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Model-Based Evaluation of Methods for
Respiratory Sinus Arrhythmia Estimation
John Morales , Jonathan Moeyersons, Pablo Armañac, Michele Orini , Luca Faes ,

Sebastiaan Overeem , Merel Van Gilst, Johannes Van Dijk , Sabine Van Huffel , Raquel Bailón,
and Carolina Varon

Abstract—Objective: Respiratory sinus arrhythmia (RSA)
refers to heart rate oscillations synchronous with respira-
tion, and it is one of the major representations of cardiores-
piratory coupling. Its strength has been suggested as a
biomarker to monitor different conditions, and diseases.
Some approaches have been proposed to quantify the
RSA, but it is unclear which one performs best in specific
scenarios. The main objective of this study is to compare
seven state-of-the-art methods for RSA quantification us-
ing data generated with a model proposed to simulate,
and control the RSA. These methods are also compared,
and evaluated on a real-life application, for their ability
to capture changes in cardiorespiratory coupling during
sleep. Methods: A simulation model is used to create a
dataset of heart rate variability, and respiratory signals with
controlled RSA, which is used to compare the RSA esti-
mation approaches. To compare the methods objectively
in real-life applications, regression models trained on the
simulated data are used to map the estimates to the same
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measurement scale. Results, and conclusion: RSA esti-
mates based on cross entropy, time-frequency coherence,
and subspace projections showed the best performance
on simulated data. In addition, these estimates captured
the expected trends in the changes in cardiorespiratory
coupling during sleep similarly. Significance: An objective
comparison of methods for RSA quantification is presented
to guide future analyses. Also, the proposed simulation
model can be used to compare existing, and newly pro-
posed RSA estimates. It is freely accessible online.

Index Terms—Cardiorespiratory coupling, heart rate
variability, respiratory sinus arrhythmia.

I. INTRODUCTION

THE respiratory sinus arrhythmia (RSA) is one form of
cardiorespiratory coupling, characterized by an increased

heart rate (HR) during inhalation and a decreased HR dur-
ing exhalation. Although, two other forms of cardiorespiratory
coupling have been identified [1], namely, cardiorespiratory
phase synchronization and time delay stability, RSA is the most
widely studied. It was initially reported in 1733, but firstly
recorded in dogs only in 1847 [2]. Since then, the underlying
mechanisms responsible for RSA, as well as its physiological
function, have been a subject of debate.

Initially, it was thought that RSA was originated by one
of two factors: either mechanical effects of respiration or the
result of the regulatory action of the Autonomic Nervous Sys-
tem (ANS) [3]. Later studies in dogs demonstrated that both,
mechanical and ANS modulations, contribute to RSA [3]. It has
also been suggested that arterial baroreceptors, chemoreceptors
as well as lung and heart stretch receptors play an important role
in this modulation [4]–[6].

Concerning the physiological function of RSA, a widely
accepted hypothesis suggests that RSA helps to match perfusion
and ventilation during the respiratory cycle, thereby optimizing
the oxygen uptake [7]. Nevertheless, additional tests are needed
to prove this hypothesis [8]. Furthermore, other studies suggest
that RSA’s purpose is to either minimize the heart’s workload or
regulate the blood pressure. [9]–[11].

Despite the limited understanding of the mechanisms and
function of RSA and the lack of a gold standard for its
evaluation, it has been suggested as a biomarker to assess
people’s health status. For instance, RSA has been found to
change with aging, diabetes, sleep apnea, heart failure, stress
and anxiety disorders [12]–[17].
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Fig. 1. Model for the simulation study. The numerals correspond to the section in the paper where each part is described. A1. m(t) represents
the action of different modulators in the SA node. The RSA strength is modeled by βR. A2. m(t) is used to produce a train of impulses representing
the heart beats generation. A3. A HRV representation is calculated using this train of impulses. C. The HRV and respiratory signals are used to
estimate the RSA strength with different methods. B. Regression models are built to predict βR with the different RSA estimates. This prediction
results in an mean squared error.

The debate over RSA’s function and its potential use as
biomarker in different conditions demonstrates the importance
of standardizing methods for RSA assessment. A common
approach to evaluate RSA in a non-invasive way is through
heart rate variability (HRV). HRV captures the variation of
inter-beat intervals that occurs due to modulations from the
ANS. HRV can be computed by first detecting the R-peaks in
the Electrocardiogram (ECG) signal. From the R-peak locations,
different HRV representations can be used, including the interval
tachogram, the inverse interval tachogram, the interval function,
the inverse interval function and the heart timing signal [18]. A
common approach to evaluate RSA using HRV is to calculate
its power spectrum and then compute the total power in the
High Frequency (HF, 0.15-0.4 Hz) band [19], assuming that
respiratory frequency ranges between 9 and 24 breaths per
minute. However, respiration might occur in frequencies outside
this range and misleading results might be obtained using this
estimation [20]–[23].

Alternative approaches to estimate RSA that do not consider
specific frequency bands have been suggested in literature,
including the use of respiratory bandwidths [24], [25],
time frequency (TF) decompositions [26], [27], subspace
projections [16], bivariate phase rectified signal averaging
(BPRSA) [28], entropy calculations [29] and pole specific
spectral causality (PSSC) [30]. Currently, it is unclear which
of these approaches is more appropriate to estimate RSA and
under which conditions.

The goal of this study is to perform a detailed comparison
of the aforementioned approaches. To achieve this, a model
to evaluate different RSA estimation methods is proposed.
Some models exist in literature, such as the ones presented
in [9], [31], [25], [32], [33]. However, these do not allow to
modify the RSA strength, are not available on-line, and do not
always use real respiratory signals. This paper introduces a new
model that allows to control the RSA, use real respirations

with different spectral characteristics and is available to be
downloaded.

Seven RSA estimates are evaluated and applied to simulated
as well as to data recorded during full-night polysomnography of
healthy volunteers. Here, scenarios where the coupling strength
is different (e.g., REM vs. NREM sleep), are used to evaluate
RSA estimates in real data [34], [35].

II. METHODOLOGY

A. Simulation Model

The model used in the simulation is shown in Fig. 1. Important
aspects and components of the model are:1

1) Datasets Used in the Simulation: Signals from 3
datasets were used to built and parametrize the simulation. The
first one contains thoracic respirations and lead V1 ECG signals
(Sampling frequency, Fs = 500 Hz) from 110 patients with
different severities of obstructive sleep apnea and associated
comorbidities [24]. Here, segments containing apneas were
removed based on the annotations given by the specialists using
the AASM 2012 scoring rules [36]. It is important to mention
that the cardiorespiratory coupling is affected in apnea patients,
even during apnea-free periods [24]. However, in the simulation
only the respiratory signals are used. The second dataset consists
of thoracic respiratory (Fs = 31 Hz) and lead II ECG signals (Fs
= 486 Hz) taken from the stress recognition in the automobile
drivers’ dataset available in Physionet. This dataset was recorded
from 16 healthy volunteers while driving a car around Boston,
Massachusetts [37]. The third one is the Fantasia dataset, also
from Physionet, which contains ECG and thoracic respiratory
effort signals (Fs=250 Hz) collected from 40 healthy volunteers

1The implementation of the model is available in: https://gitlab.esat.kuleuven.
be/biomed-public/rsa-simulation-model

https://gitlab.esat.kuleuven.be/biomed-public/rsa-simulation-model


1884 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 68, NO. 6, JUNE 2021

TABLE I
MODIFIED COEFFICIENTS AND STANDARD DEVIATION OF THE AR MODEL USED IN THE SIMULATION TO GENERATE mC . THESE ARE

CALCULATED WITH SIGNALS AT A SAMPLING RATE OF 1 HZ

Fig. 2. Frequency response of the filter based on the AR coefficients
reported in [39]. This filter is used to generate mC with an attenuated
HF component.

at rest, while watching the movie Fantasia (Disney, 1940) [38].
The reason to use three datasets is to consider respirations with
distinct spectral characteristics.

The respiratory signals were filtered to preserve frequency
components between 0.03 and 0.9 Hz, upsampled to 1000 Hz and
then cut into 5-minutes epochs. These were visually inspected
and those severely contaminated with artifacts were removed.
The remaining ones were divided, based on their power spec-
trum, into two groups. The first one, referred to as regular, was
composed of the respiratory signals with power contained inside
the HF band. The second one, referred to as irregular, comprised
the signals with a spectrum broader than or outside the HF
band. In order to balance the contribution of each dataset in
the simulation, a maximum of 300 randomly selected 5-minutes
epochs, per dataset, were used.

2) Modulating Signal m(t): The signal m(t) models the
mechanisms modulating the electrical activity of the sinoatrial
node. It is built by adding two components. The first one
represents the HRV changes correlated with respiration (mR(t)).
This component was derived randomly taking a respiratory
5-minutes segment. The second is its complement and models
the modulations not correlated with respiration (mC(t)). To gen-
erate it, a filter was built based on the autoregressive (AR) model
described in [39], which assumes a sampling rate of 1 Hz. In the
current work, these coefficients were modified to remove the
peak in the HF band which, in healthy subjects during controlled
breathing, is mainly due to respiration [40]–[42]. The modified
AR coefficients are given in Table I. The frequency response of
the filter is shown in Fig. 2. A 5-minutes white Gaussian noise
epoch with Fs = 1 Hz and unit variance was generated and then
filtered with the aforementioned filter to obtain the modulation
not correlated with respiration. The resulting signal was then
upsampled to 1000 Hz and constitutes mc(t).

Next, mR(t) and mC(t) were normalized to have zero mean
and unitary standard deviation. These were used to build m(t)

as,

m(t) = βR · σm ·mR(t) + (1− βR) · σm · mC(t), (1)

where σm is the standard deviation of the modulating signal.
The coefficient βR models the strength of the cardiorespiratory
coupling, where 0 ≤ βR ≤ 1. In order to select σ2

m, the ECG
recordings from the Fantasia and drivers datasets were used.
These two datasets were included so that only healthy subjects
were considered. From these ECG recordings, the R-peaks
were detected using the algorithm described in [43]. Next, the
modulating signals were estimated using the IPFM model [39].
Afterwards, these modulating signals were segmented into 5-
minutes epochs and their variances were calculated. As a result,
σ2
m was defined as the mean variance of all the epochs.

3) Integral Pulse Frequency Modulation (IPFM) Model:
The IPFM model is described in [18], [44] and is based on the
idea that m(t) represents the action of the different mechanisms
that modulate the SA node. When the integral of 1 +m(t)
reaches a threshold T , an impulse is generated. T represents
the mean heart period and constitutes the intrinsic sampling rate
of the heart rate variability [39]. In this study, it is fixed to 0.75 s,
corresponding to a mean HR of 90 beats per minute. This value
was obtained after analyzing the spectral characteristics of the
respiratory segments described in Section II-A1. The upper limit
of the 95% occupied bandwidth was calculated on each segment.
The 90th percentile of this upper limit was 0.74 Hz. A sampling
rate of 1.48 Hz would be required to sample these signals without
aliasing, corresponding to a mean HR of 89.56 BPM and a mean
heart period of 0.74 s.

After selecting the simulation model parameters, it was used
to generate a train of impulses representing the beat occurrence
time series modulated by m(t).

4) HRV Representations: The inverse interval function,
dIIF (t), was computed from the inverse of the RR interval series
derived from the beat occurrence time series. This was shown
to outperform other HRV representations to capture modulating
signal information [18]. The result was interpolated to a uniform
sampling frequency, resulting in dIIF (n), and then used to
compute the RSA estimates explained later in Section II-C.

B. Model Application

The simulation model was used for assessing the capability
of each RSA estimate to predict βR, which was evaluated using
regression models. To this end, the simulation was run 50 times
while varying βR in the interval [0.02 1] in steps of 0.02, ran-
domly choosing a respiratory segment each time, ensuring that
the amount of used regular and irregular respiratory segments
was balanced. This, in turn, was repeated 100 times to build
a dataset of RSA estimates with known βR. This dataset was
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then randomly split into a training set comprising 80% of the
samples, and a test set with the remaining 20%.

Afterwards, support vector machines (SVM) regression mod-
els with radial basis function kernels were built on the training
set using each of the RSA estimates independently. The hy-
perparameters were tuned using grid search with 10-fold cross-
validation in the training set. After training the regression model,
βR was predicted on the test set. This prediction is denoted β̂R.
To compare the methods, the mean squared error (MSE) in the
test set was used as performance metric, calculated as,

MSE =
1

I

I∑
i=1

(
βRi

− β̂Ri

)2

, (2)

where I is the total number of samples in the test set.
To statistically compare the MSE of each RSA estimate, this

procedure was repeated 100 times, where the training and test
sets were selected at random.

For comparison purposes, the simulation was repeated in the
following scenarios:

� Separating regular and irregular respiratory segments.
This was done to evaluate the effect of having respirations
with different spectral characteristics. A sampling rate of
4 Hz was used for the HRV and respiratory signals.

� Using two sampling frequencies (2 and 4 Hz) for the
HRV and respiration. The reason to use two sampling
frequencies is to evaluate the relationship between this
parameter and the performance of the RSA estimates. On
the one hand, 4 Hz was included since it is widely used in
applications where a high HR is expected, such as during
exercise. On the other hand, 2 Hz was used to study the
effect of a lower sampling rate.

C. RSA Estimates

At this point, the respiratory signals were resampled to the
same sampling frequency as the HRV. The evenly-sampled
respiratory signals (x1(n)) and HRV (x2(n)) were used to esti-
mate the cardiorespiratory coupling with 7 different approaches,
which are classified into two categories:

1) Model-Free Approaches: This category groups non-
parametric methods, including spectral analysis, BPRSA curves
and a TF representation.

a) Normalized HRV power in the extended HF band: The
PSD of the HRV was calculated with the Welch periodogram
and a hamming window of 40 seconds with 50% overlap.
Commonly, the spectrum of the HRV is divided into three
frequency intervals, namely very low frequency (VLF, 0.003-
0.04 Hz), low frequency (LF, 0.04-0.15 Hz) and high frequency
(HF, 0.15-0.4 Hz) [19].The LF band contains information about
sympathetic and vagal modulations. The HF band is related to
vagal and respiratory activities. In this work, the lower limit
of the HF band was defined as 0.15 Hz. The upper limit was
extended to the maximum between 0.4 Hz and half the mean
HR. This modification was done to account for cases in which
the respiratory rate goes above 0.4 Hz. According to previous
studies, respiratory rates above the HF band might be commonly
observed during daily activities or exercise [26]. The power

Fig. 3. Estimation of the RSA using the BPRSA curves. A: Respiration
(driver signal) in which AP’s (•) are defined. B: HRV representation. The
AP’s defined in the respiration are used to extract signal portions from
the HRV. C: These portions are extracted. D: The segments (gray) are
averaged to obtain the PRSA curve (black). E: Resulting PRSA curve
and feature.

contained in the extended HF band was calculated and normal-
ized by the total power in the band between 0.04 Hz and the
upper limit of the extended HF band. This parameter is referred
to as PHF .

b) Normalized HRV power in the respiratory bandwidth:
The PSD of the respiration was calculated with the Welch
periodogram and a hamming window of 40 seconds with 50%
overlap. It was then used to define the frequency band in the HRV
that contained the breathing information. For this, the −3 dB
bandwidth relative to the main peak of the respiratory signal
was identified. Next, the influence of the respiration on HRV
was quantified as the normalized power contained in the PSD
of the HRV in the same band. The normalization was done with
respect to the band between 0.04 Hz and the upper limit of the
extended HF band. This estimation is denoted PBW [24].

c) Maximum of the BPRSA curve: The calculation of the
BPRSA curves is illustrated in Fig. 3. These curves capture
quasi periodicities in a target signal (HRV) caused by changes
in a driver signal (respiration). In this paper, the derivation of
the BPRSA curves was done by first locating the upslope points
in the respiration [45]. These are known as anchor points (AP).
Afterwards, segments of the HRV were defined in windows of
20 seconds centered around the APs. Next, these epochs were
averaged to obtain the BPRSA curves. The curve’s peak value
(η) was calculated and evaluated as RSA estimate.

d) Average normalized power of the partial spectrum of the
HRV related to respiration: This approach is based on the model
in Fig. 4. Here, x2(n), denoting the HRV, is modeled as the con-
tribution of two components. The first one due to the respiration
(x2R(n)) and the second one due to other modulators (x2C (n)).
As shown in [46], the TF spectrum of x2(n) can be decomposed
into the partial spectra of x2R(n) and x2C (n) based on the TF
coherence between HRV (x2(n)) and respiration (x1(n)). To this
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Fig. 4. Model of the different modulators in the HRV using a two-input,
one-output representation as described in [46].

end, the TF spectra ofx1(n) andx2(n)were calculated using the
Cohen’s Class Distribution proposed in [27]. Secondly, the TF
coherence (γ) between x1(n) and x2(n) was derived. Next, the
partial spectrum ofx2R(n)was estimated as the product between
γ2 and the spectrum ofx2(n) [27]. Afterwards, the instantaneous
power of x2R(n) was obtained integrating its partial spectrum in
the band between 0.04 Hz and the upper limit of the extended HF
band. Finally, this result was normalized by the instantaneous
power of x2(n) in the same band and then averaged over time
to obtain an estimate of the RSA, denoted PTF .

2) Model Based Approaches: The approaches included in
this category are based on or explained with multivariate autore-
gressive (MVAR) models. To build these models, a time-varying
vectorxxx(n) = [x1(n) x2(n)]

T is constructed, where x1(n) and
x2(n) represent the respiration and HRV signals, respectively.
The interactions between both systems are modeled as,

xxx(n) =

L∑
k=1

AAA(k)xxx(n− k) +www(n), (3)

where www(n) = [w1(n) w2(n)]
T represents two independent

residual noise signals, and L is the model order. The term AAA(k)
denotes a 2× 2 matrix, defined as,

AAA(k) =

[
aaa11(k) aaa12(k)

aaa21(k) aaa22(k)

]
, (4)

representing the interactions between the HRV and respiration.
Here, aaaij(k) are the coefficients representing the influence of
the ith system on the jth system. The methods to estimate RSA
included in this category differ in the way they solved for AAA(k)
or interpret the model.

The order L might influence the results significantly. Its
selection was first tested with the Akaike’s information criterion
(AIC) and minimum description length (MDL). However, the
results were not always consistent being usually too different
with the two methods. For this reason, the model order was
chosen with a more empirical approach. First, a frequency
(Fr) representative of the respiratory dynamics was found. For
this, the PSD of the respiration was computed as described
in Section II-C1. Next, the band containing the 90% of the
total power was calculated. Afterwards, the M modes (i.e.
local maxima) inside this band were found and put in a set
DDD = (Fmi, Pmi)

M
mi=1, containing the Fmi frequencies of the

modes and their Pmi powers. If M ≤ 3, Fr was defined as the
Fmi such that its associated Pmi was the maximum. In case

that M > 3, Fr = min(Fmi), but if Fr < 0.1 Hz, it was fixed
to 0.1. The order L was calculated as the number of samples
required to capture two periods of Fr. This approach is depicted
in Algorithm 1.

a) Cross Entropy: The cross entropy (CE) measures the in-
formation in the present sample of the HRV resolved by the past
of the respiration. To compute the CE, the model in equation
3 was solved for AAA(k) using the autocovariance method [47].
In the resultingAAA(k), the entry aaaij(k) describes the coefficients
of a regression, predicting xj(n) in function of xi(n− k), with
i, j = 1, 2. The variance of the HRV (σ2(x2(n))) as well as the
variance of the residuals of the regression between the present
samples of the HRV and the past information of the respiration
(σ2(x2(n) | x−

1 (n))) were calculated as described in [31]. The
cross entropy was then derived as,

CE =
1

2
ln

σ2(x2(n))

σ2(x1(n) | x−
2 (n))

. (5)

The cross-entropy in equation 5 was estimated with a linear
approach since the data is assumed to follow a Gaussian distri-
bution [48].

b) Proportion of variance related to respiration given by Pole
Specific Spectral Causality (PSSC): This approach quantified the
interactions between the respiration and HRV in the frequency
domain in specific bands [30]. For this, the Z-transform was
applied to the system in equation (3) to obtain xxx(z) =
HHH(z)www(z), where,

HHH(z) =

[
H11(z) H12(z)

H21(z) H22(z)

]
= [I−A(z)]−1 (6)

and

A(z) =

L∑
k=1

A(k)z−k, (7)

is the matrix AAA(k) in the Z domain. H(z) is known as the
transfer matrix and it is the frequency domain representation
of the dynamic dependencies within and between the HRV and
respiratory signals. The terms Hij(z) can be understood as
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transfer functions characterizing the relationship between the ith

and the jth systems. The power spectrum of system i, i = 1, 2,
can be decomposed into two partial spectra. The first spectrum
is related to the dynamics of the system itself and described
by the transfer function Hii(z). The second one is related to
the dynamics of the other system and described by the transfer
function Hij(z). From these, the complex partial spectra can be
obtained as,

Sxi|j (z) = σ2
wj

Hij(z)Hij(z
−1), (8)

whereσ2
wj

is the variance of the jth process. In [30], it was shown
that each partial spectrum can be expanded to L components
related to the poles of the transfer function as,

Sxi|j (z) =
L∑

k=1

S(k)
xi|j (z). (9)

These terms are integrated in the whole frequency range, given
by the sampling frequency Fs, allowing to decompose the vari-
ance of the ith process as,

σ2
xi

=

L∑
k=1

∫ Fs
2

0

S(k)
xi|i(f) df +

L∑
k=1

∫ Fs
2

0

S(k)
xi|j (f) df

=

L∑
k=1

pi(k) =

L∑
k=1

(pi|i(k) + pi|j(k)), (10)

where,

pi|j(k) =
L∑

k=1

∫ Fs
2

0

S(k)
xi|j (f) df. (11)

Here, pi|i(k) is the part of the variance of xi due to its own
dynamics in the kth oscillation. pi|j(k) is the part of the variance
of xi due to its interaction with xj in the kth oscillation.

Following these equations, the variances of the HRV and
respiratory signals were decomposed as follows,

σ2
x1

=

L∑
k=1

p1(k) =

L∑
k=1

(p1|1(k) + p1|2(k)) (12)

σ2
x2

=

L∑
k=1

p2(k) =

L∑
k=1

(p2|1(k) + p2|2(k)), (13)

with k = 1, . . ., L. The terms in these expressions can be inter-
preted as follows,

� p1(k) is the variance of the respiration captured by the kth

pole.
� p2(k) is the variance of the HRV captured by the kth pole.
� p1|1(k) is the variance of the respiration explained by its

own dynamics captured by the kth pole.
� p1|2(k) is the variance of the respiration explained by the

HRV and captured by the kth pole.
� p2|2(k) is the variance of the HRV explained by its own

dynamics captured by the kth pole.
� p2|1(k) is the variance of the HRV explained by the respi-

ration and captured by the kth pole.

The Q poles in p1, containing a variance equal or higher than
20% of the variance of the largest pole, were selected. Then, the
estimation of the RSA, referred to as δT , was given by,

δT =

∑Q

km=1
p2|1(km)∑L

k=1
p2(k)

. (14)

c) Normalized power of HRV linearly related to respiration:
This approach decomposes the HRV into two components, one
linearly related to respiration and another with residual informa-
tion, using orthogonal subspace projections. For this, a subspace
spanned byVVV ∈ IR(N−L+1)×L was built as a time-delay embed-
ding of the respiration using L delays [16], with N the amount
of samples in the respiratory signal.VVV was then used to calculate
a projection matrix PPP ∈ IR(N−L+1)×(N−L+1), given by,

PPP = VVV (VVV TVVV )−1VVV T , (15)

which in turn was used to derive the information in the HRV
linearly correlated to the respirations,

x̂̂x̂x2R = PPPx̂̂x̂x2, (16)

in which x̂̂x̂x2 = [x2(1), x2(2), . . ., x2(N − L+ 1)]. This decom-
position can be understood from the MAR model in equation 3.
Subspace projections can be seen as a different approach to
calculate aaa21(k) using the past information of the respiration
and the present samples of the HRV.

Within this approach, RSA is estimated as the relative power
of the linear respiratory influences on the HRV, computed as,

Px = (x̂̂x̂xT
2R
x̂̂x̂x2R)/(x̂̂x̂x

T
2 x̂̂x̂x2). (17)

D. Application to Real Data

In order to test the algorithms on real data, the RSA estimates
were derived from full-night polysomnography signals of 84
healthy volunteers. The dataset was recorded in the Kempen-
haeghe Center for Sleep Medicine in Heeze, the Netherlands.
The study was approved by the Kempenhaeghe ethical commit-
tee and by the medical ethical committee of the Maxima Medical
Center Eindhoven (W17.128). The ECG signals were recorded
withFs = 512Hz and the respiration withFs = 128Hz. The R-
peaks were detected with the approach described in [43]. Then,
the inverse interval function was used as the HRV representation.

Afterwards, the HRV representations and the respiratory sig-
nals were preprocessed following the same steps as in the simu-
lated dataset. Then, these were segmented into non-overlapping
epochs of 5 minutes, and the RSA estimates were calculated
using for each one the sampling frequency that showed the
best performance in the simulation study. RSA estimates per
subject were obtained averaging the RSA estimates on each
5-minute epoch per sleep stage and subject. These were then
used to analyze the RSA during sleep stages. Changes in the
RSA strength were expected since its regulation differs during
wake, NREM, and REM sleep [34], [35]. The sleep stages were
annotated by a technician following the AASM 2012 scoring
rules.

Each of the estimates included in this paper measures RSA
with a different unit and scale. For instance, one of them uses
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TABLE II
SUMMARY OF THE RSA ESTIMATES COMPARED IN THIS PAPER

s−1 and some other estimates are given as ratios. This makes it
difficult to do an objective comparison. This problem is solved
after applying the regression models derived in the simulation
study, since all estimates are transformed into the same unit
and scale, given by β̂R. To this end, one of the 100 models
trained as explained in Section II-B was chosen for each RSA
estimate. These models were then used to predict β̂R using the
RSA estimates calculated in the sleep data.

E. Execution Times

The algorithms with best performance were also compared
in terms of their computational cost. For this, 1000 signals
randomly selected from the simulation study were chosen, and
the times to compute the different RSA estimates were mea-
sured. This was done using a 64-bits machine with an Intel core
i7-7820HQ 2.9 GHz.

F. Statistical Tests

Significant differences between the parameters calculated
under different conditions and significant differences between
the execution times were tested using Kruskal-Wallis tests
(p < 0.05). Significant changes on the parameters between sleep
stages in the application in real data were tested using the
Friedman’s tests for repeated measures (p < 0.05). The test used
in each case is mentioned in the figures. The p-values are marked
in the figures as follows: a p < 0.05 is shown with a asterisk (*),
a p < 0.01 is marked with two asterisks (**) and a p < 0.001 is
illustrated with three asterisks (***).

III. RESULTS

Table II presents a summary of the RSA estimates compared
in this paper.

A. Comparison of the RSA Estimates

Fig. 5 depicts 4 examples of signals in the simulation study.
The corresponding RSA estimates on each case are shown in
the last row of the same figure. From these examples, different
aspects can be noted.

� PHF resulted in consistent RSA estimates when βR =
0.3. However, this occurs because the power content in
the HF was minimal and the respiratory modulation was
weak.

� PBW failed to capture the RSA when the bandwidth of
the respiration was wide or it overlapped with the peak in
the LF band.

� η was consistent in the given examples but, as will be
shown later, its performance was actually affected by
respiratory signals with different spectral characteristics.

� δT did not produce consistent results with signals sampled
at 4 Hz, but it improved when Fs = 2 Hz was used
instead.

� PTF , CE and Px were the most robust approaches to
respiratory signals with different spectral characteristics.

Fig. 6 shows the MSE for each RSA using Fs = 4 Hz and sep-
arating the analyses by the type of respiratory segment: regular
or irregular. As expected, PBW and PHF failed to characterize
βR with the irregular respiratory segments. δT and η were also
affected but not as much as PHF or PBW . For δT , an irregular
respiration made the selection of L more challenging. The MSE
probability distribution for PTF was significantly affected by
different types of respiration, but the median values were small in
both cases. CE and Px were the most robust ones to respiratory
segments with different spectral characteristics. In addition, the
tests with different Fs showed that model free approaches,
except PTF , were more robust to Fs. δT was significantly
affected by a higher Fs. Fig. 6 and the results changing Fs show
that alternative RSA estimates, except PBW , produce better
regressions than those based on the Welch periodogram. As an
example,PBW andPHF produced estimates with a median MSE
> 0.02 when an irregular respiration is considered. Px, which
was the parameter that best predicted βR, had a median MSE
≈ 0.002 when Fs = 4 Hz.

Fig. 7 depicts the RSA estimates in function of βR. The plots
were made using the sampling frequencies with the lowest
median MSE for each estimate (2 Hz for δT and 4 Hz for the
others). PBW performed the worst of all methods, therefore, it
is not included in the figure. The first plot, shows that PHF did
not change with βR as consistently as the other RSA estimates,
in particular when βR increased. η showed a similar trend to
PHF displaying a higher variability with a stronger coupling.
δT , PTF , CE and Px captured the coupling strength better than
PHF but each of them correlated differently to βR. For instance,
CE had an increased trend while Px, PTF and δT seemed to
reach a saturation point. Also, PTF , Px and CE were more
linearly correlated with βR compared to the other estimates. The
regression models trained with the same training set were used
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Fig. 5. Examples of signals in the simulation study with different respiratory signals and βR. Top row: Signals and HRV decomposition with
subspace projections. Middle row: PSD estimates of the signals. The gray region corresponds to the −3 dB bandwidth of the respiration. Bottom
row: RSA strength estimated with the approaches included in this paper. Two examples with βR = 0.3 and two examples with βR = 0.5 are
illustrated to show the response of the RSA estimates to respirations with different spectral characteristics but with modulating signals with the
same βR.

Fig. 6. MSE calculated with equation 2 in the simulation study. The
results are shown for regular and irregular respiratory segments. Signif-
icant differences were tested with Kruskal-Wallis tests.

to predict β̂R as function of each RSA estimate.2 The resulting
prediction functions for each model are shown in Fig. 8. With
these regressions, it was possible to estimate the real percentage
of change in the strength of the cardiorespiratory coupling
with the different RSA estimates as characterized by β̂R. In
addition, a more objective comparison between the different

2The trained regression models in MATLAB can be found in: https://gitlab.
esat.kuleuven.be/biomed-public/rsa-simulation-model

Fig. 7. Change of the RSA estimates in function of the RSA strength.
The increase in the cardiopulmonary coupling is modeled with βR.

estimates could be done, since they were transformed to the
same measurement scale. The figure illustrates that CE and Px

changed more monotonically with βR compared to the other
estimates. Furthermore,PHF and δT had non monotonic curves.

B. Application to Real Data

Fig. 9 illustrates the RSA estimates calculated in the sleep
dataset. Here, δT was calculated with Fs = 2 Hz and the other

https://gitlab.esat.kuleuven.be/biomed-public/rsa-simulation-model
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Fig. 8. Regression curves for the different RSA estimates to the equiv-
alent βR.

TABLE III
AMOUNT OF SEGMENTS PER SLEEP STAGE

estimates with 4 Hz. The amount of segments available per sleep
stage are summarized in Table III. Note that PHF quantified
higher values compared to Px. PTF , CE, δT and Px found the
same significant differences and these were similar to the ones
reported in [35]. The top row shows the RSA estimates before
applying the regression models. Here, it is important to mention
that each RSA estimate is in a different measurement scale. Px,
PHF , δT and PTF are in the interval [0, 1], since these are given
as ratios. On the other hand, CE and η are in the interval [0 ∞].
The bottom row depicts the estimated β̂R using the regression
models derived from the simulation study. As a result, all RSA
estimates are on the same measurement scale, determined by
β̂R, in the interval [0 1]. The same significant differences were
found in the top and bottom rows. The β̂R calculated with CE
and Px were not significantly different. When comparing the
β̂R with these two RSA estimates to the ones obtained with δT
and PTF , it is observed that the median β̂R differed by less than
0.1. More importantly, the trends with these estimates captured
similarly the change in β̂R when comparing NREM3 and wake
as well as NREM2 and wake. Here, the changes in the median
β̂R were close to 0.15 and 0.06, respectively.

C. Execution Times

Fig. 10 shows the boxplots for the execution times of the
1000 random signals taken from the simulation. Px and CE
are faster to compute since they need simpler multiplications
between matrices to be calculated. PTF , on the other hand, re-
quires the derivation of the power spectral density of the signals

using the Cohen’s Class distribution, which is a computationally
expensive operation.

IV. DISCUSSION

A. Comparison of the RSA Estimates

Estimates based on frequency bands in the Welch peri-
odogram displayed a lower performance because the modu-
lations due to respiratory segments with frequency content in
bands below the HF band were not captured correctly. This has
been reported before [16], [24], [49] and illustrates the disadvan-
tage of considering specific frequency bands when estimating
the RSA. PBW was previously reported to be better compared
to PHF in a dataset of patients with sleep apnea [24]. This
difference compared to the results reported in the current work
can be explained by the fact that in [24], only clean respiratory
signals with a narrow band were considered. PBW fails to
successfully capture the RSA when the respiratory spectrum
has a broad bandwidth or when it overlaps with the peak in the
LF band. This approach might be useful in cases in which the
respiratory rate falls outside the HF band under the condition that
a clear spectral peak is present. CE, PTF and Px presented the
smallest errors among the compared approaches and these were
independent of the frequency distribution or sampling frequency
of the respiration and HRV signals.

Regression models were used to estimate the respiratory
modulation, βR, as function of each RSA estimate. This allowed
to estimate the real percentage of change in the RSA. Different
aspects of the results shown in Fig. 8 should be highlighted. First,
it is observed that the regression line for PHF does not change
monotonically with βR. The reason for this is the variability
of the estimation, in particular when βR is large, affecting the
training of the regression model. In addition, Px and CE have
a more linear behavior. In the case of Px, this linearity holds
in the interval 0.2 < βR < 0.7. For CE, the linear relationship
is maintained in the whole interval, and holds up to βR = 0.95.
PTF and η display a more monotonic behavior compared to
PHF . In general, the results suggest that the estimates with a
more linear relationship with βR have a better performance.

An important comparison is between PHF and Px, since they
can be considered to estimate the RSA in a similar way as a
percentage of power in the HRV explained by respiration. These
estimates have been compared in previous works [16], [49]. The
results of the simulation indicate that, depending on the weight
of the respiratory modulation with respect to other modulations,
PHF results in an underestimation or overestimation of the
power explained by respiration in the HRV compared with Px,
as displayed in Fig. 7. When the weight of the respiratory modu-
lation is higher (βR > 0.5) than the weight of other modulators,
PHF is more likely to underestimate the respiratory influence in
the HRV.

In general, the results of the simulation study suggest that the
best approaches to characterize the RSA strength are PTF , Px

andCE. These estimates are robust to changes in characteristics
of the respiratory segments and to changes in Fs. It is important
to highlight that for the other estimates more complex regression
models might improve the MSE.
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Fig. 9. RSA changes in the sleep dataset. Top row: RSA estimates with the approaches compared in this paper. Each estimate measures the
RSA in a different unit and/or scale: η ∈ [0 ∞] and is given in s−1; CE ∈ [0 ∞] and is unit less; PHF , δT , PTF and Px ∈ [0 1] and are given as
ratios, but each of them correlates differently to the RSA. Bottom row: equivalent β̂R for each RSA estimate after using the SVM regression models.
β̂R ∈ [0 1] and is the proportion of variance due to the respiratory component in the modulating signal. Significant differences between sleep stages
were tested with Friedman’s test for repeated measures.

Fig. 10. Execution times for PTF , CE and Px.

B. Application to Real Data

As expected, the cardiorespiratory coupling is weaker during
lighter sleep stages and wake [34], [35]. It is observed that the
estimation with Px produces smaller values compared to PHF

in all sleep stages. This suggests that the weight of modulators
other than the respiration was higher compared to the respiratory
ones, in accordance with the simulation.

At this point, two previous works can be discussed taking into
account the results presented in Section III-B. In [16] and [50],
it was shown that PHF underestimates the percentage of power
explained by the respiration in the HRV. In both cases, the
data was recorded in a controlled environment. In contrast, the
work reported in [49] and the results presented in Section III-B
indicate that PHF is an overestimation of the cardiorespiratory

Fig. 11. Example of a respiratory and a HRV epochs taken from
the sleep dataset. In this case, PHF = 0.53 and Px = 0.41. Here, the
respiratory signal has a narrow bandwidth and falls inside the HF band.
The vertical bars show the limits of the standard HF band.

coupling. According to the results in the simulation, this might
indicate that the weight of modulations related to the respiration
were stronger in [16] and [50], with a βR > 0.5.

Another possible explanation is shown in Fig. 11, which
shows an example of the RSA estimation in a 5-minutes epoch
taken from the sleep dataset. In this case, PHF resulted in a
higher estimation of the cardiorespiratory coupling. This exam-
ple is different to the results presented in Fig. 5, in which PHF
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estimated a smaller value than Px. When irregular respirations
with frequency components below the HF band occur, PHF

estimates a weaker RSA strength. On the other hand, when a
regular respiratory rate occurs, and this is inside the HF, PHF

is higher because it also considers power due to frequency
components which Px discards.

C. Comments on the Methodology

The methodology to calculate CE, δT and Px are similar
in the sense that they use MVAR models. The difference be-
tween them is the way the model is used and interpreted. In
the case of CE, the information is estimated as the residual
of the regressions between the current samples of the HRV
and the past information of the respiration. δT uses the same
model but it works in the frequency domain to estimate the
interaction between the cardiac and respiratory systems. To this
end, it quantifies the power contribution of the poles representing
different frequency components. Px is also an MVAR model in
which the current sample in the HRV is a linear combination of
the past samples of the HRV, but the coefficients are calculated
using the subspace built with the respiratory signal.

The calculation of CE, Px and δT requires the tuning of L.
In this work, this tunning was first tested with AIC and MDL
but the results were not always consistent. In some cases, the L
selected with the two approaches were too different. In addition,
the selection usually resulted in large model orders causing
overfitting problems. For these reasons, it was decided to use
the empirical approach described in Section II-C2. In addition,
the use of a high sampling frequency introduces redundancy
in the selection of L. This is particularly problematic for δT
because the number of poles is related to L, and a higher order
than needed will produce poles with negative power [30]. More
research on the selection of the model orders might improve the
use of the methods to estimate the RSA and is proposed as future
work.

Each method can be applied in particular conditions which
can occur in cardiorespiratory analysis. PHF is limited to cases
in which the respiratory power falls inside the HF band. PBW

and η are good options when the respiratory signal is regular
with a narrow bandwidth even if it is outside the HF band, but
have problems when the respiration has a broad bandwidth or
overlap with the peak in the LF. PTF is recommended in cases
in which the signals are not stationary. To use δT , the HRV and
respirations should be resampled to the smallest possible sam-
pling frequency while avoiding aliasing effects and preserving
the important information in the HRV and respiration. Px and
CE are the most robust ones among the compared approaches.

Furthermore, it is important to highlight that the model used
in the simulation study assumes βR to mimic the RSA strength.
In addition, the modulations uncorrelated with respiration are
simulated with the coefficients of an AR model taken from a
healthy subject. The same simulation for a diseased population
would require adjustments to consider the disturbance in sympa-
thovagal balance for each condition. Finally, it has been shown
that the RSA has a non-linear relationship with the respiratory
frequency [51]. A limitation of the model is that it does not

consider these non-linearities, therefore, future studies should
focus on including them for a complete estimation of the RSA.

V. CONCLUSION

RSA has been suggested as marker of cardiovascular function
and it has been associated with chronic diseases. Despite this, the
methods to assess RSA are not standardized and it is difficult to
define objective criteria to compare them. The model proposed
in this paper offers a framework for this task and contributes
to the standardization of the RSA evaluation, leading to a more
accurate RSA estimation in clinical practice.

All the results indicate that, among the compared methods,
the approaches based on transfer entropy, time frequency coher-
ence and subspace projections are more robust to estimate the
cardiorespiratory coupling in simulated as well as in real data.
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