The Smart Point Cloud framework to detect pipelines using raw point cloud generated from panoramic images

Outline

- 1. Motivation & Challenges
- 2. Background & Research objectives
- 3. Research Prototype
- 4. Implementation & Results
- 5. Conclusions & Future work

Outline

1. Motivation & Challenges

- 2. Background & Research objectives
- 3. Proposed Prototype
- 4. Implementation & Results
- 5. Conclusions & Future work

Motivation

Motivation - Eliminate the Modelling Step

- Time consuming
- Interpolation
- Lose important information
- Loss of accuracy

Point Cloud as an Authentic Source

- Decision making process
- More value than derived products
- Visual interaction

However...

- Interprete point clouds need special knowledge and analytical skills
- Attach domain information through visual and semantic variables

Point Cloud Challenges

- Object recognition
- Visualisation & Dissemination
- Data Fusion
- Assign semantics-Object Identification

Outline

- 1. Motivation & Challenges
- 2. Background & Research objectives
- 3. Proposed Prototype
- 4. Implementation & Results
- 5. Future work & Conclusions

Smart Point Cloud (SPC) Framework

Related Work-SPC Framework

FUGRO

ŤUDelft

Poux et al., 2017c

10

SPC Framework-Objective

Poux et al., 2017b

Panoramic Images

Importance of Panoramas

Replace pair of images

VR/AR with panoramas

360 field of view

Better object detection

Research Question

What is the Smart Point Cloud way to provide a framework for object detection (pipelines), using panoramic images for point cloud creation?

Sub-questions

- What are the differences between point clouds that are created using terrestrial (close range) photogrammetry and laser scanners?
- To what extent do the number of panoramic images affect the generated point cloud in terms of density and accuracy?
- What is the optimal way for object detection, using feature detection and segmentation techniques on images, as applicable to point clouds?
- What is the best way to combine domain-geometricdevice knowledge?

Outline

- 1. Motivation & Challenges
- 2. Background & Research objectives

3. Proposed Prototype

- 4. Implementation & Results
- 5. Conclusions & Future work

SPC Framework

Data acquisition method – Image based method

Geometric Expertise

SPC UML Class Diagram

Outline

- 1. Motivation & Challenges
- 2. Background & Research objectives
- 3. Proposed Prototype
- 4. Implementation & Results
- 5. Conclusions & Future work

1. Alignment

2. Dense point cloud

UGRO

ŤUDelft

Photogrammetry	Laser scanner
Passive sensors \rightarrow image based	Active sensors \rightarrow range based
Low cost	Expensive
Portable	Difficulties
Quick in the field	Time consuming
Small areas	Big areas
Color value	No color value
Noisy	Less noisy

25 619 925 points

6 133 607 points

UGRO

TUDelft

40 011 520 points

26

SPC Geometric Expertise

Projection 3D Points-Pixels

3D coordinates → Spherical → Image coordinates (2D)

- Map 3D point (X,Y,Z) onto sphere

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Y^2 + Z^2}} (X, Y, Z)$$

- Convert to spherical coordinates $(sin\theta cos\phi, sin\phi, cos\theta cos\phi) = (\hat{x}, \hat{y}, \hat{z})$
- · Convert to spherical image coordinates

$$(\tilde{x}, \tilde{y}) = (s\theta, s\phi) + (\tilde{x}_c, \tilde{y}_c)$$

- s defines size of the final image
 - » often convenient to set s = camera focal length in pixels

expertise

SPC

Domain

Point attributes

Image Processing-Canny Detection

- 1. Filter image with x,y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression
- 4. Threshold and linking (hysteresis):
 - Define two thresholds: low and high
- Use the high threshold to start the edge and the low to continue

Image Processing-Canny Detection

Image Processing – Hough Line Transform

Voting technique in parameter space

Image Processing – Hough Line Transform

Point Cloud Generation

TE VIGEO NECOTUING

2D-3D Data Connection

UGRO

ŤUDelft

2D Circle Fit

UGRO

SPC Methodology

Device expertise

SPC

Connecting Components

Same orientationPoints in common

Combine segments to one Pipe

Store in Database

Table: Points

id	point	r	g	b	nx	ny	nz	pixelx	pixely	image
integer	geometry	integer	integer	integer	real	real	real	real	real	real
-	<u> </u>	-	-	<u> </u>						

Table: Segments

id	mid_point	direction	points
integer	geometry	geometry	geometry

Table: Pipes

id	center	radius	direction	points
integer	geometry	real	geometry	geometry
				•

- ✓ Topology –Relationships
- ✓ Save once
- ✓ Analyze data
- ✓ Retrieve data
- ✓ PostGIS extension store geometry

Random Sample Consensus (RANSAC)

- Feature extraction technique
- Direct to point cloud
- Randomly using the minimum amount of points to estimate the cylinder parameters.
- Must not contain outliers

Compare Results

FROM 2D CIRCLE FIT

Cylinder	Center	Direction	Radius	RMS	Real Radius (m)
Right up	(17.9321, -0.9212, 10.089)	(-0.1314, -0.9647, -0.2281)	0.18	0.015	0.11
Right down	(17.5603 ,-3.64438 ,9.52677)	(0.12682, 0.9685, 0.2141)	0.165	0.039	0.11
Left	(18.3937 ,-1.47341 ,10.0645)	(0.0967, 0.9728, 0.2101)	0.152	0.03	0.13

FROM RANSAC

Cylinder	Center	Direction	Radius	Color
1	(17.873, -1.7268, 9.9187)	(-0.146, -0.975, -0.164)	0.065	
2	(17.796, -1.814, 11.056)	(0.1185, -0.952, -0.2799)	0.126	
3	(17.950, -0.9357, 10.025)	(-0.0970, -0.979, -0.176)	0.215	
4	(17.724, -1.754, 9.904)	(-0.159, 0.9820, -0.1016)	0.143	
5	(17.692, -2.809, 9.696)	(0.1207, 0.968, 0.215)	0.205	
6	(18.293, -1.372, 10.277)	(0.120, 0.9689, 0.2158)	0.3	

÷

ж.

Device expertise

Outline

- 1. Motivation & Challenges
- 2. Background & Research objectives
- 3. Proposed Prototype
- 4. Implementation & Results
- 5. Conclusions & Future work

Conclusions

What is the Smart Point Cloud way to provide a framework for object detection (pipelines), using panoramic images for point cloud creation?

Connection 2D-3D Boundaries

Object identification (pipe)

Semantically rich point cloud

Working also fine with different data (edge detection e.g. windows, doors)

50

Test Data – Empty Room

Test Data – Empty Room

Future Work

- Test on a bigger/different (traffic lights, trees) data set
- Input point cloud in VR/AR, interaction with the user
- Improvements in the image processing for better results
- Create points for occluded areas
- Apply RANSAC to segments
- Colour the pixels related to the identified objects

Thank you for your attention!

