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Abstract
Although ionosphere-weighted GNSS parameter estimation is a popular technique for strengthening estimator performance in
the presence of ionospheric delays, no provable rules yet exist that specify the needed weighting in dependence on ionospheric
circumstances. The goal of the present contribution is therefore to develop and present the ionospheric conditions that need
to be satisfied in order for the ionosphere-weighted solution to be mean squared error (MSE) superior to the ionosphere-float
solution. When satisfied, the presented conditions guarantee from an MSE performance view, when (a) the ionosphere-fixed
solution can be used, (b) the ionosphere-float solution must be used, or (c) an ionosphere-weighted solution can be used.

Keywords GNSS · Ionosphere weighted · Ionosphere fixed · Ionosphere float · Mean squared error (MSE) · Best linear
unbiased estimator (BLUE) · Ionospheric dispersion

1 Introduction

Ionosphere-weighted GNSS parameter estimation is a pop-
ular and very flexible technique for strengthening estimator
performance in the presence of ionospheric model delays.
It is used in a wide variety of GNSS applications, rang-
ing from the use of external ionospheric models (Schaer
1999; Memarzadeh 2009; Feltens et al. 2011) to the incorpo-
ration of ionospheric corrections from reference networks,
for instance for PPP or PPP-RTK (Odijk 2000; Paziewski
2016; Tomaszewski et al. 2020; Teunissen 2021), and the
strengthening of medium to long baseline models (Teunis-
sen 1997; Bock 1998; Odolinski and Teunissen 2017; Brack
et al. 2021). However, no clear and provable rules have been
established that specify the needed weighting in dependence
on ionospheric circumstances. Although for some applica-
tions, heuristic rules are available that describe the weighting
in dependence on baseline length, the circumstances under
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which they guarantee an improved solution have not been
established.

Figure 1 shows an ionosphere-float and an ionosphere-
fixed baseline-scatterplot of the same data from two receivers
176km apart. Normally one would not think of hard-
constraining the between-receiver differential ionospheric
delays to zero for baselines of this length. However, as
the results of Fig. 1 surprisingly show, in this case the
ionosphere-fixed scatterplot is clearly to be preferred over its
ionosphere-float counterpart. Although the ionosphere-fixed
solution is biased, its mean squared error (MSE) is signifi-
cantly smaller than that of the ionosphere-float solution. This
example thus shows that we need means to be able to recog-
nize and predict the occurrence of such circumstances. The
goal of the present contribution is therefore to develop and
present the ionospheric condition that needs to be satisfied
in order for the ionosphere-weighted solution to be MSE-
superior to the ionosphere-float solution. At present no such
objective condition exists.

In order to show how the ionospheric circumstances affect
the mean-squared-error performance of the ionosphere-
weighted estimators, we will use the following simple metric
to capture the variability of the ionosphere,

d2 =
m∑

s=1

(is
t − īt )

2/(m − 1) (1)
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Fig. 1 Ionosphere-float versus ionosphere-fixed single-epoch code-
only position scatterplots of baseline CUT0–KELN (∼176km) on
5 January 2021 (12:00–15:00 Perth time, GPS L1/L2, 1Hz). Left:

Ionosphere float (the DD ionospheric delays are assumed completely
unknown);Right: Ionosphere fixed (theDD ionospheric delays are hard-
constrained to zero)

where ist is the between-receiver single-difference iono-
spheric delay of satellite s at epoch t and īt the average
of these delays over all m satellites. In this contribution we
develop the conditions that (1) has to satisfy in order to guar-
antee that from a mean-squared-error performance view, (a)

the ionosphere-fixed solution canbeused, (b) the ionosphere-
float solution must be used, or (c) an ionosphere-weighted
solution can be used.

This contribution is organized as follows. In Sect. 2 we
revisit the ionosphere-weighted model and provide an alter-
native view of constructing its estimators. In particular, we
take adeterministic viewof the ionospheric constraints,while
weighting them in the stochastic settings of the model. With
the so obtained interpretation of the ionosphere-weighted
estimator, its MSE can be evaluated, thus making it possible
in Sect. 3 to formulate the general conditions the ionosphere-
weighting need to obey in order for the ionosphere-weighted
estimator to be MSE-superior to the ionosphere-float esti-
mator. To develop these conditions further and to be able to
express them in the metric of (1), we introduce in Sect. 4
the multi-frequency GNSS baseline model that forms the
basis of our further MSE-analyses. As a result, we are able
in Sect. 5 to find and formulate the various specific conditions
the ionospheric variability needs to satisfy in order to guaran-
tee improved MSE-performance of the ionosphere-weighted

GNSS parameters over its ionosphere-float counterparts.
Finally, a summary with conclusions is provided in Sect. 6.

The following notation will be used. We indicate random
variables by means of an underscore. Thus, x is random,
while x is not. E(·) and D(·) denote the expectation and dis-
persion operators, respectively. The square-weighted-norm
is denoted as || · ||2M = (·)TM−1(·). The matrix inequality
A ≤ B means that matrix B − A is positive semi-definite,
and A ⊗ B denotes the Kronecker product of A and B.

2 The iono-weightedmodel revisited

The ionosphere-weighted systemofGNSSobservation equa-
tions is given in linear(ized) model form as (Bock 1998;
Teunissen 1998; Liu 2001; Odijk 2002),

E
[
y
i

]
=

[
A
Ai

]
x , D

[
y
i

]
=

[
Qyy 0
0 Qii

]
(2)

with y ∈ R
m the vector of GNSS pseudorange and carrier-

phase observables, A ∈ R
m×n the GNSS design matrix,

x = (bT, iT)T ∈ R
n the vector of unknown parameters, par-

titioned into the non-ionospheric parameter vector b ∈ R
n−p

and the ionospheric delay vector i ∈ R
p, and Qyy the
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variance-covariance (vc) matrix of y. The p equations of
E(i) = Ai x form the ionospheric observation equations, with
Qii the vc-matrix of the ionospheric observable vector i . The
matrix Ai can take various forms. Usually it will be given as
Ai = (0, Ip). However, when the ionospheric equations per-
tain only to the time-variation of the ionospheric delays for
instance, the identity-matrix Ip will be replaced by a time-
differencing matrix. Here and in the following we assume
rank(A) = n and that both Qyy and Qii are positive definite.

The ionosphere-weighted formulation is flexible and in
use in a wide range of different GNSS applications. It
is a form of regularized least-squares (Gunst and Mason
1980; Toutenburg 1982; Tarantola 2005), of which Tikhonov
regularization (Tihonov 1963), ridge-regression (Hoerl and
Kennard 1970), and principal component estimation (Jol-
liffe 2002) are prime examples. The ionosphere-weighted
formulation is used in combination with external ionospheric
models, see, e.g., (Schaer 1999; Memarzadeh 2009; Jee et al.
2010; Feltens et al. 2011; Olivares-Pulido et al. 2019), and
to incorporate ionospheric corrections from reference net-
works, for instance for PPP or PPP-RTK, see, e.g., (Odijk
2000, 2002; Collins et al. 2012; Paziewski 2016; Odijk
et al. 2016; Wang et al. 2018; Psychas and Verhagen 2020;
Tomaszewski et al. 2020; Teunissen 2021).As the ionosphere
is known to decorrelate as a function of baseline length, the
ionosphere-weighted formulation is also used for strength-
ening medium to long baseline models, see, e.g., (Schaffrin
and Bock 1988; Goad and Yang 1994; Bock 1998; Teunis-
sen 1998; Odijk 2002; Odolinski and Teunissen 2017, 2019;
Brack et al. 2021).

The flexibility of the ionosphere-weighted model can be
made explicitwhen its best linear unbiased estimator (BLUE)
of x , denoted as ˆ̂x , is compared with its ionosphere-float
counterpart x̂ , which excludes the ionosphere-weighting and
is thus solely based on E(y) = Ax , D(y) = Qyy . As we have

x̂ = Qx̂x̂ [ATQ−1
yy y]ˆ̂x = Q ˆ̂x ˆ̂x [ATQ−1
yy y + AT

i Q
−1
i i i] (3)

with vc-matrices Qx̂x̂ = [ATQ−1
yy A]−1 and Q ˆ̂x ˆ̂x =

[AT Q−1
yy A + AT

i Q
−1
i i Ai ]−1, we may also write

ˆ̂x (i)= x̂ + [Q−1
x̂ x̂ + AT

i Q
−1
i i Ai ]−1AT

i Q
−1
i i [i − Ai x̂]

(v)= x̂ + Qx̂x̂ A
T
i [Qii + Ai Qx̂ x̂ A

T
i ]−1[i − Ai x̂]

thus showing how x̂ gets updated as a consequence of the
extra ionospheric equation E(i) = Ai x . Representation (i) is
the information form and (v) the variance form of the update
equation. Although both estimators, ˆ̂x and x̂ , are BLUEs of
x , and therefore unbiased, E( ˆ̂x) = E(x̂) = x , their precision
differs. An application of the variance propagation law to the
above variance-form gives

Q ˆ̂x ˆ̂x = Qx̂x̂ − Qx̂x̂ A
T
i Q

−1
vv Ai Qx̂ x̂ (4)

with Qvv = Qii + Ai Qx̂ x̂ A
T
i the vc-matrix of the predicted

ionospheric residual v = i − Ai x̂ . Expression (4) shows
how the precision of the ionosphere-weighted BLUE ˆ̂x lies
in between that of the ionosphere-fixed solution (Qii = 0)
and the ionosphere-float solution (Qii = ∞). The preci-
sion improvement gets larger for Qii ↓ 0, with in the limit
providing that of the ionosphere-fixed solution, in which
case the extra ionospheric equations have become hard con-
straints, as is used in case of short baselines for instance.
The precision improvement of the estimator gets less, the
less precise the extra ionospheric information is. In the limit
of Qii ↑, one obtains the precision of the ionosphere-float
solution, Q ˆ̂x ˆ̂x → Qx̂x̂ , as used for very long baselines for
instance.

A basic assumption of the above ionosphere-weighted for-
mulation is that

E(i) = Ai x and D(i) = Qii (5)

must hold. If these assumptions fail to hold, then also the
BLUE’s properties that are assigned to ˆ̂x fail to hold. As
there are situations in practice for which it may be difficult to
justify the strict assumptions of (5), it is important to under-
stand to what extent these assumptions can be relaxed. For
instance, it may not always be justified to treat the externally
provided ionospheric information as a randomvariable i , or if
it is justified, one may have difficulty to justify that it is unbi-
ased. The practice, for instance, of treating the differential
ionospheric delay, in the absence of external information, as
a pseudo-observable for which always the value zero is taken
as sample-value, indicates that the assumption of randomness
and unbiasedness could sometimes be considered a bit of a
stretch.

To relax the assumptions of (5), we will refrain in the
following from working with the random variable i . Instead
we assume to have a deterministic approximation, say i0, of
Ai x available, the contribution of which will be weighted
in the solution. That is, as one can expect i0 
= Ai x , we
will not enforce i0 = Ai x as a hard constraint, but instead
use a weight-matrix Q̄−1

i i to weigh the difference d = i0 −
Ai x in a least-squares sense when solving for the unknown
parameter vector x . As a result, the ionosphere-weighting
will be achieved by working with an estimator having the
same structure as ˆ̂x of (3), but one in which the random
variable i is replaced by the deterministic approximation i0
and the vc-matrix Qii is replaced by the inverted weight-
matrix Q̄ii . The approximation i0 can often be obtained from
an a priori ionospheric model, i0 = Ai x0, such that it is the
difference d = −Ai (x − x0) that is weighted in the solution.
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3 Improving precision at the cost of bias

3.1 Precision and bias

When replacing i and Qii in the information- and variance-
form of (3) by i0 and Q̄ii , respectively, we obtain the
ionosphere-weighted estimator

x̂w

(i)= x̂ + [Q−1
x̂ x̂ + AT

i Q̄
−1
i i Ai ]−1AT

i Q̄
−1
i i [i0 − Ai x̂]

(v)= x̂ + Qx̂x̂ A
T
i [Q̄ii + Ai Qx̂ x̂ A

T
i ]−1[i0 − Ai x̂]

(6)

When applying the propagation laws formeans and variances
to (6), we now have to recognize that i0 is nonrandom (i.e.,
the only random vector in (6) is x̂) and that i0 is not neces-
sarily equal to the expectation of Ai x̂ . Application of these
propagation laws to (6) gives (Appendix)

E(x̂w) = x + Md
D(x̂w) = Qx̂x̂ − M(2Q̄ii + Ai Qx̂ x̂ A

T
i )MT (7)

with d = i0 − Ai x and M = Qx̂x̂ A
T
i [Q̄ii + Ai Qx̂ x̂ A

T
i ]−1.

This result shows that x̂w has a better precision than x̂ . In
fact, since i0 is nonrandom, it even has a better precision than
the ionosphere-weighted estimator ˆ̂x . However, unlike ˆ̂x , the
estimator x̂w is biased, having as bias, bx̂w

= E(x̂w) − x =
Md. Hence, in order to judge the performance of x̂w, we
cannot rely solely on its precision.Asweneed to include, next
to its variance, also its bias, we will use the mean-squared-
error criterion for comparing the performance of estimators.

Recall that for an estimator ẑ of z ∈ R
n , themean-squared-

error matrix (MSEM) and mean squared error (MSE) are
defined as

MSEM(ẑ) = E((ẑ − z)(ẑ − z)T)

MSE(ẑ) = E((ẑ − z)T(ẑ − z)).
(8)

Thus,MSE(ẑ) = E(||ẑ−z||2) = trace(MSEM(ẑ)). TheMSE
can be decomposed into a variance-plus-bias2 contribution
as

MSEM(ẑ) = Qẑẑ + bẑb
T
ẑ

MSE(ẑ) = trace(Qẑẑ) + ||bẑ||2. (9)

Now let ẑ1 and ẑ2 be two estimators of z ∈ R
n , and let us be

interested in estimating the scalar θ = f Tz. Then, using the
MSE-criterion, one would prefer θ̂1 over θ̂2 if MSE(θ̂1) ≤
MSE(θ̂2), and thus if f TMSEM(ẑ1) f ≤ f TMSEM(ẑ2) f .
If this inequality is fulfilled for every f ∈ R

n , then

MSEM(ẑ1) ≤ MSEM(ẑ2) (10)

meaning that the matrix MSEM(ẑ2) − MSEM(ẑ1) is non-
negative definite. The estimator ẑ1 is said to beMSE-superior

over ẑ2 if their MSEMs satisfy the matrix condition (10).
Thus, every linear function of an MSE-superior vector esti-
mator has an MSE that is not larger than the one with which
it is compared.

3.2 Iono-weightedMSE

We can now use the MSE-criterion to compare the MSE-
performance of the ionosphere-weighted estimator x̂w with
that of the ionosphere-float BLUE x̂ .

Theorem 1a (Iono-weighted MSE) The biased ionosphere-
weighted estimator x̂w is MSE-superior to the ionosphere-
float BLUE x̂, i.e., MSEM(x̂w) ≤ MSEM(x̂), if and only
if

dT[2Q̄ii + Qîî ]−1d ≤ 1 (11)

with d = i0 − Ai x and Qîî = Ai Qx̂ x̂ A
T
i .

Proof See Appendix. ��
This result provides the condition that the ionospheric

approximation i0 of Ai x and the used weight-matrix Q̄−1
i i

need to satisfy in order to guarantee that the ionosphere-
weighted estimator x̂w is MSE-superior to the ionosphere-
float solution x̂ .

Condition (11) describes an origin-centered ellipsoidal
region in which the difference d = i0 − Ai x has to lie.
Next to i0, one has the opportunity to choose an appropriate
inverted weight-matrix Q̄ii , to tune the size and orientation
of this ellipsoidal region. It is most strict if Q̄ii = 0, which
corresponds with a hard constraint enforcing i0 = Ai x̂w,
thus producing the ionosphere-fixed solution. The larger Q̄ii

is chosen, the larger the size of the ellipsoid and the larger
the bias that is permitted for x̂w to be still superior to x̂ . And
in the limit, if Q̄ii = ∞ or Q̄−1

i i = 0, we have x̂w = x̂ , being
the ionosphere-float solution.

One may wonder, since the difference d = i0 − Ai x
is causing x̂w to be biased, how the ionosphere-weighted

estimator ˆ̂x compares with x̂w and x̂ , if the same bias

d = E(i)−Ai x would be allowed to impact ˆ̂x . Application of
the mean and variance propagation laws to the variance-form
of ˆ̂x gives then

E( ˆ̂x) = x + Md

D( ˆ̂x) = Qx̂x̂ − M(Qii + Qîî )M
T

(12)

with d = E(i) − Ai x . If we compare this result with that
of (7), we see that ˆ̂x and x̂w now have the same bias. Their

precision differs however. The vc-matrix of ˆ̂x is obtained
from the vc-matrix expression of x̂w if we replace 2Q̄ii by

Qii . This implies that the condition for ˆ̂x to beMSE-superior
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to x̂ becomes dT[Qii + Qîî ]−1d ≤ 1, with d = E(i) − Ai x .
This is clearly a more stringent condition than condition (11)
for x̂w. Moreover, with (11) one is not restricted to have
Qii be the vc-matrix of i , i.e., one is still free to choose an
appropriate inverted weight-matrix Q̄ii .

As condition (11) achieves MSE-superiority for all func-
tions of x̂w, thus also for functions that onemay not necessar-
ily be interested in, it may be considered too restrictive for all
purposes. To relax the condition, we now consider only func-
tions that one may be interested in, say θ = FTx , with F ∈
R
n×q , and instead of requiring MSEM(x̂w)MSEM(x̂)−1 ≤

In , as in Theorem1a,we nowonly require E(||θ̂w−θ ||2Q
θ̂ θ̂

) =
trace[MSEM(θ̂w)MSEM(θ̂)−1] ≤ q. We have the following
result.

Theorem 1b (Iono-weightedMSE) TheMSE of the ionosph-
ere-weighted estimator θ̂w = FT x̂w is not larger than that
of the ionosphere-float θ̂ = FT x̂ , i.e.,MSE(θ̂w) ≤ MSE(θ̂),
withMSE(·) = E(|| · − θ ||2Q

θ̂ θ̂
), if and only if

dTXd

trace([2Q̄ii + Qîî ]X)
≤ 1 or X = 0 (13)

with X = [Q̄ii+Qîî ]−1Dîî [Q̄ii+Qîî ]−1, Qî î = Ai Qx̂ x̂ A
T
i ,

Qî î |FTx = Ai Qx̂ x̂ |FTx A
T
i , Dî î = Qîî − Qîî |FTx , and d =

i0 − Ai x.

Proof See Appendix. ��

Compare this result with (11). Condition (13) is a more
relaxed condition than (11). The latter follows if the inequal-
ity of (13) would hold for all X 
= 0. To operationalize
condition (13), we need to make choices for F , Ai and
Q̄ii . By choosing F , one selects the parameters one is inter-
ested in. Its influence on the above condition is only felt
through Dîî = Qîî − Ai Qx̂ x̂ |FTx A

T
i , with Qx̂x̂ |FTx being

the conditional vc-matrix, i.e., the vc-matrix that follows
when the solution is constrained by FTx = 0. Thus, when
all parameters are selected, we have F = In , and therefore
Qx̂x̂ |FTx = 0, which gives Dîî = Qîî . This same result fol-
lows when F only selects the ionospheric parameters, since
then Ai Qx̂ x̂ |FTx A

T
i = 0. It also follows from (13) that the

condition is trivially fulfilled when FT x̂ and Ai x̂ would be
uncorrelated, in which case Ai Qx̂ x̂ F = 0 and thus Dîî = 0.
In order to show now how the above condition works out
for different choices of F , Ai and Q̄ii , we first formulate
our GNSS baseline model and determine the vc-matrix of its
ionospheric float solution.

4 The GNSS baselinemodel

In this section, we describe the multi-frequency GNSS base-
line model that will form the basis of our MSE analysis of
the ionosphere-weighted estimator.

4.1 Multi-epoch, multi-frequency GNSS

Them-satellite, f -frequency GNSS baseline model of epoch
t reads (Khodabandeh and Teunissen 2015; Odijk et al. 2016)

E

[
φ
t

p
t

]
=

[
Aφt −μ ⊗ Im−1

Apt +μ ⊗ Im−1

] [
x
it

]

D

[
φ
t

p
t

]
=

[
Qφ 0
0 Qp

]
⊗ Rt

(14)

with

[
Aφt

Apt

]
x =

[
e f ⊗ DTGt � ⊗ Im−1

e f ⊗ DTGt 0

] [
b
a

]

and where φ
t
, p

t
∈ R

f (m−1) denote the vectors of dou-
ble differenced (DD) phase and code observables, � =
diag(λ1, . . . , λ f ) is the diagonal wavelength matrix, μ =
(μ1, . . . , μ f )

T with the square wavelength-ratio μ j =
(λ j/λ1)

2, e f = (1, . . . , 1)T the f -vector of ones, DT =
(−em−1, Im−1) ∈ R

(m−1)×m , with em−1 = (1, . . . , 1)T,
the differencing matrix that forms satellite-differences from
between-receiver differences, Gt ∈ R

m×3 the receiver-
satellite geometry matrix, b the between-receiver baseline
vector, it ∈ R

m−1 the vector of DD slant ionospheric delays
at epoch t , a ∈ Z

f (m−1) the vector of DD ambiguities,
Qφ, Qp ∈ R

f× f the f -frequency co-factor matrices of
phase and code, Rt = DTW−1

t D ∈ R
(m−1)×(m−1) the co-

factor matrix, with Wt = diag(w1
t , . . . , w

m
t ), the diagonal

matrix that captures the satellite elevation-dependency of the
GNSS data through the positive weights ws

t (s = 1, . . . ,m).
In all time-dependent variables, we use the index t to empha-
size the time dependency of the quantities. It is absent in b
and a, since we assume a stationary baseline and ambiguities
that are time-constant.

In this and the next section, model (14) will be used to
study the ionosphere-weighted MSE properties. As we will
be focused on short time-spans and since the receiver-satellite
geometry of GNSS changes rather slowly with time, we will
assume Wt ≈ W and Gt ≈ G (t = 1, . . . , k), with W
and G being the ‘time-averaged’ versions of Wt and Gt ,
respectively. To achieve a compact description and aid the
interpretation of our results, we use in the remainder of this
contribution the following notation,
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[
σ 2

ρ̂
σ

ρ̂ î
σ

ρ̂ î σ 2
î

]
= [[e f , μ]TQ−1

p [e f , μ]]−1

[
σ 2

ρ̌
σ

ρ̌ ǐ
σ

ρ̌ ǐ σ 2
ǐ

]
=

[[
e f −μ

e f +μ

]T[ Q−1
φ 0
0 Q−1

p

][
e f −μ

e f +μ

]]−1

.

(15)

One will recognize these variance and co-variance factors as
the ones that belong to the code-only geometry-free model
and the ambiguity-fixed geometry-free model, respectively.

4.2 Precision of estimated ionospheric delays

As the vc-matrix of the estimated ionospheric delays is the
driving force in (11) and (13), we now first consider the pre-
cision with which the ionospheric delays can be estimated.

Lemma (VC-matrix ionosphere)The k(m−1)×k(m−1) vc-
matrices of the ambiguity-float and ambiguity-fixed BLUEs
of i[k] = [iT1 , . . . , iTk ]T in model (14), are given as

Qî[k] î[k] = Pk ⊗ (α − β)PG̃ R + Qî[k] î[k]|b
Qî[k] î[k]|b = Pk ⊗ β R + P⊥

k ⊗ σ 2
ǐ |ρ R

(16)

with

α = σ 2
î

and β = σ 2
î |ρ (ambiguity float)

α = σ 2
ǐ

and β = σ 2
ǐ |ρ (ambiguityfixed)

(17)

the time-averaging projector Pk = 1
k eke

T
k (P⊥

k = Ik − Pk),

the satellite-geometry projector P G̃ = G̃(G̃TR−1G̃)−1

G̃TR−1 (P⊥
G̃

= I − PG̃), the receiver-satellite geometry

matrix G̃ = DTG, the satellite-elevation weighting DD
matrix R = DTW−1D and the conditional variance-factors
σ 2
î |ρ = σ 2

î
− σ 2

î ρ̂
/σ 2

ρ̂
and σ 2

ǐ |ρ = σ 2
ǐ

− σ 2
ǐ ρ̌

/σ 2
ρ̌
.

Proof See Appendix. ��
The above result shows that the vc-matrix of the estimated

ionospheric delays has a very patterned structure. Matrix
Qî[k] î[k]|b is the ionospheric vc-matrix when the baseline b

is assumed known. When Qφ = σ 2
φ I f and Qp = σ 2

p I f , the
variance-factors in (16) and (17) simplify to

σ 2
î

= σ 2
p

||μ − μ̄||2 , σ 2
î |ρ = σ 2

p

||μ||2 , σ 2
ǐ |ρ = σ 2

φ

(1 + ε)||μ||2

where μ̄ = e f
1
f

∑ f
j=1 μ j is the f -vector having the aver-

age value of the μ j ’s as its entries and ε = σ 2
φ/σ 2

p is the
very small phase-code variance-ratio. The phase and code
variance factors σ 2

φ and σ 2
p are between-receiver single-

differenced values.
The above analytical expression of the ionospheric vc-

matrix shows how the various factors contribute to the

precision of the estimated ionospheric delays. This becomes
even clearer when we consider the vc-matrix of the iono-
spheric delays at a specific epoch t . From (16), the vc-matrix
of î t follows as

Qît ît
= 1

k (σ
2
î
PG̃ R + σ 2

î |ρ P
⊥
G̃
R)

︸ ︷︷ ︸
time−averaged

+ k−1
k σ 2

ǐ |ρ R
︸ ︷︷ ︸

time−differenced

.

This shows that the vc-matrix is composed of two compo-
nents, a time-averaged component and a time-differenced
component. The time-averaged component is driven, through
σ 2
î

and σ 2
î |ρ , by the code-precision, and through PG̃ and

R, by the receiver-satellite geometry. The time-differenced
component however, is driven through σ 2

ǐ |ρ by the phase-

precision andonly through the satellite-elevationdependency
of R by the receiver-satellite geometry. Also note that in
the geometry-free case or when m = 4, the ionospheric vc-
matrix simplifies to Qî[k] î[k] = Pk ⊗ α R + P⊥

k ⊗ σ 2
ǐ |ρ R,

since then P⊥
G̃

= 0 and PG̃ = Im−1.

5 TheMSE ionosphere conditions

In this section,wewill use (11) and (13) to further develop the
variability conditions the ionosphere has to satisfy in order
for the ionosphere-weighted estimator (6) to have a smaller
mean squared error than its ionosphere-float counterpart.

5.1 Iono-weighting as a convex combination

In order to evaluate the performance of the ionosphere-
weighted estimator x̂w we need to make a choice for the
inverted weight-matrix Q̄ii . It is through the choice of this
matrix that one is able to influence the mean squared error of
x̂w (cf. 6). Although we have in principle complete freedom
in choosing the entries of matrix Q̄ii , the simplest choice
would be to take it as a scaled version of the ionospheric
vc-matrix,

Q̄ii = λQîî = λAi Qx̂ x̂ A
T
i . (18)

This choice also provides for an easy interpretation of how x̂w

is constructed from the data. From the information-form of
(6) follows then, since Q−1

î î
is the reduced normal matrix for

the ionospheric delays, that a scaled version of this reduced
matrix is added to the normalmatrix of the ionospheric delays
so as to compute the ionosphere-weighted solution. From
the variance-form of (6) follows that the choice Q̄ii = λQîî
gives x̂w(λ) = x̂ + 1

λ+1Qx̂x̂ A
T
i [Ai Qx̂ x̂ A

T
i ]−1[i0 − Ai x̂],

thus showing how the contribution to x̂w(λ) of the differ-
ence i0 − Ai x̂ is scaled through the nonnegative scale-factor
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λ. It therefore follows, since Qx̂x̂ A
T
i [Ai Qx̂ x̂ A

T
i ]−1[i0−Ai x̂]

equals the difference between the ionosphere-float and the
ionosphere-fixed solutions, that with the choice Q̄ii = λQîî ,
the ionosphere-weighted solution equals their convex com-
bination,

x̂w(λ) = λ
λ+1 x̂ + 1

λ+1 x̂ f i xed . (19)

Hence, it is through λ that one can have x̂w(λ) inherit prop-
erties from both x̂ and x̂ f i xed . For smaller values of λ, x̂w(λ)

will tend toward the ionosphere-fixed solution and therefore
be more precise at the expense of some bias. For larger val-
ues of λ, x̂w(λ)will tend toward the ionosphere-float solution
and therefore become less biased at the expense of a poorer
precision. The following result shows what values for λ need
to be chosen in order to ensure that x̂w(λ) has the best mean
squared error or one that is at least better than that of the
ionosphere-float solution.

Theorem 2 (Iono-weighted minimum MSE) Let Q̄ii =
λQîî , θ̂w(λ) = FT x̂w(λ) and MSE(λ) = E(||θ̂w(λ) −
θ ||2Q

θ̂ θ̂
). Then, λmin = argminλ MSE(λ) is given as

λmin =
dT[Q−1

î î
Dî î Q

−1
î î

]d
trace[Q−1

î î
Dî î ]

(20)

and MSE(λ) ≤ MSE(∞) is satisfied for

λ ≥ 1
2 (λmin − 1) (21)

Proof See Appendix. ��
This result shows that if we are able to evaluate the

ratio (20), we would know how to scale Qîî such that the
ionosphere-weighted solution has the best possible mean
squared error. The result also shows the range of values we
are permitted to choose for λ so as to still get an estimator
with a mean squared error that is not larger than that of the
ionosphere-float solution. Furthermore, it follows from (21)
that if λmin < 1, then λ can even be chosen equal to zero.
Hence, λmin < 1 is the important condition under which the
hard-constrained ionosphere-fixed solution would be MSE-
better than the ionosphere-float solution.

5.2 Ionospheric dispersion andMSE

In order to show how the mean squared error of the
ionosphere-weighted estimator x̂w(λ) is driven by the actual
variability in the between-receiver ionospheric delays, we
need to provide a proper metric by which this variability is
measured. For this purpose, we define the spatial and tem-
poral variability or dispersion of the ionosphere as follows.

ionosphere

Fig. 2 The between-receiver spatial ionospheric dispersion d2s =∑m
s=1 ws(ist̄ − īt̄ )

2/(m − 1) as a mean sum-of-squares of residual
between-receiver satellite ionospheric delays

Definition (Ionospheric dispersion) Let it ∈ R
m−1, for

epochs t = 1, . . . , k, be the vectors ofDD ionospheric delays
and let it̄ = 1

k

∑k
t=1 it be their time average. Then, the spatial

and temporal ionospheric dispersion, d2s and d
2
k , are defined

as

d2s = ||it̄ ||2R
m − 1

and d2k =
∑k

t=1 ||it − it̄ ||2R
(k − 1)(m − 1)

. (22)

Although perhaps not directly apparent, also the expres-
sion for d2s can be written in the familiar dispersion
form. To see this, let ist̄ be the between-receiver single-
difference ionospheric delay of satellite s at epoch t̄ , and
let īt̄ = ∑m

s=1 wsist̄ /[
∑m

s=1 ws] be the weighted aver-
age of these delays over all m satellites. Then, with it̄ =
[i1t̄ , . . . ,im

t̄ ]T, we have it̄ − em īt̄ = P⊥
emit̄ , where P⊥

em =
Im − em(eTmWem)−1eTmW = W−1D(DTW−1D)−1DT,
and therefore, since the DD ionospheric delay vector is
expressed in its single-differenced counterpart as it̄ = DTit̄ ,∑m

s=1 ws(ist̄ − īt̄ )
2 = (it̄ − em īt̄ )

TW (it̄ − em īt̄ ) =
iTt̄ D(DTW−1D)−1DTit̄ = iTt̄ R

−1it̄ = ||it̄ ||2R , thus show-
ing that d2s of (22) can indeed be written in the familiar
dispersion form (see Fig. 2),

d2s =
m∑

s=1

ws(ist̄ − īt̄ )
2/(m − 1). (23)

Note that, with the weight g = trace(PG̃)/(m−1), the iono-
spheric dispersion can be decomposed further into the convex
combination

d2s = gd‖2
s + (1 − g)d⊥2

s (24)

123



  118 Page 8 of 12 P. J. G. Teunissen, A. Khodabandeh

where d‖2
s = ||PG̃it̄ ||2R

trace(PG̃ )
and d⊥2

s = ||P⊥
G̃
it̄ ||2R

trace(P⊥
G̃

)
describe the dis-

persion of the ionosphere parallel (‖) and orthogonal (⊥) to
the receiver-satellite geometry, respectively. In the geometry-
free case, we have d2s = d‖2

s , since then P⊥
G̃

= 0.
With the above given definitions of ionospheric disper-

sion, we are now in a position to apply the results of
Theorem 2 to our GNSS model. We consider the case F = I
(i.e., all parameters are included) for three different types
of ionospheric constraints. The three considered ionospheric
constraints are: (1) weighted constraining the temporal vari-
ability of the ionospheric delays (DT

k ⊗ Im−1)i[k], in which
DT
k = (−ek−1, Ik−1) ∈ R

(k−1)×k is the time-differencing
matrix, (2) weighted constraining the time-average of the
ionospheric delays ( 1k e

T
k ⊗ Im−1)i[k], and (3) weighted

constraining all ionospheric delays (Ik ⊗ Im−1)i[k]. The fol-
lowing result shows by how much, in each of these three
cases, one would need to scale the vc-matrix Qî[k] î[k] , so as
to obtain the smallest mean squared error for the ionosphere-
weighted estimator x̂w.

Corollary 1a (All parameters) Let F = I and let the three

ionospheric constraints be given as Ai x
(1)→ (DT

k ⊗ Im−1)i[k],
Ai x

(2)→ ( 1k e
T
k ⊗ Im−1)i[k], and Ai x

(3)→ (Ik ⊗ Im−1)i[k],
respectively. Then, the corresponding minimizer of (20),
expressed in the ionospheric dispersions, is given as

(1) λ
(1)
min = d2k/σ

2
ǐ |ρ (temporal)

(2) λ
(2)
min = gd‖2

s

σ 2
î
/k

+ (1 − g)d⊥2
s

σ 2
î |ρ/k

(spatial)

(3) λ
(3)
min = 1

k λ
(2)
min + k−1

k λ
(1)
min.

Proof See Appendix. ��
These results clearly show how the spatial and temporal

ionospheric variability affect the optimal choice for the scal-
ing factor λ. The larger the variability, the larger the scale
factor needs to be chosen and the less weight is then given
to the ionospheric constraint. Note, in case an a priori model
approximation i0 = Ai x0 
= 0 is chosen, that the ionospheric
delays, of which the above dispersions are taken, are with
respect to the chosen model values. As the above results
concern the overall mean squared error of all parameters,
including those of the ionospheric delays, we now consider
only the MSE of two separate set of parameters, the ambigu-
ities, and the baseline.

Corollary 1b (Ambiguities or baseline) Let F select either
the ambiguities or the baseline and let Ai x → (Ik ⊗
Im−1)i[k]. Then, the corresponding minimizer of (20), for the
ambiguities denoted as λ

(a)
min and for the baseline as λ

(b)
min, is

given as

λ
(a)
min = c[ γ1d

‖2
s

σ 2
î
/k

+ γ2d
⊥2
s

σ 2
î |ρ/k

]
λ

(b)
min = d‖2

s
σ 2
î
/k

(25)

with c = (γ1 +γ2)
−1, γ1 = (1− ε1)g, γ2 = (1− ε2)(1− g),

ε1 = σ 2
ǐ
/σ 2

î
, and ε2 = σ 2

ǐ |ρ/σ 2
î |ρ .

Proof See Appendix. ��

As both ε1 and ε2 are in the order of the very small phase-
code variance ratio, we get with ε1 ≈ ε2 ≈ 0,

λ
(a)
min ≈ gd‖2

s

σ 2
î
/k

+ (1 − g)d⊥2
s

σ 2
î |ρ/k

≤ d2s
σ 2
î |ρ/k

(26)

Note that the upper-bound is independent of the actual
receiver-satellite geometry and therefore easier to work with.

The results of Corollary 1 show the best choice one can
make for the scale-factor λ under the given circumstances,
and together with (21), they provide the range of values that
one can choose from for the scale factor to still have a better
MSE-performance than the ionosphere-float solution. As an
example, consider the baseline MSE-curve as function of λ,

MSE(b)(λ) = MSE(b)(∞) − 2a[λ − 1
2 (λ

(b)
min − 1)]

(λ + 1)2

with a = (1 − σ 2
î |ρ
σ 2
î

)trace(PG̃). Its curves are shown in

Fig. 3 for a range of different ionospheric dispersion values
d2s . The range of λ-values for which ionosphere-weighting
makes sense are clearly visible, as well as how the interval
[ 12 (λ(b)

min − 1),∞) shifts to the right with increasing iono-
spheric dispersion. To know whether one would be allowed
to use the ionosphere-fixed solution (i.e., λ = 0), one needs
to verify whether or not the condition λ

(b)
min < 1 holds true. As

the above corollary shows this is the case when d‖2
s ≤ σ 2

î
/k.

Figure 4 presents values of λ
(b)
min corresponding to the posi-

tioning results of the baseline in Fig. 1. These values have
been computed on the basis of the a priori known coordinates
of the stations CUT0 and KELN. The values are evidently
shown to be way smaller than one, i.e., λ

(b)
min < 1, thereby

addressing why the corresponding ionosphere-fixed baseline
solutions are MSE-superior to their ionosphere-float coun-
terparts. We note that in practice one does not need a priori
precise coordinates of the baseline receivers to determine
the ionospheric dispersion. One can make use of neighbor-
ing stations in existing CORS networks, of which nowadays
there are a multitude available. One can also make use of
the geometry-free model, to determine the ionospheric dis-
persion, or one can use, even simultaneously, algorithms of
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Fig. 3 Baseline MSE-curve MSE(b)(λ) as function of the scale-factor
λ for GPS [L1/L2], single- (top) and quadruple-epoch (bottom) cases.
Each curve corresponds to a different level of the ionospheric spatial-
dispersion d2s in [m2]. The code standard deviation is set to σp =√
2 × 0.2 [m], with four visible satellites. The parts, highlighted in

red, indicate MSE(b)(λ) > MSE(b)(∞)
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Fig. 4 Estimated values of the baseline MSE-minimizer λ
(b)
min =

(d‖2
s /σ 2

î
), with k = 1, corresponding to the scatterplots of baseline

CUT0–KELN (cf. Fig. 1)

variance component estimation to determine the ionospheric
dispersion.

Figure 3 also highlights the role taken by the number of
epochs k in weighing the difference d = i0 − Ai x . The

more the number of epochs, the lower weight the differ-
ence d should be given so as to obtain an MSE-superior
baseline estimator. This is further observed in the results of
Table 1. The table presents root mean squared errors (RMSE)
of the single-epoch (k = 1) and 10-epoch (k = 10) base-
line solutions of two different baselines where, next to the
ionosphere-float and -fixed cases, an ionosphere-weighted
case (λ = 0.1) is also considered. When only one epoch
of data is considered, the ionosphere-fixed solution outper-
forms its ionosphere-weighted version in anMSE-sense. For
the 10-epoch, long-baseline case (CUT0–EXMT) however,
it is the ionosphere-weighted solution that has the smallest
MSE.

The above results have been obtained by choosing the
inverted weight-matrix Q̄ii simply as a scaled version of the
ionospheric vc-matrix. But other choices are of course still
possible as well. Some of these choices may even give the
same conditions on the ionospheric dispersion. For instance,
whenusing a similar derivation as used above, it can be shown
if the inverted weight-matrix is chosen as

Q̄ii = λ̄(σ 2
î
Ik ⊗ R) (27)

that the scale-factor λ̄ needs to lie within the same range

[ 12 ( d‖2
s

σ 2
î
/k

− 1),∞) for the MSE of the ionosphere-weighted

baseline to be smaller than its ionosphere-float counterpart.

6 Summary and conclusions

Although ionosphere-weighted GNSS parameter estimation
is a popular technique for strengthening estimator perfor-
mance in the presence of ionospheric delays, no provable
rules currently exist that specify the needed weighting in
dependence on ionospheric circumstances. The goal of the
present contribution has therefore been to develop and
present the ionospheric conditions that need to be satisfied in
order to guarantee that the ionosphere-weighted solution is
mean squared error superior to the ionosphere-float solution.

We developed general conditions that apply to all param-
eters of the model, as well as specific conditions that apply
when one is interested in specific functions of the model
parameters, such as the baseline or ambiguities, for example.
We have shown how the required conditions can be expressed
in themetric

∑m
s=1 ws(ist −īt )2/(m−1), capturing the iono-

spheric variability of the between-receiver single-difference
ionospheric delays. Next to the choice of parameters, we also
presented the conditions for different types of ionospheric
constraints.

When satisfied, the conditions provided guarantee the
improved mean-squared-error performance of the estimator.
More specifically, they show when (a) the ionosphere-fixed

123



  118 Page 10 of 12 P. J. G. Teunissen, A. Khodabandeh

Table 1 Role of the number of epochs (k) and baseline length: root
mean squared errors (RMSE) of the code-only ionosphere-float, -
weighted [λ = 0.1], and -fixed positioning solutions [m] of baselines

CUT0–MRO1 (∼592km) andCUT0–EXMT(∼1125km)on5 January
2021 (12:00–15:00 Perth time, GPS L1/L2, 1Hz)

Baseline Iono. float Iono. weighted Iono. fixed
East/North/Up East/North/Up East/North/Up

CUT0–MRO1 (k = 1) 1.62/2.16/9.35 0.40/0.48/2.46 0.40/0.46/2.43

CUT0–EXMT (k = 1) 1.56/3.60/12.11 0.45/1.05/3.55 0.43/1.01/3.34

CUT0–MRO1 (k = 10) 1.20/1.55/6.73 0.34/0.37/2.13 0.34/0.37/2.12

CUT0–EXMT (k = 10) 1.10/2.47/8.14 0.32/0.88/2.98 0.37/0.89/3.01

solution can be used, (b) the ionosphere-float solution must
be used, or (c) an ionosphere-weighted solution can be used.
For the baseline, for instance, it was shown that the scale

factor (cf. 18 or 27) has to be larger than 1
2 (

d‖2
s

σ 2
î
/k

−1) in order

to have a guaranteed improved mean squared error.
Finally, we remark, although attention was focused in

this contribution on ionospheric delays, that the presented
methodology is general. This implies that the same approach
can be used to develop equivalent conditions for other GNSS
parameters of interest, such as for instance for the tropo-
spheric delays or instrumental biases.
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Appendix

Proof of (7) Application of the propagation laws for means
and variances to (6) gives E(x̂w) = x + ME[i0 − Ai x̂]
and D(x̂w) = Qx̂x̂ + MAi Qx̂ x̂ A

T
i M

T − MAi Qx̂ x̂ −
Qx̂x̂ A

T
i M

T, where M = Qx̂x̂ A
T
i [Q̄ii + Ai Qx̂ x̂ A

T
i ]−1. The

proof follows then from the equalities E[i0 − Ai x̂] = d,
MAi Qx̂ x̂ A

T
i M

T=MAi Qx̂ x̂ − MQ̄ii MT, and Qx̂x̂ A
T
i M

T=
M[Q̄ii + Ai Qx̂ x̂ A

T
i ]MT. ��

Proof Theorem 1a MSEM(x̂) = Qx̂x̂ and MSEM(x̂w) =
Qx̂x̂ +M(ddT−2Q̄ii−Ai Qx̂ x̂ A

T
i )MT. Thus,MSEM(x̂w) ≤

MSEM(x̂) if and only if ddT − 2Q̄ii − Ai Qx̂ x̂ A
T
i ≤ 0

or dT[2Q̄ii + Ai Qx̂ x̂ A
T
i ]−1d ≤ 1. The last step follows

from the equivalence: ddT ≤ N ⇔ dTN−1d ≤ 1 for
positive-definite N . (⇒) ddT ≤ N means f T(ddT−N ) f ≤
0, ∀ f ∈ R

p. Substitution of f =N−1d gives (dTN−1d)2 −
(dTN−1d) ≤ 0 or dTN−1d ≤ 1. (⇐) Every f ∈ R

p

can be expressed as f = [d+T , d⊥]q for some vector
q ∈ R

p, as [d+T , d⊥] is a square and invertiblematrix (d+ =
(dTN−1d)−1dTN−1, dTd⊥ = 0). This gives f T(ddT −
N )f = −qTblkdiag

(
(dTN−1d)−1−1, d⊥T Nd⊥)

q ≤ 0, as
(dTN−1d)−1 ≥ 1 and d⊥T Nd⊥ ≥ 0. ��
Proof of Theorem 1b The MSEM of θ̂w = FT x̂w fol-
lows from MSEM(x̂w) = Qx̂x̂ + M(ddT − 2Q̄ii −
Ai Qx̂ x̂ A

T
i )MT as MSEM(θ̂w) = Q

θ̂ θ̂
+ FTM(ddT −

2Q̄ii − Ai Qx̂ x̂ A
T
i )MTF . This gives for E(||θ̂w − θ ||2Q

θ̂ θ̂
) =

trace[MSEM(θ̂w)MSEM(θ̂)−1],

E(||θ̂w − θ ||2Q
θ̂ θ̂

) = E(||θ̂ − θ ||2Q
θ̂ θ̂

)+
+trace{[ddT − 2Q̄ii − Qîî ]X} (28)

with X = [Q̄ii+Qîî ]−1Dîî [Q̄ii+Qîî ]−1, Qîî = Ai Qx̂ x̂ A
T
i ,

Dx̂x̂ = Qx̂x̂ F(FTQx̂x̂ F)−1FTQx̂x̂ = Qx̂x̂ − Qx̂x̂ |FTx ,

Dîî = Ai Dx̂ x̂ A
T
i . Hence E(||θ̂w − θ ||2Q

θ̂ θ̂
) ≤ E(||θ̂ − θ ||2Q

θ̂ θ̂
)

if and only if trace{[ddT − 2Q̄ii − Qîî ]X} ≤ 0, from which
the result follows. ��
Proof of Lemma The normal matrix of model (14) is given as

N =
[
k ATQ−1A eTk ⊗ ATQ−1B
ek ⊗ BTQ−1A Ik ⊗ BTQ−1B

]

with Q = blockdiagonal(Qφ, Qp) ⊗ R and for ‘ambiguity-
float,’

A =
[
e f ⊗ G̃ � ⊗ Im−1

e f ⊗ G̃ 0

]
, B =

[−μ ⊗ Im−1

+μ ⊗ Im−1

]
.

Hence, the reduced normal matrix for the ionospheric delays
follows, with PA = A(ATQ−1A)−1ATQ−1 and P⊥

A = I −
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PA, as

Q−1
î[k] î[k]

= [Ik ⊗ BTQ−1B − Pk ⊗ BTQ−1PAB]
= [Pk ⊗ BTQ−1P⊥

A B + P⊥
k ⊗ BTQ−1B]

which upon inversion gives

Qî[k] î[k] = Pk ⊗ [BTQ−1P⊥
A B]−1 + P⊥

k ⊗ [BTQ−1B]−1

with

[BTQ−1P⊥
A B]−1 = [σ−2

î
R−1PG̃ + σ−2

î |ρ R−1P⊥
G̃

]−1

= [σ 2
î
PG̃ R + σ 2

î |ρP
⊥
G̃
R]

and

[BTQ−1B]−1 = σ 2
ǐ |ρR.

Note that in the above use was made of the following
property: If P and P⊥ are two complementary projectors
(i.e., P + P⊥ = I ), and S and T are invertible, then
[P ⊗ S + P⊥ ⊗ T ]−1 = P ⊗ S−1 + P⊥ ⊗ T−1. The proof
for the ‘baseline-constrained’ and ‘ambiguity-fixed’ cases,
go along similar lines. ��
Proof of Theorem 2 With the choice Q̄ii = λQîî , the MSE-
expression of (28) becomes

MSE(λ) = MSE(∞) + trace[(2λ+1)Q−1
î î

Dî î ]
(λ+1)2

×(
dT[Q−1

î î
Dî î Q

−1
î î

]d
trace[(2λ+1)Q−1

î î
Dî î ]

− 1

)
.

(29)

From setting the derivative to zero, dMSE
dλ

= 0, and check-
ing whether the second-order derivative is positive at this
stationary point, the minimizer λmin follows. With this min-
imizer, it then follows from (29) that MSE(λ) ≤ MSE(∞)

for λ ≥ 1
2 (λmin − 1). ��

Proof Corollary 1a We only prove the expression for λ
(1)
min

as the proof for λ
(2)
min and λ

(3)
min goes along similar lines.

For F = I , we have Dîî = Qîî , since Qîî |FTx = 0.

With the choice Ai x → (DT
k ⊗ Im−1)i[k], it follows that

Qîî = Ai Qî[k] î[k] A
T
i = DT

k Dk ⊗ σ 2
ǐ |ρR and therefore

trace(Q−1
î î

Dî î ) = (k − 1)(m − 1). Substitution into (20)

gives, with P⊥
k = Dk(DT

k Dk)
−1DT

k = Ik − 1
k eke

T
k ,

λ
(1)
min =

iT[k][P⊥
k ⊗ σ−2

ǐ |ρ R−1]i[k]
(k − 1)(m − 1)

. (30)

Writing i[k] = vec(Ik), with Ik = [i1, . . . , ik], and mak-
ing use of the property trace(ATBCDT) = vec(A)T(D ⊗

B)vec(C), gives

iT[k](P⊥
k ⊗ R−1)i[k] = trace[Ik R−1Ik P⊥

k ]
=

k∑
t=1

(it − it̄ )
TR−1(it − it̄ )

which, combined with (30), completes the proof. ��
Proof Corollary 1b We only prove the expression for λ

(b)
min as

the proof for λ
(a)
min goes along similar lines. As F is now

chosen to only select the baseline and Ai x → Ik ⊗ Im−1, we
have Dîî = Qîî − Qîî |b = Pk ⊗ (α − β)PG̃ R. Therefore,

Q−1
î î

Dî î = Pk ⊗ 1
α
(α − β)R−1PG R

trace(Q−1
î î

Dî î ) = (1 − β
α
)trace(PG̃)

Q−1
î î

Dî î Q
−1
î î

= Pk ⊗ 1
α2 (α − β)R−1PG̃

fromwhich, after substitution into (20), the result follows. ��.
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