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Abstract

With the development of new technologies and ap-
proaches in the field of social signal processing,
concerns regarding privacy around recording con-
versations have arised. One of the main ways to
preserve the privacy of the speakers in recorded
conversations consists of decimating said conver-
sations, which consists of reducing the sample fre-
quency and the frequency bandwidth of the au-
dio. This theoretically makes the verbal content
of the conversation (the words themselves) unin-
telligible, while still preserving other useful non-
verbal social cues such as laughter, pitch modu-
lation and frequency of speech, amongst others.
However, this has not been experimentally verified.
This research paper addresses this knowledge gap
by exploring the performance of laughter detec-
tion machine learning models with decimated au-
dio. An existing pre-trained state-of-the-art laugh-
ter detection model was employed and its perfor-
mance was evaluated for a dataset of decimated au-
dio with sample frequencies ranging from 300Hz to
44100Hz.

1 Introduction
Privacy is starting to become a major concern in the field of
social signal processing, especially when it comes to study-
ing audio recordings of conversations, as said conversations
might contain sensitive information that the speakers might
not want to be made public. Social signal processing refers
to the development of automated approaches with the aim
of detecting and classifying social cues. Decimation, the
process of lowering the sample frequency (also known as
the sample rate) and the bandwidth of an audio signal [1, 2],
can be used to address the problem of privacy in this field.
Figures 1 and 2 respectively illustrate these reductions
in sample rate and bandwidth. By using a low enough
sample frequency, it is possible to theoretically make speech
unintelligible since consonants are not recorded and most
words become unidentifiable [3]. In theory, it should still be
possible to detect non-verbal social cues such as laughter in
the decimated audio. These social cues can in turn help us
study the relationship between the speakers while respecting
their privacy. However, this has not been experimentally
verified. This research paper will specifically focus on the
detection of laughter in decimated audio, laughter being an
important non-verbal social cue, considered to be ”a powerful
signal of social acceptance or rejection” [4]. The relevance
of studying laughter in the field of social signal processing
can further be explained by laughter being an universal [5]
and ubiquitous expression of emotion [6, 7]. The research
question for this paper is therefore the following: ”How does
the reduction in sample frequency hinder the detection of
laughter?”. More concretely, we will aim to answer this
question by exploring how the performance of a pre-trained
state-of-the-art laughter detection model get affected by
decimation, i.e. reductions in the sample frequency. One

Figure 1: Waveform illustrating the reduction in sample rate which
occurs during decimation. The sample frequency was reduced from
44100Hz to 8820Hz (decimation factor of 5).

Figure 2: Set of spectograms illustrating the bandwidth reduction
which occurs during decimation. The decimated audio is bandlim-
ited at a frequency B, where, for sample rate fs, B < 1

2
fs. In this

case, B = 11025Hz.

major point to consider is that laughter detection models are
not usually trained on decimated audio.

The paper is divided in the following sections: section
2 will provide some additional background, while section 3
will describe the methodology employed during the research
and the setup of the experiment. Section 4, which will
focus on the results, comes next. Section 5 will consist of
a discussion of the ethical aspects concerning this research.
Section 6 will introduce the main conclusions derived from
the experiments. Finally, section 7 will mention what future
improvements could be made.

2 Background
This section will strive to provide additional context about
recent developments in the field of privacy-sensitive audio
recording systems, known as badges, and laughter detection
models.



2.1 Privacy-sensitive badges
Efforts have been undertaken in recent years with the goal of
developing systems which record audio at a low sample fre-
quency in order to make verbal content unidentifiable while
still preserving non-verbal social cues. An example of such a
system is MIT media lab’s RhythmBadge [8], released back
in 2018. By recording audio at a low sampling frequency
(700Hz), the badge theoretically does not allow words to be
understood. Another such system was developed in 2019,
when the TU Delft Socially Perceptive Computing lab carried
out a wide scale data collection experiment during the Con-
fLab [9] conference in Nice, France. A new badge based on
the previously developed RhythmBadge was created, named
Midge. It recorded audio at a higher sampling frequency
than RhythmBadge (1.25KHz instead of 700Hz) in order to
compensate for the additional amount of background noise
present at the event. However, it has not been experimentally
verified with the latest approaches whether using a low sam-
pling frequency would still make the detection of social cues
possible.

2.2 Laughter detection models
Laughter detection models can be employed to automatically
detect laughter in audio recordings. This automation is of
great use when dealing with large amounts of recordings,
which is often the case when performing data collection
experiments in the field. Much like ASR (Automatic Speech
Recognition), the most recently published research about
laughter detection employs fully connected deep neural
networks (DNN) or convolution neural networks (CNN), as
well as Mel-frequency cepstral coefficients (MFCCs) for
features. [10–12]. However, there are a few key differences
between automatic laughter detection and ASR. Primarily,
laughter detection models tend to be more general when
compared to speech recognition models and are not con-
cerned with differences in language and accent.

Most approaches when it comes to automatic laughter
detection consist of models trained on datasets with a lack
of or very little background noise, favouring data extracted
from telephone conversations [13] or private meetings [14]
with ’clean’ audio. Such models undergo a significant drop
in performance when attempting to detect laughter in audio
featuring a non-negligible amount of background noise [12].
When performing data collection experiments, noise is often
present, calling for the need to employ a laughter detection
model with some amount of robustness and consistency when
presented with noisy input. Fortunately, recent research has
produced laughter detection models with robust performance
with noisy audio [12]. This will be discussed further in the
next section.

3 Methodology
The following section will discuss the methodology of the re-
search. In order to concretely answer the research question,
we will begin by exploring one of its main aspect: which
laughter detection model to evaluate. Following a discussion
on said topic, we will then turn to the problem of choosing a

suitable dataset for evaluating the performance of the chosen
model. We will then further discuss the evaluation process
and the metrics employed to measure performance. We then
follow with an argument about why directly decimating the
input audio creates complications and we will detail how we
instead simulate decimation through low-pass filtering. Fi-
nally, we touch upon the various hyper-parameters the model
possesses and how we take them into account for our experi-
ment.

3.1 The model
As previously touched upon in section 2, data collection ex-
periments in social signal processing strive to capture human
interaction in as much of a natural environment as possible,
as opposed to studying said interactions in a controlled envi-
ronment. This can often result in the presence of background
noise. Choosing a laughter detection model with some de-
gree of resilience to noise in the input audio is therefore im-
perative if we want to achieve the best possible performance.
There do not exist many models designed specifically to pro-
vide good performance with noisy audio, but Gillick et al.
do present us with a robust state-of-the-art model which suits
our needs [12]. The model is stated to have achieved a F1-
score of 0.75 when evaluated on clean audio, and a score
of 0.608 with noisy audio. The source code is available on
GitHub [15]. The model itself consists of a residual network
employing Mel spectogram features, trained on the Switch-
board dataset [13] and featuring dataset augmentations (i.e.
noise manually added to the data). A particularity of this
system is the reduction of sample frequency it performs on
its input audio, reducing the sample rate from the standard
44.1kHz to 8kHz before feeding it to its residual network.
The model was also trained with audio at that specific sample
frequency.

3.2 LaRed dataset
The LaRed dataset contains a total of 27 hours of conver-
sations, recorded at a networking event. 35 participants
were involved, each wearing a custom badge which not only
recorded audio but also video and data about the acceleration
and motion of the individual wearing it. This data collection
experiment was carried out by TU Delft Socially Perceptive
Computing lab. We will employ this dataset for evaluating the
model. One important point to consider about this dataset is
that the conversations were not captured in a privacy-sensitive
manner, i.e. the audio was not decimated with the aim to
protect the anonymity and privacy of the participants. In-
stead, the dataset was recorded at a standard sample rate of
44.1KHz. This will be further touched upon in section 5,
where the ethical implications of the research are discussed. It
is relevant to note that a dataset consisting of privacy-sensitive
audio would have been inadequate for the purpose of this
research since laughter annotations are required in order to
evaluated the performance of the model. Said annotations
were made manually, consisting of timestamps indicating the
position of laughter in the audio (start time, end time, dura-
tion). It is important to observe that what can be classified as
laughter can sometimes be considered ambiguous (eg: can a
short snicker be considered a laugh?), and an argument can



be made about said annotations being subjective. We will
elaborate on this particular point in section 7.

3.3 Evaluation process
Having discussed both the model and the dataset, we now
proceed to address the evaluation process, where we assess
the performance of the model for sample frequencies ranging
from 300Hz to 44100Hz. Due to time constraints, for each
sample frequency, we only run the model on 10h of audio ex-
tracted from the LaRed dataset, from 10 different participants,
containing 355 instances of laughter in total. The audio was
pre-processed in order to remove head and tail silence. The
model returns timestamps detailing the start and end time for
each occurrence of laughter detected, which can then be com-
pared to the laughter annotations of the LaRed dataset. An oc-
currence of laughter is considered a match if the timestamps
produced by the model overlap any timestamp present in the
annotations. More formally, for a instance of laughter I with
start time s and end time e, we consider I to be a true positive
if, for the set A of laughter annotations with start times sa
and end times ea:

∃a
A∑
a

sa < s < ea ∨ sa < e < ea

Due to the ambiguity which comes when trying to detect
laughter, it is sometimes difficult to exactly pinpoint the start
and end of a laugh. Hence, we make the choice of looking
for overlaps between our results and the annotations, instead
of trying to precisely match start and end times, since we are
more interested in evaluating whether the laugh was detected
or not, and not on wheteher the start time and end times match
precisely. This relaxation in the precision of the matching be-
tween the output of the model and the annotations is reflected
in our use of ∨ (OR) in the formula above, instead of poten-
tially using ∧ (AND). We then employ various metrics to as-
sess the performance of the model for each sample frequency.
These are a standard suite of metrics common to classification
problems, consisting of precision, recall and the F1 score, as
outlined below:

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1 = 2 ∗ Recall∗Precision
Recall+Precision

3.4 Simulating decimation through low-pass
filtering

Decimating the input audio for each of the sample fre-
quencies we wish to evaluate and feeding it to the model
would be the logical approach to take in order to evaluate
the performance of the model. However, this results in
complications. The model was trained with a dataset of
audio with a sample rate of 8kHz, and we cannot use input
audio with a different sample rate without suffering the
risk of reduced performance due to not fully exploiting the
model’s residual network, fitted for a sample rate of 8kHz.
One possible solution would be to re-train the model for each
sample frequency, therefore fitting the residual network to the

appropriate sample rate each time, but this solution results
in a drastic increase in training time and cannot be achieved
in the scope of the research. Instead, we will attempt to
simulate the process of decimation by applying a low-pass
filter to the input audio and leaving the sample frequency
unchanged. Decimation, as stated in section 1, refers to the
process of reducing the bandwidth of an audio signal and
lowering its sample frequency. By low-passing the input
audio for the model, we replicate the bandwidth-reducing
aspect of decimation, and therefore obtain an approximation
of the process of decimation. The full implications and
consequences of this approximation will be discussed in
more detail in sections 6 and 7.

In more specific terms, we first filter the input audio
using a 8-order Butterworth low-pass filter, implement with
the Python scipy library [16]. The choice of this specific
filter reflects scipy’s own implementation of decimation [17],
where an 8-order IIR low-pass filter is employed. The cutoff
frequency fc for the low-pass filter is determined by the use
of the Nyquist criterion, where an audio signal at a specific
sample frequency fs is bandlimited at a frequency B, where
fc = B < 1

2fs. Once we obtain the low-passed audio signal,
we reduce its sample rate from 44.1kHz, the original sample
rate of the LaRed dataset, to 8kHz, the sample rate employed
by the model. The full process is summarised in Figure 3.
Figure 4 shows a comparison of the frequency spectrums
between a decimated snippet of audio from the LaRed dataset
and the same audio signal with an equivalent low-pass filter
applied to it. As can be observed, the spectograms show
similarities, but the reduction in samples can be clearly
observed in the more coarse-grained representation of the
decimated audio.

Figure 3: Full process for simulating decimation and feeding input
audio to model

3.5 Model hyper-parameters
The model features a total of two hyper-parameters, both of
which are relevant for our experiment: min length, which
determines the minimum length in seconds that a laugh needs
to last in order to be detected and threshold, which ”adjusts
the minimum probability threshold for classifying a frame as
laughter” [15]. The threshold parameter can be set between 0
and 1, and a lower value might result in more false positives
but also in a higher percentage of laughter being recovered
from the audio. In a similar fashion, lowering the value of the
min length parameter might result in more short instances
of laughter being recovered, at the expense of an increase in
false positives.



Figure 4: Set of spectograms comparing decimation and low-pass
filtering. A 10s snippet of audio from the LaRed dataset was em-
ployed, and was decimated to 4410Hz on one hand and low-pass
with cutoff frequency 2205Hz on the other.

For the value of min length, we made the choice of
0.5s. Figure 5 illustrates the lengths of laughter instances in
the LaRed dataset, where 85% of laughs have a length longer
than 0.5s. We deemed this to be a suitable trade-off between
recovering less false positives and potentially missing out
on detecting the 15% of the dataset consisting of laughter
instances with a length shorter than 0.5s.

Figure 5: Histogram illustrating the length of laughter instances in
the LaRed dataset.

For the threshold parameter, we instead chose to evalu-
ate a range of values between 0.5 and 0.8, in order to better
explore the aforementioned compromise between false
positives and more laughs being recovered. This specific
range of values was determined by preliminary tests carried

Figure 6: F1-scores of the model for the various values of the thresh-
old hyper-parameter.

Figure 7: Performance of the laughter detection model on subset
of LaRed dataset, using a value of 0.7 for the threshold hyper-
parameter. Precision, Recall, and F1 scores are given.

out on a limited subset of the LaRed dataset. The data
present in this subset does not overlap with the data used for
evaluating the model, which help present any biases. These
tests explored the impact of using different values for this
specific parameter, and showed that this range of values for
the threshold produced the best results.

4 Results
Overall, the performance of the model was found to be
similar to that stated by Gillick et al., achieving a F1-score
of 0.534 in the best-case scenario, when using a sample rate
of 44100HZ and a threshold of 0.7. Figure 6 presents the
F1-scores obtained for the various values of the threshold
parameter. For high sample frequencies, the scores remain
virtually unchanged, but as we progress down the sample
frequency range, an almost linear drop in performance
can be observed from sample frequency fd. This specific
sample frequency appears to vary according to the threshold
parameter. For a threshold of 0.8, fd = 8000Hz, as we first
start to observe a decrease in the F1-score around 8000Hz.
For a threshold of 0.7, fd = 3150Hz. For a threshold of
0.6, fd = 2000Hz. And finally, for a threshold of 0.5,
fd = 1250Hz. This positive relation between the threshold
value and fd appears to be caused by a lower threshold re-
sulting in more potential laughs being recovered, regardless



Figure 8: Precision scores of the model for various values for thresh-
old hyper-parameter.

of whether laughs are less likely to be true positives. As the
sample frequency decreases, laughs which were previously
detected by the model might now not be recovered anymore
if we use a high threshold, while a lower threshold value
does allow for it. This overall reduction in performance
as we lower the sample rate can be said to be an expected
outcome, seeing how speech recognition models, which
employ similar approaches to laughter detection, are also
hindered by a reduction in sample frequency, as discussed in
sections 1 and 2. The threshold parameter appears to play
an important role in how this decrease manifests, and will
further be explored later in this section.

It is interesting to observe the effect the reduction of
sample frequency has on both precision and recall. Figure 7,
where we present the various metrics for a threshold value
of 0.7, illustrates this point very clearly. While precision
and recall are equal for sample rates higher than fd (for a
threshold of 0,7, fd = 3150Hz), it is possible to observe
an almost linear increase in precision occurring as the
sample frequency decreases from fd downwards, and a
corresponding decrease in recall, since the two metrics are
inversely related. This can be interpreted as a lower sample
rate resulting in less laughs being detected, but the retrieved
laughs are more likely to be true positives. This phenomenon
occurs for all employed values of the threshold parameter, as
can be observed in Figure 8, which compares the precision
for the different values of the threshold, and Figure 9, which
presents the recall scores.

Another correlation which can be observed in both fig-
ures is the relationship between the threshold and the
precision (and recall) of the model: a higher value for the
threshold results in less false positives being recovered,
therefore resulting in a higher precision score. This can very
clearly be observed in Figure 8. The value for the threshold
parameter and the precision are therefore positively related
(while the threshold value and the recall are negatively
related). This specific relation has further implications on
the distribution of the F1-score over the sample frequency
for different values of the threshold parameter, as shown
in Figure 6. A higher threshold value appears to result in

Figure 9: Recall scores of the model for various values for threshold
hyper-parameter.

a lower F1-score for sample frequencies higher than high,
but also in a higher score for frequencies lower than fd,
where the threshold appears to affect the gradient of the
F1-score curve for a sample rate lower than fd. This can be
explained by the increase in false positives due to a higher
threshold value for sample frequencies lower than fd being
less significant when compared to sample frequencies higher
than fd. This can clearly be noted with threshold values of
0.5, 0.6 and 0.7. However, too high a value seems to result
in an overall loss of performance along the whole range of
sample frequencies, as shown by the F1-score for a threshold
value of 0.8.

5 Responsible Research
The are various points to consider when it comes to the ethical
implications of this research. First and foremost, the privacy
of the participants which contributed to the LaRed dataset
must be respected. Secondly, reproducibility should be taken
into account, as part of the guidelines of valid academic re-
search.

5.1 Privacy of LaRed dataset contributors
Respecting the privacy of the participants of the LaRed
dataset data collection experiment was of upmost importance
when carrying out the research, especially since the audio was
not recorded in a privacy-sensitive manner. No data pertain-
ing to the dataset was shared in any way or uploaded to the
cloud, and all activities relating to processing the data and
evaluating the performance of the model were run on a local
machine.

5.2 Reproducibility of research
The research was carried out in such a fashion to allow for
it to be reproduced. As previously mentioned in section 3,
the source code for the laughter detection model employed is
available on GitHub [15], and the methodology as well as the
setup for the experiment was discussed in a detailed manner:
the aforementioned model, its hyper-parameters, the dataset
employed and the evaluation process were all discussed and
explained.



6 Discussion and Conclusions
The research on the detection of non-verbal social cues such
as laughter in privacy-sensitive audio is still ongoing, and
it still has not been experimentally verified how decima-
tion affects the detection of laughter. This research paper
attempted to address this knowledge gap by exploring how
the performance of a pre-trained state-of-the-art laughter
detection model get affected by decimation. We simulate
decimation with the use of low-pass filtering, and evaluate
the performance of the model.

The experiments we carried out showed that decreasing
the sample frequency negatively impacts the performance
of the model, resulting in a relatively linear decrease in
performance after a specific sample frequency fd. The
threshold hyper-parameter of the model, which configures
the model to recover more laughter instances while taking the
risk of increasing the amount of false positives, influences
the value of fd, as well as its performance for sample rates
lower than fd and higher than fd.

The research featured various limitations which pave
the way for further research and experiments, the most
important limitation being the use of low-pass filtering to
simulate decimation. A drawback of this approximation is
that we miss out on the effects that a reduction in sample
frequency provides on the detection of laughter, and therefore
we do not explore the full impact of decimation on laughter
detection. This particular limitation and others will be
discussed further in the next section, as well as the future
research that could be carried out to address them.

7 Future Work
As mentioned in the previous section, a possible follow-up to
this research would be to re-train the model for each sample
rate and then evaluate its performance, in order to better
explore and understand the full impact of decimation on
laughter detection models, rather than only considering the
bandwidth reduction aspect of it. The reduction in sample
rate might further hinder the detection of laughter, since the
presence of less data samples could make laughter detection
more difficult, as well as potentially resulting in a higher
number of false positives.

Another possible point of improvement would to evalu-
ate the performance of different laughter detection models,
especially if future research produces more models with a
robust performance with noisy data. Similarly, different
datasets could be employed, captured using varied audio
recording equipment and with different levels and types
of background noise, in order to obtain a more general
idea of the performance of laughter detection models with
low sample frequency audio, in contrast with the rather
preliminary nature of the results obtained in this research.

Additionally, when it comes to selecting the best hyper-
parameters for the model, hyper-parameter tuning could
have been employed, especially in the case of the threshold

parameter, where it would have allowed us to more precisely
obtain an optimal value for the parameter. Additionally, as
shown in section 4, a lower value for the threshold resulted
in better performance for sample frequencies under fd, at
the cost of performance at higher sample rates. Therefore,
one could perform tuning with the goal of maximizing
performance with low sample rates rater than maximizing
performance over the whole range of sample rates, resulting
in a tuned model with a greater performance with low sample
frequencies.

Furthermore, an important point to consider about laughter
detection in general is that is always ambiguity when it
comes to annotating laughter. There are different types of
vocalizations (eg: snickers, chuckles, giggles) which some
individuals might consider to be a laugh, while other might
not. The annotations provided with the LaRed dataset were
taken in a way to include all vocalizations mentioned above,
classifying them as laughter. A way to obtain more objective
annotations would be to have several individuals annotate
the dataset and to then derive a final set from their combined
annotations.

Finally, fine-tuning can be employed to further attune
the laughter detection model to the dataset, initialising a new
model with the current model’s weights and doing some
further training with the current dataset. This might help
further improve performance, potentially resulting in more
robust laughter detection at low sample frequencies.
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