

BATCH CORRECTION OF
TAXONOMIC DATA OF THE HUMAN

GUT MICROBIOME FOR
GENERALIZATION OF CASE-
CONTROL CLASSIFICATION

By

Eric Antonius van der Toorn

in partial fulfilment of the requirements for the degree of

Master of Science

in Computer Science

at the Delft University of Technology,

to be defended publicly on Wednesday June 22nd, 2022 at 11:00 AM.

Supervisor: Dr. T.E.P.M.F. Abeel TU Delft, supervisor, committee chair

Thesis committee: Dr. D. G. Weissbrodt TU Delft

Dr. Z. Erkin TU Delft

C. Peng TU Delft, daily supervisor

This thesis is confidential and cannot be made public until June 22, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

ii

Page intentionally left blank.

iii

Preface
This report is the result of my thesis project to obtain the Master of Science degree for the Bioinformatics
specialization of the Artificial Intelligence track in Computer Science, and I would like to thank the reader
for their attention and interest. This project started from a discussion with Thomas at the end of last
year, molding during my literature survey into something I believe neither of us had expected. It was
really a first occasion for me in which I had to face the freedom of creating and directing my own project,
which was both thrilling with the possibilities of where it could go, as well as heavy in terms of
responsibility.

This document has two parts; firstly, a scientific paper written with the goal of publication, demonstrating
the main results as well as the methodology used for obtaining these. This includes a supplementary
section with figures and details related to and referenced by the paper. Secondly, I have included
additional chapters that describe additional work that did not make it into the paper, including the
development of an autoencoder that showed inadequate performance as well as the READMEs of the
codebase developed for the project.

My thanks go first of all to Thomas Abeel, my supervisor, for his guidance throughout my project, from
pushing me to do something I wanted to explore while giving critical feedback at every stage such that
I could improve my results, and know where to go next. Chengyao Peng, my daily supervisor, was
always available for questions and discussions, engaging me with my thesis through her constant
positivity, and I am deeply thankful for her support. Furthermore, the AbeelLab and the rest of the PRB
group made the work environment so much more fun and engaging that I ended up working in the
offices, enjoying my coffee breaks with everyone that wanted to join. Finally, the care I got from the
people close to me is amazing and overwhelming, marking me a happy guy.

I hope you enjoy,

Eric Antonius van der Toorn

Delft, June 2022

1

Abstract 1
Next-Generation Sequencing (NGS) has made it possible to perform metagenomic sequencing of 2

environmental microbiome samples. Colorectal cancer (CRC) benefits from early detection, and many 3
studies find correlations between disease presence and abundance of species in samples of the 4
microbiome. However, these studies are hard to reproduce and even harder to build diagnostic tools 5
from, and one of the major factors for this is the inherent bias in the datasets that were collected, the 6
so-called batch effect. 7

To investigate the extent to which batch effect impacts the generalization of binary classifiers, we 8
performed a benchmark of eleven batch correctors: four existing tools, three transformations and three 9
encoders, assessing the subsequent performance of seven supervised binary classifiers using a leave-10
one-dataset-out (LODO) validation method. In addition, batch effect was measured through both visual 11
(tSNE) and numeric (linear models) methods before and after applying each of the correctors, and the 12
performance at different dataset counts was measured. 13

Batch effect was shown to be present in the shotgun metagenomic data, being reduced by some 14
correction tools while being strengthened by others. Evaluations using AUROC showed that combining 15
datasets without correction improved generalization, even at an equivalent number of samples. When 16
combining batch correctors and different classifiers, the performance over the baseline did not improve 17
significantly. Contrary to its popularity as batch corrector, the performance significantly worsened when 18
using ComBat before training each of the binary classifiers. 19

Thus, even though batch correctors reduce batch effect within our taxonomic count data, they do 20
not significantly improve classification performance when generalizing to separate datasets. We can 21
thus advise against focusing on choosing a batch corrector when building tools for predicting diagnosis 22
of CRC and instead aiming to improve the pool of datasets to learn from. 23

The code for reproducing the results and figures in this work have been made available at 24
https://github.com/AbeelLab/ngs-batch-evaluation 25

2

1. Introduction 26

1.1. Machine learning for gut microbiome-based diagnostics 27
Predicting the diagnosis of a patient based on a sample of their gut microbiome is a challenging 28

task due to the highly complex nature of the microbiome. The microbiome is highly variant, both in its 29
composition and its function, both between patients, latitudinally, and over time within the same patient, 30
longitudinally. Factors contributing to this difference include demographic and biological ones like 31
gender, age and diet [1–3]. The increasing number of available microbiome studies and the increased 32
interest in machine learning [4,5] have sparked more interest in the field as one of the first applications 33
of personalized medicine as a combination of both [4]. 34

 One disease that especially affects the microbiome is colorectal cancer (CRC), the second 35
most common cancer in women and third in men [6,7]. It is a disease that silently develops over the 36
course of multiple years or decades, usually only showing symptoms after it has metastasized. If found 37
early on, the disease is highly curable and can be removed entirely. Early detection of the disease can 38
thus potentially save many lives [8]. 39

 Creating a diagnostic test for CRC can be done by looking at individual biomarkers for the 40
disease and detecting their presence or by combining information from many features with machine 41
learning models. While potentially losing explainability, these models are able to capture more complex 42
patterns than singular biomarkers, which the complex nature of the microbiome may require. 43

Many machine learning approaches have been attempted, from the simplest logistic regression 44
to highly complex deep learning models, showing varying amounts of success [4]. Unfortunately, results 45
from studies of the microbiome are notoriously hard to reproduce, with independent replications of 46
studies failing to obtain similar results [9]. This is both because of common pitfalls in the creation and 47
evaluation of models as well as properties of the datasets used for microbiome data. 48

The problems facing datasets come both from how their data is obtained as well as their nature. 49
Metagenomic datasets of the human microbiome are frequently small for case-control datasets, with a 50
sample size of between 50 and 100 patients [4,10,11], with the exception of some large collaborations 51
like the Human Microbiome Project (HMP) [12]. The number of features that can be obtained from the 52
microbiome massively exceeds this number, rendering feature selection as one of the first steps in any 53
analysis [4]. Additionally, the most frequently used features, count data of either the genes or the 54
species, follow a non-normal distribution, making them less suited to many typical analyses [4,9]. 55

To tackle the issue of small sample sizes and build more robust machine learning models, many 56
studies have come to use multiple datasets, both for learning and for cross-validation [13–15]. 57
Combining datasets from different studies comes with its own issues, however, of which a major one is 58
the batch effect. Batch effect, the bias between each dataset that can inadvertently confound the 59
biological signals, is the topic of this work. 60

 61

1.2. Batch effects: a common challenge facing the integrative 62

machine learning analysis for microbiome data 63

1.2.1. Batch effect 64
Batch effect has several different definitions within the literature, with the most common one 65

being that of technical sources of variation between datasets [16–18]. Specific to next-generation 66
sequencing data, it has also come to include other sources of variation between datasets that are 67
undesired and unaccounted for, including both biological factors like age and diet as well as 68
computational factors like the software used to analyze the raw reads [9,19]. As it is difficult to 69
distinguish between technical and non-technical effects, and datasets rarely note down the same 70
covariates with the same level of accuracy, making it harder to aggregate between them, in this work 71
we use the more inclusive definition, wherein batch effect refers to any variation between batches. 72

3

It has been established that batch effects are present in metagenomic data [16,17,20–23] and 73
that these effects can correlate closely with and confound biological results as to cause their validity to 74
be strongly doubted [16]. A number of studies validate their results on a different dataset [4,24,25], but 75
only recently has the correction of batch effect been methods been of interest for case control 76
classification [26]. 77

1.2.2. Batch correction 78
Batch correction methods try to remove batch effects from the raw data so that it can be 79

analyzed as if all data were from the same batch. These methods range from simple standardization of 80
the data to more complicated deep learning networks, adapted from similar data types like microarray 81
and RNASeq data or developed uniquely for metagenomic data. However, some of these methods rely 82
on complete information about the covariates of the data in order to perform their correction or have 83
other limitations, rendering only a subset useful for predictive diagnosis [16,17,21,22,26,27]. 84

Evaluating the impact that batch correction methods have on downstream analysis is not 85
extensively studied. The effect of batch correction on metagenomic microbiome data has not been 86
extensively studied, and as different correction methods influence the distribution of the datasets 87
differently, the same downstream analysis may not be as effective between them. As such, 88
benchmarking requires exhaustively testing and tuning combinations of batch correctors with binary 89
classifiers. 90

1.3. Contribution 91
In this work, we aim to achieve a thorough analysis of batch effects in real-world gut microbiome 92

data sets for CRC patients. First, we demonstrate how batch effects affect the accumulated data set 93
we collected. Next, we measure the effectiveness of integrating multiple batches towards generalization 94
on unseen batches. Last, we provide an evaluation of the most commonly used batch correction 95
algorithms within the field of metagenomics for removing batch effects. In the end, we focus on 96
delineating the impact of these algorithms on the generalization of supervised case-control classification, 97
by evaluating the classification performance on unseen batches. Through this, we hope to provide new 98
insights and guidance for the future machine learning research making use of this kind of data, and aid 99
the development of a predictive model. 100

4

2. Methodology 101

2.1. Colorectal cancer microbiome datasets 102
The analyses in this work were performed on a set of eleven colorectal cancer (CRC) gut 103

microbiome datasets, obtained from the CuratedMetagenomicData database [28]. 104
CuratedMetagenomicData is a large-scale human microbiome database that provides uniformly 105
processed human whole-genome shotgun metagenomic datasets. The metadata of each dataset was 106
manually curated by contributors to the project. To date, CuratedMetagenomicData contains 20,533 107
human microbiome samples from 90 publicly available studies [28]. 108

Among the CRC datasets available, we selected those with relatively large total size and balanced 109
disease and healthy samples, after filtering out all repeated longitudinal samples. These longitudinal 110
samples were filtered out to prevent contamination between training and test sets. The full procedure 111
for obtaining and filtering our datasets can be found in Supplementary section 6.3.1. 112

The metadata of the datasets used can be found in Table 6-1. After filtering, most of the selected 113
datasets had between 50 and 130 samples available, with the exception of Yachida et al. which has 114
more than 500 samples. 115

Each of the raw metagenomic datasets was processed using the MetaPhlan3 package to obtain a 116
species-level resolution of the number of reads associated with a clade, using around 100,000 microbial 117
genomes [13]. The features were then filtered to only select species, as this has been shown to allow 118
for the most accurate classification from a single data type [4]. The resulting dataset format is shown 119
below in Table 2-1, outlining the eventual dataset that was used for the modelling. 120

Batch Label Disease Label Species 1 Species 2 … Species 934
FengQ_2015 control 3914 0 … 0
FengQ_2015 CRC 1709 0 … 0
FengQ_2015 control 73699 0 … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
YuJ_2015 control 0 51343 … 0
YuJ_2015 CRC 687589 44302 … 0
YuJ_2015 CRC 275081 232314 … 0

TABLE 2-1 SAMPLE OF DATASET USED , SHOWING BATCH, LABEL, AND FEATURE INFORMATION . BATCH REPRESENTS ONE OF 121
THE ELEVEN DATASETS USED . DISEASE LABEL INDICATES WHETHER THE SAMPLE WAS FROM A CASE OR CONTROL SAMPLE . 122
RANDOM REPRESENTATIVE SUBSET OF SPECIES WAS CHOSEN FOR FEATURES , WITH SHOWN DATA FROM BACTEROIDES 123
STERCORIS, BILOPHILA WADSWORTHIA AND ACTINOBACULUM MASSILIENSE FROM LEFT TO RIGHT RESPECTIVELY . 124

2.2. Batch effect evaluation 125
To fully evaluate the presence and strength of batch effects, we relied on a few evaluation methods 126

from different aspects, including visualization batch effects by dimension reduction, correlation analysis, 127
and silhouette score analysis. Through dimension reduction of microbiome datasets from different 128
studies, we visualized whether the batch effects are strong enough to cluster the datasets present [29] 129
while correlation analysis allowed us to quantify which microbial features are influenced by the batch. 130
The silhouette score then showed an objective measure of how well the batches cluster. 131

2.2.1. Visualizing batch effects 132
For visualizing high dimensional microbiome data, we used the T-distributed Stochastic Neighbour 133

Embedding (tSNE), a dimension reduction method developed by van der Maaten [29], which aims to 134
minimize the Kullback-Leibler divergence between the actual distribution of points in the original 135
dimensionality and the points in the projection in two dimensions. This dimension reduction method was 136
used to group samples locally and avoids overlapping points closely, as it is non-linear and performs 137
different transformations on different regions. tSNE was chosen over the also commonly used principal 138
component analysis (PCA) as PCA is known to break down in high-dimension cases [30]. 139

5

2.2.2. Features significantly influenced by covariates 140
As an alternative to the visual analysis, a correlation analysis determined the presence of batch 141

effects on a per-feature basis. The individual features are considered as the output variable for a model 142
with the batch and disease labels as categorical input variables. After fitting this model, a likelihood ratio 143
test was used to determine whether having the batch and disease label present as variables explains 144
more of the feature’s variance than not [32]. To correct for multiple testing, Bonferroni correction was 145
applied to the p-values obtained from the test by the number of features present in a dataset. Each 146
batch corrector was seen as an independent experiment, and correction was only applied with regards 147
to the number of features its output possessed. In addition to a simple linear model, negative binomial 148
model was also used, as it fits the distribution of the unprocessed individual features more closely [31]. 149

Rather than the coefficients determined from the fits, we calculated the number of significantly 150
corrected features that had either the batch information as a significant factor, the disease label as a 151
significant factor, or both. As some transformations change the number of correlated feature, which 152
made a direct comparison unreasonable, we divided the number of corrected features by the total 153
number of features present in each transformed dataset to obtain proportions. 154

We expected the proportion of features that have batch as a significant factor to fall after batch 155
correction, while those with disease label as a factor would remain be equivalent or increase if the 156
biological information became less confounded. 157

2.2.3. Silhouette Scores 158
The silhouette score, also known as the average silhouette width, allowed for quantitatively 159

evaluating the effectiveness of a clustering on a per-sample basis. It is the average silhouette coefficient 160
for all the samples present in the dataset [22]. The silhouette coefficient compares the intra-cluster to 161
inter-cluster distances for a sample following 162

𝒔𝒊 =
𝒃𝒊 − 𝒂𝒊

𝐦𝐚𝐱(𝒂𝒊, 𝒃𝒊)
 163

EQUATION 2-1 FORMULA FOR CALCULATING THE SILHOUETTE WIDTH OF A SINGLE POINT S I 164

Here, ai is the average intra-cluster distance, while bi is the average distance to the nearest cluster 165
that sample si is not part of. To calculate distance, we use the cosine similarity, one of the most typical 166
distance metrics for sparse high-dimensional data [32]. The coefficient si is bounded between -1 and 1, 167
where positive values indicate that the clustering is correctly assigned to a cluster while negative values 168
mean that another cluster should have been assigned instead. 169

While usually used to evaluate the performance of a clustering algorithm, this metric can also be 170
used to assess the quality of a clustering task based on the known cluster labels of the samples 171
[33].Here, the known cluster labels were either be the disease labels or the batches. When evaluating 172
the quality of the batch clustering, the silhouette score should then be on or below 0, indicating that 173
clusters overlapped and were not easy to match. 174

When samples are instead clustered by disease labels, a higher silhouette score indicates that the 175
case and control samples are more clearly clustered together. As the reason for applying batch 176
correction is to remove confounding effects on the biological signal, batch correction should have a 177
positive effect on this score. This positive effect could be outweighed by correction inevitably removing 178
some biological signal as a side effect [34], which would result in a net decrease of the silhouette score. 179

 180

6

2.3. Batch correction methods 181
While creating a statistical model for predicting a treatment variable is a common analysis done 182

with microbiome dataset, these usually require the target label as covariate [4,22,24–26]. To enact the 183
approach of a diagnostic test, we look specifically at predicting the health of a subject from an entirely 184
new batch. 185

The chosen batch correction methods were divided into three categories. The first category 186
consists of existing tools that are commonly used for batch correction, including ComBat, ComBat-Seq, 187
and Limma removeBatchEffect. The second category includes the commonly used transformations 188
mapping features one-to-one to remove batch effect. Lastly there is the category of encodings that 189
extract features of the count data in order to find some common representation within the data to get 190
rid of the batch effects. The methods chosen are listed in Table 2-2, along with a short description and 191
brief implementation details. 192

In addition to the default settings of the selected, we also included a number of adaptations deemed 193
promising. Quantile transformation was added with both a uniform and normal distribution, as well as 194
in combination with a centered log-ratio transform, because this is a frequently used step towards 195
standardizing datasets [22,35]. Feature selection was also applied by thresholding based on the 196
variance, but only after first performing CLR, due to the high variance of the negative binomially 197
distributed data causing thresholding to remove few to no features for uncorrected data. 198

A diagnostic test would use some form of online batch correction, continuously working on new 199
samples. As such, the test dataset were corrected separately from the training datasets to simulate this 200
behavior. In the last column of the table, we categorized the procedure that was used for this 201
transformation, which aimed to use information learned from the training set to enable or improve the 202
transformation. 203

When methods perform their correction in a batch-wise manner, not using information aggregated 204
over multiple batches, they could be directly applied to the test dataset. An example of this is batch 205
mean centering, which standardizes each batch separately. While useful in this comparison, this 206
method is not ideal considering that in an online, continually operating, setting, batches would consist 207
of single samples or small groups at most, meaning that such corrections would become inapplicable. 208

Our single ‘Reference’ method is ComBat, which has an explicit parameter to accept a batch that 209
it maps the rest of the batches towards. Here, the training set could simple be given as a single 210
reference batch, mapping the test set towards the training set, without modifying the training set. 211

In contrast, when this option was not available for other tools while still requiring multiple batches 212
in order to function, a copy of the training dataset was appended after it was already corrected and 213
named as a single batch. As the training dataset is always much larger than the testing dataset, this 214
made it more likely for the latter to be aligned with the corrected training dataset. 215

 All other methods were capable of learning their transformation on the training dataset and then 216
applying that on both the training and testing dataset directly, in the same manner as normally done in 217
preprocessing before machine learning models are trained. These methods transform batches in the 218
same manner regardless of batch size, rendering it the preferred choice for online batch correction. 219

 Method Description Implementation Test set transformation
Baseline Baseline Doing nothing but

adding pseudo
counts

All counts + 1 Batch-wise*

Existing Tools ComBat Empirical bayes
method for
adjusting Location
and Scale

‘ComBat’ from the SVA
package (3.42.0) from
CRAN [36]

Reference**

 ComBat-Seq Adaptation to
ComBat for RNA-seq

‘ComBatSeq’ from the
SVA package from
CRAN (3.42.0) [36]

Appends***

7

 220

 ReComBat Adaptation to
ComBat using
ElasticNet

‘reComBat’ python
package (0.1.0) [37]

Appends***

 Limma Creates a Linear
Model of batch
effect, then
subtracted

The removeBatchEffect
function of the Limma
package on CRAN
(3.50.0) [38,39]

Appends***

Transformations Batch Mean
Centering (BMC)

Standardizes
feature-wise

Subtract the mean,
divide by the variance
per batch (feature-
wise)

Batch-wise*

 Centered Log-Ratio
(CLR)

Log transforms then
subtracts the
geometric mean of
features batch-wise

Own implementation Batch-wise*

 Normalize Standardizes
feature-wise with
learned transformer

Learn mean and
variance per feature of
training set

LearnedX

 Isometric Log-Ratio
(ILR)

Applied CLR then
maps to the
orthonormal basis of
the CLR plane

Compositions package
(2.0.4) from the CRAN
dataset

LearnedX

 Quantile (uniform) Feature-wise
mapping of
distribution to
uniform distribution

QuantileTransformer of
the scikit-learn (1.0.2)
package with default
settings

LearnedX

 Quantile (normal) Feature-wise
mapping of
distribution to
normal distribution

QuantileTransformer of
the scikit-learn (1.0.2)
package with normal
distribution as output
[40]

LearnedX

 CLR + Quantile
(uniform)

First perform CLR,
then Quantile (
uniform)

Own implementation LearnedX

 ILR + Quantile
(normal)

First perform ILR,
then Quantile
(normal)

Own implementation LearnedX

Encodings PCA (20) Linear
transformation to
find components
that explain
variance, with 20
components

PCA transformer of the
scikit-learn package
(1.0.2) [40]

LearnedX

 PCA (100) Same as PCA (20),
except with 100
components

PCA transformer of the
scikit-learn package
(1.0.2) [40]

LearnedX

 CLR +
VarianceThreshold

First perform CLR,
then drop features
with a variance
below 0.1

Own implementation
for CLR,
VarianceThreshold from
the scikit-learn library
(1.0.2)

Batch-wise*

Details *Batch-wise: The
corrector worked in
a batch-wise
manner, and usage
was equivalent on
training and test sets

**Reference: The
corrector used the
training set as a
known reference.

***Appends: The
corrector appended the
corrected training
datasets as a single
dataset before
correction

XLearned: The batch
corrector learned a set of
parameters on the training
dataset which could then be
used when correcting the
test dataset

8

TABLE 2-2 BATCH CORRECTION METHODS USED IN THE BENCHMARK . NAMES ARE LISTED ALONG WITH DESCRIPTIONS AND 221
IMPLEMENTATIONS USED . IN ADDITION, THE METHOD USED FOR SUBSEQUENTLY TRANSFORMING OF THE TEST SET IS GIVEN . 222
FULL IMPLEMENTATION DETAILS IN THE CODE REPOSITORY . METHODS ARE GROUPED AND SORTED BY THREE CATEGORIES WITH 223
THE BASELINE MODEL AT THE TOP . 224

9

2.4. Set-up Machine Learning experiments 225

2.4.1. Binary classification evaluation 226
For evaluating the algorithms, we used the area under the receiver operating characteristic curve 227

(AUROC), which summarizes the information of the receiver operating characteristic curve (ROC curve). 228
After obtaining the probabilities that a classifier assigns to a sample being the case or control, the ROC 229
curve can be obtained by calculating the true positive rate (TPR) over the false positive rate (FPR) at 230
various thresholds of sensitivity. They are defined below in Equation 2-2. 231

𝑻𝑷𝑹 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
, 𝑭𝑷𝑹 =

𝑭𝑷

𝑭𝑷 + 𝑻𝑵
 232

EQUATION 2-2 TRUE AND FALSE POSITIVE RATES (TPR AND FPR).TP = TRUE POSITIVE, FP = FALSE POSITIVE, TN = TRUE 233
NEGATIVE, FN = FALSE NEGATIVE. 234

 Here, true positives (TP) and false negatives (FN) indicate the number of cases of diseased 235
samples that are classified as diseased and healthy samples respectively. True negatives (TN) and 236
false positives (FP) representing the samples from, respectively, healthy patients that were classified 237
as healthy and diseased patients. 238

 We use the AUROC metric because of its prevalence in the literature, being one of the most 239
commonly reported metrics. There is extensive discussion on whether that position is deserved, with a 240
primary concern on inaccurate representation of imbalanced data. This concern was mitigated in this 241
study by the usage of balanced datasets. 242

2.4.2. Baseline evaluation of dataset integration 243
When establishing a baseline performance of binary classification on uncorrected data, we used 244

the Random Forest classifier, an ensemble method that takes the majority vote of ‘forest’ of decision 245
trees to be its classification. Through aggregating multiple decision trees, it becomes more robust than 246
a single one, which is prone to overtraining quickly. This method is comprehensively studied and a 247
common baseline for classification within metagenomics [4,41–43]. The default settings were used for 248
the baseline, which have been shown to produce globally near-optimal results compared to extensive 249
tuning [44]. This allowed for the complete experiments to be repeated up to 1000 times within a 250
reasonable timeframe. 251

When comparing the performances of the different algorithms, a Mann-Whitney U rank test was 252
performed, implemented by SciPy (v.1.0.2.) [45], a non-parametric version of the t-test, testing the null 253
hypothesis that the underlying distributions of the two independent samples being tested are the same 254
[46]. This test was chosen for its robustness at handling outliers. We report p-values after correction, 255
which are said to be significant if they are found to be less than 0.05 after Bonferroni correction. 256

2.4.3. Evaluation of batch correction algorithms 257
For the evaluation the batch correction algorithms we used a more extensive set of classification 258

algorithms. We chose the most commonly used classifiers in the field, Logistic Regression, Support 259
Vector Machine (SVM), and Random Forest classifiers, wherein a Stochastic Gradient Descent 260
implementation was used for the logistic regression [4]. In addition, a Bernoulli naïve Bayes classifier, 261
K nearest neighbor classifier, and Gradient Boosting classifier that were used in a similar benchmark 262
[26] were added. Lastly, the Multinomial naïve Bayes classifier that was developed for count data was 263
added, as the distribution of the raw data resembles a multinomial one [21,47]. The methods are listed 264
and described in Table 2-3. The scikit-learn library (version 1.0.2) [40] was used to implement all 265
classification algorithms. 266

Each of the classifiers was tuned using a randomized grid search over the parameter space given 267
in the table, wherein all other parameters were left at the defaults of the scikit-learn library. The tuning 268
used 10 random parameter selections, selecting the best using 5 internal cross-validations, wherein the 269
validation was modified to optimize for the leave one dataset out (LODO) validation with the AUROC 270
metric. The parameters that were validated on are shown in the last column of Table 2-3. The search 271
was performed with RandomizedSearchCV from the scikit-learn library. 272

10

To evaluate each classifier on the test set, we use the same LODO approach [14], wherein each 273
study is left out as the test set once, with the others used to train the classifier. We perform the Wilcoxon 274
signed rank test to test the hypothesis that the classification scores of two classifiers come from the 275
same distribution, with the samples paired by iteration, as each of the iterations will have scores 276
evaluated on the same test set. 277

The p-values of the tests are corrected for multiple testing with Bonferroni correction, multiplying by 278
the amount of tests performed within each classifier’s results. As each batch correction algorithm’s 279
performance is compared only to the baseline, the number of tests performed is equal to the number of 280
batch correction algorithms. P-values are reported after correction, and those that are below 0.05 after 281
correction are said to be significant. 282

TABLE 2-3 THE BINARY CLASSIFICATION METHODS USED IN THE BENCHMARK , WITH A DESCRIPTION AND THE PARAMETER SPACE 283
THAT WAS SEARCHED USING A RANDOM GRID SEARCH WITH 10 ITERATIONS. PARAMETERS NOT NAMED IN THE PARAMETER 284
SPACE WERE LEFT AT DEFAULT. FULL PARAMETER SPACE EXPLORED CAN BE FOUND IN SUPPLEMENTARY SECTION 6.1.2 285

Name Description Parameters varied
Random Forest Classifier Aggregating the decisions of multiple

decision trees by taking the majority vote
when choosing a class for a sample

- Number of trees
- Number of features to consider each split
- Maximum depth of each tree
- Minimum number of samples for splitting

internal node
- Minimum number of samples for being a leaf

node
Bernoulli NB Multivariate Bernoulli naïve Bayes classifier

which binarizes all its input
- Additive smoothing parameter
- Whether to learn priors first

Gradient Boosting Classifier Builds an single regression tree in additive
fashion.

- Number of boosting stages
- Learning rate for each stage
- Maximum depth of tree

KNeighbors Classifier Uses the k-nearest neighbors to vote on
which class a point belongs to

- Number of neighbors to consider
- Weighting of the neighbors
- Algorithm to use
- Distance metric to use

Multinomial NB Multinomial naïve Bayes classifier - Additive smoothing parameter
- Whether to learn priors first

Stochastic Gradient Descent Classifier Linear Classifier, including logistic
regression trained through Stochastic
Gradient Descent.

- The loss function
- The regularization penalty
- The learning rate

Support Vector Machine/Classifier Finds a hyperplane margin that best
separates the classes.

- Regularization strength

11

3. Results 286
This work presents an evaluation of batch effects and their impact on generalization. Firstly, an 287

investigation of batch effect is presented, both before and after correction. Then, the generalization of 288
performance without any removal of batch effects is assessed on a baseline binary classifier trained on 289
either a single or mixed datasets. We conclude with a comparison of leave one dataset out (LODO) [14] 290
performance of ML algorithms trained on each of the different correctors data, establishing whether 291
batch correction should be performed before learning on new datasets. 292

3.1. Batch effects are reduced by some batch correctors 293
Before comparing the performance of binary classifiers on batch corrected data, we established to 294

what extent batch effect was present in the data and whether batch correctors could reduce this while 295
avoiding the loss of biological signal. We hypothesized that batch effects are present in the datasets 296
and that batch correctors would show varying degrees of reduction, wherein the best correctors would 297
reduce the batch effect while increasing biological signal detected. To test this hypothesis we 298
considered both a visual angle to establish a intuition and numerical angle to evaluate it. We found that 299
batch effect was present, differing in its strength between our datasets. Some correctors, including 300
ComBat, decreased this effect without seeming to lose label information, while others increased both 301
the correlation with the batch and label effects, which was unexpected. 302

3.1.1. tSNE visualization shows different degrees of batch correction 303
To visualize the effect of batch correction, the tSNE dimensional reduction was performed for each 304

of the transformers as well as the baseline. In Figure 3-1 a representative subset of the transformers 305
and studies is shown, while the full set of tSNE and UMAP visualizations for both studies and 306
transformers can be found in Supplementary sections 6.2.2 and 6.2.3. 307

The baseline without any correction applied showed clustering for some studies but not all, 308
indicating some level of batch effect. Some of the transformations showed more clustering afterwards, 309
like ‘Quantile (0),’ ‘BMC,’ and ‘CLR,’ while reduced the clustering, as can be seen in ‘ComBat-integrated.’ 310
Increased mixing for these algorithms suggests that batch effect is reduced, with the nearest neighbors 311
of samples in a batch more frequently being from a different batch. This suggests that the batch 312
correctors that decreased clustering could be more effective for reducing batch effects. 313

 314

12

 315

FIGURE 3-1 REPRESENTATIVE SUBSET OF TSNE PERFORMED ON ALL STUDIES AND BATCH CORRECTORS WITH DEFAULT SETTINGS . 316
FROM TOP LEFT TO BOTTOM RIGHT THE BASELINE WITH NO TRANSFORMATION , THE CENTERED LOG-RATIO TRANSFORMATION, 317
THE QUANTILE TRANSFORMATION AND THE COMBAT INTEGRATION ARE SHOWN. 318

3.1.2. Proportion of features correlated with batch identity is affected by batch 319
correction 320

To quantitively evaluate batch effects on individual features, we determined the proportion of 321
features significantly correlated with batch and disease labels, before and after batch correction, by 322
fitting linear and negative binomial regression models. Also, we calculated the according silhouette 323
scores based on batch and disease labels for the dataset corrected by different batch correction 324
methods. The resulting proportions are shown in Table 3-1. 325

Without any processing, 18.2% of the dataset’s features are significantly correlated with the 326
batch after a Bonferroni correction, known to be especially conservative [48]. In contrast, only 1% of the 327
features had the label as a significant factor, in both the linear and the negative binomial models. As 328
some binary classification methods randomly pick features to consider, having only a few features with 329
significant correlation with the label could increase the variance in performance between runs. 330

The results from batch correction tools all showed a decrease in the proportion of features that 331
were significantly correlated with batch information, indicating a decrease in batch effect. ReComBat 332
and Limma especially showed a large decrease, with the latter having no features where batch was a 333
significant enough factor. Simultaneously, the proportion of label-correlated features stayed the same 334
(ComBat-Seq and Limma) or increased marginally (ComBat and reComBat). This is interesting because 335
batch correction tools are known to also remove at least some biological information [22], which should 336
then reduce the proportion of features correlated with the batch. This is potentially because the linear 337
model being better able to model the data after being normalized by the tools. As ComBat-seq outputs 338
count data retaining the same proportion of label-correlated could thus be explained. 339

The transformations and encoders, in contrast, increased the proportion of features that had 340
batch as a factor. This was especially clear in PCA (20), where only 1 of the 20 features did not have a 341
significant correlation with the batch. PCA (20) had no features with a significant correlation to the label, 342
indicating that the first 20 principal components of the data did not have relevant biological signals. CLR 343
+ VarianceThreshold had a higher proportion of correlated features with both the label and batch than 344

13

only applying CLR, which is to be expected considering that the VarianceThreshold removes features 345
with low variance. 346

 347

TABLE 3-1 PROPORTIONS OF FEATURES CORRELATED WITH BATCH AND LABEL . FOR EACH CORRECTOR , IT LISTS THE PERCENTAGE 348
OF FEATURES THAT WERE SIGNIFICANTLY (AFTER CORRECTION FOR MULTIPLE TESTING) CORRELATED WITH THE BATCH AND LABEL 349
BOTH FOR A LINEAR MODEL AS WELL AS A NEGATIVE BINOMIAL (NB) MODEL. PROPORTIONS WERE CHOSEN AS THE TOTAL 350
NUMBER OF FEATURES CHANGES FOR ENCODINGS . INCREASED PROPORTIONS WERE MARKED BY BOLDING VALUES . 351

 To assess the sum effect of the batch correctors on the sample , we evaluated both a batch 352
and label clustering with silhouette scores which average the dissimilarity of points to their cluster 353
compared to the nearest other cluster. When the clustering aligns with the structuring of the data, the 354
silhouette score will be positive and increase to 1, while seemingly random assignments will have a 355
score of 0 for two clusters and more negative scores for multiple clusters. The silhouette scores are 356
shown as boxplots in Figure 3-2. The silhouette score of the baseline varies for all but the baseline due 357
to cross-validation 358

The batch clustering showed that most of the batch correctors increased the chance of a 359
misclassification, decreasing the dataset’s average silhouette coefficient. As there are eleven clusters 360
present for batch clustering this is in line with the expectation that batch correctors correct for batches 361
clumping together, with the odds of other clusters being closer to a random sample becoming higher as 362
the clusters become more mixed. The largest change in performance is from ILR+Quantile which seems 363
to have the most mixed batch corrected data. This seems to contradict the observation made from the 364
feature-wise analysis, possibly due to the differences observed by the feature-wise model, while 365
statistically significant, not large enough to impact the cosine similarity metric. 366

For the label clustering the range of differences is 30x smaller than that of the batch clustering, 367
showing only slight changes in the silhouette scores between the baseline and the correctors. This was 368
possibly due to the number of clusters being much smaller (two instead of eleven) while still overlapping, 369
such that both clusters would have approximately the same distance to each distance on average. 370

ILR + Quantile showed the largest increase in performance, with a median performance 371
increase of 0.009 compared to baseline (p << 1e-10 after correction). This contrasts with the 372
observation from the batch clustering, aligning with the result of the feature-wise analysis, where this 373
corrector was the only one which increased the proportion of correlated features to almost half. The 374
other transformations similarly align with what was observed in the correlation analysis, with all the tools 375
showing a smaller increase than the transformations, with the exception of BMC, ILR, and Normalize, 376

 CORRECTOR FEATURES
WITH BATCH
AS FACTOR ,
NB MODEL
(%)

FEATURES
WITH BATCH
AS FACTOR,
LINEAR
MODEL (%)

FEATURES
WITH LABEL
AS FACTOR ,
NB MODEL
(%)

FEATURES
WITH LABEL
AS FACTOR ,
LINEAR
MODEL (%)

BASELINE Baseline 18.2 18.5 1.0 1.0
TOOLS ComBat - 7.6 - 1.3
 ComBat-seq 9.9 10.1 1.0 1.0
 ReComBat - 0.5 - 1.8
 Limma - 0.0 - 1.0
TRANSFORMATIONS Normalize - 20.7 - 1.0
 BMC - 57.6 - 1.0
 CLR - 37.4 - 5.7
 ILR - 28.6 - 2.7
 ILR + Quantile 83.3 83.3 45.9 45.9
 CLR + Quantile 79.3 79.3 5.8 5.8
 Quantile (normal) 39.6 39.6 6.0 6.0
 Quantile (uniform) - 39.3 - 5.4
ENCODINGS PCA (20) - 95.0 - -
 PCA (100) - 38.0 - 4.0
 CLR +

VarianceThreshold
- 44.0 - 7.0

14

just as in that analysis. This seems to confirm that they clarify biological signal, but not necessarily 377
removing batch effect in the process. 378

 379

FIGURE 3-2 BOXPLOT WITH SILHOUETTE SCORES FOR BATCH (A) AND LABEL(B) CLUSTERING. OBTAINED BY CONCATENATING 380
TRAINING AND TEST SET AFTER BATCH CORRECTION , THEN AVERAGING THE SILHOUETTE WIDTHS ACROSS SAMPLES . THE COSINE 381
METRIC WAS USED TO COMPUTE DISTANCE BETWEEN POINTS. THE MEDIAN OF THE BASELINE WAS DRAWN ACROSS THE Y-AXIS 382
TO ALLOW FOR EASIER COMPARISON WITH BASELINE . ALL CORRECTORS HAD SIGNIFICANTLY DIFFERENT SILHOUETTE SCORES WITH 383
BASELINE (P << 1E-6) WITH EXCEPTION OF BMC FOR BOTH LABEL AND BATCH CLUSTERING AND NORMALIZE FOR LABEL 384
CLUSTERING. BOXES SHOW IQR, WHISKERS SHOW FURTHEST POINT WITHIN 1.5 IQR. OUTLIERS ARE MARKED WITH DIAMONDS. 385
IN ORDER TO SHOW DIFFERENCES CLEARLY , DOMAIN OF SUBFIGURE A IS (-0.35, 0.1) WHILE DOMAIN OF SUBFIGURE B IS (0.0 , 386
0.015). SCORES FOR LABEL CLUSTERING CENTER AROUND 0 CLOSELY, WHILE VARYING BETWEEN -0.3 AND 0.1 FOR BATCH 387
CLUSTERING. 388

 389

15

3.2. Learning from multiple batches increases generalization 390
In this section, we investigate the effect of learning from multiple datasets on binary classification 391

performance on unseen batches. While having more data is usually considered to lead to better 392
generalization [49], multiple datasets could destabilize results and prevent improvement with batch 393
effects. We hypothesized that using multiple datasets would have a positive influence on the 394
generalization of the classifiers by forcing them to be able to handle different batch effects already. We 395
showed that datasets did not generalize well towards other testing datasets, with continually increasing 396
performance when training on multiple datasets. Even when kept at the same size, using samples from 397
different datasets improved scores over a single dataset when testing on an unseen dataset. 398

3.2.1. Single datasets have significantly better performance on their own test set 399
To assess the difference in classification performance between a test set of the same batch and 400

that of different batches, we set up a new experiment with uncorrected data. We first split the datasets 401
into training and testing sets with a stratified 80/20 split, train baseline classifiers on each of the separate 402
batches, and then test their classification performance on both the test set of the same batch, or of all 403
the other batches. Subfigure a of Figure 3-3 shows boxplots with the respective results. 404

The classification performance of the binary classifiers when tested on the remainder of their own 405
dataset, shown in blue in the figure, is volatile, with most having a high spread in performance. This is 406
largest for the studies by Thomas et al. [14] and Hannigan et al. [50], which vary from worse than 407
random (0.5) to perfect classification (1.0). The dataset by Gupta et al. had median performance on its 408
own dataset of close to perfect classification, with perfect classification falling within its IQR, indicating 409
this dataset is easy to distinguish for the classifier. As the number of samples in the test datasets is 410
small we consider it is most plausible that the choice of test dataset causes this variation in performance. 411

The performance of the classifiers on the rest of the datasets is hard to compare, as each of the 412
classifiers leaves out a different dataset (its own) when testing. The variation in performances was a lot 413
smaller for these performance tests, likely due to the test set not varying each iteration. 414

A comparison between the performance on the own test set and the remainder of the datasets 415
shows that the performance on the own test set is significantly better. Eight out of the eleven datasets 416
were significantly better, two (Yachida et al. and Vogtmann et al.) showed significantly worse 417
performance, and one showed no significant difference. For the Yachida et al. dataset, we hypothesized 418
that the increased test performance was due to the number of samples within this study being the 419
equivalent of five of the other studies, which both makes for more samples to learn from and avoid 420
overfitting on the smaller data. 421

To investigate this hypothesis, we reran the same experiment while limiting the training set size 422
to a constant size, choosing the training set size of the smallest dataset (n=40), shown in subfigure b 423
of Figure 3-3. The classification performance of most datasets dropped to 0.6, except whose 424
performance remained around the same due to the sample size already being close to 40 in the 80/20 425
split. The performance of the dataset for Yachida et al. dropped drastically, with the median 426
performance going from 0.77 to 0.60, though it still remained statistically higher (p < 0.05) than the 427
score on its own dataset, which dropped to only slightly above random. 428

 We conclude that the performance of classifiers trained on a single dataset perform better on 429
that dataset’s test split than on different, separate datasets. The bias in datasets is easily overtrained 430
on it seems. The next section will look at whether training the same classifier on multiple of these 431
datasets allows it take these biases into account for new datasets. 432

 433

16

 434

FIGURE 3-3 BOXPLOT COMPARING PERFORMANCE OF RANDOM FOREST BINARY CLASSIFIER WITH DEFAULT SETTINGS FOR 435
PREDICTING DISEASE IN BOTH A TRAIN -TEST SPLIT OF ITS OWN STUDY DATASET (BLUE) AS WELL AS ALL OTHER DATASETS 436
(ORANGE). TRAINING SIZE WAS EITHER 80% OF THE STUDY (SUBFIGURE A) OR EXACTLY 40 SAMPLES (SUBFIGURE B). 437
SIGNIFICANT DIFFERENCES AS TESTED WITH A MANNWHITNEYU TEST ARE MARKED WITH A BRACKET , NUMBER OF STARS 438
INDICATING SCALE OF P-VALUE, WITH *P<0.05, **P< 1E-8, ***P<1E-30 (AFTER BONFERRONI CORRECTION). ALL 439
SIGNIFICANT DIFFERENCES HAVE REST OF OWN DATASET AS GREATER VALUE , EXCEPT FOR YACHIDA ET. AL. WHERE THE 440
PERFORMANCE ON ALL OTHER DATASETS WAS SIGNIFICANTLY GREATER . TEST SPLIT OF OWN DATA SHOWS EQUAL OR BETTER 441
PERFORMANCE FOR ALL STUDIES FOR BOTH TYPES OF SPLITS . 442

 443

3.2.2. Training on more batches increases generalization on new batches 444
To evaluate whether and to what extent using more datasets as training increased 445

generalization performance, we measured the AUROC of the same baseline Random Forest model 446
trained on an increasing number of uncorrected datasets, testing on two datasets that were excluded, 447
randomly chosen each of the 1000 iterations. Performance showed a significant increase (p < 0.05 after 448
correction) when combining more than two datasets. After more than seven datasets were combined 449
the increase saturated, no longer significantly increasing. This shows that using multiple datasets will 450
increase binary classification performance on new datasets, but does not isolate whether this is due to 451
the number of samples or due to the increased diversity from multiple datasets. 452

17

 453

FIGURE 3-4 BINARY CLASSIFICATION PERFORMANCE MEASURED USING THE AUROC METRIC OF A RANDOM FOREST CLASSIFIER 454
RE-TRAINED ON AN INCREASING NUMBER OF STUDIES, TESTED ON A SEPARATE TEST SET. BOXES SHOW QUARTILES OF THE 455
DISTRIBUTION, WHISKERS SHOW LARGEST OBSERVED DATAPOINT WITHIN 1.5 IQR AND OUTLIERS ARE DRAWN SEPARATELY . 456
ENTIRE EXPERIMENT WAS REPEATED 1,000 TIMES. SCORE INCREASES SIGNIFICANTLY AT ALL STEPS BETWEEN 2 AND 7, BUT 457
DOES NOT SHOW AN INCREASE BETWEEN STEPS 7, 8, 9. 458

To assess whether the increased diversity by itself had an impact on generalization 459
performance, we trained the same classifier on fixed numbers of samples of one dataset, Yachida et 460
al., or that same number of samples of all other training datasets before testing it on two unseen test 461
datasets, the result of which is shown in Figure 3-5. There was a significant improvement in 462
performance at each sample size (p < 0.0001, increase in median between 0.046-0.0556 at each step), 463
showing that the usage of multiple datasets is better than a single one for generalization, even with the 464
same sample size. 465

18

 466

FIGURE 3-5 BOXPLOTS OF BINARY CLASSIFICATION PERFORMANCE OF A RANDOM FOREST CLASSIFIER ON AN UNSEEN TEST SET , 467
TRAINED ON 50, 100, 250, AND 500 SAMPLES TAKEN FROM EITHER A SINGLE STUDY (YACHIDA ET AL.), SHOWN IN BLUE OR 468
ALL OTHER TRAINING STUDIES , SHOWN IN ORANGE . EXPERIMENT WAS REPEATED 1000 TIMES. SAMPLES TAKEN FROM MULTIPLE 469
STUDIES HAVE A HIGHER AVERAGE SCORE AND SHOW LESS VARIANCE THAN SAMPLES TAKEN FROM THE SINGLE STUDY ACROSS 470
ALL SAMPLE SIZES, THOUGH THERE IS STILL OVERLAP . FOR THE SAMPLE SIZES 50, 100, 250, AND 500 THE CHANGE IN MEDIAN 471
WAS 0.056, 0.050, 0.047 AND 0.047 RESPECTIVELY, WITH ALL P << 1E-5 472

3.3. Current batch transformations have no significant impact on 473

the generalization of classification performance 474
In this section we investigated what the ideal pair of batch corrector and binary classifier is when 475

evaluated on unseen test datasets using the AUROC metric. We hypothesized that those correctors 476
that showed an increase in the feature correlation and silhouette score would have an improved 477
performance over a baseline classifier. The classifier that performed the best on average for the 478
baseline, the random forest classifier, was not outperformed by any combination in a statistically 479
significant manner, showing that batch effect did not have as much of an impact as was expected. 480

3.3.1. Pipeline for binary classification benchmark 481
To perform the benchmark that was proposed in an organized manner that remains 482

reproducible, a more elaborate setup was required. To this end, we developed a pipeline which can be 483
used to perform mass batch correction, training, and tuning with nested cross-validation, while 484
remaining easy to setup and use. In addition to these goals, we also took into account some common 485
pitfalls, which we describe below along with our steps for their mitigation. The problems explicitly 486
addressed are those listed as common for microbiome research in a survey of more than one hundred 487
studies, performed by the ML4Microbiome consortium in 2021 [4]. An overview of the pipeline is shown 488
in Figure 3-6. 489

To avoid performing feature selection on the entire dataset, the first step of the pipeline is to 490
split the dataset into a training and test set. This prevents features found significant in the test set from 491
leaking towards the models. 492

To correct for the winner’s curse, wherein the best algorithm can be unduly chosen because of 493
random chance, the pipeline performs the entire cross-validation process ten times, cross-validating 494
each time. In addition, balanced datasets are used which reduce the overestimation that could be 495
produced by this curse. 496

19

To enforce appropriate splitting of the datasets, wherein a lack of stratification leads to 497
imbalanced validation and testing datasets, all validation approaches leave entire datasets out. As each 498
dataset was balanced, this maintained class distributions across folds. 499

To avoid handling repeat measurements, which violates the assumptions that samples are 500
identically and independently distributed (i.i.d.) used by cross-validation, we filtered out all repeat 501
measurements of samples in our datasets. 502

To simulate diagnostic tests, each test dataset was batch corrected with learned values if 503
possible, else was combined with the training data in a separate correction procedure that would 504
prevent information leakage. 505

 We developed the pipeline with the Nextflow framework [51], a bioinformatics framework 506
designed for reproducible omics workflows. Each of the jobs of the pipeline runs in isolation on a hand-507
crafter docker container with the capability of adjusting the resources allocated to it as well as the way 508
it is processed through changing the label of the job. Jobs can be automatically queued on clusters 509
using SLURM or similar job management software, and run using docker containers, either using 510
Docker or Singularity when supported. With this implementation, a full evaluation of more than 10,000 511
classifiers could be achieved with Singularity and Nextflow as the only required dependencies on a local 512
system. 513

 514

 515

FIGURE 3-6 PIPELINE OF THE PROCESS USED TO ANALYZE BATCH CORRECTION AND ENCODING ALGORITHMS . THE DATA IS FIRST 516
SPLIT INTO BATCHES, WITH EITHER 1 OR 2 BATCHES LEFT OUT FOR TESTING . THE TRAINING DATA IS THEN TRANSFORMED WITH 517
ONE OF THE BATCH CORRECTION ALGORITHMS (SEE METHODS FOR MORE DETAILS FOR EACH ALGORITHM). THE TEST SET IS THEN 518
TRANSFORMED , POTENTIALLY WITH THE TRANSFORMER USING PARAMETERS LEARNED FROM THE TRAINING DATA (INDICATED BY 519
THE DOTTED ARROW). A CLASSIFIER IS TRAINED ON THE TRANSFORMED TRAINING DATA AND THEN TESTED ON THE 520
TRANSFORMED TESTING DATA (EVALUATION). SEPARATELY, A BATCH EFFECT DETECTION PROCEDURE IS PERFORMED ON THE 521
TRANSFORMED TRAINING DATA TO DETECT THE PRESENCE OF BATCH EFFECTS . 522

3.3.2. Batch correction algorithm does not have a significant impact 523
To investigate the impact of the batch correction algorithm on the model performance, we ran our 524

pipeline ten times on each of the twelve batch correctors, and then trained and tuned seven machine 525
learning algorithms with the corrected microbiome data. Comparing the performances based on their 526
medians, the best performing classification algorithm for each of the batch correction method is 527

20

displayed in Figure 3-7, with the complete set of scores for each combination of the binary classifiers 528
and batch correctors plotted in Supplementary Figure 6-4. 529

The baseline shows a good performance on the test sets, with a median of 0.81 for its best-530
performing classifier, the RandomForest classifier. However, it has a large variance, having both scores 531
worse than random choice and perfect classification. The perfect classification was the result of testing 532
on the dataset of Gupta et al., which showed high performance in earlier testing as well (see section 533
3.2.1), likely as a result of easily distinguishable samples. The lower performance was not the result of 534
any particular dataset, more likely a result of overtraining. 535

The other binary classifiers-corrector combinations do not significantly improve upon the baseline. 536
Most median AUROCs were below baseline performance with the exception of ComBat-seq, CLR, 537
Quantile (uniform) and CLR+VarianceThreshold, which only marginally outperformed it. The best 538
classifier for ComBat had a significantly worse performance than the baseline (p < 0.0001), which is 539
especially noteworthy considering the popularity of this tool for batch correction, and how the adaptation 540
towards the test set used a built-in functionality. 541

The Quantile (normal) transformer in combination with the Bernoulli Naïve Bayes classifier did 542
show one advantage in its consistency. With a lowest score of 0.59, it avoided the many outliers of the 543
random forest classifier, although its 0.25th quantile was lower than that of the baseline’s random forest 544
classifier. The more stable performance of this pair is likely because the Bernoulli Naïve Bayes is not 545
as sensitive as the Random Forest, due to binarizing its input as a first step. 546

The two settings of PCA performed significantly worse than the baseline, showing that the 547
biological signal is not completely encoded in the first principal components. The encoding with 100 548
components, PCA (100), outperforming PCA (20), which only has 20, indicating that the last 80 549
components contain biological signal that is otherwise lost. The variance of the high-dimensional data 550
is likely so high that the first principal components capture more irrelevant noise than biological signal. 551

Random Forest classification was the best performing in six of the twelve correctors in terms of 552
median, while the Gradient Boosting Classifier and Bernoulli NB models outperformed the rest in five 553
and three occasions respectively. All classifiers showed high variance, with many badly performing 554
outliers for even the best performing classifiers. The Bernoulli NB performed exactly as if guessing 555
randomly for the baseline, likely because its internal binarization of each feature did not account for 556
pseudo counts, but this is likely also the reason for its comparative lack of outliers. The most consistent 557
performance was from the Multinomial Naïve Bayes, even considering it could only run on the baseline, 558
Combat-seq, CLR + Quantile (uniform), and Quantile(uniform) outputs because of only accepting non-559
negative values, with no performance below random guessing at 0.5. 560

Overall, considering the best pair of batch corrector and classifier, no one combination is best. 561
Performing no correction before using a random forest classifier will, on average, not lead to worse 562
performance than that of any other corrector-classifier pair. However, to avoid worse-than-random 563
performance the Quantile (normal) transformer can be used in combination with the Bernoulli Naïve 564
Bayes classifier. But even then, the high variance in performance would not recommend these 565
classifiers for aiding in diagnosis. 566

21

 567

FIGURE 3-7 BINARY CLASSIFICATION SCORES OF BEST PERFORMING CLASSIFIERS FOR EACH OF 10 DIFFERENT (COMBINATIONS 568
OF) BATCH CORRECTION METHODS, CATEGORIZED BASED ON THE TYPE OF BATCH CORRECTOR . PERFORMANCE MEASURED IN 569
AUROC. BOXES INDICATE QUARTILES OF DISTRIBUTION , WITH WHISKERS AT FURTHEST POINTS WITHIN 1.5 TIMES IQR. COLOR 570
INDICATES THE BINARY CLASSIFICATION MODEL THAT HAD THE HIGHEST MEDIAN FOR THE CORRESPONDING CORRECTOR AND 571
WHOSE SCORES WAS USED IN THE FIGURE . 572

22

4. Conclusion 573
This work has investigated how best to design a binary classifier for an unseen dataset identifying 574

patients with colorectal cancer. Taxonomic count data obtained from a shotgun metagenomic analysis 575
of the gut microbiome was chosen as datatype, because it can be obtained non-invasively and is 576
becoming more accessible, while allowing for highly accurate prediction. To account for batch effect 577
when combining multiple datasets, combinations of batch correctors and binary classifiers were 578
evaluated. 579

This was the first such benchmark performed on shotgun metagenomics of the human microbiome, 580
with a comprehensive set of both batch correction methods as well as binary classifiers, tested in 581
combinations. The pipeline that was designed allowed for the massive evaluation of more than 10,000 582
classifiers in a reproducible manner. 583

Batch effect was first mapped and analyzed, showing that it was indeed present, though not always 584
strongly. Many of the batch correctors indeed reduced the correlation between features and the batch, 585
though not always in both feature-wise correlations as well as clustering evaluation. Our metrics also 586
indicated that some transformations improved the clarity of the biological signal, allowing the disease 587
label to be more easily distinguishable. 588

Then, it was shown that using single dataset for training and then testing on a separate batch will 589
have significantly different performance then testing on another part of the training dataset. Multiple 590
datasets improved the generalization of binary classification models, even when the total number of 591
samples was equivalent. This led us to conclude that with more diversity, the classifier can learn to 592
ignore batch effect. 593

Lastly, combinations of batch correctors and binary classifiers trained and tested on new datasets 594
in a manner approaching how diagnostic tests would be performed. We showed that no classifier could 595
significantly outperform the baseline classifier, and that ComBat, one of the most commonly applied 596
tools, though shown to remove batch effect detectably, caused subsequent binary classification 597
performance to be significantly worse than the baseline. PCA encodings also decreased performance, 598
showing that the biological signal for CRC was not encoded in the highest variance components. 599

All classifiers had a significant variance in their performance, causing many to have worse-than-600
random performance on occasion. A Quantile transformation to a normal distribution and then training 601
with the Naïve Bayes classifier decreased the variance and could be a better choice to avoid outliers. 602
Using these methods within a diagnostic setting would require 603

What then, is the best approach to deal with batch effects for new unseen datasets? We conclude 604
that training the model on as many different datasets is key towards obtaining the best generalization. 605
Batch correction will have little to no impact and could even reduce the classification performance, even 606
though visibly reducing batch effect. Large datasets from different populations that are clearly labeled 607
by disease will allow future research to create models that can accurately determine whether a patient 608
is likely suffering from CRC. 609

While this benchmark was comprehensive, it was also limited in scope, exploring eleven datasets 610
that were remarkably similar in composition, with balanced case-control sample amounts wherein all 611
where shotgun metagenomes. While this made for a more controlled comparison, future research could 612
broaden the scope of such a comparison to include different data sources like 16S rRNA 613
pyrosequencing, or expand to different diseases like inflammatory bowel disease (IBD) or Autism 614
Spectrum Disorder. Future research could also look into whether batch correction improves results 615
when applied to a progressively smaller number of datasets. This will make this work more broadly 616
applicable. 617

 The code for the pipeline described in this work and to reproduce the figures can be found at 618
https://github.com/AbeelLab/ngs-batch-evaluation along with a description on its usage. 619

23

5. References 620
1. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic 621

microbiota: updating the concept of prebiotics. Nutrition Research Reviews. 2004;17: 259–275. 622
doi:10.1079/NRR200479 623

2. Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J, et al. 624
Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PLOS ONE. 2016;11: e0154090. 625
doi:10.1371/journal.pone.0154090 626

3. Kim D, Hofstaedter CE, Zhao C, Mattei L, Tanes C, Clarke E, et al. Optimizing methods and dodging pitfalls 627
in microbiome research. Microbiome. 2017;5: 52. doi:10.1186/s40168-017-0267-5 628

4. Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, Loncar Turukalo T, Przymus P, Trajkovik V, Aasmets O, et 629
al. Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, 630
Biomarker Identification, Disease Prediction and Treatment. Frontiers in Microbiology. 2021;12: 313. 631
doi:10.3389/fmicb.2021.634511 632

5. Tarca AL, Carey VJ, Chen X, Romero R, Drăghici S. Machine Learning and Its Applications to Biology. PLOS 633
Computational Biology. 2007;3: e116. doi:10.1371/journal.pcbi.0030116 634

6. Flemer B, Lynch DB, Brown JMR, Jeffery IB, Ryan FJ, Claesson MJ, et al. Tumour-associated and non-635
tumour-associated microbiota in colorectal cancer. Gut. 2017;66: 633–643. doi:10.1136/GUTJNL-2015-636
309595 637

7. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: 638
GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A 639
Cancer Journal for Clinicians. 2021;71: 209–249. doi:10.3322/caac.21660 640

8. Mahasneh A, Al-Shaheri F, Jamal E. Molecular biomarkers for an early diagnosis, effective treatment and 641
prognosis of colorectal cancer: Current updates. Experimental and Molecular Pathology. 2017;102: 475–642
483. doi:10.1016/j.yexmp.2017.05.005 643

9. Wang Y, Lêcao KA. Managing batch effects in microbiome data. Briefings in Bioinformatics. 2020;21: 644
1954–1970. doi:10.1093/bib/bbz105 645

10. Gupta VK, Kim M, Bakshi U, Cunningham KY, Davis JM, Lazaridis KN, et al. A predictive index for health 646
status using species-level gut microbiome profiling. Nature Communications. 2020;11. 647
doi:10.1038/s41467-020-18476-8 648

11. Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, et al. Metagenomic analysis of faecal microbiome as a 649
tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66: 70–78. 650
doi:10.1136/gutjnl-2015-309800 651

12. Group JCHMPDGW. Evaluation of 16S rDNA-Based Community Profiling for Human Microbiome Research. 652
PLOS ONE. 2012;7: e39315. doi:10.1371/JOURNAL.PONE.0039315 653

13. Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, 654
functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife. 2021;10: 655
2020.11.19.388223. doi:10.7554/eLife.65088 656

14. Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, et al. Metagenomic analysis of colorectal 657
cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline 658
degradation. Nat Med. 2019;25: 667–678. doi:10.1038/s41591-019-0405-7 659

24

15. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies 660
disease-specific and shared responses. Nature Communications. 2017;8: 1–10. doi:10.1038/s41467-017-661
01973-8 662

16. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and 663
critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11: 733–739. 664
doi:10.1038/nrg2825 665

17. Gibbons SM, Duvallet C, Alm EJ. Correcting for batch effects in case-control microbiome studies. PLOS 666
Computational Biology. 2018;14: e1006102. doi:10.1371/JOURNAL.PCBI.1006102 667

18. Goh WWB, Yong CH, Wong L. Are batch effects still relevant in the age of big data? Trends in 668
Biotechnology. 2022 [cited 8 Apr 2022]. doi:10.1016/j.tibtech.2022.02.005 669

19. Lazar C, Meganck S, Taminau J, Steenhoff D, Coletta A, Molter C, et al. Batch effect removal methods for 670
microarray gene expression data integration: a survey. Briefings in Bioinformatics. 2013;14: 469–490. 671
doi:10.1093/bib/bbs037 672

20. Zhang Y, Jenkins DF, Manimaran S, Johnson WE. Alternative empirical Bayes models for adjusting for 673
batch effects in genomic studies. BMC Bioinformatics. 2018;19: 1–15. doi:10.1186/S12859-018-2263-674
6/TABLES/2 675

21. Dai Z, Wong SH, Yu J, Wei Y. Batch effects correction for microbiome data with Dirichlet-multinomial 676
regression. Bioinformatics. 2019;35: 807–814. doi:10.1093/bioinformatics/bty729 677

22. Wang Y, Lêcao KA. Managing batch effects in microbiome data. Briefings in Bioinformatics. 2020;21: 678
1954–1970. doi:10.1093/bib/bbz105 679

23. Li T, Zhang Y, Patil P, Johnson WE. Overcoming the impacts of two-step batch effect correction on gene 680
expression estimation and inference. bioRxiv. 2021; 2021.01.24.428009. doi:10.1101/2021.01.24.428009 681

24. Hasic Telalovic J, Music A. Using data science for medical decision making case: role of gut microbiome in 682
multiple sclerosis. BMC Med Inform Decis Mak. 2020;20: 262. doi:10.1186/s12911-020-01263-2 683

25. Ai L, Tian H, Chen Z, Chen H, Xu J, Fang J-Y. Systematic evaluation of supervised classifiers for fecal 684
microbiota-based prediction of colorectal cancer. Oncotarget. 2017;8: 9546–9556. 685
doi:10.18632/oncotarget.14488 686

26. Kubinski R, Djamen-Kepaou J-Y, Zhanabaev T, Hernandez-Garcia A, Bauer S, Hildebrand F, et al. 687
Benchmark of Data Processing Methods and Machine Learning Models for Gut Microbiome-Based 688
Diagnosis of Inflammatory Bowel Disease. Frontiers in Genetics. 2022;13. Available: 689
https://www.frontiersin.org/article/10.3389/fgene.2022.784397 690

27. Tom JA, Reeder J, Forrest WF, Graham RR, Hunkapiller J, Behrens TW, et al. Identifying and mitigating 691
batch effects in whole genome sequencing data. BMC Bioinformatics. 2017;18: 351. doi:10.1186/s12859-692
017-1756-z 693

28. Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong DT, et al. Accessible, curated metagenomic 694
data through ExperimentHub. Nature methods. 2017;14: 1023. doi:10.1038/NMETH.4468 695

29. Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of machine learning research. 2008;9. 696

30. Feng J, Xu H, Yan S. Robust PCA in High-dimension: A Deterministic Approach. : 8. 697

31. Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR 698
Genomics and Bioinformatics. 2020;2: lqaa078. doi:10.1093/nargab/lqaa078 699

25

32. Salton G, McGill MJ. Introduction to modern information retrieval. New York: McGraw-Hill; 1983. 700

33. Zhao S, Sun J, Shimizu K, Kadota K. Silhouette Scores for Arbitrary Defined Groups in Gene Expression Data 701
and Insights into Differential Expression Results. Biological Procedures Online. 2018;20: 5. 702
doi:10.1186/s12575-018-0067-8 703

34. Oytam Y, Sobhanmanesh F, Duesing K, Bowden JC, Osmond-McLeod M, Ross J. Risk-conscious correction 704
of batch effects: maximising information extraction from high-throughput genomic datasets. BMC 705
Bioinformatics. 2016;17: 332. doi:10.1186/s12859-016-1212-5 706

35. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: And this 707
is not optional. Frontiers in Microbiology. 2017;8: 2224. doi:10.3389/FMICB.2017.02224/BIBTEX 708

36. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other 709
unwanted variation in high-throughput experiments. Bioinformatics. 2012;28: 882–883. 710
doi:10.1093/bioinformatics/bts034 711

37. Adamer MF, Bruningk SC, Estermann F, Borgwardt KM. reComBat: Batch effect removal in large-scale, 712
multi-source omics data integration. : 14. 713

38. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses 714
for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43: e47. 715
doi:10.1093/nar/gkv007 716

39. Smyth GK. limma: Linear Models for Microarray Data. In: Gentleman R, Carey VJ, Huber W, Irizarry RA, 717
Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. New 718
York: Springer-Verlag; 2005. pp. 397–420. doi:10.1007/0-387-29362-0_23 719

40. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning 720
in {P}ython. Journal of Machine Learning Research. 2011;12: 2825–2830. 721

41. Breiman L. Random Forests. Machine Learning. 2001;45: 5–32. doi:10.1023/A:1010933404324 722

42. Couronné R, Probst P, Boulesteix A-L. Random forest versus logistic regression: a large-scale benchmark 723
experiment. BMC Bioinformatics. 2018;19. doi:10.1186/S12859-018-2264-5 724

43. Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: A survey and results of new tests. 725
Pattern Recognition. 2011;44: 330–349. doi:10.1016/j.patcog.2010.08.011 726

44. Bernard S, Heutte L, Adam S. Influence of Hyperparameters on Random Forest Accuracy. In: Benediktsson 727
JA, Kittler J, Roli F, editors. Multiple Classifier Systems. Berlin, Heidelberg: Springer Berlin Heidelberg; 728
2009. pp. 171–180. doi:10.1007/978-3-642-02326-2_18 729

45. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: Fundamental 730
Algorithms for Scientific Computing in Python. Nature Methods. 2020;17: 261–272. doi:10.1038/s41592-731
019-0686-2 732

46. McKnight PE, Najab J. Mann-Whitney U Test. The Corsini Encyclopedia of Psychology. John Wiley & Sons, 733
Ltd; 2010. pp. 1–1. doi:10.1002/9780470479216.corpsy0524 734

47. Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. New York: Cambridge 735
University Press; 2008. Available: http://www.amazon.com/Introduction-Information-Retrieval-736
Christopher-Manning/dp/0521865719/ref=sr_1_1?ie=UTF8&qid=1337379279&sr=8-1 737

48. Lee S, Lee DK. What is the proper way to apply the multiple comparison test? Korean J Anesthesiol. 738
2018;71: 353–360. doi:10.4097/kja.d.18.00242 739

26

49. Junqué de Fortuny E, Martens D, Provost F. Predictive Modeling With Big Data: Is Bigger Really Better? Big 740
Data. 2013;1: 215–226. doi:10.1089/big.2013.0037 741

50. Hannigan GD, Duhaime MB, Ruffin MT, Koumpouras CC, Schloss PD. Diagnostic Potential and Interactive 742
Dynamics of the Colorectal Cancer Virome. mBio. 2018;9: e02248-18. doi:10.1128/mBio.02248-18 743

51. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible 744
computational workflows. Nat Biotechnol. 2017;35: 316–319. doi:10.1038/nbt.3820 745

52. Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development along the colorectal 746
adenoma-carcinoma sequence. Nat Commun. 2015;6: 6528. doi:10.1038/ncomms7528 747

53. Gupta A, Dhakan DB, Maji A, Saxena R, P K VP, Mahajan S, et al. Association of Flavonifractor plautii, a 748
Flavonoid-Degrading Bacterium, with the Gut Microbiome of Colorectal Cancer Patients in India. 749
mSystems. 2019;4: e00438-19. doi:10.1128/mSystems.00438-19 750

54. Vogtmann E, Hua X, Zeller G, Sunagawa S, Voigt AY, Hercog R, et al. Colorectal Cancer and the Human Gut 751
Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing. PLoS One. 2016;11: e0155362. 752
doi:10.1371/journal.pone.0155362 753

55. Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, et al. Meta-analysis of fecal metagenomes reveals 754
global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25: 679–689. 755
doi:10.1038/s41591-019-0406-6 756

56. Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, et al. Metagenomic and metabolomic 757
analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nature 758
Medicine 2019 25:6. 2019;25: 968–976. doi:10.1038/S41591-019-0458-7 759

57. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al. Potential of fecal microbiota for early-760
stage detection of colorectal cancer. Mol Syst Biol. 2014;10: 766. doi:10.15252/msb.20145645 761

58. Rajan SK, Lindqvist M, Brummer RJ, Schoultz I, Repsilber D. Phylogenetic microbiota profiling in fecal 762
samples depends on combination of sequencing depth and choice of NGS analysis method. PLoS ONE. 763
2019;14. doi:10.1371/JOURNAL.PONE.0222171 764

59. McMurdie PJ, Holmes S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLOS 765
Computational Biology. 2014;10: e1003531. doi:10.1371/JOURNAL.PCBI.1003531 766

60. Filzmoser P, Hron K. Correlation Analysis for Compositional Data. Mathematical Geosciences 2008 41:8. 767
2008;41: 905–919. doi:10.1007/S11004-008-9196-Y 768

61. Gweon HS, Shaw LP, Swann J, De Maio N, AbuOun M, Niehus R, et al. The impact of sequencing depth on 769
the inferred taxonomic composition and AMR gene content of metagenomic samples. Environmental 770
Microbiome. 2019;14: 7. doi:10.1186/s40793-019-0347-1 771

62. Rong Z, Tan Q, Cao L, Zhang L, Deng K, Huang Y, et al. NormAE: Deep Adversarial Learning Model to 772
Remove Batch Effects in Liquid Chromatography Mass Spectrometry-Based Metabolomics Data. Anal 773
Chem. 2020;92: 5082–5090. doi:10.1021/acs.analchem.9b05460 774

63. Dincer AB, Janizek JD, Lee S-I. Adversarial deconfounding autoencoder for learning robust gene expression 775
embeddings. Bioinformatics. 2020;36: i573–i582. doi:10.1093/bioinformatics/btaa796 776

64. Lotfollahi M, Wolf FA, Theis FJ. scGen predicts single-cell perturbation responses. Nat Methods. 2019;16: 777
715–721. doi:10.1038/s41592-019-0494-8 778

27

65. Arpit D, Aadyot, Bhatnagar, Wang H, Xiong C. Momentum Contrastive Autoencoder: Using Contrastive 779
Learning for Latent Space Distribution Matching in WAE. arXiv:211010303 [cs]. 2021 [cited 10 May 2022]. 780
Available: http://arxiv.org/abs/2110.10303 781

 782

28

6. Supplementary Materials 783

6.1. Tables 784

6.1.1. Supplementary Table 1: Metadata for the CRC studies that were 785
considered 786

Study # of
Samples

Male (%) Controls (%) Mean Age
(+/- std)

FengQ_2015 [52] 107 59.81 57.01 67 (9)

GuptaA_2019 [53] 60 50.0 50.0 51 (16)

HanniganGD_2017 [50] 55 56.36 50.91 57 (10)

ThomasAM_2018a [14] 53 67.92 45.28 70 (8)

ThomasAM_2018b [14] 60 65.0 46.67 58 (8)

ThomasAM_2019_c [14] 80 56.25 50.0 61 (13)

VogtmannE_2016 [54] 104 71.15 50.0 62 (12)

WirbelJ_2018 [55] 125 58.4 52.0 60 (13)

YachidaS_2019 [56] 509 58.35 49.31 62 (11)

YuJ_2015 [11] 128 63.28 41.41 64 (9)

ZellerG_2014 [57] 114 50.0 53.51 63 (12)

Total 1395 59.68 49.65 62 (12)
TABLE 6-1 METADATA FOR STUDIES THAT WERE SELECTED . EACH OF THE DATASETS IS GIVEN IN REFERENCE TO THE STUDY IN 787
WHICH IT WAS PUBLISHED , NAMED ACCORDING TO THE LEAD AUTHOR AND YEAR , WITH DUPLICATE AUTHORS SUFFIXED . THREE 788
STUDIES FROM THOMAS ET AL. WERE USED, A COLLABORATION WITH 39 MEMBERS. PERCENTAGES WERE ROUNDED TO 2 789
DECIMAL PLACES, YEARS WERE ROUNDED TO WHOLE NUMBERS . 790

6.1.2. Supplementary Table 2: Parameter spaces 791

 792
 793

Name Parameter space
Random Forest "n_estimators": [int(x) for x in np.linspace(start=200, stop=1000, num=10)]

"max_features": ["auto", "log2", 0.2, 0.4, 0.5],
"max_depth": [int(x) for x in np.linspace(10, 110, num=11)],
"min_samples_split": [2, 5, 10],
"min_samples_leaf": [1, 2, 4]

BernoulliNB “alpha": [0.0001, 0.001, 0.01, 0.1, 1]
"fit_prior": [True, False]}

Gradient Boosting Classifier “n_estimators": [int(x) for x in np.linspace(start=200, stop=1000, num=10)]
"learning_rate": [0.1, 0.05, 0.01, 0.005]
"max_depth": [int(x) for x in np.linspace(10, 110, num=11)]

KNeighbors Classifier "n_neighbors": [int(x) for x in np.linspace(3, 20, num=5)],
 "weights": ["uniform", "distance"],
 "algorithm": ["ball_tree", "kd_tree", "brute"],
 "p": [1, 2],
 "metric": ["euclidean", ssd.braycurtis, ssd.cosine],

MultinomialNB “alpha": [0.0001, 0.001, 0.01, 0.1, 1]
”fit_prior": [True, False]}

SGD Classifier "loss": ["hinge", "log", "modified_huber", "squared_hinge", "perceptron"],
 "penalty": ["l2", "l1", "elasticnet"],
 "alpha": [0.001, 0.01, 0.1, 1.0],

Support Vector Machine "C": [0.001, 0.01, 0.1, 1, 10, 100, 1000]

TABLE 6-2 THE PARAMETER SPACES OF EACH BINARY CLASSIFIER THAT WAS USED IN BATCH CORRECTION EXPERIMENT . EACH

PARAMETER SPACE WAS ARBITRARILY EXPLORED WITH A RANDOMIZED GRID SEARCH. PARAMETERS NOT MENTIONED WERE LEFT

AT DEFAULTS.

29

6.1.3. Supplementary Table 3: Binary Classification Scores 794
Corrector Random Forest

Classifier
BernoulliNB Gradient Boosting

Classifier
KNeighbors
Classifier

MultinomialNB SGD
Classifier

SVC

Baseline 0.81 (0.11) 0.50 (0.00) 0.78 (0.10) 0.53 (0.10) 0.65 (0.13) 0.60
(0.09)

0.57
(0.07)

TOOLS -

ComBat 0.67 (0.19) 0.77 (0.18) 0.76 (0.18) 0.52 (0.11) - 0.58
(0.13)

0.55
(0.13)

ComBat-seq 0.81 (0.09) 0.82 (0.15) 0.80 (0.08) 0.54 (0.07) 0.63 (0.11) 0.61
(0.09)

0.57
(0.14)

reComBat 0.78 (0.09) 0.74 (0.13) 0.79 (0.13) 0.54 (0.12) - 0.62
(0.11)

0.57
(0.19)

Limma 0.73 (0.12) 0.66 (0.09) 0.76 (0.11) 0.53 (0.08) - 0.59
(0.09)

0.54
(0.10)

TRANSFORMATIONS -

BMC 0.69 (0.18) 0.78 (0.13) 0.70 (0.13) 0.55 (0.11) - 0.53
(0.08)

0.62
(0.09)

CLR 0.83 (0.11) 0.82 (0.15) 0.82 (0.09) 0.59 (0.06) - 0.69
(0.07)

0.73
(0.09)

Normalize 0.80 (0.12) 0.77 (0.14) 0.77 (0.11) 0.54 (0.12) - 0.62
(0.12)

0.61
(0.08)

ILR 0.73 (0.13) 0.58 (0.17) 0.77 (0.10) 0.52 (0.07) - 0.63
(0.10)

0.64
(0.14)

ILR + Quantile 0.73 (0.13) 0.55 (0.07) 0.78 (0.09) 0.58 (0.05) - 0.63
(0.10)

0.67
(0.07)

CLR + Quantile 0.58 (0.13) 0.75 (0.16) 0.80 (0.13) 0.59 (0.06) 0.76 (0.15) 0.50
(0.05)

0.50
(0.00)

Quantile (normal) 0.79 (0.13) 0.82 (0.15) 0.78 (0.10) 0.59 (0.06) - 0.68
(0.09)

0.72
(0.10)

Quantile (uniform) 0.80 (0.12) 0.82 (0.15) 0.78 (0.10) 0.57 (0.08) 0.80 (0.13) 0.68
(0.07)

0.72
(0.13)

ENCODINGS -

CLR +
VarianceThreshold

0.82 (0.12) 0.78 (0.16) 0.81 (0.11) 0.59 (0.06) - 0.68
(0.09)

0.74
(0.09)

PCA (20) 0.57 (0.10) 0.54 (0.04) 0.54 (0.09) 0.52 (0.11) - 0.55
(0.07)

0.52
(0.08)

PCA (100) 0.64 (0.09) 0.63 (0.08) 0.63 (0.06) 0.54 (0.05) - 0.60
(0.09)

0.56
(0.04)

 795

TABLE 6-3 BINARY CLASSIFICATION SCORE OF EACH COMBINATION OF CORRECTOR (ROW) AND BINARY CLASSIFIER (COLUMN), 796
GIVEN AS MEDIAN (IQR) OF PERFORMANCE MEASURED WITH AUROC SCORE MEASURED OVER 11 LEAVE ONE OUT CROSS-797
VALIDATION RUNS. SCORES ARE VISUALIZED IN SUPPLEMENTARY FIGURE 6-4. FOR EACH CLASSIFIER , SCORES THAT WERE 798
SIGNIFICANTLY HIGHER THAN THE BASELINE ARE BOLDED , WHILE THOSE THAT ARE SIGNIFICANTLY SMALLER ARE ITALICIZED . 799
SIGNIFICANCE WAS TESTED USING SIGNED WILCOXON RANKED SUM TEST , AND P-VALUES WERE CORRECTED WITH BONFERRONI 800
CORRECTION. 801

 802

30

6.1.4. Supplementary Table 3: Binary classification significance 803
Batch correction model Median (IQR) Statistic p-value

Baseline 0.81 (0.11) - -
TOOLS

ComBat 0.77 (0.18) 1575 1.58E-04
ComBat-seq 0.81 (0.09) 2916 1.03E+01

reComBat 0.79 (0.13) 2520 1.68E+00
Limma 0.76 (0.11) 1975 1.97E-02

Normalize 0.80 (0.12) 2816 1.43E+01
TRANSFORMATIONS

BMC 0.78 (0.13) 2626 3.05E+00
CLR 0.83 (0.11) 2726 4.95E+00
ILR 0.77 (0.10) 2077 5.43E-02

ILR + Quantile 0.78 (0.09) 1997 2.47E-02
CLR + Quantile 0.80 (0.13) 2538 1.87E+00

Quantile (normal) 0.80 (0.12) 2830 1.48E+01
Quantile (uniform) 0.82 (0.15) 3027 1.41E+01

ENCODINGS
CLR + VarianceThreshold 0.82 (0.12) 2754 5.60E+00

PCA (20) 0.57 (0.10) 385 1.07E-13
PCA (100) 0.64 (0.09) 835 2.59E-09

TABLE 6-4 TESTING RESULTS FOR COMPARISON OF THE BEST CLASSIFIERS . A TWO-SIDED WILCOXON RANK SUM TEST WAS 804
PERFORMED, REPORTING THE P-VALUE AND U STATISTIC. P-VALUES ARE REPORTED AFTER CORRECTION (MULTIPLICATION BY 805
THE NUMBER OF CORRECTORS-1). SIGNIFICANT P-VALUES ARE BOLDED FOR COMBAT-INTEGRATED, ILR, PCA (20), AND 806
PCA(100). STATISTIC=THE SUM OF THE RANKS OF THE DIFFERENCES ABOVE OR BELOW ZERO , WHICHEVER IS SMALLER . 807

 808

31

6.2. Figures 809

6.2.1. Supplementary Figure 1: Datasets in the curatedMetagenomicData 810
package 811

 812

FIGURE 6-1 NUMBER OF SAMPLES (FROM UNIQUE PATIENTS) FOR THE MOST POPULOUS CONDITIONS, AS FOUND IN 813
'CURATEDMETAGENOMICDATA.' EACH BLOCK REPRESENTS ONE STUDY WITH BOTH CONTROL AND CASE SAMPLES . COLOR 814
INDICATES WHAT PERCENTAGE OF SAMPLES WERE FROM CONTROL PATIENTS , WITH A GRADIENT FROM 0% (ONLY CASE SAMPLES) 815
AS RED TO 100% (ONLY CONTROL SAMPLES) AS BLUE, WITH A PEEK IN GREEN AT 50%. CRC = COLORECTAL CANCER, IBD = 816
INFLAMMATORY BOWEL DISEASE, ADENOMA = FIRST STAGE OF CRC, T2D = TYPE 2 DIABETES, T1D = TYPE 1 DIABETES. 817

 818

32

 819

6.2.2. tSNE reductions for each batch corrector 820

 821

FIGURE 6-2 TSNE REDUCTIONS FOR THE FIRST ITERATION OF THE LODO CROSS-VALIDATION FOR EACH OF THE BATCH 822
CORRECTORS USED IN THE BENCHMARK . SUBFIGURES ARE LABELED ACCORDING TO THE BATCH CORRECTOR WHOSE OUTPUT WAS 823
TRANSFORMED WITH POINTS COLORED BY THEIR ORIGINATING DATRASET AND STYLED ACCORDING TO THEIR LABEL . ELEVEN 824
DATASETS ARE PRESENT IN EACH SUBFIGURE WITH YACHIDA ET AL . MOST PROMINENT, BEING THE LARGEST (N>500). 825

33

6.2.3. UMAP reductions for each batch corrector 826

 827

FIGURE 6-3 UMAP REDUCTIONS FOR EACH OF THE TRANSFORMATIONS USED IN THE BENCHMARK . EACH AXIS CONTAINS THE 828
UMAP TRANSFORMATION FOR ONE OF THE TRANSFORMATIONS , WITH POINTS COLORED BY THEIR STUDY AND STYLED 829
ACCORDING TO THEIR LABEL . SOME TRANSFORMATIONS CLUSTER SOME STUDIES TOGETHER , AS CAN BE CLEARLY SEEN FOR 830
‘BMC,’ ‘NORMALIZE,’ AND ‘CLR + QUANTILE’, WHERE THE STUDY ’YACHIDAS_2019’ FORMS A SEPARATE CLUSTER . 831

34

6.2.4. Binary classification performances for each batch corrector 832

 833

FIGURE 6-4 COMPARISON OF BINARY CLASSIFICATION PERFORMANCE WITH LEAVE ONE DATASET OUT (LODO) PRINCIPLE. ALL 834
AXES ARE THE SAME, SETTING OUT BATCH CORRECTOR OVER THE AUROC SCORE THAT WAS OBTAINED. BOX PLOT OF QUARTILES 835
IS PLOTTED, WITH WHISKERS EXTENDING TO NEAREST POINT WITHIN 1.5 IQR. FLIERS ARE DRAWN FOR OUTLIERS. EACH OF THE 836
PLOTS IS TITLED ACCORDING TO THE BINARY CLASSIFIER THAT WAS EVALUATED , WHILE BATCH CORRECTORS ARE KEPT IN THE 837
SAME ORDERING AND GROUPING AS IN THE REST OF THE PAPER . MULTINOMIAL NB CRASHED ON HANDLING NEGATIVE VALUES , 838
REDUCING THE NUMBER OF BATCH CORRECTORS WHOSE OUTPUT IT COULD HANDLE . 839

35

6.3. Datasets 840

6.3.1. Selecting data 841
In this supplementary section we outline the procedure that was used to select the datasets. For 842

this, we used the ‘curatedMetagenomicData’ package that was made available on CRAN, which had a 843
selection of 20,283 samples taken from 86 studies of shotgun metagenomics data. In addition, this 844
package used the same procedure on each of the raw reads by running MetaPhlan3 with default 845
settings, and had curated the metadata of each of the datasets, which is notoriously rare within the field. 846

After having obtained access to all the datasets available of the curatedMetagenomicData dataset 847
and performing some initial exploration, we filtered out all but the first (and only) sample of a patient, to 848
prevent longitudinal samples from influencing our results. Then, we calculated the percentage of 849
samples within each study that were diseased and selected the studies that had at least 5 percent 850
control/healthy samples and 5 percent case/diseased samples, and had at least 40 samples. We then 851
grouped these studies by the diseases that they investigated and graphed each study in a stacked bar 852
plot showing the number of samples for each disease, which can be viewed in Supplementary Figure 853
1. 854

From this graph it was clear to us that Colorectal Cancer (CRC) studies were both most balanced 855
as well as the largest in total within the scope that we had selected. We thus selected these datasets 856
to perform our analysis on and downloaded them, again making sure that we only kept a single sample 857
per patient. Apart from taxonomic data, the package also had many other datatypes available, like gene 858
families and pathway coverage. We elected to focus solely on the taxonomic abundance and specifically 859
the abundance of particular species, both to simplify the project and because this had been found to 860
perform best for classification for many cases [4]. 861

The code for analyzing the curatedMetagenomicDataset is provided in our rough work repository: 862
https://github.com/AbeelLab/ngs-batch-evaluation-rough 863

36

7. Additional materials 864

7.1. Additional Data Analysis 865
Before trying to understand the advantages and drawbacks of batch correction methods, it is 866

appropriate to consider what the input looks like. Taxonomic count data obtained from metagenomic 867
sequencing has a number of characteristics that make it harder to apply traditional techniques. 868

Read counts are correlated. While traditional batch correction techniques assume that microbial 869
species are independent, sequence data represents the abundance of corresponding microbial 870
communities [21]. This can create problems as while the sum of the counts is some constant value, 871
standard statistical methods assume no such constraint and result in spurious values [9]. 872

Uneven sequencing depths can have an unmapped technical influence, as some low abundance 873
bacteria are not measured at lower sequencing depths [58]. Statistical comparison of samples can be 874
hindered by these differences in depth [59]. 875

Sparsity and overdispersion. The many zeroes in taxonomical microbiome data have two possible 876
sources. They may come from an actual absence within the sample, a ‘structural’ zero, or they may 877
come from under sampling of the sample, a ‘sampling’ zero. In addition, the counts within data are 878
widespread in their value, making conventional methods of batch correction less suited [9]. 879

Compositionality. When sequencing the microbiome, the samples are by necessity a small subset of 880
the entire microbiome, and cannot inform on the absolute abundances of the bacterial population. 881
Instead, relative abundances are obtained in the form of counts, which make it harder to perform many 882
statistical analyses [35,60,61]. 883

To confirm that the taxonomic OTU counts suffer from these same issues, we visualized the 884
dispersion of its data in Supplementary Figure 7-1, wherein it is clear that the variance of the count data 885
is nowhere near its mean, indicating overdispersion. This means that we cannot apply some of the 886
typical count model data analysis, which relies on undispersed data. 887

To show the sparsity of the data, we counted the percentage of features that were non-zero for 888
each of the samples in all the studies, which we show in Figure 7-2. It can be seen that only 10-20% of 889
all counts is non-zero. 890

On a per-sample basis, we visualized the saturation of features by going over each sample in 891
random order 10 times and counting how many features had been non-zero (cumulatively). The 892
resulting graph is shown in Error! Reference source not found. The sharpness of the slope when it 893
cuts can be seen as an indication of how many samples the data needs to be able to learn fully. The 894
slope being sharp for the smaller studies indicates they lack the amount of samples to be able to fully 895
learn about its features. 896

37

7.1.1. Overdispersion of taxonomic count data 897

 898

FIGURE 7-1 DISPERSION OF THE DATASETS SHOWN BY PLOTTING THE VARIANCE OVER THE MEAN FOR THE FEATURES IN THE 899
DATASET. EACH POINT REPRESENTS THE MEAN AND VARIANCE OF A SINGLE FEATURE IN THE RAW TAXONOMIC COUNT DATA . 900
BOTH AXES ARE LOGARITHMIC BASE 10. FOR ILLUSTRATIVE PURPOSES TWO FUNCTIONS FOR THE VARIANCE ARE PLOTTED , ONE 901
LINEAR AND ONE QUADRATIC . 902

7.1.2. Sparsity of the datasets 903

 904

FIGURE 7-2 SPARSITY OF THE DATASETS VISUALIZED THROUGH A HISTOGRAM COUNTING THE NUMBER OF SAMPLES THAT HAD 905
A GIVEN PROPORTION OF FEATURES WHICH WERE ZERO . NONE OF THE SAMPLES HAD A PROPORTION OF ZEROES THAT WAS 906
BELOW 75%, SO FOR EACH SAMPLE AT MOST 25% OF THE FEATURES HAD A NON-ZERO VALUE. ALL SAMPLES HAD AT LEAST A 907
FEW FEATURES THAT WERE NON-ZERO. DATA WAS GENERATED WITHOUT ADDING PSEUDOCOUNTS . 908

38

7.1.3. ECDF of species for each study 909

 910

FIGURE 7-3 GRAPH SHOWING SATURATION OF FEATURES . FOR EACH STUDY, AND THE COMBINATION OF ALL STUDIES (‘ALL’), 911
IN 10 RANDOM SHUFFLES, THE NUMBER OF FEATURES THAT WERE NON-ZERO WAS COUNTED CUMULATIVELY . THE AVERAGE 912
NUMBER OF FEATURES ENCOUNTERED AT THE I TH SAMPLE FOR A STUDY WAS PLOTTED ON THE LINE , WITH THE SHADED AREA 913
SHOWING THE CONFIDENCE INTERVAL . YACHIDA ET AL. HAS A TOTAL OF 509 SAMPLES WITH 696 NONZERO FEATURES. LINE 914
THAT GOES FARTHEST IS FOR ALL STUDIES TOGETHER . SLOPE OF LINE WHEN IT REACHES ITS LAST SAMPLE IS SHARP FOR SMALLER 915
STUDIES, SMALLER FOR YACHIDA ET. AL. AND SMALLER STILL FOR ALL STUDIES COMBINED . 916

 917

7.2. Alternative data sources 918
In addition to the curatedMetagenomicData package, we also explored using MGnify and downloading 919
and processing datasets ourselves. 920

MGnify is a microbiome analysis resource provided by the European Bioinformatics Institute (EMBL-921
EBI) to which metagenomics data is submitted and automatically processed using their pipeline. With 922
4,294 studies submitted at the time of writing, 928 of which are related to the digestive system of the 923
human microbiome, this was an avenue worth exploring. The increasing usage of this and other similar 924
all-in-one platforms like MGRast, Qiime2, and Galaxy it is increasingly relevant to explore the results 925
that these produce. 926

To investigate the usage of this platform we queried its API for the studies that were relevant, eventually 927
narrowing it down to approximately 50 studies that fit our criteria of having both case and control 928
samples of the human gut microbiome, which we then manually combed through for the treatment 929
variables, for each of the selected studies. 930

After this process, we aggregated the data, counting the number of samples for each treatment (control-931
case) within each of the studies. By selecting those treatment covariates that had more than 50 samples, 932
we filtered the number of usable studies to 20 as shown in Figure 7-4, which unfortunately did not show 933
anywhere close to the balance that we desired for our classification task. As such, we elected to put the 934
effort on hold and instead focus on the studies made available through the curatedMetagenomic Data 935
package. 936

39

7.2.1. MGnify study data 937

 938

FIGURE 7-4 THE NUMBER OF SAMPLES FOUND FOR A NUMBER OF SELECTED STUDIES FROM THE MGNIFY DATABASE, COLORED 939
ACCORDING TO THE TREATMENT VARIABLE ASSIGNED AS METADATA . METADATA FOR EACH OF THE STUDIES WAS DOWNLOADED 940
AND PROCESSED MANUALLY TO CLEAN UP THE LABELS . MIXED, OTHER, AND DEL INDICATE THE METADATA PROVIDED BY THE 941
STUDY WAS INSUFFICIENT TO BE ABLE TO DISTINGUISH CONTROL AND CASE SAMPLES . DISCOVERY AND REPLICATION DID NOT 942
DISTINGUISH FURTHER TO CONTROL AND CASE . PD = PARKINSON’S DISEASE , MS = MULTIPLE SCLEROSIS, RS = RESISTANCE 943
STARCH SUPPLEMENT. CD = CROHN’S DISEASE. POST OPERATION INDICATES SAMPLES FROM PATIENTS THAT WERE TREATED 944
FOR THEIR CARCINOMA. 945

 946

40

7.3. Performing own taxonomic read assignment 947
In tandem with our efforts to build the pipeline for the analysis we also worked on downloading and 948
processing a number of datasets, starting with the datasets found through the curated package, we 949
extracted the ECBI ids that were available, downloading the data for each using the prefetch and 950
fasterq-dump tools provided by the SRA toolkit. The data was then trimmed using the Trimmomatic 951
package and kraken2 was run on the data, using the standard dataset. 952

 We elected not to use the data thus obtained for several reasons; firstly, not all studies had 953
accession IDs available, and some of the samples referenced multiple accessions making it unclear 954
which one would have to be used. Lastly, the Kraken tool is used for general analysis and does not 955
provide a human gut microbiome specific dataset while MetaPhlan3 is the latest of an excellent line of 956
tools that is specialized in human gut microbiome, which makes the dataset more fitting for the analysis 957
of the samples that we were focused on. 958

7.4. Building an AutoEncoder 959
In addition to trying out many of the algorithms already available and proven to work to some extent on 960
the data we had available, we also investigated the potential of developing our own algorithm. As 961
autoencoders have been shown to work for metabolomic and single cell RNA sequencing [62–64], they 962
were chosen as avenue for exploration. In addition we were fascinated by the recent development of 963
contrastive autoencoders, also known as Wasserstein Autoencoders (WAE) [65]. 964

 This algorithm works by learning to distinguish pairs of samples from each other that are either 965
from the same batch or from different batches, and have either the same or different labels. It first 966
encodes both samples using the same hidden layers towards two parts, z1 and z2, then calculates a 967
label loss aimed at minimizing the distance between parts with the same label and maximizing the 968
distance between samples with different labels. Then, a domain loss is calculated simply aimed at 969
minimizing the distance between samples of the same batch. Lastly, the parts are decoded and the 970
reconstruction loss is added. 971

 Unfortunately we did not manage to get the encoder to converge on anywhere close to the 972
performance desired within the timeframe allocated towards the endeavor, which led to the decision to 973
leave its results out of the main results of the paper. 974

 The code for creating the samples, setting up the autoencoder, and training it on the 975
metagenomic data available is freely available on Deepnote1. 976

 977

1 https://deepnote.com/workspace/pluriscient-9a8d4768-9ead-49ef-a014-ce66d9dcda06/project/Armans-
AutoEncoder-b2a5f14d-9e6c-4748-809c-310f1065eaa8/%2Fnotebook.ipynb

41

7.5. Code repository 978
The codebase that has been developed over the course of the past months can be accessed through 979
https://github.com/AbeelLab/ngs-batch-evaluation, of which I have attached the root README as well 980
as the one that can be found in the src/pipeline directory, to illustrate the ease with which the results 981
can be reproduced. 982

7.5.1. NGS Batch evaluation 983

Welcome to the repository associated with the thesis "BATCH CORRECTION OF 984
TAXONOMIC DATA OF THE HUMAN GUT MICROBIOME FOR GENERALIZATION 985
OF CASE-CONTROL CLASSIFICATION" 986

This repository contains all the code and data necessary to perform a full reproduction of the 987
figures shown in the paper. 988

It has the following structure 989

 src 990
o pipeline: the pipeline used to perform the batch correction and train each of the 991

classifiers 992
 README.md: Details on how to configure and run the pipeline 993

o visualizations: The notebooks used to create each of the visualizations 994
 common.py: Common functions used by each of the sections, including the 995

ordering of the batch correctors 996
 section-1.ipynb: The code for reproducing the figures in subsection 1 of the 997

results 998
 section-2.ipynb: The code for reproducing the figures in subsection 2 of the 999

results 1000
 section-3.ipynb: The code for reproducing the figures in subsection 3 of the 1001

results 1002
 input 1003

o CRC_studies.csv: the input data, taxonomic read counts obtained from the 1004
curatedMetagenomicData database 1005

o scores.csv and feature.*.csv: output data of the results of the pipeline 1006

7.5.2. NGS batch correction evaluation pipeline 1007
Requirements 1008

 Java 11 1009
 Nextflow 1010
 Docker or Singularity 1011
 Conda for some of the postprocessing 1012

Quickstart 1013

To quickly run the pipeline with its current configuration on your local machine: 1014

 nextflow run ./flow.nf -profile docker --base_dataset 1015
$(pwd)/../../input/CRC_studies.csv 1016

And start waiting! 1017

42

Configuration 1018

The configuration of the pipeline can be found in the nextflow.config file. Most 1019
configuration can be done through editing the params block: 1020

 Params 1021
o label_column: column with label of interest for the classifiers (can only for binary 1022

classification) 1023
o batching_column: column with batch assignment for each sample 1024
o feature_column_prefix: prefix that ALL feature columns should have 1025
o base_dataset: location of the input dataset 1026
o out_dir: output directory 1027
o random_seed: Not completely implemented seed for randomness 1028
o split_modes: How to perform the cross-validation, currently either "L1SO" = "Leave one 1029

dataset out" or L2SO = "Leave two datasets out" 1030

o iterations: iterations of cross-validation, should be 1..Nk where N where is number of batches 1031
and k the number of iterations of cross-validation 1032

o correctors: batch correctors to implement 1033
o models: binary classifiers to train 1034
o pseudo_count: what count to add to all numbers 1035
o max_cpus: no. of cpus available in total 1036
o max_mem: size of the memory available 1037

Binary classifiers 1038

Most any binary classifier from the scikit learn library can easily be used, and any other that 1039
implements the same interface. The hyperparameter space does not need to be configured 1040
within the bin/sklearn_trainer.py file, wherein you need to make sure that 1041

 The classifier is present in the CLASSIFIERS list as callable 1042
 The classifier is present in the PARAMETER_GRID dictionary as dictionary holding 1043

parameters to the callable that can be varied between 1044

Batch correctors 1045

To configure batch correctors individually you can find them in the `bin/ba(r)_*.(py|r) files, 1046
named consistently. To add a new one 1047

 Create the appropriate file in the bin directory 1048
 Chmod it to be executable 1049
 Within flow.nf, Add it to the massive switch of the corrector_code_both function (usually 1050

copy pasting the previous entry and changing the target is enough) 1051
 Add any additional requirements to env.yaml or containers/main.Dockerfile 1052

Post processing 1053

After the nextflow run has completed, a number of steps still need to be completed so that the 1054
figures can be created. 1055

1. From the pipeline directory, run python postbin/run-r-collections.py and wait for 1056
completion 1057

43

2. Run python postbin/run-r-collections-collect.py and wait for completion 1058
3. Run collect_dec.py 1059
4. Move the files in the root of the results directory to the input folder for the figure analysis. 1060

 1061

