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A B S T R A C T   

The continuous monitoring of long-term performance of tunnels constructed in soft rock masses shows that the 
rock mass deformations continue after construction, albeit at a rate that reduces with time. This is in contrast 
with NATM postulates which assume deformation stabilizes shortly after tunnel construction. This paper pro
poses the prediction of long-term vertical settlement performance of a tunnel in soft rock mass, through the 
inclusion of a Burger’s creep viscous-plastic constitutive law to model post-construction deformations. To 
overcome issues related to the complex characterization of this constitutive model, a neural network NetRHEO is 
developed and trained on a numerically obtained dataset. A particle swarm algorithm is then employed to es
timate the most probable rheological parameter set, by utilizing the long-term in-situ monitoring data from 
several observation points on a real tunnel. The paper demonstrates the potential of the proposed methodology, 
using displacement measurements of two adjacent tunnels in karstic rock mass in Croatia. The complex inter
action of a railway tunnel Brajdica and a road tunnel Pećine, conditioned by the character of the surrounding 
rock mass as well by the chronology of their construction, was evaluated to predict the future behavior of these 
tunnels.   

1. Introduction 

The establishment of a novel philosophy in tunnel construction, the 
New Austrian Tunneling Method (NATM), marked a turning point in the 
mindset of tunneling engineers (Carranza-Torres and Fairhurst, 1999; 
Oreste, 2003). The method relies on achieving optimum safety and 
economy in tunnel construction, by utilizing the natural phenomenon of 
activation of the rock mass load bearing function. One of the method’s 
basic principles considers that a rock mass surrounding tunnel should be 
substantially stabilized by the primary support, leading to relatively 
small deformations after the tunnel construction. This is important 
having in mind that excessive ground movements may result in damage 
to adjacent buildings and utilities (Goh et al., 2016), or yielding due to 
excessive internal forces within the tunnel lining system (Zhang et al., 
2020a). Though it is difficult in such a complex system to ensure that 
deformations are completed at the end of the tunnel excavation process, 
as redistribution of stresses occur around the completed tunnel, the 
assumption is that the resultant settlement are small and occur in a 
relatively short time period. 

However, this assumption may not be true when tunneling in soft 
rock, such are soluble karstic rock masses. These exhibit strain softening 
behavior and time-dependent features, leading to creep settlement and 
induced squeezing. The term “squeezing” originates from the pioneering 
days of tunneling through the Alps, with the ISRM defining “squeezing 
of rock” as time dependent convergence or deformation that may 
terminate during construction or continue over a long period of time. 
Therefore, squeezing phenomena can lead to significant reduction of a 
cross section during construction, as reported by Barla et al. (2008) for 
the railway tunnel on Lyon-Torino line, see Fig. 1a, or it can occur long 
after the construction, as it was the case of a road tunnel in Japan where 
significant squeezing-induced uplift occurred 17 years after the end of 
construction (Okui et al., 2012), see Fig. 1b. Thus long-term squeezing 
can lead to long-term settlement problems and even delayed failure of 
structure, such as the case of the Laerdal tunnel in Norway, where failure 
of the shotcrete failure occurred nearly four years after its excavation 
(Grimstad, 2001). 

The scientific community is well-aware of the long-term deformation 
phenomenon, and this research domain attracts continued attention 
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(Schubert et al., 2003; Barla et al., 2008; Guan et al., 2009; Xu et al. 
2012). Arapov et al. (2009) and Kovačević et al. (2018) have conducted 
continuous long-term measurements of deformations of karstic rock 
mass surrounding the tunnels and have shown that there are significant 
differences between measured deformations and those anticipated in 
design. The measured deformations are significantly higher than those 
obtained through calculations, while the measured trends of de
formations differ from those estimated. Therefore, it is evident that time- 
dependent features of soft rock behavior should be considered in tunnel 
design. 

Despite the existing awareness of delayed deformations and their 
influence on tunnel construction and exploitation, prediction of long – 
term behavior is not a simple task due to very complex evaluation of 
time-dependent rheological parameters. This evaluation could be con
ducted through extensive laboratory tests as suggested by Aydan et al. 
(2014), including the specified creep, relaxation and quasi-static 
compression tests (Maranini and Brignoli 1999; Li and Xia, 2000; 
Fabre and Pellet, 2006). However, these tests are usually of high cost 
and long duration. Boidy et al. (2002) note that rock properties, deter
mined from laboratory tests, cannot be directly used for prediction of 
tunnel behavior for appropriate numerical simulations and it is essential 
to compare simulation results with obtained measurements from 
monitoring the tunnels over a long period. While there is still much to 
learn in order to properly define parameters which would describe long- 
term creep behavior of a rock mass, in-situ long-term monitoring seems 
to have a vital role in this process. Eurocode 7 (CEN, 2004) recommends 
monitoring more than ten years after construction is complete, or 
throughout the life of the structure, where failure may result in 
abnormal risks to property and life. One of the very well documented 
examples is the tunnel Ureshino line I in Japan, where the long term 

monitoring results obtained during the tunnel exploitation were utilized 
for the development of advanced constitutive models describing the long 
term behavior of rock mass (Guan et al., 2008), as well as for developing 
a methodology of rheological parameter estimation (Guan et al., 2009). 

This paper presents an approach to predict the long-term behavior of 
tunnels excavated in soft rocks. The estimation of rheological parame
ters for a modified Burgers constitutive model is conducted by using a 
neural network, as proposed by the Guan et al. (2009), while the se
lection of the most probable set of rheological parameters was done by 
the means of particle swarm algorithm, PSO. To increase the estimation 
precision, data from instrumentation that monitored the tunnel defor
mation at various depths below ground level and over a period of several 
years was utilized. The overall methodology is verified at a case study 
location in Croatia, where long–term monitoring data of a road tunnel 
Pećine was used to evaluate its complex interaction with an adjacent 
100 year old railway tunnel Brajdica, that was recently reconstructed by 
widening its cross section. 

2. A constitutive representation of time-dependent 
deformations 

Several factors influence the long - term deformation of rock mass 
and these include the geological history, initial stress field, mineralogy, 
discontinuity orientation, construction technology and tunneling 
method, rate, support type, etc. The long-term deformation alone is the 
result of a series of complex processes such as creep of the intact rock, 
creep of material fill between discontinuities and delayed development 
of new cracks. After the development of instantaneous deformations due 
to the excavation of the tunnel opening, the rock mass reaches a state of 
primary creep, in which deformations occur with a rate that reduces in 

Fig. 1. Squeezing-induced reduction of a cross section during construction Lyon-Torino tunnel, from Barla et al. (2008) (a), and squeezing-induced uplift of tunnel’s 
inverted arch long after the construction of tunnel in Japan from Okui et al. (2012) (b). 

Fig. 2. A classic Burgers-creep visco-plastic model with implemented Hoek-Brown plastic law (modified from Itasca, 2019).  
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time. This phase is followed by a secondary creep process, characterized 
by a constant deformation rate and by a tertiary creep characterized by 
an increase in rock mass deformation rates over time (Xue et al., 2014), 
eventually leading to the progressive damage and collapse of the rock 
mass. 

A number of constitutive models have been proposed to account for 
the time-dependent features of rock masses (Jin and Cristescu, 1998; 
Pellet et al., 2005; Shao et al., 2006; Guan et al., 2008; Lv et al., 2019). 
One of the most common types are the visco-plastic models in which the 
constitutive laws form a relation between the current strain rate to the 
current stress and/or stress rate. These relationships can be schemati
cally represented by a spring, dashpot and plastic slider that are con
nected in parallel and/or in series. One such constitutive model is the 
classic Burgers-creep visco-plastic model, characterized by a visco-elasto 
plastic deviatoric behavior and elasto-plastic volumetric behavior. The 
visco-elastic and plastic strain-rate components are assumed to act in 
series, see Fig. 2. A Kelvin unit is characterized by shear modulus GK and 
viscosity ηK, while a Maxwell unit is characterized by elastic shear 
modulus GM, Maxwell viscosity ηM and Maxwell bulk modulus KM. 

The plastic constitutive law of a classic Burger’s model utilizes the 
Mohr-Coulomb failure criteria, represented by cohesion (c), friction 
angle (ϕ) and dilation (ψ), connected in series and subjected to a certain 
deviatoric loading jointly. However, the plastic element of a classic 
Burger’s model was modified within this study to consider the non- 
linear nature of rock mass by implementation of Hoek-Brown (HB) 
strength criteria (Hoek and Torres, 2002). This criterion is described by 
the mb, s and a empirical parameters and it offers advantages in the 
determination of the overall strength of in-situ rock masses, especially 
when it comes to soft rock masses. 

Deviatoric strain rate partitioning can be formulated as: 

ėij = ėK
ij + ėM

ij + ėP
ij (1) 

The constitutive laws of the deviatoric behavior for three parts of 
Burger’s model are: 

sij = 2ηKėK
ij + 2GKeK

ij (2)  

ėM
ij =

ṡij

2GM +
sij

2ηM (3)  

ėP
ij = λ

∂g
∂σij

−
ε̇P

kk

3
δij where ε̇P

kk = λ
(

∂g
∂σ11

+
∂g

∂σ22
+

∂g
∂σ33

)

(4) 

where eij are deviatoric components derived from strain tensor, sij are 
deviatoric components derived from stress tensor, εkk are volumetric 
components of strain tensor and σkk are volumetric components of stress 
tensor. The variables with dot mark refer to their first differential with 
respect to rheological time. The superscripts K, M and P denote the 
Kelvin, Maxwell, and HB plastic components of the corresponding var
iables. A λ is a multiplier that can be eliminated in the calculation 
afterwards. 

The constitutive laws of volumetric behavior can be formulated as: 

σ̇kk = 3K(ε̇kk − ε̇P
kk) (5) 

The envelope of the stress state is defined by the HB failure criterion, 
with the failure criterion f having the form: 

f = σ’1 − σ’3 − σc

(

mb
σ’1

σc
+ s

)a

(6) 

where σ1ˊ is the maximum effective principal stress, σ3ˊ is the mini
mum effective principal stress. Determination of this criteria requires 
the knowledge of the uniaxial compression strength of the intact rock 
(UCS, sometimes referred to as σc); Geological Strength Index (GSI) 
representing the rock mass quality data which may be systematically 
collected and evaluated during site investigation, as well as during 
tunnel construction; factor D as the disturbance factor quantifying the 
disturbance effect over rock mass due to excavations; and the rock-type 
constant mi, see Fig. 3. 

To provide a relation between the components of strain rate at fail
ure, a plastic potential g has similar form as the failure criterion: 

g = σ’1 − σ’3 − σc

(

mdil
σ’1

σc
+ s

)a

(7) 

The plastic potential function based on dilation parameter mdil 
rangers from 0 to mb / 4 as suggested by Deb (2010), where mdil being 
less than mb makes the flow rule non-associated. If mdil = mb, the flow 
rule is associated, as it was applied in this study. The modified Bruger’s 
constitutive model with HB plastic element, is implemented in 

Fig. 3. Comparison of the MC and HB failure criteria.  
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numerical analysis of this study by means of two-dimensional finite 
difference software FLAC (Itasca, 2019) and its programming language 
FISH. 

3. Estimation of rheological parameters by using the particle 
swarm optimization algorithm 

To numerically describe the different elements of the given consti
tutive model, their proper evaluation is of upmost importance. Some of 
the parameters, such as the Maxwell bulk modulus KM and shear 
modulus GM, density ρ and strength empirical mb, s and a parameters can 
be determined through the standard laboratory and/or field investiga
tion works. 

When it comes to bulk modulus KM, it can be determined through the 
well-known correlations with rock mass deformation Young modulus: 

KM =
Erm

3 × (1 − 2ν) (8) 

and same goes for Maxwell shear modulus GM: 

GM =
Erm

2 × (1 + ν) (9) 

with Erm being rock mass deformation modulus and ν as Poisson’s 
coefficient. Kovačević et al. (2011) present intensive measurements 
from projects undertaken in karstic soft rock that show significantly 
higher measured rock mass deformations values than suggested by 
moduli correlated with rock mass classifications. Based on these obser
vations, Jurić Kaćunić et al. (2011) developed a new approach for 
determination of the karst carbonate rock deformation modulus, given 
by Eq. (10): 

Erm = IDm × GSI2 × Vp
2 (10) 

where Erm is in (GPa), geological strength index GSI is in (%) and the 
dispersion velocity of longitudinal waves Vp is in (km/s). The rock mass 
deformation index (IDm) for carbonate rocks is equal to the rock mass 
quality index (IQs) determined by allocating rock mass into one of the 
proposed models and weathering zones, whereas the geological strength 
index (GSI) is adapted to the geological engineering properties of 
Croatian karst (Pollak, 2007). The strength parameters can be deter
mined from UCS and GSI as shown in Fig. 3. 

However, a challenge arises when trying to quantitatively estimate 
the time-dependent parameters GK, ηK and ηM of modified Burger’s 
model. As an alternative to high cost and the long duration rheological 
laboratory tests, this study offers a solution in form of utilization of 
neural network along with application of Particle Swarm Optimization 
(PSO) algorithm. For this purpose, the three unknowns are defined:  

– ratio of Kelvin shear modulus and Maxwell bulk modulus: GK/KM  
– Kelvin viscosity: ηK  
– Maxwell viscosity: ηM 

The following sections describe the procedure of determination of 
unknowns by using neural network and PSO. 

3.1. Overall methodology steps 

The methodology for determination of the most probable set of un
known rheological parameters is as follows:  

(1) generation of a database with a large number (n3, with ‘n’ being 
the selected number of values for each parameter) of provisional 
input rheological parameters (GK/KM, ηK and ηM) sets using nu
merical simulations. These simulations result in n3 output sets, 
which represent deformation values over certain, pre-defined, 
period of time;  

(2) the input - output datasets are then used to develop the NetRHEO 
neural network (‘net’ standing for ‘network’, and ‘rheo’ standing 
for ‘rheological’) using a back-propagation learning algorithm. 
After a certain number of training iterations, the post-trained 
NetRHEO is expected to approximate the numerical simula
tions. Here, the NetRHEO is used as the response surface method 
to establish a link between the pre-defined ranges of rheological 
parameters and the long-term deformations. Within this study, 
the input layer and the output layer forming NetRHEO, consist 
only of the numerical data and not the real on-site monitoring 
data. Hence, the most important benefit of NetRHEO is to 
significantly reduce the number of numerical simulations and 
thus overall computation time;  

(3) next step involves utilization of a Particle Swarm Optimization 
(PSO) algorithm, representing a form of back analysis. PSO cho
ses the most probable set of rheological parameters (GK/KM, ηK 
and ηM) from the actual in-situ long-term monitored data, uti
lizing the established link between displacements and rheological 
parameters. The long-term monitoring is used to find the best fit 
curve, described by one set of parameters. The ‘most probable’ set 
of rheological parameters will be further validated in the nu
merical model through comparison of calculated and monitored 
values; 

(4) the numerical analysis, now with all constitutive model param
eters fully defined, are conducted to predict the behavior of soft 
rock mass surrounding tunnel, for a long-time period after its 
construction. 

The behavior of a tunnel in a soft rock mass is usually time depen
dent, due to both the sequential construction process as well as the 
rheological characteristic of the rock mass. As Sharifzadeh et al. (2013) 
note, the major difference between creep and time-independent 
constitutive models is related to the time aspect of the numerical 
simulation. In time-independent, static analyses, a time-step is a virtual 
value for stepping towards the steady-state condition. In time- 
dependent, creep analyses, a time-step in computer code represents 
real time. Selection of time-step is necessary to ensure the stability of the 
time-dependent numerical solution. In these type of simulations, nu
merical steps correlate to the real construction sequences and with real 
period of tunnel usage, to achieve realistic model’s results. The software 
allows the user to select a predefined time-step, where the creep 
constitutive laws make use of the time-step in the equations, so time-step 
may affect the response. However, for the system to be always in me
chanical equilibrium, and to avoid rapid increase of unbalanced forces 
(Pellet et al., 2009), the time-dependent stress increment must not be 
large compared to the strain-dependent stress increment. For the 
selected constitutive model, a maximum creep time-step is calculated as 
follows: 

Δtcr
max = min

(
ηK

GK;
ηM

GM

)

(11) 

Within this study, the time-dependent behavior of the tunnel was 
simulated by running the modified Burgers model for a period of 15 
years, The numerical displacements are calculated for the selected pe
riods, once every year, with the intent to match the tunnel response as 
observed through monitoring. 

3.2. Development of NetRHEO neural network 

The neural network (NN), which usually requires a large amount of 
data, is a very efficient tool for determination of rheological parameters 
from the in-situ long-term monitoring results. Because of its numerous 
advantages over traditionally used statistical and experimental methods, 
these include; excellent information processing capability pertinent to 
highly non-linear problems, high parallelism, fault and noise tolerance, 
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self-learning and generalization, many researchers utilized the benefits 
of NNs in rock tunneling (Lee and Sterling, 1992; Moon et al.1995; 
Benardos and Kaliampakos, 2004; Yoo and Kim, 2007; Mahdevari and 
Torabi, 2012; Guan et al., 2009; Hasegawa et al., 2019). Zhang et al. 
(2020c) gave an extensive state of the art review of soft computing ap
plications in underground excavations, among which are artificial 
neural networks. Application of these methods is in alignment with the 
International Society for Soil Mechanics and Geotechnical Engineering’s 
(ISSMGE’s) latest initiative to explore machine learning methods in 
geotechnical engineering (Zhang et al., 2020b). 

As an advanced machine learning algorithm, NN represents an 
alternative to the well-established pool of response surface methods (see 
Li et al, 2016), such is the Kriging model, used because of its recognized 
ability to provide high quality predictions. However, some studies 
(Kaewkongkaew et al., 2015) showed that ordinary Kriging does not 
work well in estimating rock mass quality along tunnel alignments in 
complex geological settings. Further, Shi et al. (2019) state that the NN 
surrogate model can accurately estimate the geological conditions prior 
to excavation when compared with the other soft computing methods, 
while Santos et al. (2014) conclude that model errors obtained with the 
different estimation methods (linear regression, geostatistical Kriging 
and NN algorithms) are very similar. 

As an advanced machine learning technique, NN simulates the 
functioning of the human brain and the nerve system. To learn re
lationships, which are intuitively difficult to understand and describe, 
NN relies on sharing information between interconnected artificial 
neural network elements, leading to development of awareness of the 
relationship between different parameters (Reale et al., 2018). This 
study utilizes the NN regression analysis, where the network architec
ture of so-called Multilayer Layer Perceptron (MLP) consists of an input 
layer, a hidden layer(s) and an output layer. An MLP can be regarded as 
a directed graph consisting of multiple node layers, and each node is 
connected to the next layer (Zhang et al., 2020d). Extensive literature 
overview of methods to determine the optimal number of hidden layers 
and hidden nodes, influencing the NN performance, is given by Sheela 
and Deepa (2013). The number of input and output layer is based on the 
specific problem of rheological parameter determination, while the 
optimal number of hidden layers is optimized by involving simple 
manual trial and error procedure. By assigning and adapting a weighting 
to each neuron interconnection, the neural network prediction capa
bilities are developed. Based on the scheme proposed by Hammerstrom 
(1993), it is recommended that 70% of input- output data is used for 
training process in order is to find optimum neural weightings, so to 
minimize the error function. Once the NN is trained, the following 
validation includes simulation of an output data with input data, where 
15% of total data is used in process. Finally, the testing phase uses 
remaining 15% of data to provide an unbiased evaluation of a final 
model fit on the training dataset. Generally, the amount of necessary 
dataset depends both on the complexity of problem and on the 

complexity of the chosen algorithm. 
A neural network NetRHEO, was trained, tested and validated within 

this study to learn the relationships between rock mass rheological pa
rameters and tunnel time-dependent deformations. The input set consist 
of ‘n’ values of selected rheological parameters [(GK/KM)1, (GK/KM)2, …, 
(GK/KM)n]; [ηK1, ηK2, …, ηKn]; [ηM1, ηM2, …, ηMn]. The output is deter
mined through the n3 numerical analysis where each observed point of 
rock mass surrounding the tunnel has the form of {[yt1, yt2, …, ytm]}1 ; 
{[yt1, yt2, …, ytm]}2 ; … ; {[yt1, yt2, …, ytm]}n3 with ‘y’ being the defor
mation / displacement, ‘t’ being the observed time, and ‘m’ being the 
largest observed time. If several points of rock mass surrounding tunnel 
are considered for deformation / displacement evaluation, then the 
outputs would be in form of several matrices, namely, {[y1

t1, y1
t2, …, 

y1
tm], [y2

t1, y2
t2, …, y2

tm], … , [yz
t1, yz

t2, …, yz
tm]}1 to {[y1

t1, y1
t2, …, 

y1
tm], [y2

t1, y2
t2, …, y2

tm], … , [yz
t1, yz

t2, …, yz
tm]}n3 with ‘z’ being the 

number of observed points. 
For example, if the rock mass deformation / displacement is moni

tored in five (5) fixed points, for the definite number of ‘m’ times, a 
NetRHEO consists of three (3) input nodes and five (5) output nodes, 
with utilization of total 48 distinct weightings. Four hidden layers form 
the links between the input and the output layer. Whereas the first, 
second and third hidden layers consist of three nodes, while the fourth 
one consists of two nodes. The overall number of hidden layers, as well 
the number of belonging nodes in each hidden layer, is determined 
through a ‘trial and error’ method, adopting several rule-of-thumb 
methods described in (Sheela and Deepa, 2013). A sigmoid activation 
function for hidden neurons and a linear activation function for output 
neurons are used. A scheme of a developed neural network is given in 
Fig. 4. 

The developed NetRHEO is further used for the estimation of most 
probable set of rheological parameters through utilization of PSO. 

3.3. Optimization of NetRHEO by using PSO 

Particle Swarm Optimization (PSO) represents a heuristic search 
method inspired by the swarming or collaborative behavior of biological 
populations. Since it was first published by Kennedy and Eberhart 
(1995), a PSO became very popular in different fields of human activ
ities, and so in geotechnical engineering (Chen and Feng, 2007; Haji
hassani et al., 2018). The main purpose of PSO algorithm is to propagate 
particles in the desired function space, leading to their placement in 
optimal points of this space. The particles randomly move from points to 
another set of points in a single iteration, with likely improvement using 
a combination of deterministic and probabilistic rules. Three steps need 
to be conducted within the PSO algorithm and these include generation 
of particles’ positions and velocities, velocity update, and position up
date (Hassan et al., 2005). 

As a first step, the positions, xm
i , and velocities, vm

i
, of the intial 

swarm of particles are randomly generated allowing the particles to be 

Fig. 4. A scheme of a NetRHEO neural network when considering the 5 rock mass observation points.  
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randomly distributed across the space in initial time ’m’. This is done by 
utilizing the upper and lower bounds of the design variables values, xmin 
and xmax, as given in Eqs. (12) and (13), where ’rand’ is a uniformly 
distributed random variable with value between 0 and 1: 

xi
o = xmin + rand(xmax − xmin) (12)  

vi
o =

xmin + rand(xmax − xmin)

Δt
(13) 

Next step consists of updating the velocities of all particles at time ’m 
+ 1′, by utilizing the so called particles fitness values, representing the 
functions of the particles positions in the space at time ’m’. The velocity 
update formula uses two information determined by the particle fitness 

Fig. 5. A view of the velocity and position updates in Particle Swarm Optimization.  

Fig. 6. Timeline of construction and monitoring (a) and layout (b) of two adjacent case study tunnels – railway tunnel Brajdica and road tunnel Pećine.  
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function value and these include ’which particle has the best global value, 
pg

m, in the current swarm’ and ’which is the best position of each particle over 
time, pi, in current and all previous moves’. By using these information, the 
velocity update formula provides a search direction vi

m+1 for the next 
iteration, through following equation: 

vi
m+1 = w × vi

m + c1 × rand
pi − xi

m

Δt
+ c2 × rand

pg
m − xi

m

Δt
(14) 

where the vi
m represents the current motion, pi − xi

m
Δt represents particle 

own memory and p
g
m − xi

m
Δt represents swarm influence. Three weight factors 

are used in Eq. (14) and include inertia factor w, self-confidence factor 
c1, and swarm confidence factor c2. These weight factors, as well as the 
largest overall swarm size, have the largest influence on PSO perfor
mance (Jahed Armaghani et al., 2019). This study uses w = 1, c1 = 2 and 
c2 = 2, respectively, since they provide the best convergence rate for the 
analyzed problem. The chosen swarm size is 50 particles. A view of the 
velocity and position updates in Particle Swarm Optimization is given in 
Fig. 5. 

These steps are repeated until a desired convergence criterion is met. 
Within this study, the stopping criteria is defined when the maximum 
change in best fitness is smaller than specified tolerance for a specified 
number of moves, S, as shown in Eq. (15). In this work, S is specified as 
ten moves and ε is specified as 10− 5. 

⃒
⃒f
(
pg

m
)
− f(pg

m− q)
⃒
⃒ ≤ ε where q = 1,2,…,S (15) 

The algorithm code was written within the Matlab software (Math
works, 2019). 

Even though the Genetic Algorithm (GA) is often used for the task of 
finding the best fitting curve (Guan et al., 2009), PSO offers all of the GA 
advantages such as intuitiveness, ease of implementation, and the ability 
to effectively solve highly nonlinear, mixed integer optimization prob
lems that are typical of complex engineering systems. Also, PSO has the 
same effectiveness in finding the true global optimal solution. However, 
GA is characterized by an expensive computational cost, while PSO of
fers significantly better computational efficiency (less function evalua
tions) by implementing statistical analysis and formal hypothesis 
testing. This computational efficiency superiority of PSO over the GA 
was proved by many authors (Hassan et al., 2005; Kaushik and Kumar, 
2016). 

4. Validation of the methodology: long-term behavior of tunnels 
Pećine and Brajdica 

The efficiency of NetRHEO neural network, optimized by the particle 
swarm optimization algorithm for the purpose of obtaining the most 
probable set of rheological parameters, is validated using a case study of 
the two tunnels constructed next to each other in a soft karstic rock mass 
of Croatia. 

4.1. Description of the study area 

The railway tunnel Brajdica and road tunnel Pećine are located 
under the city of Rijeka, as one of the most important tourist and freight 
hubs on the 10-T Mediterranean corridor. The construction timeline for 
both tunnels is given in Fig. 6a. Construction of a tunnel in vicinity of the 
existing tunnel is a challenging task considering their possible interac
tion. The extensive summary of studies on the impact of construction in 
the vicinity of an existing tunnel is given by Chen et al. (2019), 
considering the impact of tunnel shape, type and different clearances. 

Tunnel Brajdica is on the international railway line M603, which is 
part of Mediterranean corridor of the TEN-T network. It is constructed in 
period from 1897 to 1900 as a single-track railway tunnel with overall 
length of 1838 m. However, a tunnel reconstruction is of high priority, 
since the current operational capacity of tunnel is not sufficient, and it is 
currently a bottleneck asset of M603 line. The reconstruction covers 
widening of a tunnel profile to accommodate the new, second, track in 

order to increase the railway station capacity. The widening of the 
Brajdica tunnel which has a stone lining, is done based on NATM prin
ciples, where the new primary support includes installation of a 20 cm 
thick shotcrete layer, steel lattice girders at 1.5 m separation and 6 m 
long self-drilled steel rock bolts, with 21 rock bolt installed along the 
cross section. Tunnel Pećine is located on the D404 state road, and it 
provides direct access to the city of Rijeka and its major port area. The 
tunnel has an overall length of 1258.5 m, with 60% of tunnel con
structed as three-lane and 40% constructed as a four-lane highway. It is 
constructed between 2005 and 2008. The construction of Pećine was 
conducted using the NATM philosophy, including blasting (in high 
quality rock mass sections) and mechanical excavation (in poor quality 
rock mass sections), with installation of monitoring equipment to 
observe the short-term and long-term behavior of rock mass surrounding 
tunnel. The primary support system of tunnel Pećine consists of a 20 cm 
thick shotcrete installed in several layers and 6 m long self-drilled steel 
rock bolts, with 23 rock bolts installed along the cross section. 

The tunnel Brajdica reconstructed profile and tunnel Pećine profile 
are relatively close, see Fig. 6b, with smallest distance between tunnel 
walls of 11.4 m, corresponding to the chainage km 1 + 500 of road 
tunnel Pećine and km 2 + 130 of reconstructed railway tunnel Brajdica. 
This cross-section, representative for the tunnel portion with equal 
overburden depth and similar rock mass engineering-geological condi
tions, will be used for verification of the methodology. Overall, the case 
study tunnel Pećine has eight monitoring profiles in total. If other 
monitoring profiles are selected for verification, new numerical simu
lations would be necessary for each profile, in order to include addi
tional influence of other factors affecting the long-term displacement 
(such as geological conditions, tunnel overburden, support strength and 
stiffness, vicinity of adjacent tunnel etc.). This would yield new set of 
input–output data for NN as surrogate model, and PSO would eventually 
estimate most probable set of parameters which differs from the one 
obtained for the tunnel section analyzed in the paper. However, the 
overall paper methodology presented in the paper would remain the 
same for all analyzed sections. Still, by treating only rheological pa
rameters as unknowns, while the impact of other affecting factors on the 
long-term displacements should be evaluated with the additional nu
merical analysis, poses certain limitation of the presented study. 

4.2. The constitutive model input parameters 

The rock mass surrounding the case study tunnels is formed of 
cretaceous deposits, breccias, dolomites and limestones, of relatively 
good permeability. Therefore, the rock mass is highly susceptible to the 
karstification process leading to series of karstic phenomena which 
posed additional construction challenge, with the degree of rock mass 
fracturing more pronounced near the fault zones. 

The rock mass parameters, used as the input for numerical analysis, 
are obtained by means of in-situ and laboratory investigation works 
prior and during the construction of tunnel Pećine, as well during the 
reconstruction of tunnel Brajdica. To determine Hoek-Brown’s param
eters (mb, s, a), the geological strength index (GSI) is used, representing 
a simplified classification system based on the assessment of lithology, 
structure, and surface conditions of rock mass discontinuities. The GSI 
assessment was conducted during the excavation of both tunnels in the 
analyzed zone, where the GSI evaluated during the reconstruction of 
Brajdica tunnel is in agreement with the GSI values obtained 15 years 
before, during the construction of tunnel Pećine. The unconfined 
strength (UCS) is given as the mean value value of total of 56 triaxial, 
uniaxial and PLT test, while the mi is determined as the mean result 
value of total 36 triaxial tests, as reported by Kovačević et al. (2020). 
The disturbance factor (D) in this study is defined by the input value of 
0.1, considering the excavation technology of combining blasting (in 
high quality rock mass sections) and mechanical excavation (in poor 
quality rock mass sections). 

To determine Maxwell parameters, KM and GM, the karst-adapted 
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rock mass stiffness given by Eq. (10) is implemented. Beside the GSI 
value, this modulus includes, unique value 0.4 for IDm and values of 
longitudinal wave velocities (Vp) determined from the seismic profile, 
obtained by the means of the seismic refraction method. Considering the 
increase of the rock mass stiffness due to the Vp increase, as given by 
Jurić Kaćunić et al. (2011), a FISH, programming language, code rep
resenting the non-linear increase of rock mass stiffness is implemented 
within the two-dimensional finite difference software FLAC (Itasca, 
2019). 

Maxwell parameter ηM as well as Kelvin parameters ηK and GK 
(defined by the GK/KM ratio), representing the time-dependent behavior 
of rock mass, are determined by the means of NetRHEO and PSO. The 
overall input parameters are given in Table 1. 

4.3. Long term monitoring database 

During the construction of a tunnel Pećine, extensive instrumenta
tion was employed to determine the behavior of a tunnel during the 
construction and in operation, Fig. 7. The monitoring activities are 
conducted annually from June 2005, marking the date when the 
analyzed cross-section of tunnel Pećine is excavated. The micrometer 
measurements were conducted using the measurement pipe installed 

from the terrain surface to the depth of tunnel crown and these provide 
data on vertical displacement of rock mass. Additionally, the incli
nometer measurements were conducted using the measurement pipe 
installed from the terrain surface to the depth of tunnel bottom, from 
each side of tunnel, to obtain data on horizontal displacement of the rock 
mass. Considering that this equipment is installed in soft rock mass and 
is used for the continuous long-term measurements, it is important to 
ensure that the monitoring pipes do not move during the monitoring 
period in addition to the displacements caused by rock mass creep. To 
ensure reliable measurements, installation errors were minimized with 
careful installation procedures, where measurement pipes were installed 
in drilled boreholes, and the space between pipes and the borehole wall 
was filled with the cement slurry ensuring the fixed position of pipes in 
boreholes. Each measurement pipe was then covered with a steel cover 
cap and secured by the lock in terrain surface. Also, the survey point is 
installed at the surface, on the location of each pipe steel cap, and the 
annual measurements show that there are no movements of the steel cap 
protecting the measurement pipes. Regarding measurement errors, 
Dunnicliff (1988) notes that the total error measured is the sum of 
random errors, which include environmental errors that result in un
controllable fluctuations of measured variables displacements, and 
systematic error, where the impact of random errors on the total error is 

Table 1 
Numerical constitutive model input values.  

Kelvin’s parameters Maxwell’s parameters Hoek-Brown’s parameters 

GK (MPa) ηK (–) KM (MPa) GM (MPa) ηM (–) mb (–) s (–) a (–) 

Determined by PSO Determined by PSO 

from Erm=IKs ⋅ GSI2 ⋅ Vp 
2 

Determined by PSO 

1.870 0.001 0.500 
from rock mass parameters 

GSI (–) Vp (km/s) mi (–) GSI (–) UCS (MPa) 
29 0.1–4.0 7 29 60  

Fig. 7. The analyzed monitoring profile with installed monitoring equipment.  
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much smaller than the impact on systematic error. While random errors 
are only minimized through careful equipment installation, systematic 
errors in this study are corrected using well-known mathematical 
procedures. 

The obtained monitoring results of vertical displacements for tunnel 
Pećine are shown in Fig. 8. Five measurement points are observed along 
the installed micrometer; first one on the terrain surface, following three 
on 5 m separation and the last one on the level of tunnel crown. 

It should be noted that, after the construction of the mentioned 
section of tunnel Pećine, monitoring frequency reduced to once a year, 
with the data acquisition being performed and monitoring database 
being updated annually, in the month of June. It is clearly visible that 
the observed points experience similar trend of increasing vertical 
displacement values, albeit at a continuously reduced rate, throughout 
the monitoring period. As expected, the crown point experiences the 
largest displacement values. When compared to the short-term 
displacement caused by the tunnel excavation, the overall vertical dis
placements increased for 70% for a tunnel crown observation point, up 
to the 153% for the observation point on terrain surface. This study 

utilizes vertical displacements for the evaluation of rock mass behavior. 
This is in line with similar studies, for example Xiang et al. (2018), 
where, if the ground above the tunnel is considered, the vertical dis
placements are in fact dominant displacements. In this study, total 
displacement values are similar to the vertical displacement values, 
since horizontal displacement values at the same observation points are 
less than 8% of the vertical displacement values. Therefore, if total 
displacements are considered as an input, the estimated rheological 
parameters would not change significantly from those estimated using 
vertical displacements. The consideration of five observation points 
represents a step forward from some previous studies, such as Guan et al. 
(2009), which use convergence measurements of tunnel lining for the 
analysis of long-term behavior of a tunnel. In same time, consideration 
of additional observation points would add to the complexity of the 
neural network, while in same time would not significantly enhance the 
overall rheological parameter estimation procedure. 

Fig. 8. Measured vertical displacement from 15 year monitoring of tunnel Pećine.  

Fig. 9. Numerical model and contours of vertical displacements occurred shortly after the excavation of tunnel Pećine.  
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4.4. Application of a NetRHEO neural network 

As a first step in applying the neural network, 125 (i.e. 53 being 
possible number of combinations, where ‘5′ represents a number of pre- 
defined values for each parameter, while ‘3′ represents number of pa
rameters) numerical analyses were carried using the following sets of 
input parameters:  

– Kelvin shear modulus / Elastic bulk modulus, Gk/KM = [0.2; 0.4; 0.6; 
0.8; 1.0]  

– Kelvin viscosity, ηK = [2⋅105; 4⋅105; 6⋅105; 8⋅105; 1⋅106]  
– Maxwell viscosity, ηM = [2⋅106; 4⋅106; 6⋅106; 8⋅106; 1⋅107] 

The possible range of selected input parameters for soft rock was 
based on their actual range obtained from the literature (Guan et al., 
2009; Weng et al., 2010; Sharifzadeh et al, 2013; Mahdevari and 
Bagherpour, 2014; Hamza and Stace, 2018; Paraskevopoulou and Die
derichs, 2018; Wang et al., 2019; Huang et al., 2020), and the range was 
additionally extended, so that upper and lower boundary of each 
parameter range can be considered as sufficient to estimate the most 
probable parameter value in the subsequent analysis. These 125 sets of 
rheological parameters were applied to the same numerical model, 
which then proceeds to the calculation of long-term behavior. The 
input–output pair, provided by the numerical simulations, is called one 

dataset. 
The numerical model showing the contours of vertical displacements 

for the period just after the excavation of tunnel Pećine, is given in Fig. 9. 
The figure points to the fact that excavation of Pećine has a small effect 
on vertical displacements of tunnel Brajdica. However, this could not be 
verified considering that no on-site measurements on the tunnel Brajdica 
were conducted during the excavation of tunnel Pećine. A sensitivity 
analysis was performed to check for boundary effects and a FLAC model 
100 m wide and 40 m high was found to satisfy the requirements. 

Duration of one numerical simulation is approximately 50 min, 
demonstrating the significant computational efforts of long-term cal
culations. Concerning that the 125 numerical simulations were con
ducted with all possible combination of rheological parameters, total 
number of displacements calculated in each observed point is 1875 (15 
years × 125 calculations). 

The overall matrix output has form: 
{[y1

1, y1
2, …, y1

15], [y2
1, y2

2, …, y2
15], … , [y5

1, y5
2, …, y5

15]}1 
{[y1

1, y1
2, …, y1

15], [y2
1, y2

2, …, y2
15], … , [y5

1, y5
2, …, y5

15]}2 
… 
{[y1

1, y1
2, …, y1

15], [y2
1, y2

2, …, y2
15], … , [y5

1, y5
2, …, y5

15]}125 
where each of 125 NetRHEO outputs contain 5 sets of vertical dis

placements of observed points, calculated for period of 15 years. These 
125 input–output datasets were used for training, testing and validating 
the NetRHEO neural network. The complete input–output datasets are 

Fig. 10. Training (a), validation (b), testing (c) and overall (d) datasets with correlation of NetRHEO predicted time-dependent displacements and rheolog
ical parameters. 
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given as supplementary research data of this paper (see ‘Supplementary 
research data - NN construction database’). 

Within the ‘trial and error’ method, 32 different neural network ar
chitectures were evaluated. Obtained R2 and MSE values for each ar
chitecture are given as supplementary research data of this paper (see 
‘Supplementary research data - NN trial and error database’). Fig. 10 
shows the regression coefficients for training, testing and validation and 
overall datasets, determined for vertical displacement, for the selected 
NetRHEO architecture, shown on Fig. 4. The R2 values for the target- 

output evaluations are basically equal to unity, confirming that the 
NetRHEO established strong correlation between time-dependent dis
placements and rheological parameters. Regarding the mean square 
error for the target-output evaluations, it yields the following values: 
3.5⋅10− 8 for training dataset, 7.2⋅10− 8 for validation dataset, 5.4⋅10− 8 

for testing datase and 4.4⋅10− 8 for overall dataset. This efficiency of 
NetRHEO in establishing the complex, non-linear, relationship is ex
pected, having in mind that NetRHEO is basically describing the Burgers 
constitutive model, i.e. rheological parameter – displacement correla
tion. Since the main goal of neural network is to learn a function to map 
input data to output data, The obtained high values of R2 and low values 
of MSE for training, validation, testing and overall data, prove that the 
chosen number of input combinations is representative. 

4.5. PSO estimation of most probable set of rheological parameters 

The post-trained network is employed to estimate the most probable 
set of rheological parameters via a genetic algorithm (GA) and particle 

Table 2 
Results of PSO and GA optimization.   

Particle Swarm Optimization (PSO) Genetic Algorithm (GA) 

Gk/KM (–) 0.5639 0.5732 
ηK (–) 669,861 675,382 
ηM (–) 5,798,236 5,832,913 
fmin 1.2597⋅10− 8 1.7823⋅10− 8  

Fig. 11. Numerically obtained vertical displacements for tunnel Pećine during the period of 15 years.  

Fig. 12. Numerical model and contours of vertical displacements occurred shortly after the reconstruction of tunnel Brajdica.  
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swarm optimization (PSO) algorithm code, implemented in MATLAB 
(Mathworks, 2019). As an input, monitoring data from five observed 
points, shown on Fig. 8, are used. The main goal of both the GA and PSO 
is to find the minimum value of a function which serves as an estimator 
of most probable set of rheological parameters. Therefore, these tech
niques are used for minimizing the sum-square-error between the 
network output and the desired output obtained by displacement mea
surements. The sum-square-error is a measure of the quality of an esti
mator, it is always non-negative, and values closer to zero are better. The 
results are shown in Table 2. When compared to the estimation results 
using the GA, the PSO yields three times lower value of the minimum of 
estimation function (fmin). 

Inclusion of the determined best estimated rheological parameters as 
an input for numerical analysis, yielded the results shown in Fig. 11. It is 
clearly visible that, for all five observed points, numerically obtained 
displacement trend correlates well with the monitoring results. This 
validates the overall methodology of using a developed, PSO optimized, 

NetRHEO neural network for the estimation the most probable set of 
rheological parameters. 

4.6. Quantification of tunnel Brajdica reconstruction impact on tunnel 
Pećine displacements 

During the recent reconstruction of a railway tunnel Brajdica, a 
justified concern arose on the impact of excavation works on the adja
cent road tunnel Pećine which operates continuously for last 12 years. 
The numerical model showing contours of vertical displacement just 
after the reconstruction of tunnel Brajdica are shown in Fig. 12. 

The reconstruction works on tunnel Brajdica began in June 2019, 
while the breach of the instrumented section, analyzed within this paper 
and shown in Fig. 7, occurred during the October 2019. The micrometer 
measurements of the vertical displacement of adjacent tunnel Pećine 
showed that an abrupt increase of displacement values occurred after 
the excavation of tunnel Brajdica, see Fig. 13. 

Fig. 13. The increase of vertical displacement of tunnel Pećine crown: simulated and monitored values from period of June 2005 to June 2020 (left panel) and 
numerically predicted values for period up to 2035 (right panel). 

Fig. 14. Prediction of a crown vertical displacement for tunnel Brajdica, throughout the period of 30 years.  

M.S. Kovačević et al.                                                                                                                                                                                                                           



Tunnelling and Underground Space Technology incorporating Trenchless Technology Research 110 (2021) 103838

13

After the excavation of tunnel Brajdica, the vertical displacement 
values of tunnel Pećine increased around 8% for the tunnel crown point, 
while the surface terrain point displacement increased by 10%. These 
are much higher increase compared to the increase of vertical 
displacement during the last year prior to tunnel Brajdica excavation 
works, which was 0.5% for crown point and 1% for terrain surface point. 
The measured vertical displacement in June 2020, approximately 8 
months after the excavation of the tunnel Brajdica analyzed section, 
shows an increase of 5% for the crown point and 6% for the terrain 
surface point, when compared to the data from October 2019 measured 
just after the excavation. 

The numerical analysis show very good agreement with the moni
toring results for the same period of June 2019 to June 2020, Fig. 13, 
where the influence of the tunnel Brajdica excavation on the tunnel 
Pećine displacement is calculated with high accuracy for all five 
observed points. After the abrupt increase due to tunnel Brajdica exca
vation, the numerically obtained curves for the period of next 15 years, 
up to year 2035, are shown in the right panel of Fig. 13. The increment of 
vertical displacement is similar to the one recorded before the tunnel 
Brajdica reconstruction. The increase in vertical displacement is further 
observed with the prediction of crown vertical displacement in 2035 
being 39% larger than the displacement from June 2020. In same time, a 
terrain surface point will exhibit 48% larger value when compared to the 
one from June 2020. 

4.7. Estimation of tunnel Brajdica long-term deformation 

The established numerical model, whose reliability was validated by 
aforementioned comparison with the in-situ monitoring results, is 
further used to calculate the long-term vertical displacement of recon
structed railway tunnel Brajdica. The observed period extends to 30 
years after the reconstruction. The predicted vertical displacement of a 
tunnel Brajdica crown is given on Fig. 14. 

The numerical outputs suggest that, after the short-term crown 
displacement of 16 mm caused by the excavation, a vertical displace
ment will continue to increase in next 30 years up to a value 125% larger 
than the short-term displacement caused by the excavation works. Of 
course, this increase owes to the omnipresent long-term deformations of 
a tunnel in soft karstic rock. In same time, annual increment of 
displacement increase will gradually decrease to the value of 0.5% per 
year of tunnel operation. 

The geodetic on-site measurements of tunnel Brajdica crown 
displacement correlate well with the calculated values, both for October 
2019 (shortly after the excavation of analyzed section) and in June 
2020. 

5. Conclusions 

To overcome the complex evaluation of time-dependent rheological 
parameters, required for the numerical calculation of long-term 
behavior or tunnels, this paper offers a methodology based on applica
tion of neural networks optimized by the particle swarm algorithm. 
Currently, the evaluation of these parameters mostly relies on costly and 
time-consuming laboratory tests. A NetRHEO is trained, validated and 
tested on the large amount of input – output sets obtained from the 
numerical analyses, which utilize the modified Burger’s constitutive 
model for the description of rock mass long-term behavior, where this 
study utilizes Hoek-Brown criteria for the plastic component of model. 
Three rheological unknowns are highlighted within this study, and these 
include ratio of Kelvin’s shear modulus and Maxwell’s bulk modulus 
(GK/KM), Kelvin’s viscosity (ηK) and Maxwell’s viscosity (ηM). Such 
developed neural network is capable of estimating the most probable set 
of unknown rheological parameters by using the long-term monitoring 
database as an input. Therefore, a developed neural network NetRHEO 
takes full advantage of database consisting of the continuous monitoring 
of long-term performance of tunnels constructed in soft rock masses. To 

ensure most reliable estimation, a particle swarm algorithm optimiza
tion is proposed, which can offer significantly better computational ef
ficiency in comparison to genetic algorithm, by implementing statistical 
analysis and formal hypothesis testing. To increase the estimation pre
cision, several monitoring observation points are suggested within this 
study, covering the tunneling influence zone from terrain surface to the 
tunnel depth. 

The overall methodology is verified on a case study location in 
Croatia, where the long – term monitoring data of a road tunnel Pećine 
was used to evaluate its complex interaction with the adjacent 100 years 
old railway tunnel Brajdica, recently undergone the cross section 
widening reconstruction. The developed, PSO optimized, NetRHEO 
provided a set of rheological parameters which enabled both numerical 
simulation of monitoring database, as well the prediction of the 
behavior of both tunnels throughout their service life. Such calibrated 
numerical model gave crucial insight on both short-term and long-term 
interaction of these adjacent tunnels. Therefore, it is of paramount 
importance for tunnel managers to understand that the instrumentation 
of their assets will yield numerous benefits, providing them an infor
mation on long-term tunnel resilience to rock mass creep. 
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