
Enabling domain experts to participate
in the process of improving software
quality using change impact analysis

Master’s Thesis

Tim Nederveen

Enabling domain experts to participate
in the process of improving software
quality using change impact analysis

THESIS

submitted in partial fulfilment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Tim Nederveen
born in Dordrecht, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Exact
Molengraaffsingel 33
Delft, the Netherlands

www.exact.com

www.ewi.tudelft.nl
www.exact.com

© 2021 Tim Nederveen.

Enabling domain experts to participate
in the process of improving software
quality using change impact analysis

Author: Tim Nederveen
Student id: 4575849
Email: ik@tim365.nl

Abstract

Software engineers often lack the domain knowledge needed to validate context
specific parts of software. Domain experts do have this knowledge needed to validate
the software, but often lack the expertise and tools to apply this knowledge in a way
that tests the software product. Based on a case study at business-software company
Exact, this study proposes a method of change impact analysis to help domain experts
comprehend the structure of the system and allow them to take part in the code review
process by assessing whether the impact of a change is as expected. Evaluation of a
developed proof of concept at Exact using common-scenarios and a user evaluation
shows that the method is effective in providing insights about the impact of changes to
domain experts which provides a good intuition that using change impact analysis can
aid domain experts to be involved in the process of improving software quality.

Thesis Committee:

Chair: Prof. Dr. Andy E. Zaidman, Faculty EEMCS, TU Delft
University supervisor: Ass. Prof. Sebastian Proksch, Faculty EEMCS, TU Delft
Company supervisor: Valentijn van de Kamp, Exact
Committee Member: Ass. Prof. Thomas Höllt, Faculty EEMCS, TU Delft

ik@tim365.nl

Preface

Writing a master’s thesis felt like finding my way through a maze. When I started, I knew
where I was, and I knew my goal was to get to the exit: graduation. Sometimes, the path
towards the exit was clear and the next step was obvious. Sometimes the road was straight-
forward and enjoyable. Other times, I would take a wrong turn and end up in a dead end,
forcing me to take a step back. Before you lies – or more probably stands – the route from
the entrance to the exit: my master’s thesis.

With an interest in the overlap between finance and computer science, I reached out to Exact
hoping I could do my graduation project with them. Four months later, in November 2020
I was warmly welcomed in the office at Exact to pick up my laptop. This later turned out
to be one of the only two physical activities of my thesis project. Nevertheless, I enjoyed
the nine months that followed being part of the team at Exact. I want to thank Exact for
providing me with this opportunity and all the means to collaborate towards my graduation.
Especially I want to thank Valentijn van de Kamp and Edgar Wieringa for supervising my
project. I want to thank the payroll team for all their help and the fun online vrijmibo’s.

Furthermore, I want to thank Sebastian Proksch for his supervision through the maze of
graduation. Although we have never met in person, your efforts in finding the correct path
and keeping my moral up have been a great help to me. I want to thank Andy Zaidman
for his feedback on the thesis report. Although receiving critical notes is never fun, this
polishing has led me to a thesis of which I can be proud.

Finally, I want to thank my family and my friends for their support during my thesis and my
study in general. Especially in the times where social contact was sparse, your presence has
kept me going.

Tim Nederveen
Delft, the Netherlands

August 15, 2021

iii

Contents

Preface iii

Contents v

1 Introduction 1

2 Context 5
2.1 Workflow . 5
2.2 Stakeholders . 6

3 Interviews 9
3.1 Interview setup . 9
3.2 Interview analysis and validation . 11
3.3 Interview results . 12
3.4 Chosen approach . 15

4 Formalising the configuration 17
4.1 Domain model . 17
4.2 Design model . 18
4.3 Converting configuration to model . 20

5 Implementing a change impact analysis tool 23
5.1 Vision . 23
5.2 Implementation . 24

6 Evaluation 27
6.1 Common-scenario evaluation . 27
6.2 User evaluation . 32

7 Related work 39
7.1 Involving non-software engineers in software quality 39

v

CONTENTS

7.2 Using change impact analysis . 40

8 Discussion 41
8.1 Results and implications . 41
8.2 Threads to validity . 43
8.3 Future work . 44

9 Summary 47

Bibliography 49

vi

Chapter 1

Introduction

To develop software for a specific context, software engineers need domain specific knowl-
edge to incorporate into the software project to meet the requirements of the end-users.
When software engineers do not have this knowledge, domain experts can be used to set up
requirements using requirements engineering [17]. This does create a gap between software
engineers and domain experts in terms of their ability to test the software.

On the one hand software engineers have the knowledge and techniques to systemati-
cally validate software, for example using forms of code review, static analysis, unit tests
and integration tests [3, 19]. They do however often lack the domain knowledge needed
to validate context specific parts of the software [5]. On the other hand, domain experts
have this knowledge needed to validate the software, but often lack the expertise and tools
to apply this knowledge in a way that tests the software product. Transferring this domain
specific knowledge from domain experts to software engineers is inefficient and can lead to
mistakes and inadequate software engineering [4].

In an ideal scenario, domain experts would be given the tools needed to allow them to
participate in the systematic validation of software. Some existing methods attempt to in-
volve domain experts in the process of software testing [2, 10, 17, 18, 21]. These methods
are often focused on allowing the domain experts to manually test a software product or
helping them to develop automated tests using graphical user interfaces or textual represen-
tations, which still require software engineers to set up and execute the tests.

The goal of this thesis is to find a methodology to enable domain experts without software
engineering background to participate in the process of improving software quality with
minimal effort from software engineers with the goal to improve the quality of the software
product for end-users.

This MSc thesis project is performed at Exact, a Delft-based software company focused on
business software. One of the products of Exact is Exact Online Payroll as an integrated
part of Exacts business software suite: Exact Online. In this product, Exact supports more
than 150 CLA’s (collective labour agreements) which contain legislation and agreements
regarding payment, leave, pensions, etc. CLA administrators at Exact are responsible for
keeping this CLA configuration up to date on regular changes.

1

1. INTRODUCTION

CLA administrators are domain experts with regards to payroll calculations but do not
have a technological background, which means that they do not have experience with auto-
matic testing or test-driven development, nor with the practices of a software development
workflow.

Because the CLA configuration is complex and is at the core of the payroll calculations
and therefore the payroll product, an effective strategy to utilise the knowledge of the do-
main experts is crucial to deliver good quality software. This makes Exacts case well suited
to investigate how the goal of this thesis can be reached.

Using four research questions we will investigate how domain experts can be enabled to par-
ticipate in the process of improving software quality. The workflow of the domain experts
at Exact will be used as a case study.

RQ1 What are the challenges domain experts without software engineering background
run into when participating in the process of involving software quality?

Understanding what limits domain experts to participate is essential to develop a method-
ology to enable their participation. This is investigated using interviews with the different
stakeholders at Exact. Following the interviews, the primary insight is that the domain ex-
perts have trouble comprehending the structure of the software which makes it difficult for
them to assess whether changes to it are correct. To overcome this, analysis using change
impact analysis is proposed.

RQ2 How can the software under test be formalised in a model which can be used to
analyse the impact of changes?

To allow an evaluation of this proposed methodology, it is necessary to develop a proof
of concept for the case of Exact. To analyse the configuration and provide insights to the
domain experts, the first challenge is to formalise the configuration of Exact in a model such
that it can be used in the change impact analysis.

RQ3 How can the model of the software be used to provide useful insights to domain
experts to help them assess the quality of changes?

The created model can be used to provide insights about the quality of the software product
to domain experts. Answering this question results in a working proof of concept of a
methodology to involve the domain experts in the case of Exact.

RQ4 Does the methodology of using change impact analysis enable domain experts to
participate in the process of improving software quality?

Using this proof of concept, the idea of using change impact analysis to involve software
engineers can be evaluated for the specific case study. This will be done by evaluating
common-scenarios and performing a user evaluation. The findings of the evaluation of
the proof of concept at Exact will provide an insight in how well the methodology of using

2

change impact analysis helps to involve domain experts in the process of improving software
quality.

This research has three main contributions:

• it introduces a method to implement change impact analysis on software artefacts
targeted at domain experts without software engineering background;

• it shows how formalising software in a model can help in providing insights about the
quality of the software;

• using a proof of concept, it evaluates how well the method of change impact analysis
helps to involve domain experts in the process of improving software quality.

This thesis describes the steps to answer the research questions using the following struc-
ture. Chapter 2 gives a background of the case of Exact by providing information about
the current workflow and the different stakeholders. Chapter 3 describes the interviews
conducted with the stakeholders at Exact to determine the challenges they run into when
testing the CLA configuration and proposes a methodology of using change impact analysis
to allow CLA administrators to validate the quality of their changes. Chapter 4 describes the
methodology of creating a prototype by first describing the conversion of the configuration
under test to a model which can be analysed. Chapter 5 then explains the methodology to
produce insights which can be presented to the CLA administrator. Chapter 6 describes the
common-scenario evaluation and user evaluation of the created prototype and the insights
found from this. Chapter 7 compares the proposed method to previous work. Chapter 8 then
discusses what the insights and implications from the evaluation are for the research ques-
tion as well as describing the limitations of the research and further work in this direction.
Chapter 9 concludes with a summary of the thesis.

3

Chapter 2

Context

Exact is a Delft-based software company focused on business software. One of their prod-
ucts is Exact Online Payroll as an integrated part of Exacts business software suite: Exact
Online. This product is responsible for calculating more than 100.000 payslips each month
and managing all information needed to perform this calculation.

In this product, Exact supports more than 150 CLA’s (collective labour agreements)
which contain legislation and agreements regarding payment, leave, pensions, etc. The
calculation of all (sub)parts of the salary is based on various intertwined components where
the output of one component can be an input for another. CLA administrators at Exact are
responsible for keeping these component configurations up to date on regular changes.

Exact would like to have a strategy of using automated tests to verify the correctness of
the CLA configurations. These tests have several goals:

• making the calculation of payslips more reliable by reducing the number of bugs in
calculations;

• reducing the time needed to configure CLA’s by providing more direct feedback on
changes made in configuration files;

• possibly providing additional regression tests to verify that changes in the software
do not break the payroll calculations.

Since CLA administrators are domain experts with regards to payroll calculations but do
not have a technological background, they do not have experience with automatic testing or
test-driven development, nor with the practices of a software development workflow. This
means that the testing framework should be usable without this background and needs to be
understandable enough to be socially implemented in the workflow of these administrators.

2.1 Workflow

Since 2020, the workflow of CLA administrators follows a software development strategy.
Instead of changing the configuration using a web-interface of Exact Online, CLA admin-
istrators change the CLA configuration in JSON files with Visual Studio Code as IDE. The

5

2. CONTEXT

JSON files are stored in a separate Git repository which can be used with common software
development principles as pull-based development and version control. Using a converter,
the JSON configuration files are converted to the same XML files as in the former workflow
which then get loaded into the production database in the same manner as before.

To support the CLA administrators in creating their configurations, various internal tools
have been developed. Using an extension for Visual Studio Code, administrators get auto
completion for the relevant files and have access to a more human-readable description of
the configuration files.

2.1.1 Testing

The payroll configuration is only tested manually. To do this, the team has three methodolo-
gies to test: performing calculations manually, a daily comparison and a VS code extension.
The manual calculations and comparison are used for every change, the VS code extension
is more a helpful tool when developing and is used little in practice.

Performing calculations An administrator can export the configuration to XML and load
the configuration in a local instance of Exact Online. The administrator can then go through
the payroll process using the provided configuration and manually validate that it gives the
desired results.

Comparison Every day, a comparison called the Payroll Compare is run on the current
version of the configuration. This comparison calculates end-to-end payroll calculations
for different employees and scenarios in companies with different CLA’s. This takes three
to four hours to complete and then points out which parts of the calculations for differ-
ent CLA’s have changed. A tester then manually verifies that only the desired parts have
changed correctly. Depending on the amount of differences discovered by the tool,

VS code extension One of the functionalities in the internal VS code extension for CLA
administrators is the ability to try calculation methods and individual expressions by speci-
fying input parameters and seeing the output of the calculation method or expression. This
can be used to manually test a single part of the payroll calculation.

2.2 Stakeholders

End user An end user uses Exact Online to calculate and process payroll slips for each of
their employees. A company which falls under a certain CLA can specify this in their
settings after which the calculation uses the rules defined for the specified CLA.

When an end user discovers problems with the calculation, they can contact Exact
support to report a bug. An end user can also diverge from the configuration by
manually adjusting components in their configuration.

Support Support maintains the contact with the customer when problems arise. Support
then gathers information about the problem and the steps to reproduce the problem.

6

2.2. Stakeholders

This information is passed on to the CLA administrators, which help in identifying
the cause of the problem and resolving the problem by either making changes to the
configuration or by identifying problems in the configuration of the end user.

CLA administrator The CLA administrators are responsible for maintaining the CLA
configuration. They update the configuration to follow changes in regulations and
resolve bugs reported by end users in the configurations. The CLA administrators
have expertise in the field of payroll calculations and do not have a background in
software engineering.

Developers Developers are responsible for the code behind Exact Online Payroll. While
they are not directly involved with the development of the CLA configuration, they
do work on the calculation engine which uses the configuration to calculate. They
were also involved with the design of the current workflow and provide support to the
CLA administrator when they run into challenges.

Quality engineers Quality engineers are responsible for testing changes to both the soft-
ware and the CLA configuration. The changes to the CLA configuration are mostly
reviewed by the same quality engineer, but other quality engineers are involved in this
process occasionally.

7

Chapter 3

Interviews

To understand the challenges domain experts run into when participating in the quality
process, the domain experts at Exact are asked to explain their background, workflow and
challenges with regards to testing the product. This will give insight in possible approaches
and their potential value. Because the goal is to get as much information as possible from a
small number of participants and to get a broad sense of the challenges they run into, this is
done in the form of semi-structured interviews.

The domain experts in the case of Exact are the CLA administrators. These CLA ad-
ministrators have the knowledge to interpret CLA’s and convert these agreements to the
CLA configuration in Exacts payroll product. Additionally, the quality engineers that test
changes made by the CLA administrators know the workflow of the administrators and
their common pitfalls. Both the CLA administrators and the quality engineers are therefore
valuable interview subjects to learn about the role of the domain experts.

This chapter describes the setup and results of interviews with the CLA administrators
and quality engineers about their current workflow with regards to testing and how domain
experts are involved in the development process. Also, the software engineers are asked to
verify the results of these interviews and provide their insights on possible approaches. The
results of these interviews will be used to find a methodology to involve domain experts in
the process of improving software quality.

3.1 Interview setup

The goal of the interviews is to understand the role of domain experts at Exact in the process
of maintaining the quality of the CLA configuration and to gain insight in the challenges
they run into. For this, semi-structured interviews are set up with the CLA administrators
and quality engineers. The interviews are conducted through video conferencing in WebEx
and last around 45 minutes.

In an introduction at the start of the interview, the participants are introduced with the
goal of gaining more insight into their workflow around configuring and testing CLA’s.
The interview primarily focuses on their current workflow but will also ask the participants
about their vision on how it can be improved.

9

3. INTERVIEWS

The interview consists of four parts: establishing the background of the participant,
understanding the current workflow, establishing which tools are in use and which func-
tionalities or tools are missing and closing off. The questions for each part are a guideline
but follow-up questions can be asked to gain more insight. To analyse the results later, the
interviews are recorded with permission from the participants and from Exact.

While there is some overlap between how administrators test and how quality engineers
test, not all questions are applicable to both groups of participants because of the nature of
their role. For example, some of the tools used by the CLA administrators are not used by
the quality engineers and vice versa. Therefore, the questions for some parts are tailored to
the specific role.

Participant background In the first part, the participants are asked to explain their back-
ground and role at Exact, as well as their role with regards to the CLA configuration. The
goal of this part is to get an understanding of the background of the people working on the
CLA configuration to understand how this impacts their ability to contribute to the quality
of the product.

1. Can you tell me a little bit about your background and your role at Exact?
2. What is your role with regards to the CLA configuration?

Workflow To understand how the participation of CLA administrators in the quality main-
tenance can be improved, we first have to understand how they are involved in their current
workflow. Therefore, the second part of the interview focuses on the workflow of the CLA
administrators and quality engineers. The main goal for this part is to identify the existing
methods for testing and understanding what information is available to test changes.

For the CLA administrators, interview questions relate to how they gather the infor-
mation needed for the CLA configurations change and how they use this information to
test their own changes. The administrators are also asked to elaborate on how bugs are
discovered, and which parts of their process are the most challenging.

1. How do you test changes you made to the CLA configuration?

a) Where do you get the information about a CLA?
b) When do you consider a configuration correct?
c) What is the most common problem in configurations?

2. What are the steps to solve a bug?

a) How are bugs discovered?
b) How does this differ from planned changes to a CLA?
c) Which step of the process takes the most of your time? What is the most painful

step?

For the quality engineers, the questions are related to their process when testing a change
made by the CLA administrators.

10

3.2. Interview analysis and validation

1. What steps do you take to test a CLA configuration?
2. Which step of the process takes the most of your time / is the most painful?
3. When do you consider a change correct?
4. Are there regression tests? What do they cover?
5. What is the most common problem in configurations?

Tools For the third part, the administrators and quality engineers are asked to elaborate
on the tools they use to verify the CLA configuration. This will give a better sense of the
methodologies used by the domain experts to validate software and will expose gaps in the
current tooling.

The CLA administrators are asked about which tools they use and what their opinion is,
as well as how they experience the learning curve to understand the tools and language.

1. What tools do you use to create and verify the CLA configuration?

a) What do you like about the tool?
b) What do you not like about the tool?
c) What do you miss in the tool?

2. How easy was it to learn to use the tools & language? What did you find difficult?
3. What tool would you like to help you in creating and verifying CLA configurations?

The quality engineers do not use the same tools as the CLA administrators and are
therefore asked how their use of the tools compares to the CLA administrators. They are
also asked how they think the CLA administrators can be helped with testing.

1. What tool would you like to help you in testing CLA configurations?
2. How do you test differently than the CLA team?
3. How do you think the CLA team can be helped in testing their own configurations?

Closing To wrap up the interview, the participants get the opportunity to add remarks or
ask questions they might have.

1. Is there anything you would like to add?

3.2 Interview analysis and validation

The interviews with the CLA administrators and domain expert produce unstructured data.
To extract insights from the interviews, the statements of the participants need to be trans-
formed in a more formal representation.

For this, the recording of each interview is transcribed literally after the interview using
the recording of the WebEx-meeting. This transcript is used for further analysis. The goal
of the analysis is to extract the main challenges when validating the CLA configuration
and finding directions in which the involvement of domain experts in this process can be
improved.

11

3. INTERVIEWS

The analysis is done using a form of open coding [11]. The first step is to extract state-
ments about the workflow from the transcript by marking them in the transcript and con-
verting the statement to a (digital) post-it note, categorised by subject, where the colour of
the post-it reflects the participant who made the statement. This resulted in 169 statements
on 15 subjects. Next, similar statements from different participants are grouped together,
resulting in 74 groups of statements with the same message, still categorised by subject.
Finally, by combining similar problems from different subjects, the created groups are used
to extract 6 challenges where improvements could be made to the way CLA administrators
are involved in the process of validating the configuration.

To ensure the privacy of the participants, the literal transcripts of the interviews were not
shared with others in- or outside of the company. To validate that the method of open coding
extracted the correct problems, the results of the interviews are presented to the developers
that work in the payroll team. In three individual brainstorm sessions, three developers are
asked if they recognise the challenges concluded from the interviews. In addition, to gain
insight in the impact and priority of the challenges, they are also asked how they would
spend their time if they would have to improve the testing approach.

3.3 Interview results

After analysing the unstructured data from the interviews, six challenges with regards to
maintaining quality were found. This section first describes the demographics of the inter-
viewees, then the found results and finally the validation with the developers.

In total, five employees participated in the interview. Of these, three were CLA admin-
istrators, responsible for maintaining the configuration. Two were quality engineers. This
number of participants was exhaustive, since there are no more employees in the CLA team,
and the subject is too specific to interview employees outside of the CLA team.

Participant 1 is a CLA administrator who has been with the payroll team for almost five
years and is the lead of the CLA team. P1 gained experience with payroll administra-
tion at another company and describes themself now as a payroll specialist. P1 does
not have any technical background.

Participant 2 is a CLA administrator who has been with the CLA team for a year. Before
P2 was active at customer support at Exact, specialising in support for the payroll
package. P2 has some technical background in self-taught basic programming.

Participant 3 started as a CLA administrator around a month before the interview. Before
this, P3 worked at the second line of customer support specialising in payroll. P3
does not have any technical background.

Participant 4 is a quality engineer who has been at Exact payroll for over five years. P4
has a technical background with almost fifteen years of experience in testing. P4 is
the primary tester for the CLA team.

Participant 5 is a quality engineer who has been active as quality engineer at Exact for the
payroll team for in total almost five years. P5 has a background in IT.

12

3.3. Interview results

3.3.1 Found challenges

Based on the interviews with the five members of the CLA team, six challenges with regards
to validating the CLA configuration were found.

Mostly manual testing When asking about how administrators and quality engineers test
changes, all participants stated that the main strategy is to create or reuse employees in
the software with specific scenarios, running the calculation and looking at the result and
intermediate steps. Functionality for testing single configuration entities is rarely used.

Assessing the impact of a change All administrators and quality engineers agreed that
it is difficult to assess the impact of a change on other parts of the configuration. The
different parts of the configuration have a high level of interdependence, which means that
changing one thing can have unforeseen effects on other areas. Three participants stated
that the configuration is too complex, which also contributes to the difficulty of assessing
the impact of a change.

Setting up scenarios According to three of the five participants, setting up employees
and calculation scenarios to manually test the configuration is the most time-consuming
step of the testing process. Which scenarios need testing depends on the change, which
makes setting up scenarios manual and often repetitive work. Three participants would like
to have an easier way to setup scenarios.

Using the Compare as a regression test The Payroll Compare is being used as a regres-
sion test with the goal to capture unintended effects of changes. All participants stated that
the scenarios in the Compare are outdated and far from complete, meaning it will not cap-
ture all problems. Also, two participants mentioned that it is unclear what scenarios are in
the comparison, making it more difficult to interpret the results of the comparison. Further-
more, because of the size of the Compare, running it takes too long (three to four hours) to
be used as direct feedback while developing.

Systematic validation of configurations The three CLA administrators stated that most
of the bugs are discovered by end users. Testing is only done on changes to the config-
uration and the regression test only compares results before and after a change, meaning
existing problems will not be discovered. This means that the payroll configuration is not
systematically validated.

Development experience and inconveniences Various specific problems make the con-
figuration and workflow less development friendly and cause inconveniences while devel-
oping.

• The cycle of making changes to the configuration, transferring the changes to Exact
Online, checking the results and going back to change the configuration is cumber-
some (mentioned by two participants).

13

3. INTERVIEWS

• It is not easy to check a small portion of the configuration because this involves man-
ually entering all parameters every time (mentioned by two participants).

• The usage of codes for components makes understanding the configuration more dif-
ficult (mentioned by two participants).

• Components have the same start and end dates for both monthly and periodic calcu-
lations making it harder to create specific enough configurations (mentioned by three
participants).

3.3.2 Validation with developers

To validate that the challenges extracted from the interviews are correct, the found chal-
lenges are presented to the developers in the Payroll team. These developers are also asked
to give their opinion on which challenge has the highest impact and priority. In three semi-
structured interviews, three developers from the payroll team provided their insights on the
found challenges from the interviews. For each of the challenges, the developers were asked
to elaborate on whether they recognise the challenge and on how valuable a solution for this
challenge would be to enable the participation of domain experts.

All three developers had been with the payroll team for several years and have worked
on the code responsible for calculating payslips. Of the challenges found by the CLA ad-
ministrators and domain experts, five challenges resulted in four possible approaches to
involve CLA administrators in improving the quality of the configuration. The challenges
Mostly manual testing and Systematic validation of configurations were combined in Mov-
ing towards automated testing. Development experience and inconveniences was excluded
because these improvements would not be part of a new methodology.

Moving towards automated testing All three of the developers stated that the payroll
configuration can benefit from automated tests. Especially calculation methods are a good
candidate for unit testing because calculation methods are independent parts with certain in-
puts and outputs. Testing components on a unit level does not provide much value since this
would only test what is specified in the configuration of the component itself. Testing com-
ponents on an integration level could be useful to determine whether they interact correctly.
To prevent these tests from being high maintenance, the tests could focus on conditions with
regards to the usage of components instead of asserting on often changing values.

Assessing the impact of changes The developers agree that predicting the consequences
of a change can be difficult because of the unknown interdependencies between different
entities in the configuration. Assessing the impact of a change can start by simply providing
an overview of the components or calculation methods that are related to a file that is being
changed. A more extensive method of determining the impact can definitely provide a lot
of value if it is feasible.

14

3.4. Chosen approach

Defining scenarios The workflow of administrators would be simplified if they could exe-
cute scenarios right from Visual Studio Code instead of exporting the configuration to Exact
Online and running scenarios there. For this, scenarios could be defined as configuration,
possibly based on the JSON format that is used to provide to the calculation engine. These
scenarios can then be shared between developers and could be exported from Exact Online
when for example support reports a bug with a specific scenario.

A side note placed by one of the developers was that it might be good to check how much
of the changes to the configuration are in calculations and how much are in components to
determine where to focus the effort.

Improving the Compare The speed of the Compare could be improved by only executing
scenarios which are related to changes to the configuration. This could be tricky since
changes to calculation methods can have unforeseen consequences to other CLA’s. These
could be missed when executing only the CLA that was intended to change. However, for
some changes, choosing which scenarios are relevant might be possible.

To better understand the contents of the Compare, a tool which provides coverage in-
formation could be developed. Using the coverage of the Compare, an administrator would
know whether or not their changes were being covered by one of the scenarios in the Com-
pare. Another way to make the Compare more transparent, is making the scenarios part of
the code repository.

3.4 Chosen approach

All of the possible approaches might have a positive influence on involving the domain
experts at Exact in the process of improving software quality, but because the scope of this
thesis only allows the realisation of one approach, the most promising approach has to be
chosen. To do this, the opinions of the stakeholders at Exact and the ability to generalise
the approach to other contexts is considered.

A common theme in all the interviews with the CLA administrators and quality engi-
neers is not being able to comprehend the structure and interdependence in the configura-
tion. As a consequence, administrators and quality engineers have difficulty in assessing the
impact of changes, which makes it hard to assess if the change has any unintended wrong
consequences for end-users. Also after talking to the developers, the idea of building a
method to mitigate this problem seems to have the potential to provide a lot of value to the
team in terms of helping them to improve the quality.

In addition, of the found approaches, helping domain experts assess the impact of
changes is the most generalisable to other contexts. While developing an automated test-
ing methodology for the configuration entities, helping domain experts to define scenarios
to use for testing and improving the tool used to compare calculations before and after
a change will most likely have positive effects on the quality of the software, this would
mainly focus on fitting existing techniques to the specific case of Exact. This is quite spe-
cific for the context of Exact making it harder to transfer to other contexts. Conversely, the

15

3. INTERVIEWS

concept of assessing the impact of changes is broadly applicable in other contexts by fitting
the concept to the specific software context.

Therefore, this thesis chooses to focus on the idea of enabling domain experts to assess
the impact of changes with the goal to prevent bugs for end-users because of unintended
consequences of changes. For this, a change impact analysis tool will be implemented for
the case of Exact which can then be evaluated with the CLA team.

16

Chapter 4

Formalising the configuration

To allow the development of a proof of concept for the method of change impact analysis as
described in section 3.4, the subject under test has to be converted into a model which can
be analysed. In the case of Exact, the subject under test is the configuration which defines
how payroll calculations are performed.

While the different parts of the configuration have references to each other, the cur-
rent form of the configuration does not provide enough structure to analyse changes to the
configuration. Configuration entities refer to other entities by name, which means that con-
nections are implicit and are only resolved at runtime. To allow for more extensive static and
dynamic analysis to provide insights about the impact of changes, the configuration should
be formalised in a model where the connections between different entities are explicit.

This chapter describes the current structure of the configuration in section 4.1, the design
of a model in section 4.2 and the steps to generate a model from the configuration in section
4.3.

4.1 Domain model

The structure of the configuration files is custom for Exact and consists of different entities
with several different dependency types. Before modelling these connections, we first need
to understand this structure of the current configuration to be able to derive a model that
contains all necessary information.

The configuration for the payroll calculations is stored in JSON files in a separate repos-
itory from the payroll software. These files are maintained by the CLA administrators.
Changes to the configuration are converted to a representation which is included in the
software platform that is used by the customers. The configuration consists of five parts:
groups, components, calculation methods, formulas and tables.

Groups Groups represent different levels in the configuration with which CLA adminis-
trators can create a hierarchy of employment condition groups. Each group is repre-
sented in a file in the corresponding directory. This file contains information about
the group, such as the identifier, a description and the number of hours in a full-
time week. In general, there are three levels: the top-level (NL), the sector level (for

17

4. FORMALISING THE CONFIGURATION

example NL-0100 for agriculture) and the branch level (for example NL-0101 for
gardeners).

Components Components are the core of the configuration and are used to calculate all
different parts of the salary slip and pension declaration. Each component is part
of a group, is identified by an alphanumerical code and is described in a JSON file
in the directory corresponding to the group. Each component has a set of inputs,
which can refer to other components in the calculation, outcomes of components in
historic calculations or details about the company, employee or employment. Next
to the inputs, each component also has a set of outputs which can be used by other
components or can be shown on the payslip. The component specifies the calculation
method which is used to calculate the outputs. Each output defines which step of the
calculation it should output. A component can also specify that the outcome of the
calculations should be included in a number of subtotal components.

There are several mechanisms within components to allow administrators to effi-
ciently create the CLA configuration and keep it up to date. Components can inherit
properties, inputs and outputs from other components. This allows for inheritance be-
tween different employment condition groups. By default, all components on branch
level are inherited from the sector level, but an administrator can choose to create an
inherited component which overrides certain properties in a component with branch-
specific agreements. Another mechanism is the start and end dates of components,
which allows administrators to create successors of components when agreements
change.

Calculation methods Calculation methods describe how the outputs of a calculation method
should be calculated. Each calculation method is identified by a code and is described
in a separate JSON file. A calculation method can be used by multiple components.
A calculation method has a set of parameters which correspond to the inputs as de-
fined in the component that uses the calculation method. To calculate, the calculation
method follows a list of steps. Each step uses a formula to calculate an outcome based
on the value of the parameters or earlier steps. These steps can then be referenced by
components outputs.

Formulas Formulas are Excel-like expressions which can reference calculation method
parameters and calculation method steps by name. Each formula has a single output.
Formulas are defined in individual files which are referenced by filename. Formulas
can be used by multiple calculation methods.

Tables Tables are CSV files which can be used as lookup tables in calculations. This can
for example be used to look up the minimum wage based on the age of the employee.

4.2 Design model

To be able to determine the impact of changes to the configuration, the configuration needs
to be structured in a model which has connections allowing further analysis, i.e. to deter-

18

4.2. Design model

mine which entities will change when one entity has been changed. The plain representation
of the configuration as stored in the JSON files does not contain any links between different
parts, which makes it hard to follow how changes propagate through the configuration.

The principle of entities which are dependant on other entities for their calculation is
similar to a call graph. Instead of functions that call other functions, the configuration con-
sists of entities which have dependencies on other entities. By converting the configuration
to a graph where each configuration entity is a node and entities that impact each other are
connected through edges, it is possible to analyse the graph to provide insights about the
configuration and traverse the graph to determine the impact of changes.

The graph contains nodes for each entity in the configuration, i.e. components, inputs,
outputs, calculation method steps, calculation method parameters and formulas. For inputs
and outputs which are inherited from another component, nodes are only created if the
inherited entities overwrite one or more properties.

Edges in the graph are directed and represent an impact relation between two nodes,
i.e. if the node at the tail of an edge changes, this change will impact the node at the
head of the edge. In most cases, this is directly related to the control flow of the payroll
calculation, making the graph representation similar to a call graph. Edges are also created
for inheritance relations. These relations do not represent the control flow but are relevant
since a change in the parent will have impact on the child.

Some edges represent a connection that is only present under certain conditions. This
occurs in two cases. The first is when a component is only active for a specified period.
Edges to this component should therefore only represent impact in this specified period.
The second is the edges from calculation method steps to component outputs. Calculation
methods can be used by multiple components, but when it is used in component A and B,
changes propagated from component A through the calculation method should not impact
component B. Therefore, in both cases, the edges are annotated with the conditions. When
traversing the graph, these conditions should be checked.

Figure 4.1 shows an example of a graph using this representation. The dots represent the
nodes which represent various configuration entities, symbolised by a colour for the type
and a title below the node. The white nodes represent input data. A solid edge from node
A to B represents that A is used for the calculation of B. A dotted edge from A to B means
that B inherits properties from A. Some edges have conditions to represent impact relations
that only apply in certain periods or certain CLA’s.

In the example graph, there is one calculation method with two steps. Both steps get
their input from a calculation method input. STEP2 also uses the outcome of STEP1. These
calculation method inputs are in turn coming from a component input. The calculation steps
both use a formula to calculate their outcome. STEP1 is used for a component output, but
only for a specific component for a specific period. The same applies for STEP2, which is
used in an output of a component with multiple versions.

The dotted lines between components and between components and inputs or outputs
represent inheritance relations. For example, component input PARAM2 is part of Component
NL/A. Component NL/NL-0000/A inherits from NL/A, which means that it also inherits the

19

4. FORMALISING THE CONFIGURATION

same component input. If anything changes to component NL/A, this will be propagated to
all inherited components and related entities.

Component

NL/NL-0000/A

<= 2020Component

NL/NL-0000/NL-0001/A

v1

Component

NL/A

Calculation method input

PARAM2

Component input

PARAM2

Component NL/Z

output

PARAM1

Formula

f1.exp

Formula

f2.exp

Transaction data field 1
<= 2020

Component input

PARAM1

v1

Calculation method input

PARAM1

Calculation method step

STEP1

NL/NL-0000/NL-0001/A
>=2021

NL/NL-0000/NL-0002/A
>=2021

NL/NL-0000/NL-0001/A
<=2020

NL/NL-0000/A
<=2020

Calculation method step

STEP2

Component output

PARAM1

v1

<= 2020

>=2021

Component

NL/NL-0000/NL-0001/A

v2

Transaction data field 2

>= 2021

Component input

PARAM1

v2

Component

NL/Z

>=2021

Component

NL/NL-0000/NL-0002/A

v2

Component output

PARAM1

v2

Calculation method input

PARAM2

Figure 4.1: Visualisation of example model graph structure

4.3 Converting configuration to model

Now that we have a design for a model, we can convert the current configuration to the
graph representation as described in section 4.2 which can be used to determine the impact
of changes.

Parsing To parse the configuration, the JSON files are read in and stored in an in-memory
representation of all the configuration entities. Because the configuration is stored in JSON
files, these entities can be read in trivially into classes following the schema of the JSON
files. Each entity is stored in a list of all entities of this kind. In this step, there are no
relations between the entities created yet.

Nodes Next, nodes are generated from the parsed entities. Every entity is converted to
one node. The nodes are added to a graph with a unique key based on the type and name.
This key can later be used to find the node in the graph.

20

4.3. Converting configuration to model

Edges After creating the nodes, edges between the nodes are generated. For most edges, it
is trivial to find the referenced node. For example, a reference to another step of a calculation
method can only refer to one other node. Similarly, every component input can be linked
to the corresponding calculation method parameter and every output can be linked to the
defined calculation method step.

For some relations, the calculation engine does not resolve the reference until runtime
because resolving these requires information about the calculation period and selected em-
ployment condition group. Since components can be overwritten on multiple levels and
can have start and end dates, a reference to a component can point to multiple components.
While building the graph representation, the graph builder takes all possible impact relations
into account. The created edges are annotated with information about when the edge should
be followed, i.e. in which periods the link is active and for which employment condition
groups the component at the head of the edge is valid.

To achieve this, the graph builder creates a data structure which stores for each compo-
nent code which components could be referenced and for which periods it would be active.
When indexing a new component on a deeper level, the period for which this component
is valid is subtracted from components with the same code on a higher level. When the
graph builder wants to resolve a component code, it creates edges to every node that could
be active in the period of the source component and is reachable from the level of the source
component.

The result is a graph with edges which define when each node has impact on which other
nodes.

21

Chapter 5

Implementing a change impact
analysis tool

In the interviews, not being able to comprehend the impact of changes made to the config-
uration was one of the main challenges domain experts identified. After we have translated
the configuration into a model in the form of a graph, we can develop a proof of concept
implementation of a tool that provides domain experts with more insight about the impact
of changes to the configuration. This proof of concept is necessary to evaluate the use
of change impact analysis to involve domain experts in the process of improving software
quality.

The configuration of CLA’s is at the core of calculations in Exact Online Payroll. It
is essential that the maintainers of this configuration understand the impact of changes to
ensure the correctness of payroll calculations for end users. By providing a solution which
provides insight in the impact of changes made to the configuration, CLA administrators
and testers will gain more understanding of the working of the software. Because of this,
CLA administrators will be more assured of the impact of their work and bugs will be caught
more often.

5.1 Vision

To achieve this, a tool should be created which determines the impact of changes made to
the configuration. This tool would be integrated in the workflow of the CLA administrator.
Since analysing the entire configuration will take a few minutes, using it as part of the
continuous integration pipeline would provide the least interference with the work of the
user. The tool would run on changes made in the branch and then report under which
conditions the calculation outcomes will change and what this change is. This is presented
to the user, for example as attachment in a pull request, who can then manually verify
whether the changed outcomes are expected and correct, allowing the domain expert to take
part in the code review process.

The following steps illustrate how the tool would be used in the workflow of the CLA
administrators to provide insight about the impact of changes:

23

5. IMPLEMENTING A CHANGE IMPACT ANALYSIS TOOL

1. A CLA administrator wants to make a change in one specific CLA. For this, the ad-
ministrator changes a formula which contained a wrong operation. The administrator
commits the changes in a separate branch.

2. The CLA administrator creates a pull request for the created branch which triggers
the change impact tool to run on the changed branch.

3. The change impact tool compares the selected branch with the master branch and
finds the changed formula. The tool then finds two calculation methods which use
this formula. Next, the tool determines for which CLA’s and under which conditions
these calculation methods are used. Finally, the tool determines which component
outputs will change because of this formula change.

4. The CLA administrator receives a report which states that the changes in this branch
have impact on two groups. The first group is all the employees in the CLA where the
intended change was, which is expected. The second group is hourly paid employees
from a different CLA. This should not have changed.

5. The CLA administrator looks at the report to determine why the second group is
affected. The report shows that the formula is used in a different place. The ad-
ministrator changes the configuration to only use the changed formula in the correct
CLA.

6. The change is committed, and the change impact tool is run again. It now only shows
the expected change for group 1.

7. The administrator now requests review from a different administrator or tester. The
tester looks at the report attached to the pull request and sees the one expected change.
The tester verifies that this change is correct and complete and approves the pull
request.

5.2 Implementation

To determine what has changed, the tool analyses differences between two git branches, i.e.
the main branch and the branch with the changes that need to be analysed. Both branches are
checked out and converted to a model. Next, for each node in the new graph, the properties
of the node are compared to the equivalent node in the old graph (i.e. the node with the
same key) are compared. If there is a difference in any of the properties, the node is marked
as changed by adding the key to a list. New nodes in the model of the changed branch are
added to this list to handle parts added to the configuration. The tool does not yet cope with
deleted parts of the configuration. Deletion of configuration entities does not occur often
and the impact of deleting configuration entities is often already clear by the checks that are
already performed to check the references between configuration entities.

After determining the changed nodes, each of the changed nodes is the starting point
of a traversal through the graph. The traversal is performed using a depth first search. At
every node, all outgoing edges are considered for traversal. Information about the traversal

24

5.2. Implementation

through different nodes is stored in a trace. This trace also contains information needed
to make a decision at conditional edges like the period for which the trace is active or for
which component the trace is going through a calculation method.

At every node, the trace up until that point is stored in a list which in its turn is stored in a
dictionary with the node key as key. After having traversed the entire graph, this dictionary
is used to determine all component outputs that are possibly affected by the changes.

Since the model of the configuration contains loops, the traversal needs a mechanism to
detect and prevent looping around indefinitely in the graph. To do this, a dictionary stores
for each node for which CLA’s and periods it has been traversed. When a trace reaches a
node which has already been traversed for all the CLA’s and periods in the trace, the trace
will end, since there cannot be any new effects when the part of the graph is traversed again
with the same conditions. If a trace reaches a node with different conditions, that part of
the graph is traversed again with the new conditions until there are no more new CLA’s or
periods for which nodes can be traversed.

Finally, the found impact needs to be presented to the user. For this, the tool generates
a report. The report has two goals for CLA administrators. Firstly, it should provide a clear
overview of what impact their change has on the entire system. This allows CLA adminis-
trators to assess whether their change is correct and does not have unintended consequences.
Secondly, it should provide enough information for CLA administrators to dig deeper into
the found consequences to allow them to find where unintended effects originate and how
they can be solved.

The tool generates a report in the form of an HTML file. Using JavaScript, dynamic
functionality is added in the report to allow the users to click between tabs and filter the
results on CLA and period.

To give users a quick overview of the impact of their change, the report first shows a
list of CLA’s which are affected. Next, the report shows timelines for the years around the
impacted periods for monthly, four weekly and weekly periods. Periods that are affected
are coloured orange. By clicking on the CLA’s or periods, user can filter the effects to only
show effects in a certain CLA or a certain period.

Next, the report shows a list of all component outputs which can be affected by the
change. For each output, the CLA’s and periods for which the change applies are shown,
together with a list of traces which show the path from the changed configuration entity to
the given output.

The result is a proof of concept of a tool that takes reads in the configuration, converts it to
a model, looks at a change using version control, computes what the impact of this change
on other parts of the software is and presents these insights to domain experts. Figure 5.1
shows an example of a part of a generated report.

25

5. IMPLEMENTING A CHANGE IMPACT ANALYSIS TOOL

Figure 5.1: Example of part of generated report

26

Chapter 6

Evaluation

The proof of concept implementation of the change impact analysis tool has the potential
to enable domain experts to be more involved with improving the quality of the software.
To investigate the advances, the model and tool will be evaluated from two different an-
gles. Section 6.1 describes a common-scenario evaluation to evaluate the completeness of
the model and the correctness of the change impact analysis algorithm. Section 6.2 then
describes a user evaluation where the tool is presented to the targeted users to evaluate the
usability of the tool and the value for their workflow.

6.1 Common-scenario evaluation

A requirement for a tool that determines what the impact of changes will be is that it is as
complete as possible to not miss unintended effects. To understand how complete the model
behind the tool is and how correct the algorithm for change impact analysis is, both should
be evaluated by verifying that the tool is capable of providing actionable feedback on every
configuration change. Unfortunately, performing a quantitative evaluation on changes from
the past is infeasible, as it would require a lot more data about what types of bugs were
solved by each change and would take a lot of time, which was not possible within this
thesis project. To still show how the model and algorithm perform on real-world scenarios,
both are evaluated using scenarios of common problems in the configuration based on the
experience of the CLA administrators and quality engineers. This will show to which ex-
tent the tool is capable of providing actionable feedback on relevant and often problematic
configuration changes.

To gather these common scenarios, three CLA administrators and a quality engineer
were interviewed. Before the user evaluation, the participants were asked to describe cate-
gories of failures that can occur when changing the configuration. The answers from these
interviews were combined in a list which was then coded to find a complete as possible
set of scenarios. This resulted in an unordered list of eight categories. Two categories
of failures were discarded: syntax errors, which is irrelevant for the working of the tool
since these are already filtered out before the code is ready to be reviewed, and readability
and maintainability, which was more a cause of problems than a category of failures. The

27

6. EVALUATION

remaining six scenarios are as follows:

1. Unintended effects in other CLA’s
2. Unintended effects in other periods
3. Unintended side-effects in calculation methods
4. Creating a new entity but not using it
5. Bug fixes on the wrong level
6. Unsolved bugs for other employee types

The scenarios are explained in more detail later. Using these common scenarios, the model
and algorithm can be evaluated. This consists of two steps. The first step is to evaluate how
the tool handles a hypothetical case of this scenario by reasoning about the working of the
model and algorithm. The second step if the scenario is captured by the tool is to construct
an example of the scenario in the configuration and show the output of the tool.

Results

After evaluating the model and algorithm for each of the given scenarios, these are the
results per scenario.

1. Unintended effects in other CLA’s Configuration entities can be used in calculations
for multiple CLA’s. When a component or calculation method is changed with the
intention to change a calculation for one CLA, it could also have unforeseen effects
on the calculation of other CLA’s.

Components and calculation methods and any part of them are integrated as nodes
in the generated model of the configuration. From these nodes, edges are created
to any other node which is dependant on the outcome of this node. When a CLA
administrator updates a component, calculation method or any part of that in a specific
CLA, the tool will mark the corresponding node as changed. Using traversal, all edges
following from this changed node are followed. This results in a list of nodes which
are dependant on the changed nodes. For each component in the configuration, the
tool determines which CLA’s use the component in the calculation. This is done by
determining the location of the component and checking whether the component is
overwritten by a component with the same code on a lower, more specific level.

By combining this information, the tool can determine the CLA’s that use any of the
nodes that were dependant on changed entities in the configuration. A list of these
CLA’s is presented in the report that is presented to the user, which allows them to
judge whether there are any effects in CLA’s that were not intended to change.

Example
Suppose an administrator wants to change a part of the calculation for CLA nl-0301
(construction and infrastructure). The administrator changes the calculation method
CORDGRDSL which is used for this calculation, assuming it will only have impact on
this CLA and its descendants nl-0301a and nl-0301b. After running the tool and

28

6.1. Common-scenario evaluation

opening the report, the administrator finds that the change has impact on a lot more
CLA’s than intended. This is shown at the top of the report with a list of all affected
CLA’s, as shown in figure 6.1.

Figure 6.1: Indication of changes in unintended CLA’s

2. Unintended effects in other periods When a configuration entity is used in calcula-
tions for multiple payroll years, changes to this entity or related entities can have un-
intended effects on other periods. This also occurs when a component has a wrongly
configured start date, which causes it to be used in the calculations for a wrong payroll
year.

The scope of periods on which a change has effect is determined by the start and end
dates of components that are changed or are dependant on a changed entity. For each
component, the tool determines for which payroll periods (monthly, four-weekly and
weekly) the component is calculated.

After having created a list of components which have changed or are dependant on a
change to the configuration, the tool collects all periods for which these components
are calculated. These periods are presented visually in the report, making it easy for
users to spot unforeseen effects in other periods.

Example
Suppose an administrator wants to make a change to a component to update the pay-
roll calculations for the furniture industry CLA in 2021. For this, the administrator
updates one of the inputs of the component 0700-042. After running the tool and
opening the report, it becomes apparent that the change also has effect on the last pe-
riod of the four-weekly and weekly calculations of 2020. This is shown at the top of
the report with the coloured periods which indicate a change in that period, as shown
in figure 6.2. This is correct, since the component has a start date of 2021-01-01.
This date is part of week 53 of 2020, meaning that the component will also be used
to calculate this last week and the last four-weekly period of 2020.

3. Unintended side-effects in calculation methods Changes to alter one output of a cal-
culation method might also have impact on other outputs of the calculation method.
Especially since not every parameter of calculation methods is well documented,
changes to the calculation method can have unintended effects on the calculation.

Calculation method parameters are incorporated in the model of the configuration by
creating edges from the parameters to the calculation steps with formulas that refer-
ence a particular calculation method parameter. This means that changes to config-
urable parameters of a calculation method will be reflected in the report of the change

29

6. EVALUATION

Figure 6.2: Indication of change in unintended period

impact analysis tool. This only indicates that the parameter is used in a step of the
calculation method and does not necessarily show any unexpected results. Changes
to outputs are also represented in the report, meaning that if a change to an output
causes another output to unexpectedly change this will be shown in the report.

Example
Suppose an administrator wants to change one specific step of the calculation method
CORDGRDSL: BTERUURLN to update the output CalcMaximum in component 5601-023.
For this, the administrator updates the formula that is responsible for this step,
/CORDGRDSL/bteruurln.expression. The assumption is that this will only change
the output CalcMaximum. After running the tool and opening the report, the admin-
istrator finds that also the output CalcAmount has been changed, as can be seen in
figure 6.3. Looking at the trace shows that this is because the step BTERUURLN is also
used in RESULTAAT which is responsible for the CalcAmount output.

Figure 6.3: Affected output because of unintended side-effect in calculation method

30

6.1. Common-scenario evaluation

4. Creating a new entity but not using it A CLA administrator can create a new configu-
ration entity like a formula or calculation method. Until the new entity is referenced
by an existing entity, the new entity is never used. Therefore, if the CLA administrator
forgets to change this reference, the calculation will not change.

New configuration entities will be incorporated in the model and outputs in the new
configuration entity will be shown in the report. However, if the new configuration en-
tity is never used, it will not have impact on any component output and will therefore
not be shown in the report. Unless the CLA administrator has made more changes,
this will give a clear signal that the change has no effect on the calculation.

Example
Suppose an administrator wants to add an extra output to the component 6001-041
with the goal to use this output in another component. The administrator adds the
output to the component but forgets to use the output in the other component. After
running the tool, the report only shows one change which is the new output, as shown
in figure 6.4. The rest of the report is empty, which is a clear indication that the
change did not have the intended effect.

Figure 6.4: Only changed output because of not using new entity

5. Bug fixes on the wrong level When a bug is solved for a specific CLA, problems can
still occur in related CLA’s because of code duplication causing a form of late prop-
agation [1]. This can also occur when a fix is applied to a specific CLA when the
problem was in a more generic configuration entity.

If a bug is solved on CLA level, the report will show that outputs in this CLA have
been changed. Similarly, if a bug is solved in a configuration entity that is shared
between different CLA’s, the report will present all the CLA’s where the change has
effect. This means that if a CLA administrator does not know that the bug occurs in
multiple CLA’s, showing only the CLA’s that has changed because of the fix will not
point the user to the problem in other CLA’s.

Detecting this scenario would only be possible if the tool pointed users to configura-
tion entities that are similar to the changed entities to let the user decide whether they
should be updated as well.

6. Unsolved bugs for other employee types If a problem is solved for a specific type of
employee (full-timer, part-timer, etc.) while the bug was caused by a more generic
bug, the problem persists for the other employee types.

31

6. EVALUATION

The distinction between full-time, part-time and hourly employees is made in condi-
tional expressions in the formulas of calculation methods where the value of parame-
ters containing the type of employees are checked. While the tool does analyse which
parameters are referenced in a formula, it does not perform any further analysis on
the contents of the formulas. This means that the tool cannot distinguish between
different types of employees when determining the impact of a change. A change for
a specific type of employee will show up in the report as a change for everyone in the
CLA.

For this to be more specific, formulas would have to be further expanded in the graph
to for example a syntax tree, which would allow the tool to determine which parts
of the formula are affected by a change and reporting under which conditions the
effects take place. Because of the complexity, this was not yet part of the scope of
this project.

As shown in table 6.1, four of the six scenarios are well represented in the model and will
be detected by the tool in most scenarios. For the other scenarios, the tool does provide
information which can help in discovering the bug, but not provide enough detail to always
detect the problem. Fully covering these scenarios would require an extension to the tool.

Scenario Result
1. Unintended effects in other CLA’s Covered
2. Unintended effects in other periods Covered
3. Unintended side-effects in calculation methods Covered
4. Creating a new entity but not using it Covered
5. Bug fixes on the wrong level Needs extension
6. Unsolved bugs for other employee types Needs extension

Table 6.1: Result per common scenario

While these scenarios are not proof of the correctness of the tool and the list of scenarios
might not be complete, the scenarios are illustrative cases for how the change impact anal-
ysis tool is able to provide insights to the domain experts about the quality of the software.
The model can be extended to incorporate more cases if scenarios are found which are not
yet represented.

6.2 User evaluation

To determine whether change impact analysis provides the desired value to the domain
experts, the ultimate test is to evaluate the proof of concept with the targeted users in the
form of a user evaluation. This means determining whether the users have the confidence
that the solution will help them to improve the quality of the software.

32

6.2. User evaluation

6.2.1 Methodology

As part of this evaluation, users give their opinion on the usefulness of the concept of change
impact analysis and the user interface of the prototype. This is done using the method
of heuristic evaluation as described by Nielsen and Molich [16]. The idea of heuristic
evaluation is that a small group of expert evaluators inspect the application and rate a set of
usability principles. Commonly, ten heuristics devised by Nielsen and Molich are used to
evaluate the usability. Since our evaluation is not purely focused on the user interface itself
but also on the usefulness of the results provided by the change impact analysis, specific
heuristics in line with the goal of the solution are used instead:

1. The tool provides useful results.

a) Complete: there are no effects missing from the report.

b) Correct: presented effects are a consequence of the changes.

c) Non-trivial: the presented effects were not clear before running the tool.

d) Insightful: the report provides insights needed to fix unforeseen effects.

e) Valuable: the time it takes to look through the report is worth it.

2. The tool is easy to use

a) Logical: navigation through the report does not require outside assistance.

b) Clear: the meaning of each effect becomes clear from the given information.

c) Clean: the report does not provide too much information.

The experts used in the evaluation are three CLA administrators and a CLA tester. Since
they work with the payroll solution daily and are experts in the field of payroll configuration,
they have the expertise to describe the potential value of the tool for their workflow.

The evaluation is performed in the form of semi-structured individual interviews which
last an hour. The experts are first introduced to the concept behind the tool with an explana-
tion how the change impact analysis would be performed on pull requests and would give
insight in the effects of changes to the configuration. The experts are given an explanation
of the heuristics which they will use to evaluate the tool. For this, they also receive a PDF
containing the heuristics with brief introductions. The experts are given the instruction that
they are going to look at three reports, after which they are asked to rate each of the eight
heuristics on a scale from 1 (completely disagree) to 5 (completely agree). In addition, they
are asked to share their opinion about the working of the tool already while looking at the
reports and to ask questions if they have any.

Next, the evaluators receive a zip file containing three generated reports from the built
prototype. By using three different reports, the evaluators get a broad picture of the func-
tionality of the tool which allows them to also evaluate the concept of the tool instead of
an individual report. Each report emphasises different parts of the tool. The first report is
about a change in one CLA, which results in a small set of changes (7 changed outputs).
The second report is about a change in a configuration entity on the top-level. This change

33

6. EVALUATION

has a large impact on the entire configuration, leading to a very large set of changes (699
changed outputs), requiring the user to use filters to make sense of the information. This
report also contains an example of a misconfigured period which can be seen in the period
filters at the top of the report. The third report is about a change in references within con-
figuration entities which has effect on several CLA’s. This results in a set of 142 changed
outputs.

The experts are first introduced with the change in the configuration by showing the git
diff of the changed configuration entities. After this, they can open the report and inspect the
presented information by clicking around in the report. At the first report, the participants
are introduced to the structure of the report and the possibilities with regards to navigation
and filtering. If the evaluators have any questions with regards to the working of the tool,
they receive an explanation about this part. After each report, the participants are asked
what they think about the example report and the working of the tool.

After having seen all three reports, they are asked to give their opinion on each of the
given heuristics. For each heuristic, they are asked to give a score using a Likert scale
[13] of 1 to 5 and explain why they chose that score, preferably using examples from the
tool itself. Afterwards, the experts give their opinion on whether the tool would be a good
addition to their utilities and what value the tool would provide in their workflow.

To analyse interviews with the experts, the scores are the starting point. For each of the
heuristics, the given scores are explained based on the explanations from the evaluators. In
addition, for each heuristic, the implications of the perception of the evaluators on the us-
ability of the tool are discussed. The results are concluded with an analysis of the sentiment
regarding what the administrators and tester think about the value of the tool in the process
of maintaining the quality of the configuration.

6.2.2 Results

In the interviews, the experts gave their opinion on each of the eight heuristics. Their
findings are summarised by the scores they gave for each heuristic as shown in table 6.2. As
well as giving scores for each heuristic, the experts described what they liked and disliked
about the tool for each of the heuristics.

Expert 1 Expert 2 Expert 3 Expert 4 Avg
Complete 2 5 5 5 4,25
Correct 5 5 5 5 5
Non-trivial 5 4 4 5 4,5
Insightful 5 3 5 5 4,5
Valuable 5 3 5 4 4,25
Logical 4 5 5 4 4,5
Clear 4 2 5 4 3,75
Clean 5 1 5 5 4
Avg 4,375 3,5 4,875 4,625

Table 6.2: Scores per expert per heuristic, higher is better

34

6.2. User evaluation

Except for the clearness of the report, each heuristic has an average score of 4 or higher,
meaning overall the experts were quite positive about the working of the tool. When looking
at the average scores of the experts, expert 2 stands out with an average of 3,5 where the
others are all 4,375 or above. This is in line with the tone during the evaluation, where
expert 2 expressed their concerns about interpreting the results given by the tool.

Complete Three of the four experts fully agreed with the statement that there are no effects
missing from the report. Expert 1 disagreed and gave a score of 2. All experts men-
tioned that they had reservations with stating that the reports were complete because
the reports were too large to manually check everything. However, looking at the
report, they could not come up with effects that were missed, which gave them the
confidence to give a score of 5. Expert 1 discovered a problem in one of the reports,
where the report indicated that one of the effects was applicable for one year for the
weekly and four-weekly calculations, but indefinitely for monthly calculations, as
shown in figure 6.5. This is impossible with the structure of the configuration and the
export therefore identified this as a flaw immediately and scored this heuristic with
a 2. Analysis showed that this problem was caused by a bug in the way periods are
combined before they are presented to the user.

Overall, the report provided a complete picture of the effects of a change, with the
exception for the presentation of the periods. The fact that the expert who found the
bug lowered its score to 2 shows the importance of accuracy in the report: any flaws
will lower the trust of users in the tool. After fixing this bug, the report would have
to prove itself in practice to be more confident about the completeness of the results.

Figure 6.5: Bug in periods

Correct The correctness of the tool is rated with a 5 unanimously, meaning all experts fully
agreed with that the presented effects are in fact a consequence of the changes to the
configuration. Like with the completeness, the experts could not state with certainty
that all the results are correct because of the scale of the report. The experts mention
that this is something that will become apparent when the tool is used in practice.
From the current reports, the experts conclude that the presented effects are correct.
For this, they mainly refer to the traces which show the path through the configuration
which made sense to them.

Non-trivial Two experts fully agreed with the statement that the presented effects were not
clear before running the tool with a score of 5. The other experts agreed with a score

35

6. EVALUATION

of 4. All experts mention that some of the presented effects are clear beforehand. The
administrators and testers know the structure of the configuration and can therefore
to a certain extent predict the impact of a change. The magnitude of effects on other
configuration entities was however experienced as non-trivial. Also, one of the ex-
perts mentioned that the list of affected CLA’s at the top of the report provides a quick
realisation of the impact of a change. One expert praised the information given by the
traces which provides insights that were not apparent before using the tool. Another
expert was happy with the level of detail the report provides about changes to specific
configuration entities, but also mentioned it could sometimes be too much.

The ratings about the non-triviality show that the tool is a welcome addition to the
set of tools of the administrators and testers. It provides insights which could not be
obtained easily before and helps users to determine the full impact of a change.

Insightful The insightfulness of the tool is rated with three 5’s and one 3 from an expert
who did neither agree nor disagree with the statement that the report provides insights
needed to fix unforeseen effects. The experts who fully agreed with the statement
mentioned that the report provides clear insight in what changes and the traces provide
a lot of information about where a specific effect originates. Using these traces, the
experts feel like they have enough information to fix problems that may be found.
The same holds for the affected CLA’s and periods, one expert mentions, since the
report provides a clear overview of this allowing the user to quickly discover flaws in
the configuration. Expert 2 who gave a score of 3 was mainly overwhelmed by the
size of the reports. The report provides a lot of information which this expert finds
hard to interpret and convert to action to fix the configuration.

The scores show a division in the way experts conceive the information in the report.
On the one hand, three of the experts are clearly convinced of the insightfulness of the
results and have confidence that the tool will help them to discover and solve problems
in the configuration leading to a higher quality product. On the other hand, the expert
who was overwhelmed by the size of the report shows that the presentation of the
results might not be perfect for every domain expert. This could possibly be solved
with training in interpreting the report but might also require a different approach to
presenting the results.

Valuable Three experts agreed that the report is worth the time it takes to look through
it, of which two experts even fully agreed. Expert 2 neither agreed nor disagreed.
For two of the experts, the value of the tool was clear, and they fully agreed with
the statement, which they emphasised by stating that they already would like to use
the tool in their daily work. A third expert mentioned that the value of the tool is
dependant on the situation. The more complex a change is, the more value the report
can provide to understand the effects of the change. The complexity of the change
however also increases the time needed to inspect the report. The last expert saw the
value of the information at the top of the report: the list of CLA’s and periods that are
affected by the change. This can be checked in a glance to see whether the change

36

6.2. User evaluation

had unintended consequences. This expert however said the list of changed outputs
with details like the traces are too complex and time consuming to inspect.

The scores for this heuristic provide a good understanding of how willing the admin-
istrators and testers are to use this tool in their daily work. The experts think the tool
can provide valuable insights which help them to determine the correctness of their
change. Like with the ratings for the insightfulness, the value depends on the un-
derstanding of the tool, whereas not being able to interpret the result efficiently will
lower the value and will hold back the users from using the tool in their workflow.

Logical With to regards to how logical the user interface of the tool is, two experts rated the
heuristic with a 5 and two with a 4. At the start of the interview, the experts received
a short explanation of the functionality within the report. With this explanation, all
experts could navigate through the report without any problems. One expert com-
mented that the font was clear, and the report was easy to navigate. One expert added
a feature suggestion to allow users to filter traces on CLA’s.

While improvements in terms of user experience can always be made, the experts
were positive about how logical the user interface is. This provides the confidence
that change impact analysis results can be presented to the users in an understandable
way.

Clear Three experts agreed the meaning of each effect becomes clear from the given in-
formation, one of which fully agreed with the statement. Expert 2 disagreed with
the statement. The experts who agreed with the statement stated that the report pro-
vides a lot of information to understand what each effect means. One expert mention
that an explanation of what all information meant was necessary to fully understand
the results, while another expert mentioned that a lot of presented effects will not be
clear immediately but provide enough details to allow the user to investigate what
the meaning of a certain effect is. Expert 4 did not understand where the presented
effects originated, which also made it difficult to assess whether the presented effects
needed any further action. One of the experts added the suggestion to create a visual
representation of the traces to help with understanding the meaning.

The report provides a lot of detail which can help users investigate problems. This
can however overwhelm users leaving them unsure what to do with the information.
An extension of the tool could be a more sophisticated analysis of the found effects
to point the users to possible issues, providing a more steered approach. Overall,
the experts where however positive about the information provided allowing them to
perform the analysis themselves.

Clean The ‘clean’ heuristic had a similar evaluation as the ‘clear’ heuristic where three
experts fully agree with the statement that the report does not provide too much infor-
mation and one expert fully disagrees. Also for this heuristic, the experts who agreed
with the statement stated that the liked the amount of information which allowed them
to dive into the results themselves. They mention it does provide a lot of information,
but do not think it is too much because of the way it is presented and because of the

37

6. EVALUATION

possibility to filter results. Expert 2 again mentions that there is too much information
in the report to go through the report.

About the methodology of using change impact analysis, one expert mentioned that cur-
rently they have to hope that they have tested every important scenario and have not looked
over a bug in a specific case. According to the expert, the tool provides a lot of information
from which every little insight is welcomed and will most likely help to reduce the risk of
failures in the software. The expert who was more critical about the amount of information
still sees the value of using change impact analysis in their work but would like a more
steered report where it already performs analysis and leaves out irrelevant information be-
fore presenting it to the user. All experts agree that using this report as an addition to the
code review for the pull requests is a good addition to their workflow.

Using the results from the common scenario evaluation and the insights from the user eval-
uation, we see that using change impact analysis can benefit domain experts to be more
involved in the quality process. The common scenario evaluation showed that the most
relevant scenarios which cause problems are captured by the tool and others can be incor-
porated by extending the model. In addition, the user evaluation showed that experts are
positive about the value of the approach for their workflow, while there are some improve-
ments to be made to make the tool more user friendly for all users. Both evaluations provide
a good intuition that change impact analysis is an effective methodology to enable domain
experts to participate in the process of improving software quality.

38

Chapter 7

Related work

This chapter presents previous work related to involving domain experts in the process
of improving software quality. In section 7.1, different methods to involve non-software
engineers with software quality are considered. Section 7.2 then continues by describing
the field of change impact analysis and its connection to involving non-software engineers.

7.1 Involving non-software engineers in software quality

In an empiric evaluation at three companies, Mäntylä et al. [15] found that testing software
is not an action that is solely performed by specialists. A lot of defects in software are
discovered by employees in different areas than the software development or testing. The
knowledge of domain experts helps them to design more effective test cases and allows
them to recognise more failures in software [9]. This is in line with the goal of Exact,
where they want to benefit from the knowledge of domain experts to test context-specific
configurations.

During the development of software, non-software engineers play a large role in defin-
ing the requirements and assessing whether the requirements have been met. Using require-
ments engineering [17], domain experts can be involved in determining the requirements
for a software product. These requirements can then be used to steer the development. The
requirements can also be formalised in stories which can be used to test the software [18].
Instead of needing a software developer to build the tests, domain experts can define the
requirements in natural language which can then be translated to test cases [10].

Another way to involve domain experts in the testing of software is to build an inter-
face which allows them to specify automated tests without the need for formal modelling
or programming skills [2]. Bärisch found that their approach of Model-Driven Test Case
Construction which allowed non-specialised testers to create automated tests was under-
standable and usable by domain experts given minimal training and preparation.

Instead of manually expressing the requirements, tests can also be created by recording
the interactions of a user with the interface and replaying the recording to test the expected
functionality [21].

While some of these methods to let domain experts create tests were considered for the

39

7. RELATED WORK

case of Exact, this was not the chosen approach. This is mainly due to the nature of the
subject under test. Since the configuration only specifies the method of calculation, using
behaviour driven tests is cumbersome and will not achieve the desired goal. Also using
other forms of testing like replay testing results in a lot of work for the domain experts,
since a small change to the configuration would have a large impact on the number of tests
that need modification.

7.2 Using change impact analysis

Change impact analysis can be applied to software engineering with several goals [12]. One
of the main goals of change impact analysis is to help developers comprehend a software
system to determine the scope of a change before the change is made [23]. Also, it can
provide insight in change propagation where other entities in a software system need to be
updated after a change to be consistent with the changed entity [8].

Change impact analysis is used in software testing to determine the impact of a change
in the software on the tests. In this way, regression testing can be performed faster because
only tests that cover impacted areas have to be run [20]. Conversely, once a test fails, change
impact analysis can help by providing insight in which code change had impact on the test
case and caused it to fail [7].

Change impact analysis can also provide metrics about the state of the software, for
example to describe the maintainability of different parts of a system in terms of the impact
changes in this part have had in the past [6].

Change impact analysis can also play a role in code review. This mainly helps develop-
ers understand the change and the impact of the change, but also provides a focus on what
should be reviewed more thoroughly. An example of a tool that aids developers with their
code reviews using change impact analysis is BLIMP Tracer [22]. This tool looks at the
impact of changes on the software build and determines which changes need a more careful
review. Another example is TaintImpact [14], which uses a git commit to compute an im-
pact set of a change using dynamic taint analysis with the goal to help developer focus their
attention on parts of the code that are not obviously impacted by a change and finding bugs
in changes.

The proposed method for the case of Exact combines several of these goals. The pri-
mary goal is to create comprehension of the configuration to non-software engineers to let
them understand the effects of their change. The tool will be used in the review phase to
determine whether intended effects are correct, but also to provide a focus on which parts
of the configuration might need more manual testing.

40

Chapter 8

Discussion

The goal of this thesis was to investigate how domain experts without software engineering
background can be involved in the process of improving software quality. In the thesis, the
method of change impact analysis has been proposed to bridge the gap between software
development and domain experts’ knowledge and has been implemented and evaluated for
the case of Exact. This chapter discusses the found results and the implications of these find-
ings in section 8.1, the limitations of the method and threats to the validity of this research
in section 8.2 and future work in section 8.3.

8.1 Results and implications

The steps in this research were focused on answering four research questions to understand
the challenges domain experts run into, to formalise the software into a model, to use the
model to provide useful insights and to evaluate whether this methodology enables domain
experts to participate in improving software quality. This section describes the answers to
each of the research questions and discusses the implications of these results.

RQ1 What are the challenges domain experts without software engineering background
run into when participating in the process of involving software quality?

In the interviews with the different stakeholders at Exact as described in chapter 3, several
challenges which make it more difficult for domain experts to participate in the process of
improving software quality were identified. One of the main insights was that they had
trouble comprehending the system they are validating. Because the domain experts do not
understand how the system operates, they have difficulties with predicting which areas of
the software will be affected by a change. Because of this, unintended effects of the changes
are not discovered in time.

The domain experts at Exact examine the source code when reviewing a change to the
configuration. This means that they have more information to determine which areas of the
software will be affected. The problems with comprehending the structure of the system
and the implications of changes will likely be worse for domain experts who do not have
access to this information from the source code.

41

8. DISCUSSION

RQ2 How can the software under test be formalised in a model which can be used to
analyse the impact of changes?

Chapter 4 shows how the software under test can be modelled as a graph to allow change im-
pact analysis. The graph contains nodes for each entity in the software and edges annotated
with information to traverse the graph to determine impact.

Already during development, the potential usages of such a model became apparent.
Next to change impact analysis, the model could already be used for various analysis pur-
poses. By formalising parts of software that are not yet covered by static or semantic anal-
ysis, new analysis can be done to increase the quality of the software.

The case of Exact showed a domain specific language, developed for the use case of
payroll calculations. Implementing the conversion from the configuration files to the model
required a dedicated parser and converter. For every change to the structure of the configu-
ration, the code that reads the configuration and builds the model has to be changed as well.
When developing a new product using a domain specific language, the step of converting
the DSL to a model can be shared between the software and the change impact analysis
tool, causing less overhead.

RQ3 How can the model of the software be used to provide useful insights to domain
experts to help them assess the quality of changes?

In chapter 5, the model created from the configuration is used to develop a change impact
analysis tool which detects changes using git and traverses the graph to determine the con-
figuration entities that are possibly affected. These results are presented to the user in a
report which can be attached to a pull request. The evaluation using common-scenarios
as described in section 6.1 showed that converting the software artefact into a model and
using this model to perform analysis on software changes is an adequate method to detect
common problems in terms of software quality.

This methodology could also be applied outside of the context of enabling domain ex-
perts to participate. By modelling the software and generating insights about the impact of
changes, also software engineers could be alerted to identified problems.

This concept of creating a model to perform change impact analysis could also be gen-
eralised to broader contexts, for example for a specific programming language. At Exact the
change impact analysis was performed on a domain specific language in the form of JSON
configuration files which was very specific for the case of Exact. If it would be possible to
build a tool that instead of analysing one specific software context would predict the im-
pact of changes to source code based on constructs in programming languages, the concept
of change impact analysis could be applied more broadly for both software engineers and
domain experts.

RQ4 Does the methodology of using change impact analysis enable domain experts to
participate in the process of improving software quality?

The evaluation with users of the tool pointed out that the majority of the users is positive
about the concept of using change impact analysis to validate the changes. The evaluation

42

8.2. Threads to validity

showed that the method provides useful information to the domain experts which helps them
to comprehend the impact of the change on the software product. These insights allow them
to discover flaws in the change and act on these problems, which increases the quality of
the software.

The evaluation also showed that the value of change impact analysis differs per scenario
and per individual. Some introduced bugs are not apparent from a change impact report
and might need further analysis to be detected. Also, while most users saw the value in the
information provided by the report, not all users were able to interpret the given information
and use this to assess the correctness of the software. This might be something that can be
improved with training and experience but might also be an indication that this methodology
of change impact analysis is not fit for every domain expert.

The evaluation also showed the need for accurate results from the change impact anal-
ysis tool. When an evaluator discovered a flaw in the reports, their trust in the results of
the tool decreased significantly. Not knowing whether the results presented by the tool are
complete will discourage domain experts from using the tool in their workflow.

Overall, the implementation of change impact analysis in the workflow of the CLA
team at Exact can be seen as a proof of concept of how change impact analysis can enable
domain experts to better assist in validating the quality of the product. Letting domain
experts assess whether the changes have the intended effect serves as a form of code review,
allowing them to be directly involved in the development process. Because the current
methodology creates an over-approximation of the possible impact and does not run the
software with concrete values, the tool cannot yet replace existing testing methodologies
such as regression testing and manual testing in the workflow of domain experts. The tool
can however provide more confidence to developers and domain experts when delivering
their work and provide testers with guidance on what to test more thoroughly.

8.2 Threads to validity

While the proposed method as described in this thesis provides a good intuition that change
impact analysis can help domain experts to participate in improving software quality, there
are some limitations which can influence how valid the results are for this context and how
well results transfer to other contexts.

Internal validity This research did not perform a long-term user evaluation to determine
the effect of using this methodology in practice. While the common-scenario evaluation
and user evaluation attempted to gather enough data to show the practical value of the
methodology, this is not a guarantee that the methodology will in fact increase the quality
of the software. Factors like user adaptation, long-term maintenance and the discovery of
other problems in the concept or the tool might hinder the achievement of this goal in the
long-term. In addition, the long-term success of the change impact analysis depends a lot
on the maintainability of the tool itself. During the user evaluation, the need for highly
accurate results became apparent. If the report shows wrong or too trivial results, the user
will not see the value in examining the report on every change.

43

8. DISCUSSION

The method of using heuristic evaluation for a user evaluation is not uncommon. How-
ever, because the user evaluation focused on different aspects than usability only, custom
heuristics were used to evaluate the value of the report for the domain experts. These heuris-
tics have not been proven or evaluated before, which means they do not guarantee correct
results. Nevertheless, as the evaluators were the target group for the tool and can as such
be seen as experts to determine the value of the solution, the result from the heuristic eval-
uation do provide an insight in how well the method of change impact analysis helps the
domain experts in their workflow.

The developed proof of concept does not cover all scenarios, since this was too broad
for the scope of this research. Also, because the tool has not been evaluated for a longer
period of time, there might be bugs in the implementation, as was seen during the user
evaluation. The evaluation focused on the value of change impact analysis in general, so
although having bugs in the implementation could have influenced the perception of the tool
by the evaluators, it should not have a significant impact on the results of this research.

External validity For Exact, the domain experts themselves are responsible for main-
taining the part of the software that they test. This means that they have more technical
knowledge about the structure of the software than a domain expert without any technical
background, which most likely allows them to better understand the change impact analysis
report since they can connect presented effects with concepts from the code. There might
still be value in the methodology of change impact analysis for domain experts without any
technical background, but for this, the report should abstract away any technical details and
only give insights that can be interpreted without the technical background.

Similarly, the effectiveness of change impact analysis might depend heavily on the con-
text in which it is applied. The expertise of users, the complexity of the software under test
and the domain context might influence how well the impact of changes can be analysed
and how well domain expert can interpret findings by a tool and convert these findings to
actions that improve the quality of the software. This research only evaluated the method-
ology with one team within one company with a specialised workflow and domain context,
which means that results in other teams and companies may vary.

8.3 Future work

While the work at Exact provides a first idea of how change impact analysis can help domain
experts participate in improving the quality of software, more work can be done to stimulate
their participation.

During the interviews, several challenges were identified that degrade the participation of
domain experts in the quality process. In this research, only one of these challenges -
assessing the impact of changes - was explored. Future work can investigate how a way
to create automated tests, a library of scenarios and an improved regression test can enable
domain experts to participate.

As discussed in the threads to validity, the value of change impact analysis for domain
experts has to be evaluated more thoroughly. To properly evaluate the value of the method

44

8.3. Future work

in the long run, users should be using it in practice and the adaptation by domain experts and
the effects on the quality should be studied. In addition to a more proper form of evaluation,
the method should be evaluated in other contexts. As described, the context in which the
tool was evaluated is quite specialised, which means results might not be transferable to
other teams. By implementing the methodology in other companies with different contexts,
more insight about the merit of the method can be gained.

The user evaluation showed that not every user was able to extract the information in the
same way, which could be improved by providing a more steered approach to presenting the
found effects. More work can be done to determine the best way to present change impact
analysis information to domain experts. Improving the way the results are presented will
most likely also improve the efficacy of the method.

45

Chapter 9

Summary

Software engineers often lack the domain knowledge needed to validate context specific
parts of software. Domain experts do have this knowledge, but often lack the expertise
and tools to apply this knowledge in a way that tests the software product. Transferring
this domain knowledge is inefficient and can lead to bugs for end-users. This research
investigates how domain experts can be enabled to validate the context specific parts of the
software themselves with minimal effort from software engineers. For this, the payroll team
at business-software company Exact where domain experts are responsible for maintaining
the configuration of collective labour agreements (CLA’s) used in the calculation of payslips
is used as a case study.

To understand the challenges domain experts run into when participating in improving
quality, interviews with the domain experts at Exact are conducted to identify several chal-
lenges. One challenge was that they had trouble assessing the impact of changes to the
configuration. Because the configuration is complex and domain experts do not compre-
hend the structure of the system, they have difficulties with predicting which areas of the
software will be affected by a change, leading to unforeseen behaviour for end-users. This
research proposes the use of change impact analysis to overcome this problem. If a tool can
give insights to domain experts about what the impact of a change is, the domain experts
can use their knowledge to verify the correctness of this change. By creating a proof of
concept for the case of Exact, this idea is evaluated.

To be able to analyse the configuration, the configuration first had to be formalised
into a model. By converting the configuration to a graph representation, the configuration
becomes traversable to determine which areas will be affected by a change. The graph
contains nodes for all configuration entities and edges between entities that have impact on
each other. An evaluation using common-scenarios shows that this model is effective in
identifying scenarios which are known to cause problems. The model can be extended to
identify more cases.

Using the constructed model, a tool is created that – based on changes in git – generates
a report that presents the impact of the changes. A user evaluation shows that the method
is effective in aiding domain experts to understand the impact of changes which provides a
good intuition that change impact analysis is an effective method to enable domain experts
to participate in the process of improving quality.

47

Bibliography

[1] Liliane Barbour, Foutse Khomh, and Ying Zou. Late propagation in software clones.
In 2011 27th IEEE International Conference on Software Maintenance (ICSM), pages
273–282. IEEE, 2011.

[2] Stefan Bärisch. Model-driven test case construction by domain experts in the context
of software system families. PhD thesis, Uni Kiel, 2009.

[3] V.R. Basili and R.W. Selby. Comparing the effectiveness of software testing strategies.
IEEE Transactions on Software Engineering, SE-13(12):1278–1296, 1987. doi: 10.
1109/TSE.1987.232881.

[4] M Bialy, V Pantelic, J Jaskolka, A Schaap, L Patcas, M Lawford, and A Wassyng.
Software engineering for model-based development by domain experts. In Handbook
of System Safety and Security, pages 39–64. Elsevier, 2017.

[5] Dines Bjørner. Domain engineering. In Formal Methods: State of the Art and New
Directions, pages 1–41. Springer, 2010.

[6] M Ajmal Chaumun, Hind Kabaili, Rudolf K Keller, and François Lustman. A change
impact model for changeability assessment in object-oriented software systems. Sci-
ence of Computer Programming, 45(2-3):155–174, 2002.

[7] Ophelia C Chesley, Xiaoxia Ren, and Barbara G Ryder. Crisp: A debugging tool
for java programs. In 21st IEEE International Conference on Software Maintenance
(ICSM’05), pages 401–410. IEEE, 2005.

[8] Ahmed E Hassan and Richard C Holt. Replaying development history to assess the
effectiveness of change propagation tools. Empirical Software Engineering, 11(3):
335–367, 2006.

[9] Juha Itkonen, Mika V Mäntylä, and Casper Lassenius. The role of the tester’s knowl-
edge in exploratory software testing. IEEE Transactions on Software Engineering, 39
(5):707–724, 2012.

49

BIBLIOGRAPHY

[10] Sunil Kamalakar, Stephen H Edwards, and Tung M Dao. Automatically generating
tests from natural language descriptions of software behavior. In ENASE, pages 238–
245, 2013.

[11] Shahedul Huq Khandkar. Open coding. University of Calgary, 23:2009, 2009.

[12] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. A survey of code-based
change impact analysis techniques. Software Testing, Verification and Reliability, 23
(8):613–646, 2013.

[13] Rensis Likert, Sydney Roslow, and Gardner Murphy. A simple and reliable method of
scoring the thurstone attitude scales. The Journal of Social Psychology, 5(2):228–238,
1934.

[14] Tobias Lüscher. Taintimpact: Taint-based change impact analysis. B.S. thesis, ETH
Zurich, 2021.

[15] Mika V Mäntylä, Juha Itkonen, and Joonas Iivonen. Who tested my software? testing
as an organizationally cross-cutting activity. Software Quality Journal, 20(1):145–172,
2012.

[16] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’90, page
249–256, New York, NY, USA, 1990. Association for Computing Machinery. ISBN
0201509326. doi: 10.1145/97243.97281.

[17] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: A roadmap. In
Proceedings of the Conference on The Future of Software Engineering, ICSE ’00, page
35–46, New York, NY, USA, 2000. Association for Computing Machinery. ISBN
1581132530. doi: 10.1145/336512.336523.

[18] Shelly Park and Frank Maurer. A literature review on story test driven development. In
International Conference on Agile Software Development, pages 208–213. Springer,
2010.

[19] Reinhold Plösch, Harald Gruber, Christian Körner, and Matthias Saft. A method for
continuous code quality management using static analysis. In 2010 Seventh Inter-
national Conference on the Quality of Information and Communications Technology,
pages 370–375. IEEE, 2010.

[20] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G Ryder, and Ophelia Chesley. Chianti:
a tool for change impact analysis of java programs. In Proceedings of the 19th annual
ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 432–448, 2004.

[21] John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. jrapture: A cap-
ture/replay tool for observation-based testing. In Proceedings of the 2000 ACM SIG-
SOFT international symposium on Software testing and analysis, pages 158–167,
2000.

50

Bibliography

[22] Ruiyin Wen, David Gilbert, Michael G Roche, and Shane McIntosh. Blimp tracer:
Integrating build impact analysis with code review. In 2018 IEEE International con-
ference on software maintenance and evolution (ICSME), pages 685–694. IEEE, 2018.

[23] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining version histories to
guide software changes. IEEE Transactions on Software Engineering, 31(6):429–445,
2005. doi: 10.1109/TSE.2005.72.

51

	Preface
	Contents
	Introduction
	Context
	Workflow
	Stakeholders

	Interviews
	Interview setup
	Interview analysis and validation
	Interview results
	Chosen approach

	Formalising the configuration
	Domain model
	Design model
	Converting configuration to model

	Implementing a change impact analysis tool
	Vision
	Implementation

	Evaluation
	Common-scenario evaluation
	User evaluation

	Related work
	Involving non-software engineers in software quality
	Using change impact analysis

	Discussion
	Results and implications
	Threads to validity
	Future work

	Summary
	Bibliography

