

Delft University of Technology

TestSpark: IntelliJ IDEA's Ultimate Test Generation Companion

Sapozhnikov, Arkadii ; Olsthoorn, Mitchell; Panichella, A.; Kovalenko, V.V.; Derakhshanfar, P.

DOI
10.1145/3639478.3640024
Publication date
2024
Document Version
Accepted author manuscript
Published in
Proceedings - 2024 ACM/IEEE 46th International Conference on Software Engineering

Citation (APA)
Sapozhnikov, A., Olsthoorn, M., Panichella, A., Kovalenko, V. V., & Derakhshanfar, P. (2024). TestSpark:
IntelliJ IDEA's Ultimate Test Generation Companion. In Proceedings - 2024 ACM/IEEE 46th International
Conference on Software Engineering: Companion, ICSE-Companion 2024 (pp. 30-34). (Proceedings -
International Conference on Software Engineering). IEEE / ACM. https://doi.org/10.1145/3639478.3640024
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3639478.3640024
https://doi.org/10.1145/3639478.3640024

TestSpark: IntelliJ IDEA’s Ultimate Test Generation Companion
Arkadii Sapozhnikov

arkadii.sapozhnikov@jetbrains.com
JetBrains Research
Berlin, Germany

Mitchell Olsthoorn
M.J.G.Olsthoorn@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Annibale Panichella
A.Panichella@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Vladimir Kovalenko
vladimir.kovalenko@jetbrains.com

JetBrains Research
Amsterdam, The Netherlands

Pouria Derakhshanfar
pouria.derakhshanfar@jetbrains.com

JetBrains Research
Amsterdam, The Netherlands

ABSTRACT
Writing software tests is laborious and time-consuming. To address
this, prior studies introduced various automated test-generation
techniques. A well-explored research direction in this field is unit
test generation, wherein artificial intelligence (AI) techniques create
tests for a method/class under test. While many of these techniques
have primarily found applications in a research context, existing
tools (e.g., EvoSuite, Randoop, and AthenaTest) are not user-friendly
and are tailored to a single technique. This paper introduces Test-
Spark, a plugin for IntelliJ IDEA that enables users to generate unit
tests with only a few clicks directly within their Integrated De-
velopment Environment (IDE). Furthermore, TestSpark also allows
users to easily modify and run each generated test and integrate
them into the project workflow. TestSpark leverages the advances of
search-based test generation tools, and it introduces a technique to
generate unit tests using Large LanguageModels (LLMs) by creating
a feedback cycle between the IDE and the LLM. Since TestSpark is
an open-source (https://github.com/JetBrains-Research/TestSpark),
extendable, and well-documented tool, it is possible to add new test
generation methods into the plugin with the minimum effort. This
paper also explains our future studies related to TestSpark and our
preliminary results. Demo video: https://youtu.be/0F4PrxWfiXo

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Unit Test Generation, IntelliJ IDEA Plugin, Large Language Models
ACM Reference Format:
Arkadii Sapozhnikov, Mitchell Olsthoorn, Annibale Panichella, Vladimir
Kovalenko, and Pouria Derakhshanfar. 2024. TestSpark: IntelliJ IDEA’s Ul-
timate Test Generation Companion. In Proceedings of 46th International
Conference on Software Engineering (ICSE ’24 Demonstrations). ACM, New
York, NY, USA, 5 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’24 Demonstrations, April 14–20, 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Software testing is essential in the software development process,
yet it can be time-consuming and costly [6]. Developers need to
manually craft tests that cover various behaviors of their projects.
As a result, numerous studies [15] propose a range of techniques to
automatically generate tests for different testing levels, including
unit [2, 5, 7, 9, 11, 14, 18], integration [10], and system level [4].
These studies confirm that the generated tests not only achieve high
code coverage [17] but also proved valuable for error detection [19]
and debugging [8]. However, most of these unit test generation
tools were primarily designed and used for research studies. Con-
sequently, openly available test generation tools specialize in one
technique and often rely on a command-line interface, making them
less user-friendly within development environments like IDEs. As
a result, users need to interact with each tool separately outside
the IDE and, later, integrate tests into their projects manually.

This paper introduces TestSpark, an open-source, extendable,
and well-documented IntelliJ IDEA plugin for unit-level test gener-
ation of Java programs. It is designed to ease unit test generation
with various techniques. Currently, TestSpark supports two tech-
nologies: Search-based software test generation (SBST) and Large
Language Model (LLM)-based test generation. The former is one of
the most effective unit test generation techniques [12]. The latter
has shown potential in helping developers in their software engi-
neering tasks, including software testing [13]. However, a recent
study [20] shows that a large portion (> 50%) of tests generated by
LLMs are malformed and non-compiling. TestSpark introduces an
approach (Section 3.2) to ensure all tests generated by LLMs are
compilable by proposing a feedback loop between the LLM and the
IDE. TestSpark is designed to let contributors easily integrate other
test generation tools by following our documentation1.

Within the IDE, users can seamlessly generate, analyze, modify,
and integrate unit tests using TestSpark. Our tool is capable of
generating tests at various granularity levels, such as for a class,
method, or even a single line of code. Once tests are generated, Test-
Spark offers a visual representation along with a detailed coverage
report, encompassing covered lines and killed mutants. Users have
the flexibility to fine-tune (manually or by LLM) and select the
generated tests, while also providing feedback to enhance each test
case. Finally, users can easily integrate the tests into their projects.

1https://github.com/JetBrains-Research/TestSpark/blob/main/CONTRIBUTING.md

https://orcid.org/0009-0002-1693-1937
https://orcid.org/0000-0003-0551-6690
https://orcid.org/0000-0002-7395-3588
https://orcid.org/0000-0001-5880-7323
https://orcid.org/0000-0003-3549-9019
https://github.com/JetBrains-Research/TestSpark
https://youtu.be/0F4PrxWfiXo
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/JetBrains-Research/TestSpark/blob/main/CONTRIBUTING.md

ICSE ’24 Demonstrations, April 14–20, 2024, Lisbon, Portugal Sapozhnikov et al.

We have released this plugin in the JetBrains Marketplace2. De-
spite the recent release, the plugin has garnered positive feedback
and more than 1K downloads. We designed studies to assess the
usability of our plugin and the usefulness of the generated tests (ex-
plained in Section 4). Moreover, the results of our preliminary study
show that test generation techniques and features implemented in
TestSpark assist developers in their unit testing tasks. TestSpark is
helpful for both software developers and researchers, acting as a
bridge between these two communities, all with a singular aim: im-
proving test generation techniques for practical usage. Developers
can readily use different test generation approaches to assist them
in writing unit tests. Also, researchers can implement their novel
strategies within this framework, evaluating them in a development
environment and collecting invaluable user feedback.

2 RELATEDWORK
Java Unit Test Generation tools. In the past few years, re-
searchers and developers implemented multiple unit test generation
tools for Java programs leveraging various techniques (e.g., search-
based [9, 11], LLM-based [5, 14, 18], and symbolic execution [1–
3, 7]). Among these tools, EvoSuite [11], which uses an SBST ap-
proach [16], outperforms other tools in terms of structural coverage
and fault detection [12]. Most of these Java unit test generation
tools use a command-line interface and output their result in one
or multiple files (e.g., CSV report file and a Java file containing the
generated tests). Hence, they are not fully integrated into IDEs,
where developers write tests. We note that EvoSuite also has an
IntelliJ IDEA plugin 3, supporting only outdated versions of the
IDE (i.e., their compatibility range is 15.0 — 2019.3.5). Moreover,
this plugin requires installing EvoSuite separately. Also, after test
generation, the plugin directly saves the generated tests and their
report in a folder. In contrast, TestSpark provides a user-friendly
interface in IntelliJ IDEA to generate tests for Java code with only
one click and visualizes the generated tests and their coverage.
Users can interact with each test and use LLMs to enhance the tests
generated by each technique. TestSpark is designed to be extend-
able and supports the integration of multiple test generation tools.
Lastly, TestSpark is a standalone plugin (i.e., does not need any other
installation) and supports the latest versions of the IntelliJ IDEA.

Java Unit Test Generation plugins in IntelliJ IDEA. By
searching relevant keywords (e.g., unit test) in the JetBrains Mar-
ketplace, we found five Java unit test generation plugins that are
under active development (i.e., have at least one yearly release4).
Kex [1, 2] and UnitTestBot [3] use symbolic execution for test gen-
eration. A prior study [12] confirms that they cannot achieve the
structural coverage and fault detection capability of EvoSuite. In
contrast to TestSpark, these plugins do not provide any visualization
for reporting the execution of the generated tests. DiffBlue5 and
SquareTest6 are paid plugins that generate Java unit tests. There is
little information about the techniques these plugins use, as their
code is not openly available. These plugins also do not visualize

2https://plugins.jetbrains.com/plugin/21024-testspark
3https://plugins.jetbrains.com/plugin/7985-evosuite-plugin
4Date of query: Sep 12, 2023
5https://plugins.jetbrains.com/plugin/14946-diffblue-cover--ai-for-code
6https://plugins.jetbrains.com/plugin/10405-squaretest

Project
build

Unit tests generation manager

EvoSuite LLM

TestSpark

Future test generators

User

Run
TestSpark

Interact with test
cases & add them
to the codebase

Figure 1: TestSpark workflow

the execution of the generated tests. Finally, Chat Unit Test7 is an
LLM-based test generation plugin that uses OpenAI ’s ChatGPT to
generate tests for a Java class and save the response directly into
the code base. TestSpark also supports LLM-based test generation;
however, it can additionally generate tests for individual lines of
code. Instead of directly saving all tests in a project file, TestSpark
lets users i) analyze each test using the visualized coverage, ii) ask
an LLM to apply further enhancement on each test, and iii) select
the interesting tests and save them as a new test suite or integrate
them into existing test files. TestSpark is not only an LLM-based
test generation framework. Since TestSpark has an extendable ar-
chitecture, new test generators can easily be integrated into this
pipeline. Tests generated by any technique can be improved by
LLM upon the user’s request. E.g., users can ask LLM to improve
the readability of a test case generated by EvoSuite.

3 TESTSPARK
TestSpark is an IntelliJ IDEA plugin for generating unit tests that
leverages two techniques to bring test generation into the develop-
ment environment: SBT (via the state-of-the-art tool EvoSuite) and
LLM-based test generation (Section 3.2). Fig. 1 illustrates TestSpark’s
workflow. Users can initiate the test generation process for a unit
under test (referred to as UUT) by simply right-clicking on a unit
and selecting the TestSpark option. Upon selecting the desired test
generation technique, the process starts. First, the plugin builds
the project within IntelliJ IDEA. This step is crucial as EvoSuite
requires the compiled code for code instrumentation [11]. Similarly,
LLM-based test generation requires compilation for test execution
and validation based on the model’s generative outcome. Following
code compilation, the unit test generation manager employs the
chosen technique to initiate the generation process. Once the tests
are collected, they are seamlessly transmitted to the visualization
service, where the results are presented to the user (see Section 3.3).

3.1 Interaction with EvoSuite
To integrate EvoSuite within TestSpark, we pursued two main goals:
(i) receiving the tests generated by EvoSuite and its coverage in-
formation inside the plugin instead of reading it from files and (ii)
adding a feature to EvoSuite that tests individual lines. This em-
powers users to focus the search process on covering specific lines,
enhancing the flexibility of the test generator. This enhanced ver-
sion of EvoSuite is available on GitHub 8. In contrast to the EvoSuite

7https://plugins.jetbrains.com/plugin/22522-chatunitest
8https://github.com/ciselab/evosuite/tree/thunderdome

https://plugins.jetbrains.com/plugin/21024-testspark
https://plugins.jetbrains.com/plugin/7985-evosuite-plugin
https://plugins.jetbrains.com/plugin/14946-diffblue-cover--ai-for-code
https://plugins.jetbrains.com/plugin/10405-squaretest
https://github.com/ciselab/evosuite/tree/thunderdome

TestSpark: IntelliJ IDEA’s Ultimate Test Generation Companion ICSE ’24 Demonstrations, April 14–20, 2024, Lisbon, Portugal

IntelliJ IDEA plugin, TestSpark automatically includes the latest
release of an enhanced version of EvoSuite during the build process.

To accomplish the first goal, we implemented the Compact Re-
porter module inside EvoSuite that generates a serialized report.
This report contains all information regarding the tests generated
by EvoSuite, including test cases and the coverage achieved by each.

For the second goal, we modified the default test generation al-
gorithm (DynaMOSA [16]) in EvoSuite. DynaMOSA generates tests
to cover lines and branches in a selected class or method. This al-
gorithm 1) analyzes the control flow graphs (CFG) of class/method
under tests; 2) it selectively adds branches and lines that are not
control-dependent on any other branches into the active search
objectives; 3) it generates a new set of tests and identifies newly
covered goals (i.e., branches and lines) in the active search objec-
tives; 4) it saves the tests reaching previously uncovered goals into
the archive; 5) it updates the active search objectives by remov-
ing newly covered goals and adding lines and branches that are
control-dependent on these; 6) repeats steps 3 to 6. In the single-line
coverage mode, which we implemented, we made specific modifi-
cations to steps 2 and 6. In these steps, we exclusively add lines and
branches that, when covered, provide the test with the opportunity
to cover the selected target line (as per the CFG). In other words,
this algorithm excludes irrelevant lines and branches to make the
search process more focused on covering the target line.

The plugin generates a command to invoke evosuite.jar for
test generation. This command passes the UUT and the path to the
compiled project as parameters.

3.2 LLM-based test generation
After selecting the preferred LLM platform (i.e., the OpenAI plat-
form and an internal service API in JetBrains) and providing the
authentication token, users should select the specific LLM model to
be used for test generation.With these configurations in place, users
can proceed to request test generation for the UUT . The plugin
then generates a corresponding prompt tailored for the LLM.

3.2.1 Prompt generation. The prompt should provide sufficient
details for the LLM to generate executable tests. However, LLMs
have a maximum prompt size, so it is necessary to balance the size
and the information provided. To achieve this balance, the prompt
generated by TestSpark should contain the following information:
(i) the problem description; (ii) UUT ’s code; (iii) the signatures of
methods and objects passed to UUT as input parameters; (iv) the
polymorphism relations of the classes used by the UUT . Users can
modify the prompt template in the settings and add additional infor-
mation (e.g., customized testing objectives or number of test cases).
Also, the depth of input parameters (used for listing the method
signatures) and polymorphism depth are set by the user in TestSpark
settings. If the prompt generated with the given values exceeds the
maximum permitted prompt size, TestSpark decreases these values
iteratively until the prompt is smaller than the permitted size.

3.2.2 Receiving the LLM response. After prompt generation (1○
in Fig. 2), TestSpark sends it to the selected LLM (2○ - 3○). Once
the LLM’s response is received, TestSpark parses it, extracting the
test code written in Java 4○. Following this, TestSpark checks each
test case individually to identify and save the ones that compile

Prompt

Request senderLLM platform

Test CasesParser

LLM
Response

Compiled
test cases

Compiler

Test Report

Test Runner
with coverage

Visualizer &
User interactionData manager

New prompt

Compiled
test cases

Data manager

All tests are
compiled?

Iteration limit
is over?

1

3 2

4 5

6

7

8 9

10

11

Yes
No

Figure 2: LLM-based test generation

(5○- 6○). In case the compilation of the test cases (7○) is successful,
TestSpark gathers the code coverage information using JaCoCo9

(9○- 11○) and visualizes the results (see Section 3.3). However, if the
compilation of the test cases fails and the iteration limit is not
reached (8○), TestSpark generates a new prompt containing the
compilation error and sends a request to the LLM to fix the detected
error. The maximum number of iterations of such a loopback is
set by the user in the plugin settings. If the number of iterations is
exhausted, the plugin continues the process with saved (compilable)
tests, if any. Otherwise, it shows an error message and asks to try
generating tests for a smaller UUT (i.e., method or line).

3.3 Visualization
After receiving the result, the user can interact with the test cases in
various ways and view their coverage. Fig. 3 illustrates an example
of such a result. The Coverage tab shows the structural coverage
and mutation score achieved by all generated tests (1○ in Fig. 3).
The table adjusts dynamically, only calculating the statistics for
the selected tests. In the Generated Test tab, each generated test is
presented. At the top of this panel, TestSpark provides the count of
passed and selected test cases, along with buttons to select, unselect,
and delete all test cases (2○- 6○ in Fig. 3, respectively).

Users have the option to copy, like, dislike, and select each test
case (8○- 11○, respectively). Also, the border color of each test block
indicates whether it passed (green) or failed (red). In case of failure,
users can hover over the error symbol 18○ to view the error message
19○. Moreover, the user can modify each test in the code field 12○.
After modification, the "run" 13○, "reset to the initial code" 14○, and
"reset to the last run" 15○ buttons become available, allowing users
to execute the updated test and undo their actions. Unwanted tests
can also be removed 16○. Additionally, each test case has a text field
where users can directly send a modification request to the LLM
17○, e.g., adding comments. This option triggers a new request to
the LLM and shows the updated test in a new code window. The
user can switch between the old and updated tests 7○.

Each covered line contains green square on its left. Clicking on
this square opens a list of test cases that cover this line 20○. If the
user uses EvoSuite as generator, TestSpark shows the list of mutants

9https://www.jacoco.org/jacoco/

ICSE ’24 Demonstrations, April 14–20, 2024, Lisbon, Portugal Sapozhnikov et al.

1

2 3 4 5 6
7

8 9 10

11

12

13 14 15 16

17

18

19

20

21

Figure 3: TestSpark’s tests visualization

in this line. Clicking on a test case name or a mutant highlights the
test cases in the "Generated Tests" that cover or kill it.

Finally, users can integrate the selected/modified tests into their
project by clicking the "Apply to test suite" button 21○. The user can
put the tests either in a new or existing file. In the first case, the
user needs to select a folder and then enter the name of the new test
class. In the second case, they can select a Java file to which the new
test cases will be added. In both cases, our plugin adds the required
imports, and thereby after integration, the saved/updated test file
is compilable and ready to execute. Moreover, TestSpark offers the
option to change the colors of covered lines for color-blind users.

4 EVALUATION
This section explains the designs of our planned studies. Since our
goal for implementing TestSpark is to aid developers in development
and unit testing tasks using test generation, our research questions
are focused on users’ interactions with this plugin and how useful
they find the test generators and features in TestSpark: RQ1: How
useful are the generated tests for developers in their day-to-day testing
practices? and RQ2: How usable is TestSpark?

Analyzing features usage statistics (FUS):We are currently
implementing collectors to gather anonymized FUS from our 1K+
users. These collectors are designed to answer the following ques-
tions: (1) How often do users use each test generation technique? (2)
For which UUT do users prefer to generate tests (e.g., class, or line)?
(3) How often is the test generation successful for each technique?
(4) How long does it take to generate tests by each test generation
technique? (5) How many tests generated by each technique are
integrated into the code base? (6) which part of the tests are modi-
fied by users (i.e., test data, method calls, or assertions)? (7) How
often do users provide feedback to the LLM (using 17○ in Fig. 3)?

Questionnaire: First, we provide a list of tasks to participants
(who have practical experience in unit testing) to use TestSpark for
testing their Java projects. Tasks include generating tests for lines,

methods, and classes. Then, we ask participants to analyze the tests
and select/integrate the ones that they find useful for their project.
After performing these tasks, the participants should answer a ques-
tionnaire about each test generator and feature in TestSpark. We
have conducted a preliminary study based on this questionnaire
with two participants (a colleague with unit testing experience
and an academic researcher who actively studies software testing).
Participants confirmed the usefulness of coverage achieved by gen-
erated tests and appreciated the ability to interact with test cases
before integrating them into their projects. Moreover, they noted
that generating tests for methods and lines is often more convenient
because classes are sometimes too coarse-grained. This confirms
the usefulness of the single-line test generation feature.

5 CONCLUSION AND FUTURE STEPS
In this paper, we have introduced TestSpark, an open-source unit
test generation plugin for IntelliJ IDEA. Leveraging cutting-edge
techniques, TestSpark empowers users to effortlessly generate tests
for a UUT , all within the familiar IDE environment. With a user-
friendly interface and a range of features, developers can efficiently
manage their testing tasks without switching contexts. TestSpark
also provides an infrastructure for researchers to implement new
test generation approaches and assess these techniques according
to user feedback. Preliminary observations and feedback indicate
the usefulness of TestSpark in accelerating unit testing tasks. Addi-
tionally, we discussed the designs of our planned studies. As future
steps, we aim to expand TestSpark’s language support. Also, we
aim to combine test generation methods to generate better tests
(e.g., improve LLM-based technique using SBT).

ACKNOWLEDGMENTS
We thank the students who helped us with the initial prototype of
this plugin: Jegor Zelenjak, Martin Mladenov, Kiril Vasilev, Lyuben
Todorov, Sergey Datskiv, and Bolek Khodakov.

TestSpark: IntelliJ IDEA’s Ultimate Test Generation Companion ICSE ’24 Demonstrations, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] 2021. Kex. https://github.com/vorpal-research/kex/tree/sbst-contest.
[2] 2022. Kex-Reflection. https://github.com/vorpal-research/kex/tree/sbst2022-

reflection.
[3] 2022. UTBot. https://github.com/UnitTestBot.
[4] Andrea Arcuri. 2019. RESTful API automated test case generation with EvoMaster.

ACM Transactions on Soft. Eng. and Methodology (TOSEM) 28, 1 (2019), 1–37.
[5] Patrick Bareiß, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel. 2022. Code

Generation Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained Language
Models on Code. CoRR abs/2206.01335 (2022).

[6] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, how, and why developers (do not) test in their IDEs. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. 179–190.

[7] Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè. 2018.
SUSHI: a test generator for programs with complex structured inputs. In Pro-
ceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings. 21–24.

[8] Mariano Ceccato, Alessandro Marchetto, Leonardo Mariani, Cu D Nguyen, and
Paolo Tonella. 2015. Do automatically generated test cases make debugging
easier? an experimental assessment of debugging effectiveness and efficiency.
ACM Transactions on Soft. Eng. and Methodology (TOSEM) 25, 1 (2015), 1–38.

[9] Pouria Derakhshanfar and Xavier Devroey. 2022. Basic block coverage for unit
test generation at the SBST 2022 tool competition. In Proceedings of the 15th
Workshop on Search-Based Software Testing. 37–38.

[10] Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, and
Arie van Deursen. 2022. Generating Class-Level Integration Tests Using Call Site
Information. IEEE Transactions on Software Engineering 49, 4 (2022), 2069–2087.

[11] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[12] Gunel Jahangirova and Valerio Terragni. 2023. SBFT tool competition 2023-
Java test case generation track. In 2023 IEEE/ACM International Workshop on
Search-Based and Fuzz Testing (SBFT). IEEE, 61–64.

[13] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-
shot testers: Exploring llm-based general bug reproduction. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2312–2323.

[14] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.
2023. CODAMOSA: Escaping coverage plateaus in test generation with pre-
trained large language models. In International conference on software engineering
(ICSE).

[15] Phil McMinn. 2011. Search-based software testing: Past, present and future. In
2011 IEEE Fourth International Conference on Software Testing, Verification and
Validation Workshops. IEEE, 153–163.

[16] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2017. Au-
tomated test case generation as a many-objective optimisation problem with
dynamic selection of the targets. IEEE Transactions on Software Engineering 44, 2
(2017), 122–158.

[17] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. A large
scale empirical comparison of state-of-the-art search-based test case generators.
Information and Software Technology 104 (2018), 236–256.

[18] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An Empirical
Evaluation of Using Large Language Models for Automated Unit Test Generation.
IEEE Transactions on Software Engineering (2023).

[19] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do automatically generated unit tests find real faults? an
empirical study of effectiveness and challenges (t). In 2015 30th IEEE/ACM Int.
Conference on Automated Software Engineering (ASE). IEEE, 201–211.

[20] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel
Sundaresan. 2020. Unit test case generation with transformers and focal context.
arXiv preprint arXiv:2009.05617 (2020).

https://github.com/vorpal-research/kex/tree/sbst-contest
https://github.com/vorpal-research/kex/tree/sbst2022-reflection
https://github.com/vorpal-research/kex/tree/sbst2022-reflection
https://github.com/UnitTestBot

	Abstract
	1 Introduction
	2 Related Work
	3 TestSpark
	3.1 Interaction with EvoSuite
	3.2 LLM-based test generation
	3.3 Visualization

	4 Evaluation
	5 Conclusion and Future Steps
	Acknowledgments
	References

