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Abstract

Adversarial training and its variants have become the standard defense against ad-
versarial attacks - perturbed inputs designed to fool the model. Boosting techniques
such as Adaboost have been successful for binary classification problems, however, there
is limited research in the application of them for providing adversarial robustness. In
this work, we explore the question: How can AdaBoost ensemble learning provide ad-
versarial robustness to white-box attacks when the "weak" learners are neural networks
that do adversarial training? We design an extension of AdaBoost to support adver-
sarial training in a multiclass setting, and name it Adven. To answer the question, we
systematically study the effect of six variables of Adven’s training procedure on ad-
versarial robustness. From a theoretical standpoint, our experiments show that known
characteristics from adversarial training and ensemble learning apply in the combined
context. Empirically, we demonstrate that an Adven ensemble is more robust than a
single learner in every scenario. Using the best found values of the six tested variables,
we derive an Adven ensemble that can defend against 91.88% of PGD attacks and
obtain 96.72% accuracy on the MNIST dataset.

1 Introduction

Research has proven that neural networks are prone to adversarial attacks [4][9][8][16][17]
[36][30]. Adversarial attacks are most prevalent for image classification problems. Specifi-
cally, an adversary (also known as perturbation) of an image is another image that is indis-
tinguishable to the human eye but has different pixel values. The adversary is not random
noise added to the original image, rather it is a systematic change [8][17]. There have been
many forms of adversarial generation techniques discovered and explored by the community.
These can be white-box (the attacker has all the information on the target models parame-
ters) or black-box (the attacker has no information on target model parameter). To defend
against these attacks, many approaches have been studied since 2014 when the problem
was brought to light, but new powerful attacks could break them [4]. Adversarial training,
where the model is trained on adversarial images, is one of the defense approaches that is
yet to be defeated [4]. On its own, its not enough against strong state-of-the-art white-box
adversarial attacks [9]. Rather, state-of-the-art defenses rely on combining different learning
techniques to achieve robustness. Examples of successful approaches are combinations of
specialised loss functions, activation functions, and model sizes.

Around the time adversarial attacks were discovered, ensemble learning (the combination
of several classifiers for classification) as a defense technique was also tested [8]. Boosting
ensemble learning combines weak learners (models with low accuracy) into a single strong
learner. Adaptive Boosting (AdaBoost) [25] is a boosting algorithm that achieves this by
assigning weights to the training dataset and to each individual model in the ensemble,
such that each consecutive trained weak learner has a higher focus on the previous learners
mistakes. Experiments conducted in 2014 found that an ensemble model failed to give any
protection to adversarial attacks [8]. Since then, there has been limited research on using
ensemble learning for adversarial defense, in particular, there is very little research into the
combination of AdaBoost ensemble learning with adversarial training as a defense.

This work performs an in-depth study into the combination of AdaBoost ensemble learning
with adversarial training. This allows us to test if ensemble learning is a viable defense
strategy when combined with adversarial training, and analyse whether or not discovered
properties of the two techniques transfer over in the combination. The following research



question is answered: How can AdaBoost ensemble learning provide adversarial robustness to
white-box attacks when the "weak” learners are neural networks that do adversarial training?

We answer this question by fixing an ensemble learning algorithm, and thoroughly explore
the training of the "weak" neural networks themselves, as it’s closer linked to adversarial
training. We did this by conducting many controlled experiments each having its own in-
dependent and controlled variables. The independent variables of the training procedure
that have been tested are: (1) model size, (2) loss function, (3) activation function, (4)
perturbation radii, (5) adversarial generation algorithm, and (6) number of weak learners.
The dependent variable (evaluation metric) for all the experiments was: test set accuracy
and adversarial robustness (% of defended attacks) to the PGD [17] white-box attack.

To conduct these experiments, we adapted the AdaBoost multiclass algorithm, SAMME
[38], to support adversarial training with neural networks; we called it Adven. Our ex-
periments showed Adven inheriting both known adversarial training and ensemble learning
characteristics, whilst exhibiting unique ones of its own. It provided more robustness than
a single learner in all the experiments, and the best combination of the tested variables ob-
tained 96.72% test set accuracy and 91.88% PGD attack robustness on MNIST [5] dataset.

2 Background & Related Work

Before delving into our research approach, the following section will briefly introduce related
work of adversarial training & attacks, and ensemble learning.

2.1 Adversarial Attacks & Training Research

Adversarial Attacks. Research by [26] observed that neural networks are vulnerable to
adversarial attacks. The first white-box attack was Fast Gradient Sign Method (FGSM)
adversarial generation algorithm [8]. This was followed by R+FGSM [27], and then by the
Basic Iterative Method (BIM) [16]. In 2018, research by [17] introduced the Projected Gra-
dient Descent (PGD) attack, which was the strongest at the time, and is the backbone for
the current strongest attacks such as AutoAttack [4].

Adversarial Training as a defence. Adversarial training is a defence approach to adver-
sarial attacks, wherein the model under attack trains on adversary examples [9][17][30][4];
it’s regarded as one of the most successful methods to train robust deep neural networks
[9]. It was first introduced in [8] where it was used as a regulariser against FGSM attacks;
bringing up robustness by 10%. Most importantly, [17] formulated adversarial training as
a saddle point problem whose goal is to find model parameters that minimize the adver-
sarial risk. The saddle point problem is a composition of an inner maximisation and outer
minimisation, where the inner maximisation is approximated using adversarial attacks, and
the outer minimisation is approximated using adversarial training [9]. Since the success of
this formulation, many papers have attempted adversarial training using it as a backbone.
Experiments were conducted that explored: changes to the inner maximisation [7][4][30],
effects of loss functions [12][19][36], effects of model architecture [33]. Of these mentioned
approaches, research on the effects of loss functions has had eye-catching success. For exam-
ple, TRADES loss [36] balances the trade-off between standard and robust accuracy via a
specific regularisation term. Similarly, MART [29] found success by addressing the TRADES



trade-off by using boosted loss functions. In [9], a detailed systematic study into adversarial
training by studying effects of loss functions, model sizes, activation functions, and many
other factors was conducted. It was found that the proper combination of these factors can
provide significant improvement to adversarial robustness to state-of-the-art attacks.

2.2 Boosting Ensemble Research

Boosting is an ensemble machine learning technique that was first introduced in [25] for
a binary classification task, AdaBoost was the name given to the implemented algorithm.
AdaBoost is an iterative algorithm that integrates multiple "weak" classifiers for voting with
weights to create one high performing "strong" classifier [13][35][11]. In 2006, two multi-class
variations of AdaBoost were formulated called SAMME and SAMME.R [38]. AdaBoost is
most commonly used with classifiers like decision trees, but there has been limited research
into the effectiveness of AdaBoost with neural networks [13]. In 2014, research by [11] found
an AdaBoost neural network ensemble improving accuracy by 10% over a single neural
network for an image classification problem. However, three years later in 2017, research by
[35] found that simply using AdaBoost with neural networks as weak learners has several
notable weaknesses. However, an alternative training regime that makes uses of pretraining
and special class weights overcame these issues [35]. In the research community, there has
been very limited research into the effects of AdaBoost to adversarial robustness. Research
conducted by [13] showed an ensemble providing slightly greater robustness to PGD attacks.
However, the focus of the research was more on the ensemble algorithm itself, and no in-
depth research was conducted on adversarial training and its related parameters.

3 Methodology and Problem Description

The following section describes the method used to evaluate how AdaBoost ensembling
combined with adversarial training can provide adversarial robustness. The conducted ex-
periments will vary multiple different variables of the training procedure in an attempt to
explore how characteristics of these two techniques influence adversarial robustness. This
section starts with the motivation for the chosen method, followed by a brief description
of adversarial attacks and training, followed by a brief description of AdaBoost ensembling
and our adaptation of it, and finally ends with explaining the experimental procedure.

3.1 Method Motivation

The combination of boosting ensemble techniques like AdaBoost and adversarial training
has not been thoroughly researched. Our method of exploring multiple training variables
of the combination is of interest because, this method lets us: (1) analyse if adversarial
training is viable in another context like ensembling and vice-versa, (2) confirm whether
or not previous findings related to adversarial training and ensembling transfer over in this
combined context, (3) answer whether ensembling works well with neural networks, (4) gain
insight into whether the chosen variables are relevant for adversarial training or ensembling.

3.2 Adversarial Attacks & Training

Before describing how we conducted the experiments, its important to describe the basics
of adversarial attacks and adversarial training as a defense, and define related terms.



Target Model(s): are CNNs that are performing a particular classification task. The
attackers aim is to minimize this models accuracy by feeding it perturbed images that
would lead the model to missclassify the image that it would otherwise correctly classify.

Adversarial Attack. This research limits the focus to untargeted white-box gradient-
based attacks. White-box setting means the attacker has access to all the model parame-
ters. Untargeted refers to the setting that the attacker creates adversaries without the aim
of fooling the classifier for a specific class. Gradient refers to the direction that increases
the loss function; whilst training, a model alters its parameters (weights and biases) us-
ing the negative gradient to minimize the loss function, this is known as back-propagation.
Gradient-based attacks refers to the setting wherein the attacker perturbs the image towards
the direction that instead maximises the loss function such that the image is missclassified
[8]. The FGSM attack [8] (Equation 1) is the most basic gradient-based attack that captures
this intuition: perturbation (adversary) is created by moving towards the direction (V) that
maximizes the loss function L, € determines how much we perturb the image.

Tady = X + 0%, where 6" =€ (V,L(x,y)) (1)

Equation 2 shows the PGD attack [17]. This attack is a far stronger generalisation of the
FGSM attack, that computes perturbations by taking K gradient steps of size 7; after each
step, the perturbed image is projected back onto set of allowed perturbations A.

Tado = = + 6%, where s+ — HA((;(’“) + 7 - sign(Vsa L(fo(z + 5(k)), y))) (2)

A typical choice for A is the lo, perturbations, defined as A = {J : ||d||cc < €} where € is
called the perturbation radii, and 6° is often randomly initialised within A.

Adversarial Training: is a method for learning models that are robust to adversarial
attacks [9]. Paper [17] formulated this concept mathematically as a saddle-point problem.
Given a model (CNN) fy parameterised by 6, a dataset (z;,y;), a loss function L, and set
of allowed perturbations A (eg. ), the adversarial training problem is to minimize:

H{gnzrglea}L(fe(% +6),y:) (3)

inner maximization

outer minimization

The procedure for adversarial training is to use some adversarial generation algorithm (i.e
attacks like PGD or FGSM) to approximate the inner maximisation, approximations are
used as the problem is NP-HARD [9]. The outer maximization is achieved by some form
of gradient descent on the model parameters 6 [30]. In summary, adversarial training aims
to find the model parameters # that minimize the loss incurred by the maximal perturbed
image generated using adversarial attacks i.e learn the strongest perturbation possible.

Adversarial Robustness: is a measure to see how well a model defends against adversarial
attacks. Specifically, for this paper, robust accuracy and synonymously robustness is the
percentage of adversarial attacks that failed. The higher the robustness the better.
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Figure 1: SAMME & Adven algorithm overview. (1) Dataset is collected and assigned weights.
(2) For each weak learner in the ensemble: (2a) train it, (2b) compute its errors, (2c) assign learner
weight, (2d) update data weights. (Blue) SAMME trains and computes errors on clean images
whereas (Yellow) Adven does so with perturbed images.

3.3 AdaBoost Ensembling

For the purposes of this work, the classic AdaBoost ensembling algorithm cannot be used as
it is designed for a binary classification task. Figure 1 provides an overview of the SAMME
algorithm [38], a multi-class extension of the AdaBoost algorithm. The ensemble training
procedure begins with initialising equal sample weights for each training example. The next
step is to train individual weak learners iteratively. During each iteration, once the weak
learner has finished training on the weighted training data, its training error is computed
(Blue: Step 2a-b). This is used to assign a weight to the learner (Step 2c), the basic idea
is that the better the learner performed the higher its weight. Finally, the data weights are
updated based on how this learner performed on them (Step 2d). The rule is that examples
that were missclassified are given a larger weight, such that the next weak learner can focus
on learning these better. To make an ensembled classification for a given input, SAMME first
collects the individual classifications of each weak learner and scales them according to the
learner’s weight, then selects the most popular class. SAMME cannot directly be used for
adversarial training with neural networks. We modified it to enable adversarial training with
neural networks, and we called it Adven (mix of the words ADVersarial and ENsembling).
Figure 1 highlights two important differences between Adven and SAMME. First, each weak
learner in Adven are CNNs that perform adversarial training by perturbing training images
using some adversary generation algorithm (Yellow: Step 2a). Second, the weak learner
training error in Adven is computed using adversarial images rather than clean images
(Yellow: Step 2b), this is then used to compute the learner weight and update the sample
weights in the same way as SAMME (Steps 2c-d). These two differences enable ensembled
adversarial defense. Because each weak learner has trained on adversarial images, and each
consecutive learner puts more focus into learning adversarial images that the previous learner
could not defend. Finally, Appendix A contains detailed pseudo-code for both algorithms.

3.4 Experimental Procedure

As mentioned at the beginning of this section, our experiments varied different variables of
the Adven training procedure to explore how they influenced robustness.

Variables and motivation. Extensive experiments were conducted for six variables: (1)
Adversarial generation algorithm used during adversarial training by a weak learner, (2)
Loss function used by a weak learner, (3) Perturbation radii used during adversarial train-
ing by a weak learner, (4) total number of weak learners in the ensemble, (5) Activation



function used by a weak learner, and (6) depth of the weak learner (model size).

The first three variables are an important choice because they correspond with the outer
maximisation and inner minimisation part of the adversarial training saddle point formula-
tion; exploring them will give insights into adversarial training characteristics in an ensemble
context. Exploring the total number of learners lets us better understand the effect of en-
sembling on robustness. Activation function and model size lets us examine whether or
not existing findings on them are observed in an ensemble context. There are many other
variables that can be explored, and we encourage the research community to explore them.

Experiment Overview. For each of the six independent variables outlined, we did the fol-
lowing: (1) Data preparation, (2) Select variable value, (3) Train Adven ensemble with the
selected value, while keeping all other variables constant, (4) Measure the accuracy of test
dataset, (5) Measure the robustness against adversarial attack, (6) Repeat steps 3-5 three
times for statistical significance, (7) Repeat steps 2-6 for all values of the current indepen-
dent variable. To ensure generalisability, the two values resulting in the greatest and least
robustness were chosen, then experiments were conducted using the experimental procedure
stated above on a different dataset. Finally, after all experiments, the best combination of
these values were found that can provide the maximal adversarial robustness.

4 Experimental Setup

This section states the specifics of how the experiments were carried out. We provide details
for the steps that were outlined in the experimental overview part of Section 3.4.

1. Dataset & Data preparation. All the experiments used the MNIST [5] dataset.
However, we realised that patterns and observations can be dependent to the dataset used
in the experiments, thus to ensure generalisability we tested our findings on another dataset
[9]. We conducted additional tests on the Fashion-MNIST [31] dataset. Specifically: two
values for each independent variable were tested on this other dataset, we then checked if
patterns on adversarial robustness matched with what was observed on the MNIST dataset.
If this was the case, we could deem our findings more reliable (i.e. not dataset dependent).

2. Independent variable values. The following are the values for the independent
variables that have been tested, and the motivation for why they were picked:

e Model Size: 2, 3, 4, 5. We stop at CNN having 5 layers, as any larger will result in
the CNN no longer being a "weak" learner anymore [35].

e Activation Function: ReLU [1], HardTanh [23], Leaky ReLU [34], ELU 3], and
GeLU [10]. Most of these are similar to the activation functions tested by [9], the
others are common in the machine learning community.

o Loss Function: Cross Entropy[37], KL-divergence, and TRADES [36]. TRADES
was selected as it has shown good success already, the other two because they are
commonly used and are part of TRADES’ formulation.

e Perturbation Radii: ¢ ={8/255, 18/255, 28/255, 38/255, 48/255, 58,/255, 68/255,
78/255}. These values were chosen because interesting patterns were observed during
preliminary tests (see Appendix B) and other research papers have often used similar
values for their experiments [9].



e Adversarial Generation Algorithm: FGSM [8], BIM [16], PGD [17], MIA [7].
These attacks were chosen because they offer a good variety of strength.

e Number of weak learners: 2, 3, 4, 5, 6, 7, 10, 20, 30, 40. The first half of tests are
quite granular up to 7 weak learners, this is similar to the study by [35]. The larger
number of learners are there because similar researched papers, [13][35][11], have not
tested this large number of learners.

Furthermore, for each of the independent variables the following control/default values
are set: (1) Model size: 3 layer CNN, (2) Loss function: weighted cross-entropy loss (3)
Activation Function: ReLU (4) Perturbation Radii: 78/255 (5): Adversarial Generation
Algorithm: PGD (e = 78/255, number of iterations = 20) (6) Number of weak learners: 7.
These default values are used in-place for the independent variable when its not being tested.

3. Adven training details. When training a weak learner in Adven, the following pa-
rameters were kept constant for all experiments: batch size = 100, number of epochs = 3,
learning rate = 0.003 with Adam [14]| optimizer, adversary algorithm used [, perturbations.
Usually loss functions are computed by taking a batch mean, our loss functions computes
the weighted batch mean (the weights are the ensemble training data weights).

4. Evaluation protocol. Two evaluation metrics were used. First was the test set
accuracy (% of data correctly classified), and the second was the robustness to PGD attack
(% of unsuccessful attacks) with the following parameters: e = 78/255 = 0.3058, number
of iterations = 20, and step size = 0.003. The PGD attack itself is created by perturbing
the test dataset based on the parameters of the CNN with the greatest weight in the en-
semble. We also measured how long a single learner took to train, letting us get an idea of
computational efficiency of Adven. We used a single machine with one GeForce RTX 2060.

5 Results

The following sub-sections will detail all the experiments conducted for the six independent
variables. Each sub-section begins with context to explain any relevant related works or
explain required concepts, then our results are presented and explained.

5.1 Loss Function

Context. In Section 3.2, Equation 3 describes adversarial training as solving a saddle
point problem: attempting to minimize the loss incurred by the maximal perturbed image.
Cross-entropy is a common choice for the used loss function [7]. Of the many papers that
have explored other loss functions, TRADES [36] is noteworthy due to its characteristic
of balancing the trade-off between standard and robust accuracy; helping the model learn
perturbations effectively. It was used in [9] to create one of the state-of-the-art defenses.

Results. Figures 2a and 2b show the effect of changing the loss functions used by ad-
versarial training on the test-set accuracy and robustness for an Adven ensemble and single
learner respectively. Figure 2b shows that for a single learner, TRADES loss provides the
highest robustness, upwards to 84%, this is in line with similar conducted research [9]. The
confidence intervals for TRADES and cross-entropy show that the observed robustness varies
a lot, we suspect this is either due to the low capacity of weak learner not being able to learn



the perturbations or some training batch shuffles being harder to learn than others. KL-
divergence consistently provided very little robustness for a single weak learner. This loss
compares the probability distributions between the models predictions and the true label.
In implementation, the true label is one-hot encoded (each position of an array represents
a class; a label is converted into this array, a 1 is filled at the correct position, and 0 else-
where). Due to this encoding, on missclassifications the incurred loss is high and on correct
classifications the loss is low, and rarely in-between. We suspect due to this, the loss space
is rather rigid with many troughs and peaks, making it difficult for the optimiser to traverse
it and back-propagate. Figure 2a shows that for all loss functions, an Adven ensemble pro-
vided better robustness than a single learner, and a lot more consistently (smaller confidence
intervals). We hypothesise the weighted loss functions that the weak learners in Adven use,
help the learners better learn perturbations. Specifically, a learner incurs a high loss when
it missclassifies a perturbation that the previous learners also missclassified, and a low loss
when it correctly classifies it. The resulting effect is that the learner focuses on learning
a subset of the data, namely, perturbations the previous learner couldn’t. This is helpful
as weak learners have low capacity [17]. Finally, we observed training a single learner on
cross-entropy and KI-divergence loss took 104 seconds, whereas training on TRADES took
150 seconds. Therefore, gained robustness from TRADES is not computationally "free".

Effect of loss function on Adven ensemble Effect of loss function on single weak learner
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Figure 2: Loss Function Test | Test set accuracy and PGD robustness accuracy for different loss
functions used during adversarial training. Left (2a) shows this for an Adven Ensemble. Right (2b)
for a single learner. Error bars represent 95% confidence intervals.

5.2 Adversarial Generation Algorithm

Context. As explained in Section 3.2, adversarial training for deep neural networks pro-
posed in [17] aims to solve a saddle point problem. The inner maximisation part of the
problem is approzimated by gradient-based adversarial generation algorithms. Algorithms
like FGSM and PGD as explained in Section 3.2 can be used. However, there exists many
others, such as the Basic Iterative Method (BIM) [16] and Momentum Iterative Attack
(MIA) [7]. BIM is only a slightly weaker attack in comparison to PGD because it does not
make use of random initialisation. MIA is a one-step attack like FGSM, but it accumulates
the gradient for each perturbed image and uses it to better maximize the loss function [7].

Results. Figures 3a and 3b show the effect of changing the adversary algorithm used



by adversarial training on the test accuracy and robustness for an Adven ensemble and a
single learner respectively. Figure 3b shows two known characteristics of a single learner
performing adversarial training. First, training on FGSM gives no robustness to a more
sophisticated attacks like PGD but training on stronger attacks like PGD does [17]. Second,
we observe the trade-off effect [36]: training on complex attacks requires sacrificing more
on the more test set accuracy. Figure 3a shows that these characteristics are also observed
in an ensemble setting. Moreover, it displays that the ensembled model on average is more
than two times robust to PGD attacks in comparison to a single learner, whilst maintaining
high accuracy on the test set. This finding may possibly indicate that an ensembled model
is more resistance to the trade-off effect. One interesting observation in Figure 3a is that,
on average, training on BIM provides better robustness to PGD attacks than training on
PGD. Because the individual learners in the ensemble are weak, they can better learn the
slightly weaker BIM attacks that PGD; Figure 3b shows this with BIM having a larger
confidence interval than PGD. Since BIM and PGD with 20 iterations create very similar
perturbations, the ensemble trained on BIM can provide good robustness to PGD attacks.
Finally, we found training a single learner on FGSM took 33 seconds, whereas training on
the others took 104 seconds. Therefore, gained robustness is not computationally "free".
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Figure 3: Adversary Algorithm Test | Test set accuracy and PGD robustness accuracy observed
when different adversary algorithms are used during adversarial training. Left (3a) shows this for
an Adven ensemble. Right (3b) for a single learner. Error bars represent 95% confidence interval.

5.3 Perturbation Radii

Context. As stated in Section 3.2, the perturbation radii determines how much the per-
turbed image (i.e adversary) can differ from the original image. Several research papers
have experimented and/or observed the effects of perturbation radii [9, 36, 17, 2]. One char-
acteristic of adversarial training is that of the trade-off between adversarial robustness and
test accuracy [36]. A larger perturbation radii means the adversarial attack algorithm can
generate a larger set of perturbed images and make the images more perturbed themselves,
resulting in a more effective attack. When a neural network trains on larger perturbations
the robustness to stronger attacks increases, however, its classification power for normal
examples decreases, as it becomes accustomed to learning large perturbations.

Results. Figures 4a and 4b show the results of our tests for various increasing values
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of perturbation radii. From Figure 4a we notice that for the Adven ensembled model, as
the perturbation radii increases, the robustness to the PGD attack increases but with a
decrease to the normal test data-set accuracy. Indicating that this trade-off characteristic of
adversarial training is also relevant in an ensemble setting. In Figure 4b we notice a similar
pattern, however, there are several differences between the two. Firstly, Adven ensemble is
far more robust than a single learner for all tested perturbation radii. This indicates that
multiple learners are better able to learn the larger perturbations produced by the greater
radii in comparison to a single learner, and thus have greater robustness. Secondly, as Figure
4b shows, the single learner exhibits a major drop in test set accuracy past perturbation
e = 0.20. Work in [17] links this to a weak learners insufficient capacity to learn stronger
adversaries, resulting in the model completely sacrifice performance on natural examples to
provide minimal robustness. However, as Figure 4a shows, an ensemble can mitigate this
issue greatly, as such a large sacrifice is not noticed. Finally, we observed perturbation radii
had no effect on training time; additional robustness is computationally "free".

Effect of perturbation radii on Adven ensemble Effect of perturbation radii on single weak learner
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Figure 4: Perturbation Radii Test | Test set accuracy and PGD robustness accuracy observed as
the perturbation radii of the PGD adversarial generation algorithm used during adversarial training
increases. Left (4a) shows this for an Adven ensemble. Right (4b) for a single learner. PGD attack
uses default value of perturbation € = 78/255. 75% confidence regions are shown for each line.

5.4 Activation Function

Context. To the best of our knowledge, no work has been done exploring the effects of
activation functions on adversarial trained ensembled model. However, there are conflicting
findings about the effects of activation functions on adversarial training. In [32] it was found
that smooth activation functions (having continuous derivatives over an interval) allow the
neural network to better compute gradient updates during adversarial training, yielding in
greater robustness. In particular, they posited that ReLU weakens adversarial training. In
contrast, [9] did not observe a clear trend as [33] on their experiments.

Results. Figures 5a and 5b show the effect of different activation functions on the ro-
bustness to PGD attack and test set accuracy for an Adven ensemble and a single learner
respectively. Two key insights can be taken away from these experiments. Firstly, in both
Figures 5a and 5b we observe that the models using Leaky ReLU (in figures L-ReLU)
activation function provides the most robustness, followed by HardTanH and GeLU. Our
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findings are more in line with [9] and in contrast to [32] who found smooth activation func-
tions like GeLLU and ELU to provide the highest robustness. This suggests that there might
be some other correlated factor with activation functions that our work and [9] has in com-
mon. The interesting takeaway is that weak learners prefer non-smooth activation functions
over smooth activation functions. Secondly, Figure 5a shows that the Adven ensemble pro-
vides more robustness than a single learner for each different activation function. However,
what is rather interesting is that the ensembling provides the greatest boost when a single
learner is using the ReLLU activation function. As Figure 5b shows, a single learner using the
HardTanH or Leaky ReLU activation functions provides more robustness than an Adven
ensemble of 7 learners using ReLU. Suggesting that Leaky ReLU and HardTanH synergise
well with adversarial training, allowing a weak learner to learn adversaries efficiently. How-
ever, it is unclear why exactly this is the case. Finally, we observed activation function had
no effect on training time; additional robustness is computationally "free".
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Figure 5: Activation Function Test | Test set accuracy and PGD robustness accuracy observed for
different activation functions used during adversarial training. Left (5a) shows this for an Adven
ensemble. Right (5b) for a single learner. Error bars represent 95% confidence interval.

5.5 Number of Weak Learners

Context. Research by [13] and [35] found a positive relationship between the number of
learners and test set accuracy for a CNN ensemble that is not performing adversarial train-
ing, [13] also observed that an ensemble achieved higher test set accuracy than a single
learner. Tests in [13] showed that an ensemble which performed adversarial training gained
robustness by adding up to 6 learners, but adding any more didn’t give any visible trends.

Results. Figures 6a and 6b show the effect of varying the number of weak learners on
the robustness to PGD attack and test set accuracy for an Adven and SAMME ensemble
respectively. Three key insights can be drawn. Firstly, in contrast to findings by [13| and
[35], Figure 6b shows the test set accuracy decrease by 2% as we increase the number of
learners from 1 to 40 in the SAMME ensemble. We suspect this could be due to the dif-
ferent experiment settings; they use other AdaBoost variations, and test on other datasets.
Secondly, Figure 6b shows that ensembling on its own provides robustness to PGD attacks.
Compared to a single learner which gives no robustness, three or more learners can provide
up to 20% robustness. Thirdly, Figure 6a shows that for an Adven ensemble increasing the

12



number of learners increases both the robustness to PGD attacks and test set accuracy in a
logarithmic manner. This indicates two properties: (1) more learners are, in a way, able to
offset the expected trade-off with test accuracy, (2) more weak learners are better able to
learn perturbed images. We notice the logarithmic relationship till 30 learners, adding more
results in a decline to robustness. It’s hypothesized that at this high count of learners, it
becomes easier for the ensemble to make misclassifications. Specifically, during the ensemble
voting prediction, correct predictions from a low number of high-weighted weak learners can
be overruled by the remaining larger number of low-weighted weak learners missclassifiying.
To verify this hypothesis, we would need to perform learner weight analytics on ensemble
misclassifications, which was not under the scope of the paper, and has been left for future
work. Finally, we observed training time to be linear with the number of learners, with each
learner taking 105 seconds. Therefore, any gained robustness is not computationally "free".

Effect of number of learners on Adven ensemble Effect of number of learners on SAMME ensemble
100 100
90 90

80
70

80
70

g 6 Metric g 6 Metric
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3 3
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.
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Figure 6: Number of Learners Test | Test set accuracy and PGD robustness accuracy observed as
the number of learners in the ensemble increases. Left (6a) shows this for Adven ensemble. Right
(6b) for SAMME ensemble. 75% confidence regions are shown for each line.

5.6 Model Size

Context. Existing research has verified the significance of the model architecture on adver-
sarial robustness. Madry [17] found that a higher capacity model is more robust as its better
able to successfully train against strong adversaries, and that for robustness the model re-
quires larger capacity than for classifying benign examples only. Recent research by [9], [28]
and [24] have noted that larger and deeper models provide improved adversarial robustness.

Results. Figures 7a and 7b show the effect of increasing the size (depth) of the weak
learner on the robustness to PGD attack and test set accuracy for an Adven ensemble and
single learner respectively. Figure 7b shows that as the model capacity increases by increas-
ing model size, a single learner can better perform adversarial training and becomes more
robust. This is in line with the aforementioned findings by previous works [17][9][28][24].
What is rather interesting is that the same pattern is observed in Figure 7a for the Adven
ensemble, specifically, there is a jump of approximately 20% in robustness from using 3 layer
CNN to a 5 layer CNN. The reason for this can be linked back to an observation in [35]:
AdaBoost ensembling’s accuracy is limited by accuracy of the weak learner itself. For an
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ensemble that uses more complex weak learners, the probability of the votes being more
unanimous is higher during the prediction voting phase, leading to a high test set accuracy.
This combined with the fact that a higher capacity single learner can better perform ad-
versarial training (Figure 7b) leads to the Adven ensemble also having higher robustness.
Finally, we observed training a single two layer CNN took 81 seconds, and each increment
to the depth costed 16 seconds. Therefore, gained robustness is not computationally "free".

Effect of model size on Adven ensemble Effect of model size on single weak ensemble
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Figure 7: Model Size Test | Test set accuracy and PGD robustness accuracy for different sizes of
the weak learner used during training. Left (7a) shows this for an Adven Ensemble. Right (7b) for
a single learner. Error bars represent 95% confidence intervals.

5.7 Fashion-MNIST Generalisability & Final Combination

As discussed in Section 4 and Section 3.4 we conducted tests on the Fashion-MNIST dataset
to check if our observed patterns were not data-set dependent. Full results and procedure
are in Appendix C. In summary, out of the six variables, model size and loss function didn’t
match the expected pattern on Fashion-MNIST, thus deemded more dataset dependent.
Considering all the findings of our conducted experiments, we tested ten combinations of
the six variables to find the most robust Adven ensemble for the MNIST dataset; full details
are in Appendix D. We found the best combination of Adven to used: (1) Perturbation
radii = 78/255, (2) Activation Function = Leaky ReLU, (3) Loss Function = TRADES,
(4) Adversary Algorithm = PGD, (5) Model Size = 5, and (6) Number of learners = 15. It
achieved a test set accuracy of 96.72%, and a robustness of 91.88% to PGD attacks.

6 Conclusions and Future Work

This section will bring together the findings of our research, discuss the limitations and
possible future contributions.

6.1 Conclusion

The purpose of this paper was to evaluate how an AdaBoost ensemble learning model can be
used to provide adversarial robustness to gradient-based white-box attacks when the "weak"
learners of the ensemble are neural networks that performed adversarial training. We first
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adapted the SAMME algorithm (multi-class extension of AdaBoost) to support CNNs that
perform adversarial training; our adaptation was named Adven. To answer the research
question, we conducted experiments where we varied six variables of the Adven training
procedure to explore how these influenced the ensembles accuracy on unseen clean images
and its robustness to a fixed white-box PGD attack. Overall, we found all of the chosen
variables to show relevant effects to robustness.

Empirically, results in Section 5 showed the Adven ensemble providing greater robustness
than a single weak learner in all tests, and was computationally efficient; training time scaled
linearly with the number of learners, and the remaining variables could provide robustness
with little to none additional training time. It’s clear that an ensemble synergises well with
neural networks. Theoretically, we found that Adven inherited known AdaBoost ensemble
characteristics, and transcended them into an adversarial training context. Namely, Adven
was found to provide greater robustness with increasing number of weak learners, and the
ensemble was limited by the individual weak learners accuracy. Results also showed that
Adven inherited known adversarial training characteristics, and transcended them into an
ensemble context. Specifically, Adven was found to provide greater robustness when the weak
learners performing adversarial training were of higher capacity and trained on stronger
adversarial attacks with large perturbation radii. We also found Adven to have to have
interesting characteristics of its own. An Adven ensemble exhibited greater resistance to the
trade-off effect than a single weak learner, and it preferred non-smooth activation functions.
When we tested these findings on the Fashion-MNIST dataset, we found that most of them
were not dataset dependent. Thus, Adven provided robustness on other datasets as-well.

Based on these findings we can answer the research question: Adven, an ensemble method
that performs adversarial training, can be used to provide robustness to white-box attacks
by following known phenomena of adversarial training and ensemble learning and exploiting
its own unique characteristics. Our best ensemble applies this, and is able to achieve 96.72%
test set accuracy and 91.88% robustness to PGD attacks on the MNIST dataset.

6.2 Limitations & Future Work

Although our research found interesting results, there are some limitations with respect to
our evaluation protocol. Firstly, due to limited computational power and time constraints,
we conducted tests on the MNIST dataset and used a "weak" attack such as PGD with
20 iterations. Current research uses stronger attacks like AutoAttack [4] and on harder
datasets like CIFAR-10 [15], making it difficult for us to make conclusive statements that
Adven will perform just as aswell on harder scenarios. Secondly, our attacks are computed
using a single weak learner from the ensemble, it would be interesting to see how we can use
the entire ensemble to generate adversaries and how that affects the ensembles robustness.
In comparison to existing defense methods, Adven falls short: on similar attacks on MNIST,
[30] achieves similar results but in shorter training times, and [36] is able to achieve 99%
robustness with longer training times. Regardless, we strongly believe this area of research
has potential to be improved. Further research could explore the ensembling algorithm
aspect more; Adven uses the basic AdaBoost multiclass extension SAMME, but better
alternatives exist [35][20]. Additionally, future work can explore effects of hyper parameters
(number of epochs, batch size, optimizers, learning rate, etc) on robustness. It would also be
interesting to explore black-box attacks on Adven; seeing how Adven influences adversary
transferabilty and gradient approximation methods. Finally, research can explore variations
of adversarial training or other defense approaches, and apply them to an ensemble setting.
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7 Responsible Research

This section describes how our research methods have followed reproducibility principles,
and the ethical aspects of our research.

7.1 Reproducibility of our methods

During the period of our work, we designed our implementation to easily allow reproducible
results. We realise that replication is the standard by which scientific claims are validated
[22], and to ease this process, our research needs to be easily replicable with reasonable time
and expense. Often the issue is with regards to data; experiments use large datasets that
cannot be manually analysed, and apply specific modifications that are often not detailed
[18]. To avoid these issues, we used well known and easily accessible datasets (MNIST [5]
and Fashion-MNIST [31]) for our experiments. Following current standards of reproducible
research in computational science [22], we have made our entire code base public 1. The code
base is well documented, uses well documented frameworks (PyTorch [21] and AdverTorch
[6]), and follows software engineering methods for ease of understanding and maintainability.
Furthermore, the code base contains an executable file that allows the user to easily replicate
all of our experiments by simply filling in the desired test parameters. Additionally, as stated
in Section 3.4, we conducted each of our experiments three times for statistical significance,
and displayed mean values along with confidence intervals to show the variance of our
results. We are aware that replicated tests will not give the exact same results, however,
the confidence intervals helps validating if they were nonetheless within expectation.

7.2 Ethics of Adversarial Research

Adversarial attacks can have real world consequences. Success in computer vision and
natural language processing fields are integrating trained classifiers into security-critical ap-
plications [17]. Examples of these are autonomous cars, facial recognition software, malware
detection, spam email detection, and many others [17]. Research in [16] demonstrated that
in physical world scenarios, adversarial attacks can cause a classifier to be fooled. An ex-
treme scenario could be an adversarial perturbation to a stop sign causing an autonomous
car to not recognize it, potentially leading to accidents. Now it is more important than
ever that machine learning classifiers are designed with security as a priority; resistance to
adversarial inputs being a design goal [17][36]. Our work attempts to contribute to existing
research being conducted on defenses to adversarial attacks. We understand that openly ex-
ploring defense approaches and identifying their strengths and weaknesses makes it easier for
attackers to develop workarounds to our discoveries. However, it is important that this topic
becomes widespread in the research community, so that more developers and researchers can
contribute to strengthening defense against such attacks.

As we continue to integrate machine learning into automated decisions making processes,
one day these classifiers may produce decisions that have legal consequences for us. The
General Data Protection Regulation (Article 22) regulates that it is then the responsibility
of the developer or whomever is in control of the classifier, that suitable safeguards to protect
the subjects rights and freedoms are implemented. Research in adversarial defense is crucial
to accomplish this, and we encourage the community to continue researching in this field.

Thttps://github.com/Kanish77/BRP-Adversarial Attacks
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A Pseudo-code of algorithms

This section of the Appendices has detailed the pseudo-code of the SAMME and Adven
algorithm.

Algorithm 1 SAMME Algorithm 2 Adven
Require: Number of: classes k, examples n, weak Require: Number of: classes k, examples n, weak
learners T' learners T'. Adv-gen algorithm A
Require: Training set S = {w;,y;}, with y; € Require: Training set S = {w;,y;}, with y; €
{1,...k} and z; € X {1,..k} and z; € X
1: Initialise sample weights w; = 1/n for ¢ = 1: Initialise sample weights w; = 1/n for ¢ =
1,...,n 1,...,n
2: for t=1to T do 2: for t=1to T do
3: Train weak learner H(®) (z) while using 3: Adversarial train CNN®) (z 4+ A) while us-
weights w ing weights w to compute weighted loss
4: Compute weak learner error as: 4: Compute weak learner error as:
n n n n
er = wilyi # H(t)(xi)]/zwi er =y wi-lyi # CNN®(z; + A/ w
i=1 i=1 i=1 i=1
5: Compute weak learner weight as: 5: Compute weak learner weight as:
a® =log((1 —et)/et) + log(k — 1) a® =log((1 —et)/et) + log(k — 1)
6: Update sample weights for ¢ =1, ..., n: 6: Update sample weights for ¢ =1, ..., n:
w; — w; - exp(a® - [y; £ HD (x;)]) w; — w; - exp(a® - [y; £ CNN® (z; + A)])
7 Normalise weights 7 Normalise weights
8: end for 8: end for
9: Output classifications as: 9: Output classifications as:
T T
C(z) = argmaxZa(t) JH® (z) = k] C(z) = argmaxz a®  [CNN® (z) = k]
kooi= k1=

B Preliminary Experiments

B.1 Motivation

There were two main reasons for conducting preliminary experiments. The first was to
ascertain whether or not the topic of the research, ensembling with adversarial training,
will provide any noticeable results. The second reason was that to conduct the experiments
for this paper, it was important to decide the values for the independent variables that
were to be tested. In order to decide values in systematic manner rather than random
guessing, two approaches were taken. The first approach was to decide values based on
existing research. The second approach was to decide values by first doing some preliminary
experiments on heuristically chosen initial values, and based on the results finalise a new set.

Preliminary experiments were conducted for three out of the six independent variables.
These three variables were: adversarial generation algorithm, perturbation radii, and num-
ber of weak learners. There are multiple reasons for as to why these ones were particularly
tested:

1. For the remaining three independent variables (model size, loss function, and activation
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function) values can be chosen based on existing literature (i.e the first approach as
explained above). Thus, with the limited research time, it was decided to only do
preliminary experiments with the other three variables

2. These three independent variables are numeric values, and thus its important to decide
with what granularity to test them. For example, with the number of weak learners,
should we test for 100 or more weak learners, or stop at 757 Another example, with
the perturbation radii should we test for values between a specific range like 0.2-0.3
or test larger values?

3. Doing tests with these three values allowed us to ascertain whether or not the core
topic of the research, ensembling with adversarial training, provided any noticeable
results.

B.2 Set-up

The following are settings that are used for all preliminary tests:

o A three layer CNN is used as the weak learner. Two convolution layers that both have
a kernel size of 5, and a maxpool operation in-between. One fully connected layer.

e The CNN weak learner uses ReLU activation function, and the (weighted) cross-
entropy loss (it’s weighted based on the sample weights).

e MNIST data-set was used for training and testing. For training: batch size was 100,
number of epochs was 3, learning rate was 0.002 with Adam optimizer.

o The evaluation criteria was: robustness to PGD attack (e = 0.156, number of iterations
= 20), robustness to FGSM attack (e = 0.156), and accuracy on test dataset.

o Default value for: number of weak learner was 7, adversarial generation algorithm was
PGD (e = 0.156, number of iterations = 20), perturbation radii was 0.156. Default
values are important to test the independent variable in a controlled manner. For
example, when not conducting tests for the perturbation radii, the tests for number
of weak learner and adversarial generation algorithm used a fixed perturbation radii
so that effects of the independent variable is more clear.

The following are the values that were tested for each of the three independent variables:

e Number of weak learners: 5, 7, 10, 15

e Adversarial generation algorithm: FGSM (e = 0.156), PGD (e = 0.156, number of
iterations = 20)

e Perturbation radii: 20/255, 40/255, 60,255, 80/255

Finally, to better see the independent effects of AdaBoost ensemlbing and adversarial train-
ing, and the combined effect of ensembling and adversarial training, for each tested value
four models were used (subject to the settings mentioned above):

e 7CNN _AdvT: 7 weak learner ensemble where each learner did adversarial training.
e 1CNN AdvT: Single weak CNN doing adversarial training
e 7CNN: 7 weak learner ensemble where no adversarial training was done

e 1CNN: Single weak learner where no adversarial training was done
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B.3 Results

Results for tests of adversarial generation algorithm
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Figure 8: Adversarial Generation Algorithm Tests

Comparing Figure 8a and 8b many useful points are noticed:

We notice that when performing adversarial training with FGSM, we still get ro-
bustness against PGD attacks. This could be because the PGD attack done in this
experiment is "weak", having a small radii and low number of iterations, and is thus
similar to an FGSM attack.

Test accuracy is highest with no adaboost and no adversarial training, which is in
line with previous findings of trade-offs between normal test accuracy vs adversarial
robustness [36].

We notice that when we train on a stronger attack, the robustness increases against
these stronger attacks (eg. PGD robustness goes up by 4.1%)

AdaBoost ensembling provides robustness on its own. Comparing the 7CNN and
1CNN models in Figures 8a and 8b, we see the 7TCNN ensembled model being far
greater robust to both FGSM and PGD attacks.

Adversarial training provides robustness on its own. Comparing the 1ICNN_AdvT
and 1ICNN _AdvT models in Figures 8a and 8b, we see the ICNN _AdvT model being
far greater robust to both FGSM and PGD attacks.

Finally, and perhaps more importantly, AdaBoost ensembling combined with ad-
versarial training provides the most robustness. In Figures 8a and 8b, we see the
7CNN _AdvT model having the greatest robustness to PGD attacks.

Results for tests of number of weak learners

Figure 9 shows that the ensembled model that performed adversarial training with 7 weak
learners seemed to be the most robust to attacks. A pattern that is noticed is that after 10
learners the ensemble seems to be ineffective to adding robustness. However this pattern
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Number of Learners vs Classification Accuracy
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Figure 9: Tests for varying number of weak learners

may not hold as these preliminary tests stop at 15 learners, and thus it is of interest to test
for greater number of learners.

Results for tests of perturbation radii

Effect of Radii for AdaBoost ensemble doing adversarial training vs Single CNN
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Figure 10: Tests for varying perturbation radii

Figure 10 shows the accuracy’s to test set, PGD and FGSM attack, for two models: the first
in blue being an AdaBoost ensemble of 7 learners doing adversarial training, the second in
orange being a single learner doing adversarial training. This figure shows that AdaBoost
ensembling helps for robustness, for all cases except one, 7 learners performed better than
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Radii Effects on AdaBoost ensemble doing adversarial training
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Figure 11: Perturbation Radii effects on AdaBoost ensemble

a single learner.

Another interesting pattern is that difference between the accuracy’s of the two models
becomes greater when the perturbation radii increases. A greater perturbation radii means
that for the same input image, the adversarial attack algorithm can generate a larger set of
perturbed images, which makes the attack more effective. The figure shows that multiple
learners are better able to learn the larger set produced by the greater radii in comparison to
a single learner. Therefore, relatively maintaining the same accuracy’s as the perturbation
radii increases.

Additionally, Figure 11 zooms into the accuracy’s for the AdaBoost ensembled model.
We see a general pattern that as the perturbation radii increases, the ensembled models
accuracy decreases. This indicates two main things. First is that training on greater pertur-
bations doesn’t help against a lower perturbation attack. Second is that training on a larger
radii requires a more complex weak learner. Adding more weak learners to the ensemble will
not help because the adversarial generation algorithm produces perturbations randomly, so
if the weak learner itself cannot learn the large perturbations on its own then the ensemble
cannot help.

B.4 Finalised Independent variable values

After conducting some preliminary tests, the following are the finalized values for the inde-
pendent variables and the reason for picking them:

1. Model Size. The following sizes will be tested: 2, 3, 4, 5. These sizes will be tested
because any bigger CNN’s will not be classified as "weak" learners anymore. We stop
at 5 because, as similar research conducted for an AdaBoost CNN ensemble used the
LeNet classifier as the weak learner which is of 5 layers [35].

2. Activation Function. The following functions will be tested: ReLU, HardTanh,
Leaky ReLU, ELU, and GelU. Most of these similar to the activation functions tested
by [9], and the others are common in the machine learning community.
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3. Loss Function. The following loss functions will be tested: cross entropy, kl-divergence,
TRADES.

4. Perturbation Radii. The following values will be tested: € ={8/255, 18/255, 28,/255,
38/255, 48/255, 58/255, 68/255, 78/255}. These values were chosen because it will
be good to test if observed patterns on the preliminary test are also seen in the real
experiments. Finally, more granular radii are tested, started from ¢ = 8/255 as other
research papers have often used this for their experiments [9].

5. Adversarial Generation Algorithm. The following adversarial generation algo-
rithms will be tested: FGSM, BIM, PGD, MIA.

6. Number of weak learners. The following number of weak learners will be tested:
2,3,4,5,6, 7,10, 20, 30, 40. The first half of tests are quite granular up to 7 weak
learners, this is similar to the study by [35]. The larger number of learners are there
because similar researched papers ([13] [35][11]) have not tested this large number of
learners.

C Fashion-MNIST Generalisability Tests

As stated in Section 4 and Section 3.4 to ensure that our findings were not dataset depen-
dent, we conducted some additional tests on the Fashion-MNIST dataset. We will begin
by explaining how exactly we conducted these experiments, and then we will present our
findings.

C.1 Experiment Procedure

Due to time constraints, it was not feasible for us to replicate all experiments we did on the
Fashion-MNIST dataset. We replicated a subset of experiments, specifically, from each of
the six independent variables we, we selected two values (Section 4 gives an overview of all
the variables and the values that were tested on the MNIST dataset). The first value was
the one that gave Adven the least robustness on the MNIST dataset, and the second value
was the one that gave Adven the largest robustness on the MNIST dataset.

With the chosen values, we conducted experiments following the exact same procedure
as we used for the MNIST tests (i.e the same default values, training procedure, and evalu-
ation protocol); details can be found in Section 4.

The following are the chosen values and the expected trend for the Fashion-MNIST dataset
based on the results found on the MNIST dataset.

1. Model Size: CNN of size 2 and 5. Based on results on the MNIST dataset in Section
5.6, we expect Adven using CNN with 5 layers to provide more robustness.

2. Activation Function: ELU and Leaky ReLU. Based on results on the MNIST dataset
in Section 5.4 we expect Adven using the Leaky ReLU activation function to provide
more robustness.

3. Loss Function: CE and TRADES. Based on results on the MNIST dataset in Section
5.1 we expect Adven using the TRADES loss function to provide more robustness.
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4. Perturbation Radii: 8/255 and 78/255. Based on results on the MNIST dataset in
Section 5.3 we expect Adven using the radii 78/255 to provide more robustness.

5. Adversarial Generation Algorithm: FGSM and PGD. Based on results on the MNIST
dataset in Section 5.2 we expect Adven using PGD for training to provide more ro-
bustness.

6. Number of weak learners: 1 and 30. Based on results on the MNIST dataset in Section
5.5 we expect Adven with 30 weak learners to provide more robustness.

C.2 Results.

Table 1 shows the result of the tests. With the above stated expected trend in mind, we
can see that for four out of the six tested variables, the expected pattern is observed on the
Fashion-MNIST dataset. The two that differed were the loss function and model size, these
are highlighted in red. One interesting observation is that for both of these independent
variables, the difference of the PGD robustness between the two tested values is very little.
Furthermore, TRADES is a very effective loss function that aids in learning adversaries very
well. Additionally, a 5 layer CNN has more capacity than a 2 layer CNN, and can better
learn adversaries. Due to these characteristics, we believe that the Adven ensemble that
used a 5 layer CNN and the ensemble that used the TRADES loss overfitted on the training
data.

. Test Set PGD Attack
Rlzialis \ELID Accuracy | Robustness
. " 8/255 82.33 4.26
Perturbation Radii 78/255 5054 5355
1 54.03 40.91
Number of weak learners 30 57.67 F133
o . . ELU 57.12 34.06
Activation Function Teaky ReLU | 56.65 196
. CE 54.84 43.12
Loss Function TRADES 56.85 42.14
Adversary Generation FGSM 53.52 13.38
Algorithm PGD 56.8 38.63
. CNN2 60.35 48.41
Model Size CNN5 57.84 47.77

Table 1: Fashion-MNIST Generalisability Tests | For each independent variable, the best and worst
performing values were validated on the Fashion-MNIST dataset. Test accuracy and robustness
accuracy to PGD attack is shown. Highlights in red are for the results that do not match the
expected pattern.

D Combination Tests

In this section of the Appendices, we explain how we conducted our final set of experiments
to find the most robust Adven ensemble for the MNIST dataset.

26



D.1 Strategy

Our strategy to make the most robust Adven ensemble is to use the six variable values that
exhibited the greatest robustness individually. Specifically, the Adven ensemble had the
greatest robustness when it:

e trained on perturbation radii of 78/255 (Section 5.3, Figure 4a)

e trained using the Leaky ReLU activation function (Section 5.4, Figure 4a)
e trained on the TRADES loss function (Section 5.1, Figure 2a)

e trained using 5 layer CNN’s as the weak learners (Section 5.6, Figure 7a)

e used 20 or 30 weak learners (Section 5.5, Figure 6a), both of these values showed quite
similar robustness

e trained using either PGD or BIM adversary algorithm (Section 5.2, Figure 5a), both
of these values showed quite similar robustness

Since for the adversary algorithm and number of learners variables, two values were very
similar, we decided to try out all combinations of them, the other four variables had the
values set to what is stated above. Therefore, we tested four combinations. Table 2 shows
the results.

Number of weak | Adversary Generation | Test Set PGD Attack
learners Algorithm Accuracy | Robustness
20 PGD 96.33 88.67

20 BIM 96.42 89.02

30 PGD 96.18 87.65

30 BIM 96.1 87.7

Table 2: Combination Tests | For each test the test accuracy and robustness accuracy to PGD
attack is shown.

As we can see, the best combination was found to be the Adven ensemble that had 20
weak learners, and used the BIM adversary algorithm: having a 89% robustness. However,
these results were underwhelming, as when testing the six variables individually, some values
already provided very close robustness. For example, in Section 5.6 Figure 7a showed Adven
ensemble using 5 layer CNNs to provide close to 85% robustness, and in Section 5.4 Figure
5a showed Adven enseble using the Leaky ReLU activation function provide close to 87%
robustness. We expected that when we combined all the best findings variable values, we
would get more robustness than 89%. We realised that our tested combinations were using a
high number of weak learners, whereas the results we found in the referenced examples were
tests that were using the default value of number of learners equal to 7. In Section 5.5 we
mentioned that with high number of weak learners, the ensemble can begin to provide less
robustness. Therefore, we decided to test a fewer number of weak learners, specifically, 7, 12
and 15. Similar to before, we tried combinations with both PGD and BIM adversary gener-
ation algorithm, with the other variables having the values we mentioned at the beginning
of this section; this resulted in 6 combinations. Table 3 shows our results. Our intuition was
correct, the Adven ensembles using a "medium" number of weak learners provided better
robustness, breaking into the 90% range.

27



Number of weak | Adversary Generation | Test Set PGD Attack
learners Algorithm Accuracy | Robustness
7 PGD 97.01 91.09

7 BIM 96.82 91.55

12 PGD 96.66 89.72

12 BIM 96.81 88.83

15 PGD 96.72 91.88

15 BIM 96.35 89.96

Table 3: Combination Tests 2 | For each test the test accuracy and robustness accuracy to PGD

attack is shown. The best result is in bold.

Therefore, we can conclude that the best combination of the independent variables is: (1)
Perturbation Radii = 78/255, (2) Activation function = Leaky ReLU, (3) Loss function =
TRADES, (4) Model Size = 5 layer CNN, (5) Number of weak learners = 15, (6) Adversary
Generation Algorithm = PGD (with 20 iterations). This Adven ensemble has 96.72% test

set accuracy, and has a robustness of 91.88%.
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