: Google Earth for the aerial
image; VirtualCitySystems for the 3D model

Figure A.4: Building model in Amsterdam city center in LoD2, where the corner of the roof
was reconstructed with the wrong roof type (red circle). Source: Google Earth
for the aerial image; VirtualCitySystems for the 3D model

Figure A.5: Building model BID 363100012130645

66 additional tables and figures

Figure A.6: Building model BID 363100012168777

Figure A.7: Building model BID 363100012169940

additional tables and figures 67

Figure A.8: A close-up of the synthetic data set generated with Random3DCity

B R E F L E C T I O N

It was important to put the systems in place among the first things. This included
a clear work-flow for reading and writing data, taking it apart and putting it back
together (e.g.building components), visualize it, document the process. In theory
the better these systems work, the more time one has later to actually work on the
research problem, instead of just hacking away.

Having a starting data set in important. Finding the appropriate city model is a
daunting and very risky task, because MSc students probably have a very limited
knowledge, experience with city models. Thus they probably don’t really know
what to look for and they can choose an unsuitable data set.

FME is a good tool for geometry processing, and developing own tools might be
less beneficial. I wasted weeks on this, practically in vain as it didn’t contribute to
my research.

As a starting point, the manual validation of a city model an invaluable excercise.
This should take a day or two, but its an invaluable exercise to get to know a lot
about city models. I think its more effective than just browsing a model, because
the LoD specifications provide a structure for what to look for. When the student
is just beginning to learn about CityGML in depth, they might not know what to
consider when just browsing a model. OBJ + Blender is their friend in this as in
Blender they can measure in 3D, in FME they cannot.

The results of this work can benefit professionals who need to develop a valida-
tion tool for the LoD in a city model. Therefore a method that detects inconsistent
LoD in a data set could warn the user that the accuracy of the spatial analysis will
be possibly reduced. Furthermore, price of the 3D city models increases with the
LoD and the current automatic or semi-automatic building reconstruction methods
are still prone to errors. Therefore it is in the interest of the data buyer to validate
that LoD of the purchased data set is homogeneous and according to its documen-
tation. Manual validation of large city models might not be feasible. However, such
a method will probably be less useful for data sets that consists of only a single
building, very few buildings or buildings with homogeneous LoD. In these cases it
is likely to be more efficient to manually observe and assess the LoD.

69

B I B L I O G R A P H Y

(2016). European Public Tender: Digital 3D Building Model of Rot-
terdam. https://www.gim-international.com/content/news/

european-public-tender-digital-3d-building-model-of-rotterdam.
Accessed: 2018-01-10.

(2016). Tender of Rotterdam 3D. https://www.tenderned.nl/tenderned-tap/

aankondigingen/86797. Accessed: 2018-01-10.

(2017). OpenStreetMap Wiki - 3D buildings roof modeling guide. https://wiki.

openstreetmap.org/wiki/Simple_3D_buildings#Roof. Accessed: 2018-01-10.

(2018). Wavefront OBJ. https://en.wikipedia.org/wiki/Wavefront_.obj_file.
Accessed: 2018-01-11.

(n.d). CityDoctor homepage. http://www.citydoctor.eu/. Accessed: 2018-01-10.

(n.d). CityGML homepage - 3D city models. https://www.citygml.org/3dcities/.
Accessed: 2018-01-10.

(n.d.). Rotterdam consortium wins EU tender of 17.7 million for
Smart City applications. https://en.rotterdampartners.nl/news/

rotterdam-consortium-wins-eu-tender-of-17-7-million-for-smart-city-applications/.
Accessed: 2018-01-10.

(n.d). virtualcitySystems - Building reconstruction. http://www.

virtualcitysystems.de/en/products/buildingreconstruction. Accessed:
2018-01-10.

Ankerst, M., Kastenmüller, G., Kriegel, H.-P., and Seidl, T. (1999). 3D Shape His-
tograms for Similarity Search and Classification in Spatial Databases, pages 207–226.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Biljecki, F. (2017). Level of detail in 3D city models. phdthesis, Delft University of
Technology.

Biljecki, F. and Arroyo Ohori, K. (2015). Automatic Semantic-preserving Conversion
Between OBJ and CityGML. In Eurographics Workshop on Urban Data Modelling
and Visualisation 2015, pages 25–30, Delft, Netherlands.

Biljecki, F., Heuvelink, G. B., Ledoux, H., and Stoter, J. (2018). The effect of acqui-
sition error and level of detail on the accuracy of spatial analyses. Cartography
and Geographic Information Science, 45(2):156–176.

Biljecki, F., Ledoux, H., and Stoter, J. (2016a). Generation of multi-LOD 3D city mod-
els in CityGML with the procedural modelling engine Random3Dcity. ISPRS
Ann. Photogramm. Remote Sens. Spatial Inf. Sci., pages 51–59.

Biljecki, F., Ledoux, H., and Stoter, J. (2016b). An improved LOD specification for
3d building models. Computers, Environment and Urban Systems, 59:25–37.

Biljecki, F., Ledoux, H., Stoter, J., and Vosselman, G. (2016c). The variants of an LOD
of a 3d building model and their influence on spatial analyses. ISPRS Journal
of Photogrammetry and Remote Sensing, 116:42–54.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015). Applications
of 3d City Models: State of the Art Review. ISPRS International Journal of Geo-
Information, 4(4):2842–2889.

71

https://www.gim-international.com/content/news/european-public-tender-digital-3d-building-model-of-rotterdam
https://www.gim-international.com/content/news/european-public-tender-digital-3d-building-model-of-rotterdam
https://www.tenderned.nl/tenderned-tap/aankondigingen/86797
https://www.tenderned.nl/tenderned-tap/aankondigingen/86797
https://wiki.openstreetmap.org/wiki/Simple_3D_buildings#Roof
https://wiki.openstreetmap.org/wiki/Simple_3D_buildings#Roof
https://en.wikipedia.org/wiki/Wavefront_.obj_file
http://www.citydoctor.eu/
https://www.citygml.org/3dcities/
https://en.rotterdampartners.nl/news/rotterdam-consortium-wins-eu-tender-of-17-7-million-for-smart-city-applications/
https://en.rotterdampartners.nl/news/rotterdam-consortium-wins-eu-tender-of-17-7-million-for-smart-city-applications/
http://www.virtualcitysystems.de/en/products/buildingreconstruction
http://www.virtualcitysystems.de/en/products/buildingreconstruction

72 BIBLIOGRAPHY

Biljecki, F., Zhao, J., Stoter, J. E., and Ledoux, H. (2013). Revisiting the concept level
of detail in 3d city modelling. In 8th 3DGeoInfo Conference & WG II/2 Workshop,
Istanbul, Turkey, 27–29 November 2013, ISPRS Archives Volume II-2/W1. ISPRS.

Bishop, C. M. (2006). Pattern recognition and Machine learning. Information science
and statistics. Springer, New York.

Boeters, R., Ohori, K. A., Biljecki, F., and Zlatanova, S. (2015). Automatically enhanc-
ing citygml lod2 models with a corresponding indoor geometry. International
Journal of Geographical Information Science, 29(12):2248–2268.

Chapelle, O., Scholkopf, B., and Zien, A. (2006). Semi-Supervised Learning (Adaptive
Computation and Machine Learning series). The MIT Press.

Cignoni, P., Rocchini, C., and Scopigno, R. (1998). Metro: Measuring Error on Sim-
plified Surfaces. Computer Graphics Forum, 17(2):167–174. bibtex: CGF:CGF236.

Clark, J. H. (1976). Hierarchical geometric models for visible surface algorithms.
Commun. ACM, 19(10):547–554.

Costa, L. d. F., Cesar, R. M., and Costa, L. d. F. (2009). Shape classification and analysis
theory and practice. CRC Press, Boca Raton. OCLC: 929288063.

Duin, R. and Pekalska, E. (2015). Pattern Recognition: Introduction and Terminology.
37 Steps.

Gröger, G., Kolbe, T. H., Nagel, C., and Häfele, K.-H. (2012). OGC City Geogra-
phy Markup Language (CityGML) Encoding Standard, Version 2.0. OpenGIS
Implementation Specification OGC 12-019, Open Geospatial Consortium.

Gröger, G. and Plümer, L. (2012). CityGML – Interoperable semantic 3d city models.
ISPRS Journal of Photogrammetry and Remote Sensing, 71:12–33.

Haala, N. and Kada, M. (2010). An update on automatic 3d building reconstruc-
tion. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6):570–580. ISPRS
Centenary Celebration Issue.

Han, J. and Kamber, M. (2011). Data mining: concepts and techniques. Elsevier, Burling-
ton, MA, 3rd ed edition.

Henn, A., Römer, C., Gröger, G., and Plümer, L. (2012). Automatic classification of
building types in 3d city models: Using SVMs for semantic enrichment of low
resolution building data. GeoInformatica, 16(2):281–306.

Kazmi, I. K., You, L., and Zhang, J. J. (2013). A survey of 2d and 3d shape descriptors.
In 2013 10th International Conference Computer Graphics, Imaging and Visualization,
pages 1–10.

Kolbe, T. H. (2009). Representing and exchanging 3d city models with CityGML. In
3D geo-information sciences, pages 15–31. Springer.

Kresse, W. and Danko, D. M., editors (2012). Springer handbook of geographic informa-
tion. Springer, Berlin ; New York. OCLC: ocn795353459.

Ledoux, H. (2013). On the Validation of Solids Represented with the International
Standards for Geographic Information: On the validation of solids represented
with the international standards. Computer-Aided Civil and Infrastructure Engi-
neering, 28(9):693–706.

Löwner, M.-O., Gröger, G., Benner, J., Biljecki, F., and Nagel, C. (2016). PRO-
POSAL FOR A NEW LOD AND MULTI-REPRESENTATION CONCEPT FOR
CITYGML. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, IV-2/W1:3–12.

BIBLIOGRAPHY 73

Moser, D., Zechmeister, H. G., Plutzar, C., Sauberer, N., Wrbka, T., and Grabherr,
G. (2002). Landscape patch shape complexity as an effective measure for plant
species richness in rural landscapes. Landscape Ecology, 17(7):657–669.

Müller, A. C. (2016). Introduction to machine learning with Python: a guide for data
scientists. O’Reilly Media, Inc, Beijing ; Boston, first edition edition.

Mäntylä, M. (1987). An Introduction to Solid Modeling. Computer Science Press, Inc.,
New York, NY, USA. bibtex: Mantyla:1987:ISM:39278.

Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. (2001). Matching 3d models
with shape distributions. In Proceedings International Conference on Shape Model-
ing and Applications, pages 154–166.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research, 12:2825–2830.
bibtex: scikit-learn.

Redweik, R. and Becker, T. (2015). Change Detection in CityGML Documents. In
Breunig, M., Al-Doori, M., Butwilowski, E., Kuper, P. V., Benner, J., and Haefele,
K. H., editors, 3D Geoinformation Science, Lecture Notes in Geoinformation and
Cartography, pages 107–121. Springer, Cham.

Reimer, A., Kempf, C., Rylov, M., and Neis, P. (2014). Assigning scale equivalencies
to OpenStreetMap polygons. In Proceedings of AutoCarto international symposium
on automated cartography. bibtex: reimer2014assigning.

Theodoridis, S. and Koutroumbas, K. (2009). Pattern recognition. Elsevier, Amster-
dam, 4. ed edition. OCLC: 550588366.

Touya, G. and Brando-Escobar, C. (2013). Detecting Level-of-Detail Inconsistencies
in Volunteered Geographic Information Data Sets. Cartographica: The Interna-
tional Journal for Geographic Information and Geovisualization, 48(2):134–143.

Touya, G. and Reimer, A. (2015). Inferring the Scale of OpenStreetMap Features.
In Jokar Arsanjani, J., Zipf, A., Mooney, P., and Helbich, M., editors, Open-
StreetMap in GIScience, pages 81–99. Springer, Cham.

Van Renterghem, T. and Botteldooren, D. (2010). The importance of roof shape
for road traffic noise shielding in the urban environment. Journal of Sound and
Vibration, 329(9):1422–1434.

Wagner, D. and Ledoux, H. (2016). Ogc citygml quality interoperability experiment.
techreport OGC 16-064r1, Open Geospatial Consortium.

Wieland, M., Nichersu, A., Murshed, S. M., and Wendel, J. (2015). Computing solar
radiation on CityGML building data. In 18th AGILE international conference on
geographic informaton science.

Wong, K. and Ellul, C. (2016). Using Geometry-Based Metrics as Part of Fitness-
for-Purpose Evaluations of 3d City Models. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, IV-2/W1:129–136.

Wurm, M., Schmitt, A., and Taubenbock, H. (2016). Building Types’ Classification
Using Shape-Based Features and Linear Discriminant Functions. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, 9(5):1901–1912.

Yang, M., Kpalma, K., and Ronsin, J. (2008). A Survey of Shape Feature Extraction
Techniques. In Yin, P.-Y., editor, Pattern Recognition, pages 43–90. IN-TECH. 38

pages.

74 BIBLIOGRAPHY

Zhang, D. and Lu, G. (2004). Review of shape representation and description tech-
niques. Pattern Recognition, 37(1):1–19.

colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.

	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Research questions and method

	2 Theoretical Background
	2.1 The Level of Detail of 3D City Models
	2.2 The validity and LoD of a 3D city model
	2.3 A brief overview on Machine Learning
	2.4 Shape descriptors in computer graphics
	2.5 Shape descriptors and classification in geographic information
	2.5.1 Geometric complexity of 2D objects in geographic information
	2.5.2 Geometric complexity of 3D objects in geographic information
	2.5.3 Geometry-based classification of building types

	3 Research method
	3.1 Step 1 – LoD inference without reference data
	3.1.1 Building surface extraction
	3.1.2 Describing building geometry
	3.1.3 Building classification
	3.1.4 Classification accuracy and generalization performace

	3.2 Step 2 – LoD inference with reference data

	4 Implementation and results
	4.1 Data preparation
	4.1.1 Validating the LoD of the Amsterdam data set

	4.2 Generating features
	4.2.1 Step 1
	4.2.2 Step 2

	4.3 Classifying the LoD with Machine-Learning
	4.3.1 Experiment 1 – Raw features
	4.3.2 Experiment 2 – Standardized features
	4.3.3 Experiment 3 – Prediction in the Amsterdam data
	4.3.4 Experiment 4 – Predict LoD2 or not
	4.3.5 Experiment 5 – Prediction in the Amsterdam data with mixed LoD1 and LoD2
	4.3.6 Experiment 6 – Training in the synthetic, predicting in the Amsterdam data

	5 Conclusions and recommendations
	Appendices
	A Additional tables and figures
	B Reflection
	Bibliography

