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Abstract 1 
Next-Generation Sequencing (NGS) has made it possible to perform metagenomic sequencing of 2 

environmental microbiome samples. Colorectal cancer (CRC) benefits from early detection, and many 3 
studies find correlations between disease presence and abundance of species in samples of the 4 
microbiome. However, these studies are hard to reproduce and even harder to build diagnostic tools 5 
from, and one of the major factors for this is the inherent bias in the datasets that were collected, the 6 
so-called batch effect.  7 

To investigate the extent to which batch effect impacts the generalization of binary classifiers, we 8 
performed a benchmark of eleven batch correctors: four existing tools, three transformations and three 9 
encoders, assessing the subsequent performance of seven supervised binary classifiers using a leave-10 
one-dataset-out (LODO) validation method. In addition, batch effect was measured through both visual 11 
(tSNE) and numeric (linear models) methods before and after applying each of the correctors, and the 12 
performance at different dataset counts was measured.  13 

Batch effect was shown to be present in the shotgun metagenomic data, being reduced by some 14 
correction tools while being strengthened by others. Evaluations using AUROC showed that combining 15 
datasets without correction improved generalization, even at an equivalent number of samples. When 16 
combining batch correctors and different classifiers, the performance over the baseline did not improve 17 
significantly. Contrary to its popularity as batch corrector, the performance significantly worsened when 18 
using ComBat before training each of the binary classifiers. 19 

Thus, even though batch correctors reduce batch effect within our taxonomic count data, they do 20 
not significantly improve classification performance when generalizing to separate datasets. We can 21 
thus advise against focusing on choosing a batch corrector when building tools for predicting diagnosis 22 
of CRC and instead aiming to improve the pool of datasets to learn from. 23 

The code for reproducing the results and figures in this work have been made available at 24 
https://github.com/AbeelLab/ngs-batch-evaluation   25 
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1. Introduction 26 

1.1. Machine learning for gut microbiome-based diagnostics 27 
Predicting the diagnosis of a patient based on a sample of their gut microbiome is a challenging 28 

task due to the highly complex nature of the microbiome. The microbiome is highly variant, both in its 29 
composition and its function, both between patients, latitudinally, and over time within the same patient, 30 
longitudinally. Factors contributing to this difference include demographic and biological ones like 31 
gender, age and diet [1–3]. The increasing number of available microbiome studies and the increased 32 
interest in machine learning [4,5] have sparked more interest in the field as one of the first applications 33 
of personalized medicine as a combination of both [4].   34 

 One disease that especially affects the microbiome is colorectal cancer (CRC), the second 35 
most common cancer in women and third in men [6,7]. It is a disease that silently develops over the 36 
course of multiple years or decades, usually only showing symptoms after it has metastasized. If found 37 
early on, the disease is highly curable and can be removed entirely. Early detection of the disease can 38 
thus potentially save many lives [8]. 39 

 Creating a diagnostic test for CRC can be done by looking at individual biomarkers for the 40 
disease and detecting their presence or by combining information from many features with machine 41 
learning models. While potentially losing explainability, these models are able to capture more complex 42 
patterns than singular biomarkers, which the complex nature of the microbiome may require.  43 

Many machine learning approaches have been attempted, from the simplest logistic regression 44 
to highly complex deep learning models, showing varying amounts of success [4]. Unfortunately, results 45 
from studies of the microbiome are notoriously hard to reproduce, with independent replications of 46 
studies failing to obtain similar results [9]. This is both because of common pitfalls in the creation and 47 
evaluation of models as well as properties of the datasets used for microbiome data.  48 

The problems facing datasets come both from how their data is obtained as well as their nature. 49 
Metagenomic datasets of the human microbiome are frequently small for case-control datasets, with a 50 
sample size of between 50 and 100 patients [4,10,11], with the exception of some large collaborations 51 
like the Human Microbiome Project (HMP) [12]. The number of features that can be obtained from the 52 
microbiome massively exceeds this number, rendering feature selection as one of the first steps in any 53 
analysis [4]. Additionally, the most frequently used features, count data of either the genes or the 54 
species, follow a non-normal distribution, making them less suited to many typical analyses [4,9].   55 

To tackle the issue of small sample sizes and build more robust machine learning models, many 56 
studies have come to use multiple datasets, both for learning and for cross-validation [13–15]. 57 
Combining datasets from different studies comes with its own issues, however, of which a major one is 58 
the batch effect. Batch effect, the bias between each dataset that can inadvertently confound the 59 
biological signals, is the topic of this work. 60 

 61 

1.2. Batch effects: a common challenge facing the integrative 62 

machine learning analysis for microbiome data 63 

1.2.1. Batch effect 64 
Batch effect has several different definitions within the literature, with the most common one 65 

being that of technical sources of variation between datasets [16–18]. Specific to next-generation 66 
sequencing data, it has also come to include other sources of variation between datasets that are 67 
undesired and unaccounted for, including both biological factors like age and diet as well as 68 
computational factors like the software used to analyze the raw reads [9,19]. As it is difficult to 69 
distinguish between technical and non-technical effects, and datasets rarely note down the same 70 
covariates with the same level of accuracy, making it harder to aggregate between them, in this work 71 
we use the more inclusive definition, wherein batch effect refers to any variation between batches.  72 
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It has been established that batch effects are present in metagenomic data [16,17,20–23] and 73 
that these effects can correlate closely with and  confound biological results as to cause their validity to 74 
be strongly doubted [16]. A number of studies validate their results on a different dataset [4,24,25], but 75 
only recently has the correction of batch effect been methods been of interest for case control 76 
classification [26]. 77 

1.2.2. Batch correction 78 
Batch correction methods try to remove batch effects from the raw data so that it can be 79 

analyzed as if all data were from the same batch. These methods range from simple standardization of 80 
the data to more complicated deep learning networks, adapted from similar data types like microarray 81 
and RNASeq data or developed uniquely for metagenomic data. However, some of these methods rely 82 
on complete information about the covariates of the data in order to perform their correction or have 83 
other limitations, rendering only a subset useful for predictive diagnosis [16,17,21,22,26,27].  84 

Evaluating the impact that batch correction methods have on downstream analysis is not 85 
extensively studied. The effect of batch correction on metagenomic microbiome data has not been 86 
extensively studied, and as different correction methods influence the distribution of the datasets 87 
differently, the same downstream analysis may not be as effective between them. As such, 88 
benchmarking requires exhaustively testing and tuning combinations of batch correctors with binary 89 
classifiers.  90 

1.3. Contribution 91 
In this work, we aim to achieve a thorough analysis of batch effects in real-world gut microbiome 92 

data sets for CRC patients. First, we demonstrate how batch effects affect the accumulated data set 93 
we collected. Next, we measure the effectiveness of integrating multiple batches towards generalization 94 
on unseen batches. Last, we provide an evaluation of the most commonly used batch correction 95 
algorithms within the field of metagenomics for removing batch effects. In the end, we focus on 96 
delineating the impact of these algorithms on the generalization of supervised case-control classification, 97 
by evaluating the classification performance on unseen batches. Through this, we hope to provide new 98 
insights and guidance for the future machine learning research making use of this kind of data, and aid 99 
the development of a predictive model.  100 
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2. Methodology  101 

2.1. Colorectal cancer microbiome datasets 102 
The analyses in this work were performed on a set of eleven colorectal cancer (CRC) gut 103 

microbiome datasets, obtained from the CuratedMetagenomicData database [28]. 104 
CuratedMetagenomicData is a large-scale human microbiome database that provides uniformly 105 
processed human whole-genome shotgun metagenomic datasets. The metadata of each dataset was 106 
manually curated by contributors to the project. To date, CuratedMetagenomicData contains 20,533 107 
human microbiome samples from 90 publicly available studies [28].  108 

Among the CRC datasets available, we selected those with relatively large total size and balanced 109 
disease and healthy samples, after filtering out all repeated longitudinal samples. These longitudinal 110 
samples were filtered out to prevent contamination between training and test sets. The full procedure 111 
for obtaining and filtering our datasets can be found in Supplementary section 6.3.1.  112 

The metadata of the datasets used can be found in Table 6-1. After filtering, most of the selected 113 
datasets had between 50 and 130 samples available, with the exception of Yachida et al. which has 114 
more than 500 samples.  115 

Each of the raw metagenomic datasets was processed using the MetaPhlan3 package to obtain a 116 
species-level resolution of the number of reads associated with a clade, using around 100,000 microbial 117 
genomes [13]. The features were then filtered to only select species, as this has been shown to allow 118 
for the most accurate classification from a single data type [4]. The resulting dataset format is shown 119 
below in Table 2-1, outlining the eventual dataset that was used for the modelling. 120 

Batch Label Disease Label Species 1 Species 2 … Species 934 
FengQ_2015 control 3914 0 … 0 
FengQ_2015 CRC 1709 0 … 0 
FengQ_2015 control 73699 0 … 0 
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
YuJ_2015 control 0 51343 … 0 
YuJ_2015 CRC 687589 44302 … 0 
YuJ_2015 CRC 275081 232314 … 0 

TABLE 2-1  SAMPLE OF DATASET USED , SHOWING BATCH, LABEL, AND FEATURE INFORMATION . BATCH REPRESENTS ONE OF 121 
THE ELEVEN DATASETS USED . DISEASE LABEL INDICATES WHETHER THE SAMPLE WAS FROM A CASE OR CONTROL SAMPLE . 122 
RANDOM REPRESENTATIVE SUBSET OF SPECIES WAS CHOSEN FOR FEATURES , WITH SHOWN DATA FROM BACTEROIDES 123 
STERCORIS, BILOPHILA WADSWORTHIA  AND ACTINOBACULUM MASSILIENSE FROM LEFT TO RIGHT RESPECTIVELY . 124 

2.2. Batch effect evaluation 125 
To fully evaluate the presence and strength of batch effects, we relied on a few evaluation methods 126 

from different aspects, including visualization batch effects by dimension reduction, correlation analysis, 127 
and silhouette score analysis. Through dimension reduction of microbiome datasets from different 128 
studies, we visualized whether the batch effects are strong enough to cluster the datasets present [29] 129 
while correlation analysis allowed us to quantify which microbial features are influenced by the batch. 130 
The silhouette score then showed an objective measure of how well the batches cluster. 131 

2.2.1. Visualizing batch effects 132 
For visualizing high dimensional microbiome data, we used the T-distributed Stochastic Neighbour 133 

Embedding (tSNE), a dimension reduction method developed by van der Maaten [29], which aims to 134 
minimize the Kullback-Leibler divergence between the actual distribution of points in the original 135 
dimensionality and the points in the projection in two dimensions. This dimension reduction method was 136 
used to group samples locally and avoids overlapping points closely, as it is non-linear and performs 137 
different transformations on different regions. tSNE was chosen over the also commonly used principal 138 
component analysis (PCA) as PCA is known to break down in high-dimension cases [30]. 139 
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2.2.2. Features significantly influenced by covariates 140 
As an alternative to the visual analysis, a correlation analysis determined the presence of batch 141 

effects on a per-feature basis. The individual features are considered as the output variable for a model 142 
with the batch and disease labels as categorical input variables. After fitting this model, a likelihood ratio 143 
test was used to determine whether having the batch and disease label present as variables explains 144 
more of the feature’s variance than not [32]. To correct for multiple testing, Bonferroni correction was 145 
applied to the p-values obtained from the test by the number of features present in a dataset. Each 146 
batch corrector was seen as an independent experiment, and correction was only applied with regards 147 
to the number of features its output possessed. In addition to a simple linear model, negative binomial 148 
model was also used, as it fits the distribution of the unprocessed individual features more closely [31]. 149 

Rather than the coefficients determined from the fits, we calculated the number of significantly 150 
corrected features that had either the batch information as a significant factor, the disease label as a 151 
significant factor, or both. As some transformations change the number of correlated feature, which 152 
made a direct comparison unreasonable, we divided the number of corrected features by the total 153 
number of features present in each transformed dataset to obtain proportions.  154 

We expected the proportion of features that have batch as a significant factor to fall after batch 155 
correction, while those with disease label as a factor would remain be equivalent or increase if the 156 
biological information became less confounded.  157 

2.2.3. Silhouette Scores 158 
The silhouette score, also known as the average silhouette width, allowed for quantitatively 159 

evaluating the effectiveness of a clustering on a per-sample basis. It is the average silhouette coefficient 160 
for all the samples present in the dataset [22]. The silhouette coefficient compares the intra-cluster to 161 
inter-cluster distances for a sample following  162 

𝒔𝒊 =
𝒃𝒊 − 𝒂𝒊

𝐦𝐚𝐱(𝒂𝒊, 𝒃𝒊)
 163 

EQUATION 2-1  FORMULA FOR CALCULATING THE SILHOUETTE WIDTH OF A SINGLE POINT S I 164 

Here, ai is the average intra-cluster distance, while bi is the average distance to the nearest cluster 165 
that sample si is not part of. To calculate distance, we use the cosine similarity, one of the most typical 166 
distance metrics for sparse high-dimensional data [32]. The coefficient si is bounded between -1 and 1, 167 
where positive values indicate that the clustering is correctly assigned to a cluster while negative values 168 
mean that another cluster should have been assigned instead. 169 

While usually used to evaluate the performance of a clustering algorithm, this metric can also be 170 
used to assess the quality of a clustering task based on the known cluster labels of the samples 171 
[33].Here, the known cluster labels were either be the disease labels or the batches. When evaluating 172 
the quality of the batch clustering, the silhouette score should then be on or below 0, indicating that 173 
clusters overlapped and were not easy to match.  174 

When samples are instead clustered by disease labels, a higher silhouette score indicates that the 175 
case and control samples are more clearly clustered together. As the reason for applying batch 176 
correction is to remove confounding effects on the biological signal, batch correction should have a 177 
positive effect on this score. This positive effect could be outweighed by correction inevitably removing 178 
some biological signal as a side effect [34], which would result in a net decrease of the silhouette score.  179 

  180 
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2.3. Batch correction methods 181 
While creating a statistical model for predicting a treatment variable is a common analysis done 182 

with microbiome dataset, these usually require the target label as covariate [4,22,24–26]. To enact the 183 
approach of a diagnostic test, we look specifically at predicting the health of a subject from an entirely 184 
new batch. 185 

The chosen batch correction methods were divided into three categories. The first category 186 
consists of existing tools that are commonly used for batch correction, including ComBat, ComBat-Seq, 187 
and Limma removeBatchEffect. The second category includes the commonly used transformations 188 
mapping features one-to-one to remove batch effect. Lastly there is the category of encodings that 189 
extract features of the count data in order to find some common representation within the data to get 190 
rid of the batch effects. The methods chosen are listed in Table 2-2, along with a short description and 191 
brief implementation details.  192 

In addition to the default settings of the selected, we also included a number of adaptations deemed 193 
promising. Quantile transformation was added with both a uniform and normal distribution, as well as 194 
in combination with a centered log-ratio transform, because this is a frequently used step towards 195 
standardizing datasets [22,35]. Feature selection was also applied by thresholding based on the 196 
variance, but only after first performing CLR, due to the high variance of the negative binomially 197 
distributed data causing thresholding to remove few to no features for uncorrected data.  198 

A diagnostic test would use some form of online batch correction, continuously working on new 199 
samples. As such, the test dataset were corrected separately from the training datasets to simulate this 200 
behavior. In the last column of the table, we categorized the procedure that was used for this 201 
transformation, which aimed to use information learned from the training set to enable or improve the 202 
transformation.  203 

When methods perform their correction in a batch-wise manner, not using information aggregated 204 
over multiple batches, they could be directly applied to the test dataset. An example of this is batch 205 
mean centering, which standardizes each batch separately. While useful in this comparison, this 206 
method is not ideal considering that in an online, continually operating, setting, batches would consist 207 
of single samples or small groups at most, meaning that such corrections would become inapplicable. 208 

Our single ‘Reference’ method is ComBat, which has an explicit parameter to accept a batch that 209 
it maps the rest of the batches towards. Here, the training set could simple be given as a single 210 
reference batch, mapping the test set towards the training set, without modifying the training set. 211 

In contrast, when this option was not available for other tools while still requiring multiple batches 212 
in order to function, a copy of the training dataset was appended after it was already corrected and 213 
named as a single batch. As the training dataset is always much larger than the testing dataset, this 214 
made it more likely for the latter to be aligned with the corrected training dataset. 215 

 All other methods were capable of learning their transformation on the training dataset and then 216 
applying that on both the training and testing dataset directly, in the same manner as normally done in 217 
preprocessing before machine learning models are trained. These methods transform batches in the 218 
same manner regardless of batch size, rendering it the preferred choice for online batch correction. 219 

 Method Description Implementation Test set transformation 
Baseline Baseline Doing nothing but 

adding pseudo 
counts 

All counts  + 1 Batch-wise* 

Existing Tools ComBat Empirical bayes 
method for 
adjusting Location 
and Scale 

‘ComBat’ from the SVA 
package (3.42.0) from 
CRAN [36] 

Reference** 

 ComBat-Seq Adaptation to 
ComBat for RNA-seq 

‘ComBatSeq’ from the 
SVA package from 
CRAN (3.42.0)  [36] 

Appends*** 
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 220 

 ReComBat Adaptation to 
ComBat using 
ElasticNet 

‘reComBat’ python 
package (0.1.0) [37] 

Appends*** 

 Limma  Creates a Linear 
Model of batch 
effect, then 
subtracted 

The  removeBatchEffect 
function of the Limma 
package on CRAN 
(3.50.0) [38,39] 

Appends*** 

Transformations Batch Mean 
Centering (BMC) 

Standardizes 
feature-wise 

Subtract the mean, 
divide by the variance 
per batch (feature-
wise)  

Batch-wise* 

 Centered Log-Ratio 
(CLR) 

Log transforms then 
subtracts the 
geometric mean of 
features batch-wise 

Own implementation Batch-wise* 

 Normalize Standardizes 
feature-wise with 
learned transformer 

Learn mean and 
variance per feature of 
training set 

LearnedX 

 Isometric Log-Ratio 
(ILR) 

Applied CLR then 
maps to the 
orthonormal basis of 
the CLR plane 

Compositions package  
(2.0.4) from the CRAN 
dataset 

LearnedX 

 Quantile (uniform) Feature-wise 
mapping of 
distribution to 
uniform distribution 

QuantileTransformer of 
the scikit-learn (1.0.2) 
package with default 
settings 

LearnedX 

 Quantile (normal)  Feature-wise 
mapping of 
distribution to  
normal distribution 

QuantileTransformer of 
the scikit-learn (1.0.2) 
package with normal 
distribution as output 
[40] 

LearnedX 

 CLR + Quantile 
(uniform) 

First perform CLR, 
then Quantile ( 
uniform ) 

Own implementation LearnedX 

 ILR + Quantile 
(normal) 

First perform ILR, 
then Quantile 
(normal) 

Own implementation LearnedX 

Encodings PCA (20) Linear 
transformation to 
find components 
that explain 
variance, with 20 
components 

PCA transformer of the 
scikit-learn package 
(1.0.2) [40] 

LearnedX 

 PCA (100) Same as PCA (20), 
except with 100 
components 

PCA transformer of the 
scikit-learn package 
(1.0.2) [40] 

LearnedX 

 CLR + 
VarianceThreshold 

First perform CLR, 
then drop features 
with a variance 
below 0.1 

Own implementation 
for CLR, 
VarianceThreshold from 
the scikit-learn library 
(1.0.2) 

Batch-wise* 

Details *Batch-wise: The 
corrector worked in 
a batch-wise 
manner, and usage 
was equivalent on 
training and test sets  

**Reference: The 
corrector used the 
training set as a 
known reference. 

***Appends: The 
corrector appended the 
corrected training 
datasets as a single 
dataset before 
correction 

XLearned: The batch 
corrector learned a set of 
parameters on the training 
dataset which could then be 
used when correcting the 
test dataset 
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TABLE 2-2  BATCH CORRECTION METHODS USED IN THE BENCHMARK . NAMES ARE LISTED ALONG WITH DESCRIPTIONS AND 221 
IMPLEMENTATIONS USED . IN ADDITION, THE METHOD USED FOR SUBSEQUENTLY TRANSFORMING OF THE TEST SET IS GIVEN .  222 
FULL IMPLEMENTATION DETAILS IN THE CODE REPOSITORY . METHODS ARE GROUPED AND SORTED BY THREE CATEGORIES WITH 223 
THE BASELINE MODEL AT THE TOP .   224 
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2.4. Set-up Machine Learning experiments 225 

2.4.1. Binary classification evaluation 226 
For evaluating the algorithms, we used the area under the receiver operating characteristic curve 227 

(AUROC), which summarizes the information of the receiver operating characteristic curve (ROC curve). 228 
After obtaining the probabilities that a classifier assigns to a sample being the case or control, the ROC 229 
curve can be obtained by calculating the true positive rate (TPR) over the false positive rate (FPR) at 230 
various thresholds of sensitivity. They are defined below in Equation 2-2.  231 

𝑻𝑷𝑹 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
, 𝑭𝑷𝑹 =

𝑭𝑷

𝑭𝑷 + 𝑻𝑵
 232 

EQUATION 2-2  TRUE AND FALSE POSITIVE RATES (TPR AND FPR).TP  = TRUE POSITIVE, FP  = FALSE POSITIVE, TN = TRUE 233 
NEGATIVE, FN = FALSE NEGATIVE. 234 

 Here, true positives (TP) and false negatives (FN) indicate the number of cases of diseased 235 
samples that are classified as diseased and healthy samples respectively. True negatives (TN) and 236 
false positives (FP) representing the samples from, respectively, healthy patients that were classified 237 
as healthy and diseased patients. 238 

 We use the AUROC metric because of its prevalence in the literature, being one of the most 239 
commonly reported metrics. There is extensive discussion on whether that position is deserved, with a 240 
primary concern on inaccurate representation of imbalanced data. This concern was mitigated in this 241 
study by the usage of balanced datasets.  242 

2.4.2. Baseline evaluation of dataset integration  243 
When establishing a baseline performance of binary classification on uncorrected data, we used 244 

the Random Forest classifier, an ensemble method that takes the majority vote of ‘forest’ of decision 245 
trees to be its classification. Through aggregating multiple decision trees, it becomes more robust than 246 
a single one, which is prone to overtraining quickly. This method is comprehensively studied and a 247 
common baseline for classification within metagenomics [4,41–43]. The default settings were used for 248 
the baseline, which have been shown to produce globally near-optimal results compared to extensive 249 
tuning [44]. This allowed for the complete experiments to be repeated up to 1000 times within a 250 
reasonable timeframe. 251 

When comparing the performances of the different algorithms, a Mann-Whitney U rank test was 252 
performed, implemented by SciPy (v.1.0.2.) [45], a non-parametric version of the t-test, testing the null 253 
hypothesis that the underlying distributions of the two independent samples being tested are the same 254 
[46]. This test was chosen for its robustness at handling outliers. We report p-values after correction, 255 
which are said to be significant if they are found to be less than 0.05 after Bonferroni correction.   256 

2.4.3. Evaluation of batch correction algorithms 257 
For the evaluation the batch correction algorithms we used a more extensive set of classification 258 

algorithms. We chose the most commonly used classifiers in the field, Logistic Regression, Support 259 
Vector Machine (SVM), and Random Forest classifiers, wherein a Stochastic Gradient Descent 260 
implementation was used for the logistic regression [4]. In addition, a Bernoulli naïve Bayes classifier, 261 
K nearest neighbor classifier, and Gradient Boosting classifier that were used in a similar benchmark 262 
[26] were added. Lastly, the Multinomial naïve Bayes classifier that was developed for count data was 263 
added, as the distribution of the raw data resembles a multinomial one [21,47]. The methods are listed 264 
and described in Table 2-3. The scikit-learn library (version 1.0.2) [40] was used to implement all 265 
classification algorithms. 266 

Each of the classifiers was tuned using a randomized grid search over the parameter space given 267 
in the table, wherein all other parameters were left at the defaults of the scikit-learn library. The tuning 268 
used 10 random parameter selections, selecting the best using 5 internal cross-validations, wherein the 269 
validation was modified to optimize for the leave one dataset out (LODO) validation with the AUROC 270 
metric. The parameters that were validated on are shown in the last column of Table 2-3. The search 271 
was performed with RandomizedSearchCV from the scikit-learn library. 272 
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To evaluate each classifier on the test set, we use the same LODO approach [14], wherein each 273 
study is left out as the test set once, with the others used to train the classifier. We perform the Wilcoxon 274 
signed rank test to test the hypothesis that the classification scores of two classifiers come from the 275 
same distribution, with the samples paired by iteration, as each of the iterations will have scores 276 
evaluated on the same test set.  277 

The p-values of the tests are corrected for multiple testing with Bonferroni correction, multiplying by 278 
the amount of tests performed within each classifier’s results. As each batch correction algorithm’s 279 
performance is compared only to the baseline, the number of tests performed is equal to the number of 280 
batch correction algorithms. P-values are reported after correction, and those that are below 0.05 after 281 
correction are said to be significant.  282 

TABLE 2-3  THE BINARY CLASSIFICATION METHODS USED IN THE BENCHMARK , WITH A DESCRIPTION AND THE PARAMETER SPACE 283 
THAT WAS SEARCHED USING A RANDOM GRID SEARCH WITH 10 ITERATIONS. PARAMETERS NOT NAMED IN THE PARAMETER 284 
SPACE WERE LEFT AT DEFAULT. FULL PARAMETER SPACE EXPLORED CAN BE FOUND IN SUPPLEMENTARY SECTION 6.1.2 285 

Name Description Parameters varied 
Random Forest Classifier Aggregating the decisions of multiple 

decision trees by taking the majority vote 
when choosing a class for a sample 

- Number of trees 
- Number of features to consider each split 
- Maximum depth of each tree 
- Minimum number of samples for splitting 

internal node 
-  Minimum number of samples for being a leaf 

node 
Bernoulli NB Multivariate Bernoulli naïve Bayes classifier 

which binarizes all its input 
- Additive smoothing parameter 
- Whether to learn priors first 

Gradient Boosting Classifier Builds an single regression tree in additive 
fashion. 

- Number of boosting stages 
- Learning rate for each stage 
- Maximum depth of tree 

KNeighbors Classifier Uses the k-nearest neighbors to vote on 
which class a point belongs to 

- Number of neighbors to consider 
- Weighting of the neighbors 
- Algorithm to use 
- Distance metric to use 

Multinomial NB Multinomial naïve Bayes classifier - Additive smoothing parameter 
- Whether to learn priors first 

Stochastic Gradient Descent Classifier Linear Classifier, including logistic 
regression trained through Stochastic 
Gradient Descent. 

- The loss function  
- The regularization penalty  
- The learning rate 

Support Vector Machine/Classifier Finds a hyperplane margin that best 
separates the classes. 

- Regularization strength 
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3. Results 286 
This work presents an evaluation of batch effects and their impact on generalization. Firstly, an 287 

investigation of batch effect is presented, both before and after correction. Then, the generalization of 288 
performance without any removal of batch effects is assessed on a baseline binary classifier trained on 289 
either a single or mixed datasets. We conclude with a comparison of leave one dataset out (LODO) [14] 290 
performance of ML algorithms trained on each of the different correctors data, establishing whether 291 
batch correction should be performed before learning on new datasets. 292 

3.1. Batch effects are reduced by some batch correctors 293 
Before comparing the performance of binary classifiers on batch corrected data, we established to 294 

what extent batch effect was present in the data and whether batch correctors could reduce this while 295 
avoiding the loss of biological signal. We hypothesized that batch effects are present in the datasets 296 
and that batch correctors would show varying degrees of reduction, wherein the best correctors would 297 
reduce the batch effect while increasing biological signal detected. To test this hypothesis we 298 
considered both a visual angle to establish a intuition and numerical angle to evaluate it.  We found that 299 
batch effect was present, differing in its strength between our datasets. Some correctors, including 300 
ComBat, decreased this effect without seeming to lose label information, while others increased both 301 
the correlation with the batch and label effects, which was unexpected. 302 

3.1.1. tSNE visualization shows different degrees of batch correction 303 
To visualize the effect of batch correction, the tSNE dimensional reduction was performed for each 304 

of the transformers as well as the baseline. In Figure 3-1 a representative subset of the transformers 305 
and studies is shown, while the full set of tSNE and UMAP visualizations for both studies and 306 
transformers can be found in Supplementary sections 6.2.2 and 6.2.3.  307 

The baseline without any correction applied showed clustering for some studies but not all, 308 
indicating some level of batch effect. Some of the transformations showed more clustering afterwards, 309 
like ‘Quantile (0),’ ‘BMC,’ and ‘CLR,’ while reduced the clustering, as can be seen in ‘ComBat-integrated.’ 310 
Increased mixing for these algorithms suggests that batch effect is reduced, with the nearest neighbors 311 
of samples in a batch more frequently being from a different batch. This suggests that the batch 312 
correctors that decreased clustering could be more effective for reducing batch effects.  313 

 314 
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 315 

FIGURE 3-1 REPRESENTATIVE SUBSET OF TSNE PERFORMED ON ALL STUDIES AND BATCH CORRECTORS WITH DEFAULT SETTINGS . 316 
FROM TOP LEFT TO BOTTOM RIGHT THE BASELINE WITH NO TRANSFORMATION , THE CENTERED LOG-RATIO TRANSFORMATION, 317 
THE QUANTILE TRANSFORMATION AND THE COMBAT INTEGRATION ARE SHOWN.  318 

3.1.2. Proportion of features correlated with batch identity is affected by batch 319 
correction 320 

To quantitively evaluate batch effects on individual features, we determined the proportion of 321 
features significantly correlated with batch and disease labels, before and after batch correction, by 322 
fitting linear and negative binomial regression models. Also, we calculated the according silhouette 323 
scores based on batch and disease labels for the dataset corrected by different batch correction 324 
methods. The resulting proportions are shown in Table 3-1.  325 

Without any processing, 18.2% of the dataset’s features are significantly correlated with the 326 
batch after a Bonferroni correction, known to be especially conservative [48]. In contrast, only 1% of the 327 
features had the label as a significant factor, in both the linear and the negative binomial models. As 328 
some binary classification methods randomly pick features to consider, having only a few features with 329 
significant correlation with the label could increase the variance in performance between runs.  330 

The results from batch correction tools all showed a decrease in the proportion of features that 331 
were significantly correlated with batch information, indicating a decrease in batch effect. ReComBat 332 
and Limma especially showed a large decrease, with the latter having no features where batch was a 333 
significant enough factor. Simultaneously, the proportion of label-correlated features stayed the same 334 
(ComBat-Seq and Limma) or increased marginally (ComBat and reComBat). This is interesting because 335 
batch correction tools are known to also remove at least some biological information [22], which should 336 
then reduce the proportion of features correlated with the batch. This is potentially because the linear 337 
model being better able to model the data after being normalized by the tools. As ComBat-seq outputs 338 
count data retaining the same proportion of label-correlated could thus be explained. 339 

The transformations and encoders, in contrast, increased the proportion of features that had 340 
batch as a factor. This was especially clear in PCA (20), where only 1 of the 20 features did not have a 341 
significant correlation with the batch. PCA (20) had no features with a significant correlation to the label, 342 
indicating that the first 20 principal components of the data did not have relevant biological signals. CLR 343 
+ VarianceThreshold had a higher proportion of correlated features with both the label and batch than 344 
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only applying CLR, which is to be expected considering that the VarianceThreshold removes features 345 
with low variance.  346 

 347 

TABLE 3-1  PROPORTIONS OF FEATURES CORRELATED WITH BATCH AND LABEL . FOR EACH CORRECTOR , IT LISTS THE PERCENTAGE 348 
OF FEATURES THAT WERE SIGNIFICANTLY (AFTER CORRECTION FOR MULTIPLE TESTING) CORRELATED WITH THE BATCH AND LABEL 349 
BOTH FOR A LINEAR MODEL AS WELL AS A NEGATIVE BINOMIAL (NB) MODEL. PROPORTIONS WERE CHOSEN AS THE TOTAL 350 
NUMBER OF FEATURES CHANGES FOR ENCODINGS .  INCREASED PROPORTIONS WERE MARKED BY BOLDING VALUES .  351 

 To assess the sum effect of the batch correctors on the sample , we evaluated both a batch 352 
and label clustering with silhouette scores which average the dissimilarity of points to their cluster 353 
compared to the nearest other cluster. When the clustering aligns with the structuring of the data, the 354 
silhouette score will be positive and increase to 1, while seemingly random assignments will have a 355 
score of 0 for two clusters and more negative scores for multiple clusters. The silhouette scores are 356 
shown as boxplots in Figure 3-2. The silhouette score of the baseline varies for all but the baseline due 357 
to cross-validation  358 

The batch clustering showed that most of the batch correctors increased the chance of a 359 
misclassification, decreasing the dataset’s average silhouette coefficient. As there are eleven clusters 360 
present for batch clustering this is in line with the expectation that batch correctors correct for batches 361 
clumping together, with the odds of other clusters being closer to a random sample becoming higher as 362 
the clusters become more mixed. The largest change in performance is from ILR+Quantile which seems 363 
to have the most mixed batch corrected data. This seems to contradict the observation made from the 364 
feature-wise analysis, possibly due to the differences observed by the feature-wise model, while 365 
statistically significant, not large enough to impact the cosine similarity metric. 366 

For the label clustering the range of differences is 30x smaller than that of the batch clustering, 367 
showing only slight changes in the silhouette scores between the baseline and the correctors. This was 368 
possibly due to the number of clusters being much smaller (two instead of eleven) while still overlapping, 369 
such that both clusters would have approximately the same distance to each distance on average. 370 

ILR + Quantile showed the largest increase in performance, with a median performance 371 
increase of 0.009 compared to baseline (p << 1e-10 after correction). This contrasts with the 372 
observation from the batch clustering, aligning with the result of the feature-wise analysis, where this 373 
corrector was the only one which increased the proportion of correlated features to almost half. The 374 
other transformations similarly align with what was observed in the correlation analysis, with all the tools 375 
showing a smaller increase than the transformations, with the exception of BMC, ILR, and Normalize, 376 

 CORRECTOR FEATURES  
WITH BATCH 
AS FACTOR , 
NB MODEL 
(%) 

FEATURES 
WITH BATCH 
AS FACTOR, 
LINEAR 
MODEL (%) 

FEATURES  
WITH LABEL 
AS FACTOR , 
NB MODEL 
(%) 

FEATURES 
WITH LABEL 
AS FACTOR , 
LINEAR 
MODEL (%) 

BASELINE Baseline 18.2 18.5 1.0 1.0 
TOOLS ComBat - 7.6 - 1.3 
 ComBat-seq 9.9 10.1 1.0 1.0 
 ReComBat - 0.5 - 1.8 
 Limma - 0.0 - 1.0 
TRANSFORMATIONS Normalize - 20.7 - 1.0 
 BMC - 57.6 - 1.0 
 CLR - 37.4 - 5.7 
 ILR - 28.6 - 2.7 
 ILR + Quantile 83.3 83.3 45.9 45.9 
 CLR + Quantile 79.3 79.3 5.8 5.8 
 Quantile (normal) 39.6 39.6 6.0 6.0 
 Quantile (uniform) - 39.3 - 5.4 
ENCODINGS PCA (20) - 95.0 - - 
 PCA (100) - 38.0 - 4.0 
 CLR + 

VarianceThreshold 
- 44.0 - 7.0 
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just as in that analysis. This seems to confirm that they clarify biological signal, but not necessarily 377 
removing batch effect in the process.  378 

 379 

FIGURE 3-2  BOXPLOT WITH SILHOUETTE SCORES FOR BATCH (A) AND LABEL(B) CLUSTERING. OBTAINED BY CONCATENATING 380 
TRAINING AND TEST SET AFTER BATCH CORRECTION , THEN AVERAGING THE SILHOUETTE WIDTHS ACROSS SAMPLES . THE COSINE 381 
METRIC WAS USED TO COMPUTE DISTANCE BETWEEN POINTS. THE MEDIAN OF THE BASELINE WAS DRAWN ACROSS THE Y-AXIS 382 
TO ALLOW FOR EASIER COMPARISON WITH BASELINE . ALL CORRECTORS HAD SIGNIFICANTLY DIFFERENT SILHOUETTE SCORES WITH 383 
BASELINE (P << 1E-6) WITH EXCEPTION OF BMC  FOR BOTH LABEL AND BATCH CLUSTERING AND NORMALIZE FOR LABEL 384 
CLUSTERING.  BOXES SHOW IQR, WHISKERS SHOW FURTHEST POINT WITHIN 1.5  IQR. OUTLIERS ARE MARKED WITH DIAMONDS. 385 
IN ORDER TO SHOW DIFFERENCES CLEARLY , DOMAIN OF SUBFIGURE A IS (-0.35, 0.1) WHILE DOMAIN OF SUBFIGURE B IS (0.0 , 386 
0.015).  SCORES FOR LABEL CLUSTERING CENTER AROUND 0 CLOSELY, WHILE VARYING BETWEEN -0.3 AND 0.1 FOR BATCH 387 
CLUSTERING. 388 

  389 
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3.2. Learning from multiple batches increases generalization 390 
In this section, we investigate the effect of learning from multiple datasets on binary classification 391 

performance on unseen batches. While having more data is usually considered to lead to better 392 
generalization [49], multiple datasets could destabilize results and prevent improvement with batch 393 
effects. We hypothesized that using multiple datasets would have a positive influence on the 394 
generalization of the classifiers by forcing them to be able to handle different batch effects already. We 395 
showed that datasets did not generalize well towards other testing datasets, with continually increasing 396 
performance when training on multiple datasets. Even when kept at the same size, using samples from 397 
different datasets improved scores over a single dataset when testing on an unseen dataset.  398 

3.2.1. Single datasets have significantly better performance on their own test set 399 
To assess the difference in classification performance between a test set of the same batch and 400 

that of different batches, we set up a new experiment with uncorrected data. We first split the datasets 401 
into training and testing sets with a stratified 80/20 split, train baseline classifiers on each of the separate 402 
batches, and then test their classification performance on both the test set of the same batch, or of all 403 
the other batches. Subfigure a of Figure 3-3 shows boxplots with the respective results. 404 

The classification performance of the binary classifiers when tested on the remainder of their own 405 
dataset, shown in blue in the figure, is volatile, with most having a high spread in performance. This is 406 
largest for the studies by Thomas et al. [14] and Hannigan et al. [50], which vary from worse than 407 
random (0.5) to perfect classification (1.0). The dataset by Gupta et al. had median performance on its 408 
own dataset of close to perfect classification, with perfect classification falling within its IQR, indicating 409 
this dataset is easy to distinguish for the classifier.  As the number of samples in the test datasets is 410 
small we consider it is most plausible that the choice of test dataset causes this variation in performance. 411 

The performance of the classifiers on the rest of the datasets is hard to compare, as each of the 412 
classifiers leaves out a different dataset (its own) when testing. The variation in performances was a lot 413 
smaller for these performance tests, likely due to the test set not varying each iteration.  414 

A comparison between the performance on the own test set and the remainder of the datasets 415 
shows that the performance on the own test set is significantly better. Eight out of the eleven datasets 416 
were significantly better, two (Yachida et al. and Vogtmann et al.) showed significantly worse 417 
performance, and one showed no significant difference. For the Yachida et al. dataset, we hypothesized 418 
that the increased test performance was due to the number of samples within this study being the 419 
equivalent of five of the other studies, which both makes for more samples to learn from and avoid 420 
overfitting on the smaller data.   421 

To investigate this hypothesis, we reran the same experiment while limiting the training set size 422 
to a constant size, choosing the training set size of the smallest dataset (n=40), shown in subfigure b 423 
of Figure 3-3. The classification performance of most datasets dropped to 0.6, except whose 424 
performance remained around the same due to the sample size already being close to 40 in the 80/20 425 
split.  The performance of the dataset for Yachida et al. dropped drastically, with the median 426 
performance going from 0.77 to 0.60, though it still remained statistically higher (p < 0.05) than the 427 
score on its own dataset, which dropped to only slightly above random.  428 

  We conclude that the performance of classifiers trained on a single dataset perform better on 429 
that dataset’s test split than on different, separate datasets. The bias in datasets is easily overtrained 430 
on it seems. The next section will look at whether training the same classifier on multiple of these 431 
datasets allows it take these biases into account for new datasets. 432 

    433 
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 434 

FIGURE 3-3 BOXPLOT COMPARING PERFORMANCE OF RANDOM FOREST BINARY CLASSIFIER WITH DEFAULT SETTINGS FOR 435 
PREDICTING DISEASE IN BOTH A TRAIN -TEST SPLIT OF ITS OWN STUDY DATASET (BLUE) AS WELL AS ALL OTHER DATASETS 436 
(ORANGE). TRAINING SIZE WAS EITHER 80%  OF THE STUDY (SUBFIGURE A) OR EXACTLY 40 SAMPLES (SUBFIGURE B). 437 
SIGNIFICANT DIFFERENCES AS TESTED WITH A MANNWHITNEYU TEST ARE MARKED WITH A BRACKET , NUMBER OF STARS 438 
INDICATING SCALE OF P-VALUE, WITH *P<0.05,  **P< 1E-8, ***P<1E-30 (AFTER BONFERRONI CORRECTION ). ALL 439 
SIGNIFICANT DIFFERENCES HAVE REST OF OWN DATASET AS GREATER VALUE , EXCEPT FOR YACHIDA ET. AL. WHERE THE 440 
PERFORMANCE ON ALL OTHER DATASETS WAS SIGNIFICANTLY GREATER .  TEST SPLIT OF OWN DATA SHOWS EQUAL OR BETTER 441 
PERFORMANCE FOR ALL STUDIES FOR BOTH TYPES OF SPLITS . 442 

 443 

3.2.2. Training on more batches increases generalization on new batches 444 
To evaluate whether and to what extent using more datasets as training increased 445 

generalization performance, we measured the AUROC of the same baseline Random Forest model 446 
trained on an increasing number of uncorrected datasets, testing on two datasets that were excluded, 447 
randomly chosen each of the 1000 iterations. Performance showed a significant increase (p < 0.05 after 448 
correction) when combining more than two datasets. After more than seven datasets were combined 449 
the increase saturated, no longer significantly increasing.  This shows that using multiple datasets will 450 
increase binary classification performance on new datasets, but does not isolate whether this is due to 451 
the number of samples or due to the increased diversity from multiple datasets. 452 
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 453 

FIGURE 3-4  BINARY CLASSIFICATION PERFORMANCE MEASURED USING THE AUROC  METRIC OF A RANDOM FOREST CLASSIFIER 454 
RE-TRAINED ON AN INCREASING NUMBER OF STUDIES, TESTED ON A SEPARATE TEST SET. BOXES SHOW QUARTILES OF THE 455 
DISTRIBUTION, WHISKERS SHOW LARGEST OBSERVED DATAPOINT WITHIN 1.5  IQR AND OUTLIERS ARE DRAWN SEPARATELY . 456 
ENTIRE EXPERIMENT WAS REPEATED 1,000 TIMES. SCORE INCREASES SIGNIFICANTLY  AT ALL STEPS BETWEEN 2 AND 7, BUT 457 
DOES NOT SHOW AN INCREASE BETWEEN STEPS 7, 8, 9.  458 

To assess whether the increased diversity by itself had an impact on generalization 459 
performance, we trained the same classifier on fixed numbers of samples of one dataset, Yachida et 460 
al., or that same number of samples of all other training datasets before testing it on two unseen test 461 
datasets, the result of which is shown in Figure 3-5. There was a significant improvement in 462 
performance at each sample size (p < 0.0001, increase in median between 0.046-0.0556 at each step), 463 
showing that the usage of multiple datasets is better than a single one for generalization, even with the 464 
same sample size.  465 
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  466 

FIGURE 3-5  BOXPLOTS OF BINARY CLASSIFICATION PERFORMANCE OF A RANDOM FOREST CLASSIFIER ON AN UNSEEN TEST SET , 467 
TRAINED ON 50, 100, 250, AND 500 SAMPLES TAKEN FROM EITHER A SINGLE STUDY  (YACHIDA ET AL.), SHOWN IN BLUE OR 468 
ALL OTHER TRAINING STUDIES , SHOWN IN ORANGE . EXPERIMENT WAS REPEATED 1000 TIMES. SAMPLES TAKEN FROM MULTIPLE 469 
STUDIES HAVE A HIGHER AVERAGE SCORE AND SHOW LESS VARIANCE THAN SAMPLES TAKEN FROM THE SINGLE STUDY ACROSS 470 
ALL SAMPLE SIZES, THOUGH THERE IS STILL OVERLAP . FOR THE SAMPLE SIZES 50, 100, 250, AND 500 THE CHANGE IN MEDIAN 471 
WAS 0.056, 0.050,  0.047 AND 0.047 RESPECTIVELY, WITH ALL P << 1E-5 472 

3.3. Current batch transformations have no significant impact on 473 

the generalization of classification performance 474 
In this section we investigated what the ideal pair of batch corrector and binary classifier is when 475 

evaluated on unseen test datasets using the AUROC metric.  We hypothesized that those correctors 476 
that showed an increase in the feature correlation and silhouette score would  have an improved 477 
performance over a baseline classifier. The classifier that performed the best on average for the 478 
baseline, the random forest classifier, was not outperformed by any combination in a statistically 479 
significant manner, showing that batch effect did not have as much of an impact as was expected.  480 

3.3.1. Pipeline for binary classification benchmark 481 
To perform the benchmark that was proposed in an organized manner that remains 482 

reproducible, a more elaborate setup was required. To this end, we developed a pipeline which can be 483 
used to perform mass batch correction, training, and tuning with nested cross-validation, while 484 
remaining easy to setup and use. In addition to these goals, we also took into account some common 485 
pitfalls, which we describe below along with our steps for their mitigation. The problems explicitly 486 
addressed are those listed as common for microbiome research in a survey of more than one hundred 487 
studies, performed by the ML4Microbiome consortium in 2021 [4]. An overview of the pipeline is shown 488 
in Figure 3-6. 489 

To avoid performing feature selection on the entire dataset, the first step of the pipeline is to 490 
split the dataset into a training and test set. This prevents features found significant in the test set from 491 
leaking towards the models.  492 

To correct for the winner’s curse, wherein the best algorithm can be unduly chosen because of 493 
random chance, the pipeline performs the entire cross-validation process ten times, cross-validating 494 
each time. In addition, balanced datasets are used which reduce the overestimation that could be 495 
produced by this curse. 496 
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To enforce appropriate splitting of the datasets, wherein a lack of stratification leads to 497 
imbalanced validation and testing datasets, all validation approaches leave entire datasets out. As each 498 
dataset was balanced, this maintained class  distributions across folds.  499 

To avoid handling repeat measurements, which violates the assumptions that samples are 500 
identically and independently distributed (i.i.d.) used by cross-validation, we filtered out all repeat 501 
measurements of samples in our datasets. 502 

To simulate diagnostic tests, each test dataset was batch corrected with learned values if 503 
possible, else was combined with the training data in a separate correction procedure that would 504 
prevent information leakage.  505 

 We developed the pipeline with the Nextflow framework [51], a bioinformatics framework 506 
designed for reproducible omics workflows. Each of the jobs of the pipeline runs in isolation on a hand-507 
crafter docker container with the capability of adjusting the resources allocated to it as well as the way 508 
it is processed through changing the label of the job. Jobs can be automatically queued on clusters 509 
using SLURM or similar job management software, and run using docker containers, either using 510 
Docker or Singularity when supported. With this implementation, a full evaluation of more than 10,000 511 
classifiers could be achieved with Singularity and Nextflow as the only required dependencies on a local 512 
system.  513 

   514 

 515 

FIGURE 3-6  PIPELINE OF THE PROCESS USED TO ANALYZE BATCH CORRECTION AND ENCODING ALGORITHMS . THE DATA IS FIRST 516 
SPLIT INTO BATCHES, WITH EITHER 1 OR 2 BATCHES LEFT OUT FOR TESTING . THE TRAINING DATA IS THEN TRANSFORMED WITH 517 
ONE OF THE BATCH CORRECTION ALGORITHMS (SEE METHODS FOR MORE DETAILS FOR EACH ALGORITHM). THE TEST SET IS THEN 518 
TRANSFORMED , POTENTIALLY WITH THE TRANSFORMER USING PARAMETERS LEARNED FROM THE TRAINING DATA (INDICATED BY 519 
THE DOTTED ARROW). A CLASSIFIER IS TRAINED ON THE TRANSFORMED TRAINING DATA AND THEN TESTED ON THE 520 
TRANSFORMED TESTING DATA (EVALUATION). SEPARATELY, A BATCH EFFECT DETECTION PROCEDURE IS PERFORMED ON THE 521 
TRANSFORMED TRAINING DATA TO DETECT THE PRESENCE OF BATCH EFFECTS . 522 

3.3.2. Batch correction algorithm does not have a significant impact 523 
To investigate the impact of the batch correction algorithm on the model performance, we ran our 524 

pipeline ten times on each of the twelve batch correctors, and then trained and tuned seven machine 525 
learning algorithms with the corrected microbiome data. Comparing the performances based on their 526 
medians, the best performing classification algorithm for each of the batch correction method is 527 
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displayed in Figure 3-7, with the complete set of scores for each combination of the binary classifiers 528 
and batch correctors plotted in Supplementary Figure 6-4. 529 

The baseline shows a good performance on the test sets, with a median of 0.81 for its best-530 
performing classifier, the RandomForest classifier. However, it has a large variance, having both scores 531 
worse than random choice and perfect classification. The perfect classification was the result of testing 532 
on the dataset of Gupta et al., which showed high performance in earlier testing as well (see section 533 
3.2.1), likely as a result of easily distinguishable samples. The lower performance was not the result of 534 
any particular dataset, more likely a result of overtraining. 535 

The other binary classifiers-corrector combinations do not significantly improve upon the baseline. 536 
Most median AUROCs were below baseline performance with the exception of ComBat-seq, CLR, 537 
Quantile (uniform) and CLR+VarianceThreshold, which only marginally outperformed it. The best 538 
classifier for ComBat had a significantly worse performance than the baseline (p < 0.0001), which is 539 
especially noteworthy considering the popularity of this tool for batch correction, and how the adaptation 540 
towards the test set used a built-in functionality. 541 

The Quantile (normal) transformer in combination with the Bernoulli Naïve Bayes classifier did 542 
show one advantage in its consistency. With a lowest score of 0.59, it avoided the many outliers of the 543 
random forest classifier, although its 0.25th quantile was lower than that of the baseline’s random forest 544 
classifier. The more stable performance of this pair is likely because the Bernoulli Naïve Bayes is not 545 
as sensitive as the Random Forest, due to binarizing its input as a first step. 546 

The two settings of PCA performed significantly worse than the baseline, showing that the 547 
biological signal is not completely encoded in the first principal components. The encoding with 100 548 
components, PCA (100), outperforming PCA (20), which only has 20, indicating that the last 80 549 
components contain biological signal that is  otherwise lost. The variance of the high-dimensional data 550 
is likely so high that the first principal components capture more irrelevant noise than biological signal. 551 

Random Forest classification was the best performing in six of the twelve correctors in terms of 552 
median, while the Gradient Boosting Classifier and Bernoulli NB models outperformed the rest in five 553 
and three occasions respectively.  All classifiers showed high variance, with many badly performing 554 
outliers for even the best performing classifiers. The Bernoulli NB performed exactly as if guessing 555 
randomly for the baseline, likely because its internal binarization of each feature did not account for 556 
pseudo counts, but this is likely also the reason for its comparative lack of outliers. The most consistent 557 
performance was from the Multinomial Naïve Bayes, even considering it could only run on the baseline, 558 
Combat-seq, CLR + Quantile (uniform), and Quantile(uniform) outputs because of only accepting non-559 
negative values, with no performance below random guessing at 0.5. 560 

Overall, considering the best pair of batch corrector and classifier, no one combination is best. 561 
Performing no correction before using a random forest classifier will, on average, not lead to worse 562 
performance than that of any other corrector-classifier pair. However, to avoid worse-than-random 563 
performance the Quantile (normal) transformer can be used in combination with the Bernoulli Naïve 564 
Bayes classifier. But even then, the high variance in performance would not recommend these 565 
classifiers for aiding in diagnosis. 566 
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 567 

FIGURE 3-7  BINARY CLASSIFICATION SCORES OF BEST PERFORMING CLASSIFIERS FOR EACH OF 10 DIFFERENT (COMBINATIONS 568 
OF) BATCH CORRECTION METHODS, CATEGORIZED BASED ON THE TYPE OF BATCH CORRECTOR . PERFORMANCE MEASURED IN 569 
AUROC. BOXES INDICATE QUARTILES OF DISTRIBUTION , WITH WHISKERS AT FURTHEST POINTS WITHIN 1.5 TIMES IQR. COLOR 570 
INDICATES THE BINARY CLASSIFICATION MODEL THAT HAD THE HIGHEST MEDIAN FOR THE CORRESPONDING CORRECTOR AND 571 
WHOSE SCORES WAS USED IN THE FIGURE .  572 
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4. Conclusion 573 
This work has investigated how best to design a binary classifier for an unseen dataset identifying 574 

patients with colorectal cancer. Taxonomic count data obtained from a shotgun metagenomic analysis 575 
of the gut microbiome was chosen as datatype, because it can be obtained non-invasively and is 576 
becoming more accessible, while allowing for highly accurate prediction. To account for batch effect 577 
when combining multiple datasets, combinations of batch correctors and binary classifiers were 578 
evaluated.  579 

This was the first such benchmark performed on shotgun metagenomics of the human microbiome, 580 
with a comprehensive set of both batch correction methods as well as binary classifiers, tested in 581 
combinations. The pipeline that was designed allowed for the massive evaluation of more than 10,000 582 
classifiers in a reproducible manner.  583 

Batch effect was first mapped and analyzed, showing that it was indeed present, though not always 584 
strongly. Many of the batch correctors indeed reduced the correlation between features and the batch, 585 
though not always in both feature-wise correlations as well as clustering evaluation. Our metrics also 586 
indicated that some transformations improved the clarity of the biological signal, allowing the disease 587 
label to be more easily distinguishable. 588 

Then, it was shown that using single dataset for training and then testing on a separate batch will 589 
have significantly different performance then testing on another part of the training dataset. Multiple 590 
datasets improved the generalization of binary classification models, even when the total number of 591 
samples was equivalent. This led us to conclude that with more diversity, the classifier can learn to 592 
ignore batch effect.  593 

Lastly, combinations of batch correctors and binary classifiers trained and tested on new datasets 594 
in a manner approaching how diagnostic tests would be performed. We showed that no classifier could 595 
significantly outperform the baseline classifier, and that ComBat, one of the most commonly applied 596 
tools, though shown to remove batch effect detectably, caused subsequent binary classification 597 
performance to be significantly worse than the baseline. PCA encodings also decreased performance, 598 
showing that the biological signal for CRC was not encoded in the highest variance components.  599 

All classifiers had a significant variance in their performance, causing many to have worse-than-600 
random performance on occasion. A Quantile transformation to a normal distribution and then training 601 
with the Naïve Bayes classifier decreased the variance and could be a better choice to avoid outliers. 602 
Using these methods within a diagnostic setting would require   603 

What then, is the best approach to deal with batch effects for new unseen datasets? We conclude 604 
that training the model on as many different datasets is key towards obtaining the best generalization. 605 
Batch correction will have little to no impact and could even reduce the classification performance, even 606 
though visibly reducing batch effect. Large datasets from different populations that are clearly labeled 607 
by disease will allow future research to create models that can accurately determine whether a patient 608 
is likely suffering from CRC. 609 

While this benchmark was comprehensive, it was also limited in scope, exploring eleven datasets 610 
that were remarkably similar in composition, with balanced case-control sample amounts wherein all 611 
where shotgun metagenomes. While this made for a more controlled comparison, future research could 612 
broaden the scope of such a comparison to include different data sources like 16S rRNA 613 
pyrosequencing, or expand to different diseases like inflammatory bowel disease (IBD) or Autism 614 
Spectrum Disorder. Future research could also look into whether batch correction improves results 615 
when applied to a progressively smaller number of datasets. This will make this work more broadly 616 
applicable. 617 

 The code for the pipeline described in this work and to reproduce the figures can be found at 618 
https://github.com/AbeelLab/ngs-batch-evaluation along with a description on its usage.  619 
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6. Supplementary Materials 783 

6.1. Tables 784 

6.1.1. Supplementary Table 1: Metadata for the CRC studies that were 785 
considered 786 

Study # of 
Samples 

Male (%) Controls (%) Mean Age 
(+/- std) 

FengQ_2015 [52] 107 59.81 57.01 67 (9) 

GuptaA_2019 [53] 60 50.0 50.0 51 (16) 

HanniganGD_2017 [50] 55 56.36 50.91 57 (10) 

ThomasAM_2018a [14] 53 67.92 45.28 70 (8) 

ThomasAM_2018b [14] 60 65.0 46.67 58 (8) 

ThomasAM_2019_c [14] 80 56.25 50.0 61 (13) 

VogtmannE_2016 [54] 104 71.15 50.0 62 (12) 

WirbelJ_2018 [55] 125 58.4 52.0 60 (13) 

YachidaS_2019 [56] 509 58.35 49.31 62 (11) 

YuJ_2015 [11] 128 63.28 41.41 64 (9) 

ZellerG_2014 [57] 114 50.0 53.51 63 (12) 

Total 1395 59.68 49.65 62 (12) 
TABLE 6-1  METADATA FOR STUDIES THAT WERE SELECTED .  EACH OF THE DATASETS IS GIVEN IN REFERENCE TO THE STUDY IN 787 
WHICH IT WAS PUBLISHED , NAMED ACCORDING TO THE LEAD AUTHOR AND YEAR , WITH DUPLICATE AUTHORS SUFFIXED . THREE 788 
STUDIES FROM THOMAS ET AL. WERE USED, A COLLABORATION WITH 39  MEMBERS. PERCENTAGES WERE ROUNDED TO 2 789 
DECIMAL PLACES, YEARS WERE ROUNDED TO WHOLE NUMBERS . 790 

6.1.2. Supplementary Table 2: Parameter spaces 791 

 792 
  793 

Name Parameter space 
Random Forest "n_estimators": [int(x) for x in np.linspace(start=200, stop=1000, num=10)] 

"max_features": ["auto", "log2", 0.2, 0.4, 0.5],  
"max_depth": [int(x) for x in np.linspace(10, 110, num=11)],  
"min_samples_split": [2, 5, 10],  
"min_samples_leaf": [1, 2, 4] 

BernoulliNB “alpha": [0.0001, 0.001, 0.01, 0.1, 1] 
"fit_prior": [True, False]} 

Gradient Boosting Classifier  “n_estimators": [int(x) for x in np.linspace(start=200, stop=1000, num=10)] 
"learning_rate": [0.1, 0.05, 0.01, 0.005] 
"max_depth": [int(x) for x in np.linspace(10, 110, num=11)] 

KNeighbors Classifier "n_neighbors": [int(x) for x in np.linspace(3, 20, num=5)], 
        "weights": ["uniform", "distance"], 
        "algorithm": ["ball_tree", "kd_tree", "brute"], 
        "p": [1, 2], 
        "metric": ["euclidean", ssd.braycurtis, ssd.cosine], 

MultinomialNB “alpha": [0.0001, 0.001, 0.01, 0.1, 1] 
”fit_prior": [True, False]} 

SGD Classifier "loss": ["hinge", "log", "modified_huber", "squared_hinge", "perceptron"], 
 "penalty": ["l2", "l1", "elasticnet"], 
 "alpha": [0.001, 0.01, 0.1, 1.0], 

Support Vector Machine "C": [0.001, 0.01, 0.1, 1, 10, 100, 1000] 

TABLE 6-2 THE PARAMETER SPACES OF EACH BINARY CLASSIFIER THAT WAS USED IN BATCH CORRECTION EXPERIMENT . EACH 

PARAMETER SPACE WAS ARBITRARILY EXPLORED WITH A RANDOMIZED GRID SEARCH. PARAMETERS NOT MENTIONED WERE LEFT 

AT DEFAULTS.  
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6.1.3. Supplementary Table 3: Binary Classification Scores 794 
Corrector Random Forest 

Classifier 
BernoulliNB Gradient Boosting 

Classifier 
KNeighbors 
Classifier 

MultinomialNB SGD 
Classifier 

SVC 

Baseline 0.81 (0.11) 0.50 (0.00) 0.78 (0.10) 0.53 (0.10) 0.65 (0.13) 0.60 
(0.09) 

0.57 
(0.07) 

TOOLS       - 

ComBat 0.67 (0.19) 0.77 (0.18) 0.76 (0.18) 0.52 (0.11) - 0.58 
(0.13) 

0.55 
(0.13) 

ComBat-seq 0.81 (0.09) 0.82 (0.15) 0.80 (0.08) 0.54 (0.07) 0.63 (0.11) 0.61 
(0.09) 

0.57 
(0.14) 

reComBat 0.78 (0.09) 0.74 (0.13) 0.79 (0.13) 0.54 (0.12) - 0.62 
(0.11) 

0.57 
(0.19) 

Limma 0.73 (0.12) 0.66 (0.09) 0.76 (0.11) 0.53 (0.08) - 0.59 
(0.09) 

0.54 
(0.10) 

TRANSFORMATIONS       - 

BMC 0.69 (0.18) 0.78 (0.13) 0.70 (0.13) 0.55 (0.11) - 0.53 
(0.08) 

0.62 
(0.09) 

CLR 0.83 (0.11) 0.82 (0.15) 0.82 (0.09) 0.59 (0.06) - 0.69 
(0.07) 

0.73 
(0.09) 

Normalize 0.80 (0.12) 0.77 (0.14) 0.77 (0.11) 0.54 (0.12) - 0.62 
(0.12) 

0.61 
(0.08) 

ILR 0.73 (0.13) 0.58 (0.17) 0.77 (0.10) 0.52 (0.07) - 0.63 
(0.10) 

0.64 
(0.14) 

ILR + Quantile 0.73 (0.13) 0.55 (0.07) 0.78 (0.09) 0.58 (0.05) - 0.63 
(0.10) 

0.67 
(0.07) 

CLR + Quantile 0.58 (0.13) 0.75 (0.16) 0.80 (0.13) 0.59 (0.06) 0.76 (0.15) 0.50 
(0.05) 

0.50 
(0.00) 

Quantile (normal) 0.79 (0.13) 0.82 (0.15) 0.78 (0.10) 0.59 (0.06) - 0.68 
(0.09) 

0.72 
(0.10) 

Quantile (uniform) 0.80 (0.12) 0.82 (0.15) 0.78 (0.10) 0.57 (0.08) 0.80 (0.13) 0.68 
(0.07) 

0.72 
(0.13) 

ENCODINGS       - 

CLR + 
VarianceThreshold 

0.82 (0.12) 0.78 (0.16) 0.81 (0.11) 0.59 (0.06) - 0.68 
(0.09) 

0.74 
(0.09) 

PCA (20) 0.57 (0.10) 0.54 (0.04) 0.54 (0.09) 0.52 (0.11) - 0.55 
(0.07) 

0.52 
(0.08) 

PCA (100) 0.64 (0.09) 0.63 (0.08) 0.63 (0.06) 0.54 (0.05) - 0.60 
(0.09) 

0.56 
(0.04) 

 795 

TABLE 6-3  BINARY CLASSIFICATION SCORE OF EACH COMBINATION OF CORRECTOR (ROW) AND BINARY CLASSIFIER (COLUMN), 796 
GIVEN AS MEDIAN (IQR) OF PERFORMANCE MEASURED WITH AUROC SCORE MEASURED OVER 11 LEAVE ONE OUT CROSS-797 
VALIDATION RUNS. SCORES ARE VISUALIZED IN SUPPLEMENTARY FIGURE 6-4. FOR EACH CLASSIFIER , SCORES THAT WERE 798 
SIGNIFICANTLY HIGHER THAN THE BASELINE ARE BOLDED , WHILE THOSE THAT ARE SIGNIFICANTLY SMALLER ARE ITALICIZED . 799 
SIGNIFICANCE WAS TESTED USING SIGNED WILCOXON RANKED SUM TEST , AND P-VALUES WERE CORRECTED WITH BONFERRONI 800 
CORRECTION.   801 

  802 
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6.1.4. Supplementary Table 3: Binary classification significance 803 
Batch correction model Median (IQR) Statistic p-value  

Baseline 0.81 (0.11) - -  
TOOLS     

ComBat 0.77 (0.18) 1575 1.58E-04  
ComBat-seq 0.81 (0.09) 2916 1.03E+01  

reComBat 0.79 (0.13) 2520 1.68E+00  
Limma 0.76 (0.11) 1975 1.97E-02  

Normalize 0.80 (0.12) 2816 1.43E+01  
TRANSFORMATIONS    

BMC 0.78 (0.13) 2626 3.05E+00  
CLR 0.83 (0.11) 2726 4.95E+00  
ILR 0.77 (0.10) 2077 5.43E-02  

ILR + Quantile 0.78 (0.09) 1997 2.47E-02  
CLR + Quantile 0.80 (0.13) 2538 1.87E+00  

Quantile (normal) 0.80 (0.12) 2830 1.48E+01  
Quantile (uniform) 0.82 (0.15) 3027 1.41E+01  

ENCODINGS    
CLR + VarianceThreshold 0.82 (0.12) 2754 5.60E+00  

PCA (20) 0.57 (0.10) 385 1.07E-13  
PCA (100) 0.64 (0.09) 835 2.59E-09  

TABLE 6-4  TESTING RESULTS FOR COMPARISON OF THE BEST CLASSIFIERS . A TWO-SIDED WILCOXON RANK SUM TEST WAS 804 
PERFORMED, REPORTING THE P-VALUE AND U STATISTIC. P-VALUES ARE REPORTED AFTER CORRECTION (MULTIPLICATION BY 805 
THE NUMBER OF CORRECTORS-1).  SIGNIFICANT P-VALUES ARE BOLDED FOR COMBAT-INTEGRATED, ILR, PCA (20), AND 806 
PCA(100). STATISTIC=THE SUM OF THE RANKS OF THE DIFFERENCES ABOVE OR BELOW ZERO , WHICHEVER IS SMALLER .  807 

  808 
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6.2. Figures  809 

6.2.1. Supplementary Figure 1:  Datasets in the curatedMetagenomicData 810 
package 811 

 812 

FIGURE 6-1 NUMBER OF SAMPLES (FROM UNIQUE PATIENTS) FOR THE MOST POPULOUS CONDITIONS, AS FOUND IN 813 
'CURATEDMETAGENOMICDATA.'  EACH BLOCK REPRESENTS ONE STUDY WITH BOTH CONTROL AND CASE SAMPLES . COLOR 814 
INDICATES WHAT PERCENTAGE OF SAMPLES WERE FROM CONTROL PATIENTS , WITH A GRADIENT FROM 0%  (ONLY CASE SAMPLES) 815 
AS RED TO  100%  (ONLY CONTROL SAMPLES) AS BLUE, WITH A PEEK IN GREEN AT 50%.  CRC = COLORECTAL CANCER, IBD  = 816 
INFLAMMATORY BOWEL DISEASE, ADENOMA = FIRST STAGE OF CRC, T2D = TYPE 2 DIABETES, T1D = TYPE 1 DIABETES.  817 

  818 
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 819 

6.2.2. tSNE reductions for each batch corrector 820 

 821 

FIGURE 6-2  TSNE REDUCTIONS FOR THE FIRST ITERATION OF THE LODO CROSS-VALIDATION FOR EACH OF THE BATCH 822 
CORRECTORS USED IN THE BENCHMARK . SUBFIGURES ARE LABELED ACCORDING TO THE BATCH CORRECTOR WHOSE OUTPUT WAS 823 
TRANSFORMED WITH POINTS COLORED BY THEIR ORIGINATING DATRASET AND STYLED ACCORDING TO THEIR LABEL . ELEVEN 824 
DATASETS ARE PRESENT IN EACH SUBFIGURE WITH YACHIDA ET AL . MOST PROMINENT, BEING THE LARGEST (N>500).  825 
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6.2.3. UMAP reductions for each batch corrector 826 

 827 

FIGURE 6-3 UMAP REDUCTIONS FOR EACH OF THE TRANSFORMATIONS USED IN THE BENCHMARK . EACH AXIS CONTAINS THE 828 
UMAP  TRANSFORMATION FOR ONE OF THE TRANSFORMATIONS , WITH POINTS COLORED BY THEIR STUDY AND STYLED 829 
ACCORDING TO THEIR LABEL . SOME TRANSFORMATIONS CLUSTER SOME STUDIES TOGETHER , AS CAN BE CLEARLY SEEN FOR 830 
‘BMC,’  ‘NORMALIZE,’ AND ‘CLR + QUANTILE’, WHERE THE STUDY ’YACHIDAS_2019’  FORMS A SEPARATE CLUSTER . 831 
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6.2.4. Binary classification performances for each batch corrector 832 

 833 

FIGURE 6-4  COMPARISON OF BINARY CLASSIFICATION PERFORMANCE WITH LEAVE ONE DATASET OUT (LODO) PRINCIPLE. ALL 834 
AXES ARE THE SAME, SETTING OUT BATCH CORRECTOR OVER THE AUROC SCORE THAT WAS OBTAINED. BOX PLOT OF QUARTILES 835 
IS PLOTTED, WITH WHISKERS EXTENDING TO NEAREST POINT WITHIN 1.5 IQR. FLIERS ARE DRAWN FOR OUTLIERS. EACH OF THE 836 
PLOTS IS TITLED ACCORDING TO THE BINARY CLASSIFIER THAT WAS EVALUATED , WHILE BATCH CORRECTORS ARE KEPT IN THE 837 
SAME ORDERING AND GROUPING AS IN THE REST OF THE PAPER . MULTINOMIAL NB CRASHED ON HANDLING NEGATIVE VALUES , 838 
REDUCING THE NUMBER OF BATCH CORRECTORS WHOSE OUTPUT IT COULD HANDLE .   839 



35 

 

6.3. Datasets 840 

6.3.1. Selecting data 841 
In this supplementary section we outline the procedure that was used to select the datasets. For 842 

this, we used the ‘curatedMetagenomicData’ package that was made available on CRAN, which had a 843 
selection of 20,283 samples taken from 86 studies of shotgun metagenomics data. In addition, this 844 
package used the same procedure on each of the raw reads by running MetaPhlan3 with default 845 
settings, and had curated the metadata of each of the datasets, which is notoriously rare within the field. 846 

After having obtained access to all the datasets available of the curatedMetagenomicData dataset 847 
and performing some initial exploration, we filtered out all but the first (and only) sample of a patient, to 848 
prevent longitudinal samples from influencing our results. Then, we calculated the percentage of 849 
samples within each study that were diseased and selected the studies that had at least 5 percent 850 
control/healthy samples and 5 percent case/diseased samples, and had at least 40 samples. We then 851 
grouped these studies by the diseases that they investigated and graphed each study in a stacked bar 852 
plot showing the number of samples for each disease, which can be viewed in Supplementary Figure 853 
1.  854 

From this graph it was clear to us that Colorectal Cancer (CRC) studies were both most balanced 855 
as well as the largest in total within the scope that we had selected. We thus selected these datasets 856 
to perform our analysis on and downloaded them, again making sure that we only kept a single sample 857 
per patient. Apart from taxonomic data, the package also had many other datatypes available, like gene 858 
families and pathway coverage. We elected to focus solely on the taxonomic abundance and specifically 859 
the abundance of particular species, both to simplify the project and because this had been found to 860 
perform best for classification for many cases [4]. 861 

The code for analyzing the curatedMetagenomicDataset is provided in our rough work repository:  862 
https://github.com/AbeelLab/ngs-batch-evaluation-rough    863 
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7. Additional materials 864 

7.1. Additional Data Analysis 865 
Before trying to understand the advantages and drawbacks of batch correction methods, it is 866 

appropriate to consider what the input looks like. Taxonomic count data obtained from metagenomic 867 
sequencing has a number of characteristics that make it harder to apply traditional techniques. 868 

Read counts are correlated. While traditional batch correction techniques assume that microbial 869 
species are independent, sequence data represents the abundance of corresponding microbial 870 
communities [21]. This can create problems as while the sum of the counts is some constant value, 871 
standard statistical methods assume no such constraint and result in spurious values [9]. 872 

Uneven sequencing depths can have an unmapped technical influence, as some low abundance 873 
bacteria are not measured at lower sequencing depths [58]. Statistical comparison of samples can be 874 
hindered by these differences in depth [59]. 875 

Sparsity and overdispersion. The many zeroes in taxonomical microbiome data have two possible 876 
sources. They may come from an actual absence within the sample, a ‘structural’ zero, or they may 877 
come from under sampling of the sample, a ‘sampling’ zero. In addition, the counts within data are 878 
widespread in their value, making conventional methods of batch correction less suited [9]. 879 

Compositionality. When sequencing the microbiome, the samples are by necessity a small subset of 880 
the entire microbiome, and cannot inform on the absolute abundances of the bacterial population. 881 
Instead, relative abundances are obtained in the form of counts, which make it harder to perform many 882 
statistical analyses [35,60,61]. 883 

To confirm that the taxonomic OTU counts suffer from these same issues, we visualized the 884 
dispersion of its data in Supplementary Figure 7-1, wherein it is clear that the variance of the count data 885 
is nowhere near its mean, indicating overdispersion. This means that we cannot apply some of the 886 
typical count model data analysis, which relies on undispersed data. 887 

To show the sparsity of the data, we counted the percentage of features that were non-zero for 888 
each of the samples in all the studies, which we show in Figure 7-2. It can be seen that only 10-20% of 889 
all counts is non-zero.  890 

On a per-sample basis, we visualized the saturation of features by going over each sample in 891 
random order 10 times and counting how many features had been non-zero (cumulatively). The 892 
resulting graph is shown in Error! Reference source not found. The sharpness of the slope when it 893 
cuts can be seen as an indication of how many samples the data needs to be able to learn fully. The 894 
slope being sharp for the smaller studies indicates they lack the amount of samples to be able to fully 895 
learn about its features. 896 
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7.1.1. Overdispersion of taxonomic count data 897 

 898 

FIGURE 7-1  DISPERSION OF THE DATASETS SHOWN BY PLOTTING THE VARIANCE OVER THE MEAN FOR THE FEATURES IN THE 899 
DATASET. EACH POINT REPRESENTS THE MEAN AND VARIANCE OF A SINGLE FEATURE IN THE RAW TAXONOMIC COUNT DATA . 900 
BOTH AXES ARE LOGARITHMIC BASE 10. FOR ILLUSTRATIVE PURPOSES TWO FUNCTIONS FOR THE VARIANCE ARE PLOTTED , ONE 901 
LINEAR AND ONE QUADRATIC .  902 

7.1.2. Sparsity of the datasets 903 

 904 

FIGURE 7-2  SPARSITY OF THE DATASETS VISUALIZED THROUGH A HISTOGRAM COUNTING THE NUMBER OF SAMPLES THAT HAD 905 
A GIVEN PROPORTION OF FEATURES WHICH WERE ZERO . NONE OF THE SAMPLES HAD A PROPORTION OF ZEROES THAT WAS 906 
BELOW 75%,  SO FOR EACH SAMPLE AT MOST 25%  OF THE FEATURES HAD A NON-ZERO VALUE. ALL SAMPLES HAD AT LEAST A 907 
FEW FEATURES THAT WERE NON-ZERO. DATA WAS GENERATED WITHOUT ADDING PSEUDOCOUNTS . 908 
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7.1.3. ECDF of species for each study 909 

 910 

FIGURE 7-3  GRAPH SHOWING SATURATION OF FEATURES . FOR EACH STUDY, AND THE COMBINATION OF ALL STUDIES (‘ALL’), 911 
IN 10 RANDOM SHUFFLES, THE NUMBER OF FEATURES THAT WERE NON-ZERO WAS COUNTED CUMULATIVELY . THE AVERAGE 912 
NUMBER OF FEATURES ENCOUNTERED AT THE I TH SAMPLE FOR A STUDY WAS PLOTTED ON THE LINE , WITH THE SHADED AREA 913 
SHOWING THE CONFIDENCE INTERVAL . YACHIDA ET AL. HAS A TOTAL OF  509  SAMPLES WITH 696 NONZERO FEATURES. LINE 914 
THAT GOES FARTHEST IS FOR ALL STUDIES TOGETHER . SLOPE OF LINE WHEN IT REACHES ITS LAST SAMPLE IS SHARP FOR SMALLER 915 
STUDIES, SMALLER FOR YACHIDA ET. AL. AND SMALLER STILL FOR ALL STUDIES COMBINED . 916 

 917 

7.2. Alternative data sources 918 
In addition to the curatedMetagenomicData package, we also explored using MGnify and downloading 919 
and processing datasets ourselves.  920 

MGnify is a microbiome analysis resource provided by the European Bioinformatics Institute (EMBL-921 
EBI) to which metagenomics data is submitted and automatically processed using their pipeline. With 922 
4,294 studies submitted at the time of writing, 928 of which are related to the digestive system of the 923 
human microbiome, this was an avenue worth exploring. The increasing usage of this and other similar 924 
all-in-one platforms like MGRast, Qiime2, and Galaxy it is increasingly relevant to explore the results 925 
that these produce. 926 

To investigate the usage of this platform we queried its API for the studies that were relevant, eventually 927 
narrowing it down to approximately 50 studies that fit our criteria of having both case and control 928 
samples of the human gut microbiome, which we then manually combed through for the treatment 929 
variables, for each of the selected studies.  930 

After this process, we aggregated the data, counting the number of samples for each treatment (control-931 
case) within each of the studies. By selecting those treatment covariates that had more than 50 samples, 932 
we filtered the number of usable studies to 20 as shown in Figure 7-4, which unfortunately did not show 933 
anywhere close to the balance that we desired for our classification task. As such, we elected to put the 934 
effort on hold and instead focus on the studies made available through the curatedMetagenomic Data 935 
package.  936 
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7.2.1. MGnify study data 937 

 938 

FIGURE 7-4  THE NUMBER OF SAMPLES FOUND FOR A NUMBER OF SELECTED STUDIES FROM THE MGNIFY DATABASE, COLORED 939 
ACCORDING TO THE TREATMENT VARIABLE ASSIGNED AS METADATA . METADATA FOR EACH OF THE STUDIES WAS DOWNLOADED 940 
AND PROCESSED MANUALLY TO CLEAN UP THE LABELS . MIXED, OTHER, AND DEL INDICATE THE METADATA PROVIDED BY THE 941 
STUDY WAS INSUFFICIENT TO BE ABLE TO DISTINGUISH CONTROL AND CASE SAMPLES . DISCOVERY AND REPLICATION DID NOT 942 
DISTINGUISH FURTHER TO CONTROL AND CASE . PD = PARKINSON’S DISEASE , MS = MULTIPLE SCLEROSIS, RS = RESISTANCE 943 
STARCH SUPPLEMENT. CD  = CROHN’S DISEASE. POST OPERATION INDICATES SAMPLES FROM PATIENTS THAT WERE TREATED 944 
FOR THEIR CARCINOMA. 945 

  946 
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7.3. Performing own taxonomic read assignment 947 
In tandem with our efforts to build the pipeline for the analysis we also worked on downloading and 948 
processing a number of datasets, starting with the datasets found through the curated package, we 949 
extracted the ECBI ids that were available, downloading the data for each using the prefetch and 950 
fasterq-dump tools provided by the SRA toolkit. The data was then trimmed using the Trimmomatic 951 
package and kraken2 was run on the data, using the standard dataset. 952 

 We elected not to use the data thus obtained for several reasons; firstly, not all studies had 953 
accession IDs available, and some of the samples referenced multiple accessions making it unclear 954 
which one would have to be used. Lastly, the Kraken tool is used for general analysis and does not 955 
provide a human gut microbiome specific dataset while MetaPhlan3 is the latest of an excellent line of 956 
tools that is specialized in human gut microbiome, which makes the dataset more fitting for the analysis 957 
of the samples that we were focused on. 958 

7.4. Building an AutoEncoder 959 
In addition to trying out many of the algorithms already available and proven to work to some extent on 960 
the data we had available, we also investigated the potential of developing our own algorithm. As 961 
autoencoders have been shown to work for metabolomic and single cell RNA sequencing [62–64], they 962 
were chosen as avenue for exploration. In addition we were fascinated by the recent development of 963 
contrastive autoencoders, also known as Wasserstein Autoencoders (WAE) [65]. 964 

 This algorithm works by learning to distinguish pairs of samples from each other that are either 965 
from the same batch or from different batches, and have either the same or different labels. It first 966 
encodes both samples using the same hidden layers towards two parts, z1 and z2, then calculates a 967 
label loss aimed at minimizing the distance between parts with the same label and maximizing the 968 
distance between samples with different labels. Then, a domain loss is calculated simply aimed at 969 
minimizing the distance between samples of the same batch. Lastly, the parts are decoded and the 970 
reconstruction loss is added. 971 

 Unfortunately we did not manage to get the encoder to converge on anywhere close to the 972 
performance desired within the timeframe allocated towards the endeavor, which led to the decision to 973 
leave its results out of the main results of the paper.  974 

  The code for creating the samples, setting up the autoencoder, and training it on the 975 
metagenomic data available is freely available on Deepnote1. 976 

  977 

 

 

 

1 https://deepnote.com/workspace/pluriscient-9a8d4768-9ead-49ef-a014-ce66d9dcda06/project/Armans-
AutoEncoder-b2a5f14d-9e6c-4748-809c-310f1065eaa8/%2Fnotebook.ipynb 
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7.5. Code repository 978 
The codebase that has been developed over the course of the past months can be accessed through 979 
https://github.com/AbeelLab/ngs-batch-evaluation, of which I have attached the root README as well 980 
as the one that can be found in the src/pipeline directory, to illustrate the ease with which the results 981 
can be reproduced. 982 

7.5.1. NGS Batch evaluation 983 

Welcome to the repository associated with the thesis "BATCH CORRECTION OF 984 
TAXONOMIC DATA OF THE HUMAN GUT MICROBIOME FOR GENERALIZATION 985 
OF CASE-CONTROL CLASSIFICATION" 986 

This repository contains all the code and data necessary to perform a full reproduction of the 987 
figures shown in the paper. 988 

It has the following structure 989 

 src  990 
o pipeline: the pipeline used to perform the batch correction and train each of the 991 

classifiers  992 
 README.md: Details on how to configure and run the pipeline 993 

o visualizations: The notebooks used to create each of the visualizations  994 
 common.py: Common functions used by each of the sections, including the 995 

ordering of the batch correctors 996 
 section-1.ipynb: The code for reproducing the figures in subsection 1 of the 997 

results 998 
 section-2.ipynb: The code for reproducing the figures in subsection 2 of the 999 

results 1000 
 section-3.ipynb: The code for reproducing the figures in subsection 3 of the 1001 

results 1002 
 input  1003 

o CRC_studies.csv: the input data, taxonomic read counts obtained from the 1004 
curatedMetagenomicData database 1005 

o scores.csv and feature.*.csv: output data of the results of the pipeline 1006 

7.5.2. NGS batch correction evaluation pipeline 1007 
Requirements 1008 

 Java 11 1009 
 Nextflow 1010 
 Docker or Singularity 1011 
 Conda for some of the postprocessing 1012 

Quickstart 1013 

To quickly run the pipeline with its current configuration on your local machine: 1014 

    nextflow run ./flow.nf -profile docker --base_dataset 1015 
$(pwd)/../../input/CRC_studies.csv  1016 

And start waiting! 1017 
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Configuration 1018 

The configuration of the pipeline can be found in the nextflow.config file. Most 1019 
configuration can be done through editing the params block: 1020 

 Params  1021 
o label_column: column with label of interest for the classifiers (can only for binary 1022 

classification) 1023 
o batching_column: column with batch assignment for each sample 1024 
o feature_column_prefix: prefix that ALL feature columns should have 1025 
o base_dataset: location of the input dataset 1026 
o out_dir: output directory 1027 
o random_seed: Not completely implemented seed for randomness 1028 
o split_modes: How to perform the cross-validation, currently either "L1SO" = "Leave one 1029 

dataset out" or L2SO = "Leave two datasets out" 1030 

o iterations: iterations of cross-validation, should be 1..Nk where N where is number of batches 1031 
and k the number of iterations of cross-validation 1032 

o correctors: batch correctors to implement 1033 
o models: binary classifiers to train 1034 
o pseudo_count: what count to add to all numbers 1035 
o max_cpus: no. of cpus available in total 1036 
o max_mem: size of the memory available 1037 

Binary classifiers 1038 

Most any binary classifier from the scikit learn library can easily be used, and any other that 1039 
implements the same interface. The hyperparameter space does not need to be configured 1040 
within the bin/sklearn_trainer.py file, wherein you need to make sure that 1041 

 The classifier is present in the CLASSIFIERS list as callable 1042 
 The classifier is present in the PARAMETER_GRID dictionary as dictionary holding 1043 

parameters to the callable that can be varied between 1044 

Batch correctors 1045 

To configure batch correctors individually you can find them in the `bin/ba(r)_*.(py|r) files, 1046 
named consistently. To add a new one 1047 

 Create the appropriate file in the bin directory 1048 
 Chmod it to be executable 1049 
 Within flow.nf, Add it to the massive switch of the corrector_code_both function (usually 1050 

copy pasting the previous entry and changing the target is enough) 1051 
 Add any additional requirements to env.yaml or containers/main.Dockerfile 1052 

Post processing 1053 

After the nextflow run has completed, a number of steps still need to be completed so that the 1054 
figures can be created. 1055 

1. From the pipeline directory, run python postbin/run-r-collections.py and wait for 1056 
completion 1057 
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2. Run python postbin/run-r-collections-collect.py and wait for completion 1058 
3. Run collect_dec.py 1059 
4. Move the files in the root of the results directory to the input folder for the figure analysis. 1060 

 1061 


