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a b s t r a c t

We use a novel nonintrusive adaptive Reduced Order Modeling method to build a reduced model for a
molten salt reactor system. Our approach is based on Proper Orthogonal Decomposition combined with
locally adaptive sparse grids. Our reduced model captures the effect of 27 model parameters on keff of the
system and the spatial distribution of the neutron flux and salt temperature. The reduced model was
tested on 1000 random points. The maximum error in multiplication factor was found to be less than
50 pcm and the maximum L2 error in the flux and temperature were less than 1%. Using 472 snapshots,
the reduced model was able to simulate any point within the defined range faster than the high-fidelity
model by a factor of 5� 106. We then employ the reduced model for uncertainty and sensitivity analysis
of the selected parameters on keff and the maximum temperature of the system.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Complex systems such as molten salt reactors impose a model-
ing challenge because of the interaction between multi-physics
phenomena (radiation transport, fluid dynamics and heat transfer).
Such complex interaction is captured with high-fidelity, coupled
models. However, these models are computationally expensive
for applications of uncertainty quantification, design optimization,
and control, where many repeated evaluations of the model are
needed. Reduced Order Modeling (ROM) is an effective tool for
such applications. This technique is based on recasting the high
fidelity, high dimensional model into a simpler, low dimensional
model that captures the prominent dynamics of the system with
a controlled level of accuracy. Many ROM approaches can be found
in literature (Antoulas et al., 2001). However, amongst studied
ROMmethods, Proper Orthogonal Decomposition (POD) is the suit-
able method for parametrized, nonlinear systems (Benner et al.,
2015). The POD approach is divided into two main phases: the first
is the offline phase, where the reduced order model is constructed
by solving the high fidelity model at several points in parameter
space to obtain a reduced basis space; the second is the online
phase, in which the reduced model is used to replace the high fide-
lity model in solving the system at any desired point with a
reduced computational burden.

POD can be implemented intrusively by projecting the reduced
basis onto the system’s governing equations or non-intrusively by
building a surrogate model for the POD coefficients. Many studies
have successfully implemented projection based POD for nuclear
applications (Buchan et al., 2013; Sartori et al., 2014; Lorenzi
et al., 2017; Manthey et al., 2019; German and Ragusa, 2019).

However, for practical nuclear reactor applications, the intru-
sive approach is often challenging because these models are usu-
ally implemented with legacy codes that prohibit access to the
governing equations, or built with coupled codes that renders
modifying the governing equations a complicated task. In this case,
a nonintrusive approach can be adopted to build a surrogate model
for the coefficients of the POD basis. Simple interpolation or splines
can be used (Ly and Tran, 2001) or for high-dimensional problems,
Radial Basis Function (RBF) is usually employed (Buljak, 2011).
Neural networks (Hesthaven and Ubbiali, 2018) and Gaussian
regression (Nguyen and Peraire, 2016) have also been studied to
build the surrogate model. These approaches rely on standard sam-
pling schemes (Monte Carlo, Latin Hypercube Sampling, tensorized
uniform) to generate the snapshots. Such strategies do not take
into account the dynamics of the problem and can be expensive
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for problems parametrized on high-dimensional spaces. Audouze
et al. (2009) suggested tackling this issue by combining the POD-
RBF method with a greedy residual search. In this approach, the
residual of the PDE is used as an error estimator by iteratively plac-
ing sampling points at locations that minimize the residual until a
certain global criterion is achieved. However, this method requires
repeated evaluations of the residual, which can be expensive in
some solvers (e.g. matrix-free solvers) or unavailable for legacy
solvers.

In this work, we propose the use of ROM method that combines
the nonintrusive POD approach with the sparse grids technique
(Bungartz and Griebel, 2004) to build a reduced model of a fast-
spectrum molten salt system. Our approach is implemented using
a previously developed algorithm (Alsayyari et al., 2019) that uses
locally adaptive sparse grids as a sampling strategy for selecting
the POD snapshots efficiently. The adaptivity is completely nonin-
trusive to the governing equations. In addition, the algorithm pro-
vides a criterion to terminate the iterations, which can be used as a
heuristic estimation for the error in the developed reduced model.
In this work, we extend the algorithm to deal with multiple fields
of outputs. In addition, we demonstrate how local derivatives can
be computed for local sensitivity analysis. The liquid-fueled system
under investigation is a simplified system that captures the main
characteristics of the Molten Salt Fast Reactor (Allibert et al.,
2016). An in-house multi-physics tool (Tiberga et al., 2019), cou-
pling an SN radiation transport code with an incompressible
Navier-Stokes solver, was considered as the reference model of
the molten salt system. We use the developed adaptive-POD
(aPOD) algorithm to construct a ROM for this reference model.
We then employ the built reduced model for an uncertainty and
sensitivity analysis application to study the effect of the parame-
ters on the maximum temperature and the multiplication factor.
The uncertainty and sensitivity analysis was accomplished with
extensive random sampling of the reduced model. Such approach
is only achievable due to the efficiency provided by the reduced
model over the reference model.

The remainder of this paper is organized as follows: the POD
method is briefly introduced in Section 2. Section 3 presents the
sparse grids approach by introducing the interpolation technique
first followed by the method for selecting the sampling points.
The aPOD algorithm along with the approach to deal with multiple
fields of outputs and computing the local derivatives are presented
in Section 4. The model for the molten salt system is given in Sec-
tion 5. The discussion of the results of constructing the reduced
model is in Section 6. The uncertainty and sensitivity analysis is
in Section 7. Finally, conclusions are presented in Section 8.

2. Proper orthogonal decomposition

In a nonintrusive manner, the Proper Orthogonal Decomposi-
tion can build a ROM by considering the reference, high fidelity
model as a black box mapping a given input to the desired output.
Let the reference model f ðy;xÞ be dependent on state y and a vector
of input parameters x. We can then find an expansion approximat-
ing the model as follows:

f ðy;xÞ �
Xr

i¼1

ciðxÞ uiðyÞ; ð1Þ

where ci is the expansion coefficients which depends on the input
parameter x and uiðyÞ is the corresponding basis function.

The POD method seeks to find the optimal basis functions uiðyÞ
that minimizes the error in L2 norm,

min
uiðyÞ

E ¼ kf ðy;xÞ �
Xr

i¼1

ciðxÞuiðyÞkL2 : ð2Þ
The basis functions are chosen such that they are orthonormal.
Thus, the coefficients ciðxÞ can be computed as

ciðxÞ ¼< f ðy; xÞ;uiðyÞ >; ð3Þ

where < f ðxÞ; gðxÞ >¼
R
f ðxÞgðxÞdx.

Assuming that the reference model is discretized
(f ðy;xÞ ! fðxÞ), the POD snapshot method finds the solution to
the minimization problem using the Singular Value Decomposition
(SVD). This approach begins with sampling the reference model at
discrete points in parameter space ½x1;x2; . . . ;xp�, where p is the
number of sampling points. Then, the corresponding outputs
½fðx1Þ; . . . ; fðxpÞ� can be arranged in a matrix M called the snapshot
matrix. Finally, we obtain the basis vectors (also called PODmodes)
ui as the first r left singular vectors of the SVD on the matrix M,
where r is chosen to be less than or equal to the rank of the
matrix M. A truncation error can be quantified using the singular
values of the SVD ðrÞ if r is chosen to be strictly less than the rank
of M,

etr ¼

Xn

k¼rþ1
r2

kXn

k¼1
r2

k

; ð4Þ

where n is the rank of M. etr quantifies the error in approximating
the solutions contained in the snapshot matrix.
3. Sparse grids

For an accurate POD reduced model, the snapshots need to
cover the entire dynamics of the reference model within the
defined range of input parameters. Therefore, selecting an effective
sampling strategy is crucial for the success of the reduced model.
We propose an algorithm that is based on locally adaptive sparse
grids to select the sampling points. The sparse grid algorithm
builds a surrogate model for each of the POD coefficients using a
Smolyak interpolant. Iteratively, the algorithm identifies a set of
important points and samples their neighbouring points in the
next iteration (Griebel, 1998). This process is repeated until a glo-
bal convergence criterion is met. In this section we introduce the
methods for the interpolation and the selection of the sampling
points.

3.1. Interpolation

The Smolyak interpolation is a hierarchical interpolant that can
be implemented in an iterative manner such that the accuracy is
increased with each iteration (Barthelmann et al., 2000). Different
basis functions can be used for the interpolant. We choose piece-
wise linear functions with equidistant anchor nodes since they
are suitable for local adaptivity. The equidistant anchor nodes, xij,
corresponding to level i are defined as (Klimke, 2006)

mi ¼
1 if i ¼ 1;
2i�1 þ 1 if i > 1;

�
ð5Þ

xij ¼
0:5 for j ¼ 1 if mi ¼ 1;
j�1
mi�1 for j ¼ 1;2; . . . ;mi if mi > 1:

(
ð6Þ

Each node defines a piecewise linear basis function (ai
xi
j
ðxÞ) as

follows:

a1x1 ¼ 1 if i ¼ 1;

ai
xi
j
ðxÞ ¼

1� ðmi � 1Þjx� xijj; if jx� xijj < 1
mi�1 ;

0; otherwise;

(
ð7Þ



F. Alsayyari et al. / Annals of Nuclear Energy 141 (2020) 107321 3
The unidimensional nodes from Eq. (6) can be shown in a tree
structure (Fig. 1) where the depth of the tree is assigned a level
index i. The algorithm is iterative where at each iteration k, it
defines a set of important points Zk. The criterion for selecting
the important points is presented in Section 3.2. Once Zk is identi-
fied, the interpolant at iteration k for a function (cðxÞ) depending
on a d-dimensional input x can be given by

Ak;dðcÞðxÞ ¼ Ak�1;dðcÞðxÞ þ DAk;dðcÞðxÞ; ð8Þ

with A0;dðcÞðxÞ ¼ 0,

DAk;dðcÞðxÞ ¼
XmD

k

n¼1

wk
nHnðxÞ; ð9Þ

wheremD
k is the cardinality of Zk, andHn is the d-variate basis func-

tion for the point xn 2 Zk,

HnðxÞ ¼
Yd
p¼1

aip
x
ip
n;p

ðxpÞ; ð10Þ

where xn has support nodes ðxi1n;1; . . . ; x
id
n;dÞ, and ip is the level (tree

depth) index for the support node xipn;p. wk
n is called the surpluswhich

is defined as

wk
n ¼ cðxnÞ � Ak�1;dðxnÞ: ð11Þ

The union of the important points from all iterations up to k are
collected in the set

Xk ¼
[k
l¼1

Zl: ð12Þ

Because of the tree structure arrangement of the points, each
point in the sparse grid (x ¼ ðx1; . . . ; xdÞ) has ancestry and descen-
dant points. All the descendant points fall within the support of the
basis function anchored at that point. The first generation descen-
dants of a point are neighbouring points called forward points. The
forward points for n points in the set S ¼ fxqjq ¼ 1; . . . ;ng are
defined with an operator WðSÞ as follows:

WðSÞ ¼ fðv1; . . . ; vdÞj 9i; q : bðv iÞ ¼ xq;i ^ v j ¼ xq;j
8j – i; q 2 ½1; . . . ;n�; j; i 2 ½1; . . .d�g;

ð13Þ

where bðxÞ is a function that returns the parent of a node x from
the tree. Likewise, the first generation ancestor points are called
backward points and defined with an operator W�1ðSÞ as follows:

W�1ðSÞ ¼ fðv1; . . . ;vdÞj 9i; q : bðxq;iÞ ¼ v i ^ v j ¼ xq;j
8j – i; q 2 ½1; . . . ;n�; j; i 2 ½1; . . .d�g:

ð14Þ
Fig. 1. Tree structure for the anchor nodes of the basis functions where the depth is
assigned a level index i. At each level, nodes are added at half the distances between
the nodes in the previous levels.
Finally, an operator CðSÞ that return all ancestors for the points
in S can be defined as

CðSÞ ¼
[L
l¼1

W�1
� �l

ðSÞ: ð15Þ
3.2. Selecting the important points

The algorithm builds the reduced model in an iterative fashion.
At each iteration, we generate a set of trial points to test the model.
The model is then updated according to the results of this test. Let
the generated trial points be stored in the set T k, where k is the
iteration number. The method for generating the trial points will
be discussed in Section 4. For any point xq 2 T k, we can define a
local error measure �kq in the L2-norm as follows:

�kq ¼ kfðxqÞ �
Xrk
h¼1

Ak;dðchÞðxqÞuhkL2 ; ð16Þ

where rk is the number of POD modes selected at iteration k. The
number of POD modes is selected such that the truncation error
(Eq. 4) is below a defined tolerance ctr. Once �kq is computed for

all points in T k, we can select points with an error above a certain
threshold to be stored as candidate points. The candidate points are
defined as

Ck ¼ fxq 2 T kj�kq > ðcint kfðxqÞkL2 þ fabsÞg; ð17Þ

where cint is an interpolation threshold and fabs is the absolute tol-
erance, which is introduced to deal with functions of small
magnitude.

The candidate points indicate the regions in which the model
needs to be enriched. To enrich the model, the ancestor points of
these candidate points are first considered because ancestors have
wider support. If all ancestors of the candidate points were consid-
ered important from previous iterations, that point is taken as
important because the error at that point (�kq) is above the desired
threshold. This is formulated as follows:

Zk
a ¼ fxq 2 Ck j CðxqÞ#Xk�1g: ð18Þ

On the other hand, if a point xq in iteration k has an error �kq
above the threshold but has also an ancestor point yi which was
not included in the important set in the previous iterations, xq will
not be marked important but its ancestor yi will be marked impor-
tant, because it is possible that the error �kq was large due to miss-
ing the ancestor which has a wider support, that is

Zk
b ¼ fyi 2 CðxqÞ j xq 2 Ck; CðxqÞ \ Ck ¼ £ ^ yi

R X k�1 CðyiÞ#X k�1g: ð19Þ

Then, the complete set of important points at iteration k is
formed by Eqs. (18) and (19)as

Zk ¼ Zk
a [ Zk

b: ð20Þ
4. Algorithm

Points that are not included in the important set Zk are added to
the inactive set I k to be tested in subsequent iterations. The trial
set of the next iteration (kþ 1) is generated as

T kþ1 ¼ xq 2 WðZkÞ j cardðW�1ðxqÞ \ XkÞ
cardðW�1ðxqÞÞ

P 1� l

( )
[ Ik; ð21Þ
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where cardð:Þ is the cardinality operator, and l is a greediness
parameter which has a value 2 ½0;1�. The trial set (T kþ1) is formed
by the forward points of Zk. However, some of these forward points
are excluded from being evaluated if they have some backward
points not considered important in previous iterations. The number
of excluded points is tuned with l. For l ¼ 1, all points are tested
regardless of their ancestry (the algorithm in this case is more
exploratory) whereas the algorithm is more efficient for l ¼ 0 by
not testing points that have any backward points not included in
Xk.

The trial set (T kþ1) is then used to sample both the reduced
model and the reference model to compute the error �kþ1

q . Then,

the important points (Zkþ1) are identified and added to the snap-
shot matrix. Each update to the snapshot matrix generates a com-
plete new set of POD modes, which requires recomputing the
interpolant Ak;dðcÞðxÞ because of its dependence on the POD modes.
Specifically, the surpluses (wk

q;h) corresponding to POD mode uh

need to be recomputed with each POD update. The surpluses are
just the deviations of the interpolant from the true value. There-
fore, an easy way to update the surpluses after each iteration is
as follows:

ŵk
q;g ¼

Xrk
h¼1

wk
q;h < uh; ûg > g ¼ 1; . . . ; rkþ1; ð22Þ

where ûg is the gth POD mode after updating the snapshot matrix,
uh is the hth POD mode before updating the snapshot matrix, wk

q;h is

the surplus at iteration k corresponding to the point xq 2 X k and
POD mode uh, and ŵk

q;g is the updated surplus corresponding to

xq 2 X k and ûg . For further reading regarding the adaptive sparse
grids technique and the derivation of Equation 22, see Alsayyari
et al. (2019) and the references within. Fig. 2 summarizes the
algorithm.

4.1. Multiple outputs

To deal with models of multiple outputs, we can build a differ-
ent ROM model for each output, which entails running the
adaptive-POD algorithm separately for each output. With such an
approach, managing the output field data is important to prevent
multiple costly evaluations of the same point. This can be achieved
by storing all output fields for any full model evaluation in a data
bank, which the algorithm is directed to access when a point is
required more than once in different output field constructions.
With this strategy, the separate runs of the algorithm are
Fig. 2. A graphical scheme of the ad
performed in series rather than parallel in order to avoid full eval-
uations of the same point. Another approach is to combine the out-
put fields by stacking them into a composite vector which is then
treated as a single output in the snapshot matrix. In this approach,
only a single ROM is built to represent all outputs. Since the first
approach is a straightforward application of the algorithm, in this
section, we show how the second approach is implemented.

Let the outputs be represented by f1ðxÞ; . . . ; foðxÞ where o is the
number of output fields. The snapshot matrix is formed by stacking
the output fields as

½ðfT1ðx1Þ; . . . ; fToðx1ÞÞ
T
; . . . ; ðfT1ðxpÞ; . . . ; fToðxpÞÞ

T
�: ð23Þ

We can compute the local error measure (Eq. (16)) in each out-
put fsðxqÞ separately

�ks;q ¼ kfsðxqÞ �
Xrk
h¼1

Ak;dðchÞðxqÞus;hkL2 : ð24Þ

Different interpolation thresholds and absolute tolerances can
be defined for each output. A point xq is admitted to the candidate
set (Eq. (17)) if the corresponding error �ks;q at any of the output
fields (s 2 ½1; . . . ; o�) is greater than the defined threshold

Ck ¼ fxq 2 T kj9 s ¼ ½1; . . . ; o� : �ks;q
> cint;s kfsðxqÞkL2 þ fabs;sg; ð25Þ

where cint;s and fabs;s are respectively the interpolation threshold
and the absolute tolerance defined for output fsðxÞ.

The algorithm is terminated when a global criterion is met. We
define this criterion to be

�ks;q < ðfrel;skfsðxqÞkL2 þ fabs;sÞ; 8xq 2 T k; s ¼ 1; . . . ; o; ð26Þ

where frel;s is the global relative tolerance set for output fsðxÞ. Note
that the multiple-outputs approach can yield a different perfor-
mance compared to the single-output approach in terms of points
selected for evaluations. This is because the POD basis is con-
structed differently. In the single-output approach, the POD modes
are tailored to that output specifically whereas in the multiple-
outputs approach the POD modes contain information for all output
fields.

4.2. Calculation of local sensitivities

To compute local sensitivities, we can find an analytical expres-
sion for the derivatives of each output with respect to the inputs.
The derivative of the ROM model in Eq. (1) with respect to the
gth dimension xg is
aptive-POD (aPOD) algorithm..
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@

@xg
fðxÞ ¼ @

@xg

Xr

i¼1

ciðxÞ ui: ð27Þ

The ROM model interpolates ciðxÞ with the operator Ak;dðcÞðxÞ.
Using Eqs. (8) and (9), Eq. (27) becomes

@

@xg
fðxÞ ¼ @

@xg

Xr

i¼1

XmD
k

n¼1

wk
n;i HnðxÞ

0
@

1
A ui; ð28Þ

¼
Xr

i¼1

ui

XmD
k

n¼1

wk
n;i

@

@xg

Yd
p¼1

aip
x
ip
n;p

ðxpÞ; ð29Þ

¼
Xr

i¼1

ui

XmD
k

n¼1

wk
n;i

@

@xg
aig
x
ig
n;g

ðxgÞ
� �Yd

p–g

aip

x
ip
n;p

ðxpÞ; ð30Þ

where the derivative of the unidimensional basis function @
@x a

i
xin
ðxÞ

(dropping the dependence on the dimension g) is computed as

@
@x a

1
x1 ¼ 0 if i ¼ 1;

@
@x a

i
xin
ðxÞ ¼

�ðmi � 1Þ x�xin
jx�xin j

; if jx� xinj < 1
mi�1 ; x – xin

0; if jx� xinj P 1
mi�1

Not defined; if x ¼ xin;

8>><
>>:

ð31Þ

It is evident that due to the choice of piecewise linear basis
functions, our reduced model is non-differentiable at the anchor
nodes xij, which implies that we cannot compute local derivatives
at the sampled snapshots, including the nominal point. However,
we can compute the local derivatives at two points very close to
the nominal values and average them out to have a measure of
the local sensitivities at the nominal point.

5. Molten salt system

In this work, we construct a reduced order model of a simplified
system representative of the main characteristics of the Molten
Salt Fast Reactor (Allibert et al., 2016): strong coupling between
neutronics and thermal-hydraulics, fast spectrum, and transport
of precursors. The problem was developed as a benchmark for
multi-physics tools dedicated to liquid-fuel fast reactors (Aufiero
and Rubiolo, 2018; A. Laureau et al., 2015).

Fig. 3 depicts the problem domain: a 2 m side square,
2-dimensional cavity filled with fluoride molten salt at initial
temperature of 900 K. The cavity is surrounded by vacuum and
insulated; salt cooling is simulated via a heat sink equal to
hðText � TÞ, where Text ¼ 900 K and h is a volumetric heat transfer
coefficient. Zero-velocity boundary conditions are applied to all
walls except the top lid, which moves at vlid ¼ 0:5 ms�1. The
steady-state solution is sought with criticality eigenvalue calcula-
tions normalizing the reactor power to P0. Fluid properties are con-
Fig. 3. Simplified molten salt fast system: square cavity domain. It is insulated,
surrounded by vacuum, and filled with molten fluoride salt at initial temperature of
900 K. The top lid moves with velocity vlid ¼ 0:5 ms�1.
stant with temperature and uniform in space. Neutronics data are
condensed into 6 energy groups and temperature corrected only
via density feedback, to avoid the complexities related to Doppler
feedback modeling; delayed neutron precursors are divided into 8
families. The flow is laminar and buoyancy effects are modeled via
the Boussinesq approximation. Cross sections are corrected accord-
ing to

RðTÞ ¼ RðTrefÞ
qðTÞ
qðTrefÞ

¼ RðTrefÞ 1� bth T � Trefð Þð Þ ð32Þ

where Tref ¼ 900 K and qðTrefÞ is the density at which macroscopic
cross sections are provided. They correspond to the reference values
chosen for the Boussinesq approximation. bth is the thermal expan-
sion coefficient. We refer to Aufiero and Rubiolo (2018) and A.
Laureau et al. (2015) for a more detailed description of the problem.

An in-house multi-physics tool is used to model the molten salt
system. It couples a solver for the incompressible Navier-Stokes
equations (DGFlows) with a neutronics code solving the multi-
group SN Boltzmann equation coupled with the transport equations
for the delayed neutron precursors ðPHANTOM� SN). Both codes are
based on the Discontinuous Galerkin Finite Element method for
space discretization. Fig. 4 displays the structure of the multi-
physics tool and the data exchanged between the codes. The aver-
age temperature on each element (Tavg) is outputted to
PHANTOM� SN, which applies the density feedback on cross sec-
tions taken from the library at 900 K, according to Equation 32.
Then, the neutronics problem is solved taking the velocity field
(u) from DGFlows as another input for the delayed neutron precur-
sors equation. Finally, the fission power density (Pfiss) is transferred
to the CFD code. The steady state solution is sought by iterating
DGFlows and PHANTOM� SN until convergence. More details on
the multi-physics tool can be found in Tiberga et al. (2019).

Simulations of the molten salt system were performed choosing
a 50� 50 uniform structured mesh, with a second-order polyno-
mial discretization for the velocity and a first-order one for all
the other quantities. An S2 discretization was chosen for the angu-
lar variable. Fig. 5 shows the steady state fields (velocity magni-
tude, temperature, and total flux) obtained for the nominal
values of the input parameters. The nominal multiplication factor
in this configuration is keff ¼ 0:99295. The upper bounds for each
of the six energy groups are shown in Table 1 along with the space
averaged flux (Uavg) for each group in the nominal case.
6. Results

A ROM model was built for the molten salt system by consider-
ing 27 input parameters. We assumed a uniform distribution for all
paramters. The parameters and the corresponding percentage vari-
ation from the nominal values are summarized in Table 2, where P0

is the initial power, bth is the thermal expansion coefficient, Rf ;g is
the fission cross section for group g; bi is the delayed neutron frac-
tion for precursors family i; ki is the decay constant for precursors
Fig. 4. Computational scheme of the multi-physics tool representing the high-
fidelity model. The CFD code, DGFlows, exchanges data with the radiation transport
code, PHANTOM� SN , at each iteration due to the coupling between the physics
characterizing the molten salt nuclear system.



Fig. 5. Velocity magnitude, temperature, and total flux fields representing the
steady state solution of the simplified MSFR problem for nominal values of the
input parameters.
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family i, vlid is the lid velocity, m is the viscosity, and h is the heat
transfer coefficient. Since we aim at using the reduced model for
uncertainty and sensitivity analysis, we assigned a variation of
�10% for parameters with typical experimental uncertainties
whereas we vary design parameters (P0, vlid and h) by �20%. Our
interest is in the effect of these parameters on the spatial distribu-
tion of the total fluxUðrÞ, the temperature TðrÞ, and the value of the
effective multiplication factor keff . Therefore, the reference model
has 27 inputs and returns a value for the keff and two field vectors
each of length 7500 corresponding to the coefficients of the discon-
tinuous Galerkin expansion for the total flux U and temperature T.
In this work, we compare the stacking of the outputs approach
described in Subsection 4.1 with the single-output approach. For
the multiple-outputs approach, the snapshot matrix for the out-
puts evaluated at points ½x1; . . . ;xp� is computed as�

UT
1; T

T
1; keff ;1

� �T
; . . . ; UT

p;T
T
p; keff ;p

� �T
�
.

The global relative tolerances frel for U and T were set to be
10�2, which means we require the error in the L2 norm for these
fields to be less than 1%. For keff , we require the error to be less than
50 pcm, so we set frel for keff to be 50� 10�5. The interpolation
threshold (cint) was chosen to be one order of magnitude less than

the set relative tolerances. Therefore, cint was 10�3 for bothU and T

and was set to be 5� 10�5 for keff .
We first built a reduced model using a greediness value l ¼ 1.

For the multiple-outputs approach, the algorithm required 4495
reference model evaluation to converge. However, only 142 points
were included in the important set. The small number of selected
important points is an indication of oversampling. The algorithm
was then run again with l ¼ 0. In this case, the algorithm sampled
472 points with 105 important points included in the snapshot
matrix, which is a reduction by about a factor of 10 in the number
of evaluations compared with the case of l ¼ 1. Each reference
model evaluation takes about 1.5 h to run (performed on a Linux
cluster using 1 CPU operating at 2.60 GHz). Therefore, this reduc-
tion in number of evaluations is massive in computational time.
In order to test the model, 1000 Latin Hypercube Sampling (LHS)
points were generated. LHS is a method to generate unbiased ran-
dom points in higher dimensional spaces by partitioning the
hypercube first. Then, drawing one sample from each partition.
These generated points were not part of the snapshot matrix. Note
that the reduced model was trained only on the important set. The
rest of the model evaluations served as trial points but were not
included in the snapshot matrix. In machine learning terminology,
the important set is the training set and the rest of the evaluations
Table 1
Average group flux in the nominal case along with the upper energy bound for each grou

Energy group 1 2

Upper bound [keV] 20000 2231

Uavg ½cm�2 s�1� � 1016 1.22 4.92
served the function of the validation set (Ripley, 1996). Therefore,
the generated 1000 unbiased random points in the test set repre-
sent 10 times more testing points than training points. Running
the reduced model on the 1000 testing points needed only about
one second on a personal computer.

Table 3 summarizes the maximum L2 norm error found for each
output. It is evident that all tested points resulted in errors well
below the set tolerances. We also compare the results of the
single-output approach to the multiple-outputs approach in the
same table. While both approaches satisfied the required toler-
ances, the number of full model evaluations required in the offline
stage was different. The single-output approach required fewer
evaluations compared to the multiple-outputs approach. This is
due to the fact that the POD modes in the single-output approach
are tailored to that output field. The algorithm in this case, samples
points to construct a specific reduced model satisfying the desired
tolerance for that output. In the multiple-outputs approach, on the
other hand, the algorithm uses POD modes containing information
for all output fields, which require more points to satisfy the
desired tolerances for every output fields. However, because the
reduced model is enriched with every additional sampling point,
the multiple-outputs model has a slightly less error in the online
phase compared to the single-output approach.

Fig. 6 shows the distribution of the L2 norm error for the tested
1000 random points for each output in the reduced model of the
multiple-outputs approach and l ¼ 0. A comparison between the
temperature distributions of the reduced model and the reference
full order model at the point that resulted in the maximum error is
shown in Fig. 7. The L2 norm error for this case was 0.2% while the
maximum absolute difference locally was 13.9 K, which is about 1%
of the maximum local temperature (about 1482.6 K). Both cases of
l ¼ 1 and l ¼ 0 converged with 3 iterations (k = 3). To highlight
the cost effectiveness of the adaptive approach, for such 27-
dimensional problem, the classical (non-adaptive) sparse grid
approach would require 27829 points after 3 iterations, which is
extremely expensive to run.

Table 4 summarizes the number of unique nodes per dimen-
sion, which was found to be the same for both the single and
multiple-outputs approaches. This number is indicative of the
linearity/non-linearity of the reference model. During the con-
struction stage, the algorithm captures the degree of linearity of
the output of the reference model with respect to each dimension
within the defined range. A value of 3 means that the algorithm
considered that dimension to be constant because after building
a constant interpolant at the root 0:5, the error in the model was
found to be within the defined tolerances at the children points
{0;1}. The algorithm then stopped further refinements along that
dimension. A value of 5 indicates that the model is piecewise linear
in the segments (0,0.5) and (0.5,1) with respect to that dimension
because the refinement is stopped after testing the piecewise lin-
ear interpolant using the first 3 points {0.5,0,1} at the children
{0.25,0.75}. A value higher than 5 indicates that the model is non-
linear along that dimension.

It is evident from the number of unique nodes that the algo-
rithm found the outputs of the model to be constant (within the
set tolerances) with respect to bi and ki, which means varying these
parameters within the 10% range does not significantly affect the
defined outputs. Additionally, the model was found to be piecewise
p.

3 4 5 6

497.9 2.479 5.531 0.7485
9.19 5.94 4.74 1.43



Table 2
Nominal values and the corresponding variation for the considered parameters.

Parameter Nominal value Percentage variation Parameter Nominal value Percentage variation

P0 [W] 109 �20% b7 6:05� 104 �10%

bth ½K�1� 2� 10�4 �10% b8 1:66� 10�4 �10%

Rf ;1 ½cm�1� 1:11� 10�3 �10% k1 ½s�1� 1:25� 10�2 �10%

Rf ;2 ½cm�1� 1:08� 10�3 �10% k2 ½s�1� 2:83� 10�2 �10%

Rf ;3 ½cm�1� 1:52� 10�3 �10% k3 ½s�1� 4:25� 10�2 �10%

Rf ;4 ½cm�1� 2:58� 10�3 �10% k4 ½s�1� 1:33� 10�1 �10%

Rf ;5 ½cm�1� 5:36� 10�3 �10% k5 ½s�1� 2:92� 10�1 �10%

Rf ;6 ½cm�1� 1:44� 10�2 �10% k6 ½s�1� 6:66� 10�1 �10%

b1 2:33� 10�4 �10% k7 ½s�1� 1:63 �10%

b2 1:03� 10�3 �10% k8 ½s�1� 3:55 �10%

b3 6:81� 10�4 �10% vlid [m/s] 0:5 �20%

b4 1:37� 10�3 �10% m ½m2=s� 0:025 �10%

b5 2:14� 10�3 �10% h ½W=m2K� 106 �20%

b6 6:41� 10�4 �10%

Table 3
Maximum L2 error in each output with respect to the reference model after testing the reduced model on 1000 random points. The total number of full model evaluations in the
offline stage for each ROM construction is also shown.

U T keff Total number of evaluations

Multiple outputs l ¼ 1 0.18% 0.14% 23 pcm 4495
l ¼ 0 0.22% 0.20% 22 pcm 472

Single output l ¼ 1 0.35% 0.14% 23 pcm 3548
l ¼ 0 0.35% 0.25% 33 pcm 348

Fig. 6. Histogram showing the error in each of the outputs resulting from testing the reduced model on 1000 random points.

Fig. 7. Temperature distribution at the point of maximum error showing the reference model (left), the ROM model (center), and the distribution of the difference (right).
Note the change of the colour bar scale in the difference plot (right).
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linear with respect to the power, velocity, thermal expansion coef-
ficient, viscosity, and the fission cross section for the groups 1–4.
However, for the lowest energy groups (group 5 and 6), the model
was nonlinear. This can be explained by the fact that the flux dis-
tributions for all groups were not changing significantly due to the
homogeneity of the changes to the system. In addition, the group
fluxes were found to have the same order of magnitude as shown
in Table 1 for the nominal case. However, the nominal values of the
fission cross section for Rf ;5 and Rf ;6 are higher compared to the
other fast groups, which weigh more in the calculation of keff . By
examining the cause for the additional unique points along Rf ;5

and Rf ;6, we found that they were triggered purely by keff and
not by U or T. The model was also nonlinear in the heat transfer
coefficient. The negligible effect of bi and ki explains the reason
for the massive reduction in number of evaluations with the set-
ting l ¼ 0. The algorithm in this case recognized that bi and ki have



Table 4
Number of unique nodes per dimension.

Parameter number of unique nodes Parameter number of unique nodes

P0 5 b7 3
bth 5 b8 3
Rf ;1 5 k1 3
Rf ;2 5 k2 3
Rf ;3 5 k3 3
Rf ;4 5 k4 3
Rf ;5 9 k5 3
Rf ;6 9 k6 3
b1 3 k7 3
b2 3 k8 3
b3 3 vlid 5
b4 3 m 5
b5 3 h 9
b6 3
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no effect within the defined range and stopped sampling points
along these dimensions. Since bi and ki amount to 16 out of the
27 dimensions, the reduction in number of points was massive.

7. Uncertainty quantification and sensitivity analysis

In this section, we demonstrate the potential of the built ROM
model in an application of uncertainty quantification and sensitiv-
ity analysis. We study the effect of the selected input parameters
on the maximum temperature and the multiplication factor keff .
The resulting ROM can be sampled cheaply at any point within
the specified range. The ROM model from the multiple-outputs
approach and l ¼ 0 is employed for the study in this section. How-
ever, we do not expect differences in the results if any of the other
3 ROM models developed in Section 6 were used instead. We use
Latin Hypercube Sampling to sample the reduced model with
100,000 random points. The density histograms approximating
the Probability Distribution Function (PDF) are shown in Fig. 8.
For comparison, the densities resulting from running the reference
model on the 1000 testing points are also shown in the figure. The
density histogram shows a distribution close to a normal distribu-
tion, which can be explained by the fact that all input parameters
are assumed to have uniform distribution and the model is linear
or almost linear in these parameters. Therefore, the sum of these
uniform distribution approaches the normal distribution. The nor-
mal probability plot in Fig. 9 confirms that the distribution is nor-
mal within the middle range while the deviation from the normal
Fig. 8. Density histograms of the maximum temperature (left) and the multiplication fac
of same variables from sampling the reference model with the 1000 testing points are als
bars equals to 1..
is seen at the tails of the distribution. The mean of the maximum
temperature was found to be at 1336.5 K with standard deviation
equal to 61.1 K while the mean of keff was 0.99229 with standard
deviation equal to 0.016.

Local and global sensitivity analyses were also performed using
the built ROM. For the local sensitivities, Table 5 presents the aver-
aged derivatives computed from several points within a distance of

10�14 (measured in the unit hypercube ½0;1�d) from the input’s
nominal values. In order to provide a better comparison of the
effect of the parameters, the computed derivatives in the table
are normalized by the ratio R0=xp;0, where R0 is the desired
response (maximum temperature or keff ) computed at the nominal
values of the input parameters xp;0.

The results show that the maximum temperature is mainly
affected by the initial power P0 and the heat transfer coefficient
h. This is expected because these two parameters directly control
the amount of energy present in the system. Higher initial power
increases the amount of energy in the system which directly raises
the temperature. The heat transfer coefficient, on the other hand, is
negatively correlated with Tmax because lower h decreases the
amount of energy being extracted from the system causing the
temperature to rise.

The thermal expansion coefficient is related to the natural con-
vection phenomenon. Forced and natural convection play a com-
peting role in terms of mixing of the salt in the cavity. There are
two vortexes in the cavity as shown by the streamlines in Figure 5
(left) for the nominal case. When forced convection increases, the
larger vortex grows causing the vortex centre to move towards
the cavity centre. In this case, salt in the central region of the cavity
would always circulate around the centre where the fission power
is maximum. On the other hand, when natural convection
increases, the smaller vortex in the bottom left corner becomes lar-
ger causing the salt to pass through the centre then transported
close to the boundaries of the cavity where the thermal energy is
minimum. Hence, in the range of variations considered in this
work, natural convection tends to redistribute the heat in the cav-
ity, whereas forced convection has the opposite effect. Higher bth

causes natural convection to be more prevalent over forced con-
vection. This causes the temperature to be more uniform. For this
reason, bth is negatively correlated with Tmax. The viscosity, on
the other hand, has the opposite effect. Increasing the viscosity
reduces the mixing of the liquid, which creates more concentrated
hot spots that increase the maximum temperature. The lid velocity
is also positively correlated with the maximum temperature
tor keff (right) by sampling the reduced model with 100,000 points. The distributions
o shown. Note that the histogram is normalized such that the sum of the areas of the



Fig. 9. Normal probability plots for the maximum temperature (left) and the multiplication factor keff (right) showing the distribution to be normal within the middle parts
but deviating from the normal distribution at the tales.

Table 5
Normalized local sensitivities of the maximum temperature (Tmax) and keff with respect to the parameters around the nominal values. The derivatives are normalized by the ratio
of output nominal value (Tmax;0 and keff ;0) to the nominal values of the input parameters xp;0.

xp @Tmax
@xp

.
Tmax;0
xp;0

@keff
@xp

.
keff;0
xp;0

xp @Tmax
@xp

.
Tmax;0
xp;0

@keff
@xp

.
keff ;0
xp;0

P0 0.289 �0.012 b7 0 0
bth �0.036 �0.012 b8 0 0
Rf ;1 �2� 10� 5 0.012 k1 0 0
Rf ;2 �8� 10� 5 0.041 k2 0 0
Rf ;3 �6� 10� 5 0.101 k3 0 0
Rf ;4 �2� 10� 5 0.11 k4 0 0
Rf ;5 3� 10� 5 0.182 k5 0 0
Rf ;6 9� 10� 5 0.145 k6 0 0
b1 0 0 k7 0 0
b2 0 0 k8 0 0
b3 0 0 vlid 0.0003 10�4

b4 0 0 m 0.023 �10�4

b5 0 0 h �0.258 0.011
b6 0 0

Fig. 10. First order Sobol indices showing the first order sensitivities of Tmax and keff
to each input parameter. The sum of the first order sensitivities for each output is
also shown in the legend.
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because it increases the forced convection. However, this correla-
tion is shown to be weak because the range in which the velocity
changes (�20%) is very small. The fission cross sections have neg-
ligible effect on Tmax. The delayed neutron fractions and the precur-
sors decay constants have zero derivatives because our reduced
model assumes them to be constants at any point.

The multiplication factor is mainly affected by the fission cross
sections as expected. The fission cross sections of the two lowest
energy groups are the most important. This is because of their
higher weight (higher nominal values compared to the fast groups
with similar flux magnitudes) in computing keff . The thermal
expansion coefficient is negatively correlated with keff because by
increasing bth, the liquid is mixed more, which in turn causes more
precursors to move from regions of higher importance to regions of
lower importance near the boundaries. The initial power is nega-
tively correlated with keff due to the negative temperature feed-
back coefficient of the system. For the same reason, the heat
transfer coefficient is positively correlated with keff . The lid velocity
and viscosity have negligible effect on the multiplication factor.

For the global sensitivities, we computed the first order Sobol
indices using quasi Monte Carlo method with Sobol sequence sam-
pling (Sobol, 2001). We selected the size of our sampling matrices
to be 105, which generates 2 matrices each of dimension 105 � 27.
The first order Sobol indices were then estimated using the estima-
tors recommended by Saltelli et al. (2010). The computed indices
for both Tmax and keff are shown in Fig. 10. The Sobol indices show
agreement with the conclusions of the local sensitivities. The max-
imum temperature is predominantly sensitive to P0 and hwhile bth

and m have a slight effect on Tmax. The multiplication factor, on the
other hand, is mainly sensitive to the fission cross sections with the
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lowest energy groups having the most importance. Although Rf ;5

has a nominal value of about half Rf ;6, the Sobol index of Rf ;5 is
about 50% higher than Rf ;6. This can be explained by the higher flux
magnitude of group 5 compared to group 6 as can be seen from the
average flux value reported in Table 1 for the nominal case. P0 and
h have a reduced effect while bth has a minimal effect on keff . The
agreement between the local and global sensitivities show that
the system is only weakly nonlinear. Additionally, the sum of the
computed first order Sobol indices was found to be very close to
one, which indicates that second and higher order interactions
between the parameters are almost negligible. This confirms the
weak nonlinearity of the model.

In total, 3� 106 model evaluations were performed to complete
the uncertainty and sensitivity analysis study. The time to perform
these simulations using the reduced model was about 45 min on a
personal computer, which is about half the time to perform a single
simulation of the full model on the computer cluster. Using 472
snapshots computed in the offline phase, we obtained a gain of
about a factor of 5� 106 in the online computations with respect
to the reference model. This demonstrates the advantage of ROM
for such applications.
8. Conclusions

The developed ROM algorithm (aPOD) based on POD and the
adaptive sparse grids method was applied to a coupled model of
a test case for the Molten Salt Fast Reactor. We selected 27 input
parameters to model their effect on the distribution of the flux
and temperature, and the value of the multiplication factor. In a
completely nonintrusive manner, aPOD was able to build a repre-
sentative (1% accurate) ROM model with 4495 model evaluations.
This number was effectively reduced by a factor of 10 with the set-
ting l ¼ 0. This great reduction was successfully achieved due to
the ability of the algorithm to automatically recognize that the
16 dimensions corresponding to bi and ki have no significant effect
within the defined range. It was also observed that the initial
power, thermal expansion coefficient, fission cross section of the
fast 4 groups, lid velocity, and viscosity all have piecewise linear
effect on the outputs. On the other hand, the fission cross section
for the 2 lowest energy groups and the heat transfer coefficient
have slight nonlinear effect. As a test of the model, 1000 Latin
Hypercube Sampling points were tested and compared with
respect to the reference model. The errors were found to be well
within the defined tolerances for all outputs. The multiple-
outputs approach was found to require more sampling points to
satisfy the desired tolerances compared to a single separate run
for each output. This can be explained by the fact that with the
single-output ROM model, the POD modes are tailored to that out-
put field and the algorithm only needs to sample points to satisfy
the tolerance for that field. The multiple-outputs approach requires
the composite POD modes to represent all output fields, which
leads to more sampling points to satisfy the tolerances. However,
because of the additional sampling in the construction of the
reduced model, the error was found to be lower for the multiple
approach compared to the single approach.

For an application of uncertainty and sensitivity analysis, we
studied the effect of the 27 input parameters on the maximum
temperature and the multiplication factor. The density histograms
showed a normal distributions of these variables, which can be
explained by the uniform distribution assumption of the selected
parameters and the weak nonlinearity of the model with respect
to the input parameters within the defined ranges. The maximum
temperature was shown to be sensitive to the initial power and the
heat transfer coefficient while the multiplication factor was mainly
sensitive to the fission cross sections as expected. The uncertainty
and sensitivity study was performed using a total of 3 million ran-
dom points, which were completed in about half the time to run a
single simulation of the reference model. The nonintrusive
approach of the algorithm provides great potential for studies of
complex coupled nuclear systems such as the molten salt reactor,
particularity in applications of uncertainty quantification, sensitiv-
ity analysis, fuel management, design optimization, and control.
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